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Mathematical morphology is a theory of image operators and image functionals 
which is based on set-theoretical, geometrical and topological concepts. The 
methodology is particularly useful for the analysis of the geometrical structure 
in an image. The main goal of this paper is to give an impression of the 
underlying philosophy and the mathematical theories which are relevant to 
this field. We have tried to achieve this goal by discussing a number of 
theoretical problems we have been dealing with in the past five years. 

1. INTRODUCTION 
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In the early sixties two researchers at the Paris School of Mines in Fontainebleau, 
Georges Matheron and Jean Serra, worked on a number of problems in mineral
ogy and petrography. Their main goal was to characterize physical properties of 
certain materials, e.g. the permeability of a porous medium, by examining their 
geometrical structure. Their investigations ultimately led to a new quantitative 
approach in image analysis, nowadays known as mathematical morphology. 

Thirty years later, mathematical morphology has achieved a status as a pow
erful method for image processing which, besides having been applied success
fully in various disciplines such as mineralogy, medical diagnostics and histology, 
has also become a solid mathematical theory leaning on concepts from algebra, 
topology, integral and stochastic geometry. To a large extent the current status 
is due to its founders MATHERON and SERRA [27, 39, 40] 

The central idea of mathematical morphology is to examine the geometrical 
structure of an image by matching it with small patterns at various locations in 
the image. By varying the size and the shape of the matching patterns, called 
structuring elements, one can obtain useful information about the shape of the 
different parts of the image and their interrelations. In general the procedure 
results in nonlinear image operators which are well-suited for the analysis of the 
geometrical and topological structure of an image. 

Originally, mathematical morphology has been developed for binary images 
which can be represented mathematically as sets. The corresponding morpho
logical operators essentially use only four ingredients from set theory, namely set 
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intersection, union, complementation and translation. But from the very begin
ning there was a need for a more general theory powerful enough to deal with 
object spaces such as the closed subsets of a topological space, the convex sets 
of a (topological) vector space, and grey-scale images. It has been observed first 
by SERRA [39] that a theory of morphology essentially requires the underlying 
image space to be a complete lattice. 

This paper intends to give the reader a flavour of mathematical morphology. 
As such we do not aim for completeness. In fact the paper is rather fragmen
tary and restricts to those subjects we consider interesting to a mathematical 
readership. In the final section we point out a few other subjects which are 
not discussed in this paper but which may also be of interest. For a general 
account on mathematical morphology we refer to the two books by SERRA [39, 
40] and to a monograph by MATHERON [27] which contains a comprehensive dis
cussion on random sets and integral geometry. Actually, it is this probabilistic 
branch which has made morphology into such a powerful methodology, and it 
is somewhat unfortunate that this aspect has been given so little attention in 
the recent literature. Furthermore we refer the interested reader to a forthcom
ing monograph by the author [15] dealing with various mathematical aspects of 
morphology. Some other elementary references are [6, 7, 9]. 

Besides this introduction this paper comprises six sections, all dealing with 
different topics. In Section 2 we introduce the reader to morphology and discuss 
a number of classical, binary morphological operators which are invariant under 
translations. In Section 3 we discuss the extension to the framework of complete 
lattices. Such an abstract theory also enables the construction of operators 
which are invariant under other transformation groups than translations. In 
Section 4 we introduce the reader into the world of morphological filters; these 
are defined as operators which preserve the partial order structure and which are 
idempotent. We indicate how one can construct filters by iteration of operators 
which are not idempotent but do have certain continuity properties. Geometrical 
aspects of morphology are discussed in Section 5. Despite the patchy contents 
of that section we hope it gives the reader an intuition for the kind of problems 
which occur. Then, in Section 6 we discuss some extensions of the binary theory 
to grey-scale images, and finally in Section 7 we mention some problems which 
have not been given a place in this paper. 

2. WHAT IS MATHEMATICAL MORPHOLOGY? 
A convenient way to model binary (=black and white) images, both continuous 
and discrete, is by means of sets. Unless stated otherwise we assume that E =]Rd 

or 'Jf By P(E) we denote the power set of E. Let X <;;; E be a binary image. 
The key principle underlying mathematical morphology is to gain geometric 
information about X by probing it with another small set, called the structuring 
element, at every position h E E. By 'probing' we mean testing whether the set 
Ah hits X (that is Ahn X i= 0) misses X (that is, Ahn X = 0), or lies entirely 
inside X (that is, Ah i; X). Here Ah denotes the translate of A along the vector 
h, Ah = {a + h I a E A}. The hit-or-miss operator is a mapping on the space of 
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binary images P(E) which is based on this intuitive idea. Let A, B ~ Ebe two 
structuring elements such that A n B = 0 and define 

X@ (A, B) = {h EE I Ah~ x and Bh ~ xc}. (2.1) 

Here xc denotes the complement of X, or, in image processing terminology, the 
background of the image X. See Figure 1 for an example. It is obvious that 
A and B must have an empty intersection because otherwise the resulting set 
would be empty. 
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FIGURE 1. Hit-or-miss operator for a discrete image. The struc
turing element (left) is such that the operator detects the lower
left corner points. The black dots in the right image form the 
transformed image X@ (A, B) of the original image X (middle). 

The hit-or-miss operator is an easy example of a set operator (i.e., a mapping 
'I/;: P(E) -+ P(E)) which is translation invariant, that is, 

'l/;(Xh) = ['1/;(X)]h, forX E P(E) and h EE. (2.2) 

Moreover, one can show that every translation invariant set operator can be 
represented as a union of hit-or-miss operators. 

PROPOSITION 2.1. Let 'I/; : P(E) -+ P(E) be a translation invariant operator. 
There is a family of pairs of structuring elements {(Ai, Bi) Ii E J} such that 

'l/;(X) = LJ X@ (Ai, Bi)· 
iEI 

In fact, it is possible to give a characterization of the structuring elements re
quired in this representation [l]. If we take B = 0 in (2.1) we obtain the 
Minkowski difference 

x 8 A= {h EE I Ah~ X}, 

which we shall call henceforth the erosion of X by A. Instead of X 8 A we shall 
also write .: A ( X). Note that 

X@ (A, B) = (X 8 A) n (Xc 8 B). (2.4) 



240 H.J.A.M. Heijmans 

Erosion is a translation invariant operator which is increasing, that is 

x c;; Y ===:} x e A c;; Y e A. 

Instead of (2.3) we can also write 

XeA= n X-a· 
a EA 

Another important operator is Minkowski sum given by 

(2.5) 

(2.6) 

from now on called the dilation of X by A, and denoted as 8A(X). Note that X ffi A = { x + a I x E X, a E A}. Dilation and erosion are depicted in Figure 2. 

FIGURE 2. From left to right (in grey): the original set X and its 
dilation and erosion by a disk. 

Defining the reflection of A with respect to the origin as 

A= {-a I a EA}, 

we can also write 

It is clear that dilation defines an increasing translation invariant operator. After these definitions we could give a long list of properties of erosion and dilation. However, we refrain from doing so and mention only those properties which we think are essential here. If Xi <;; E for all i in some index set I, then 

(2.7) 
iE/ iE/ 
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(2.8) 
iEI iEI 

In the next section where we discuss morphological operators in the context of 
complete lattices we meet these properties again. 

If X,A,B ~Ethen 

(X EB A) EBB = X EB (A EBB) 

(X 8 A) 8 B = X 8 (A EBB). 

(2.9) 

(2.10) 

These properties open the way to construct decompositions of erosion and di
lation with large structuring elements in terms of erosions and dilations with 
smaller structuring elements. It is evident that 'clever' decomposition proce
dures yield a powerful method for fast implementations of dilations and erosions. 
For example one has 

where the •'s represent the points in the structuring element. Note that in the 
last decomposition one of the 3 x 3-squares is replaced by its extreme points. 
This reduces the number of operations in expressions like (2.9) and (2.10). For 
larger structuring elements this reduction becomes even more significant. We 
refer to [3] where this property is used to obtain logarithmic decompositions. 

There is a considerable amount of literature about decomposition of struc
turing elements using Minkowski addition [46, 47]. We do not give any details 
here but only point out that discrete convexity plays an important role in these 
theories. To understand this we make the following observation: a compact set 
A ~ lR is convex if and only if 

(>.+µ)A= >.A EB µA, (2.11) 

for >., µ > 0. The relation (2.11) also holds in the 2-dimensional discrete case. In 
higher dimensions it is no longer true. We will meet property again in Section 5 
when we discuss granulometries. 

We can specialize Proposition 2.1 to increasing translation invariant operators. 
To be specific, we define the kernel V( 'lj!) of a translation invariant operator 'lj! 
as 

V('lj.J) ={A~ EI 0 E 1/i(A)}. 

The following result is due to MATHERON [27]. 
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THEOREM 2.2. Let 'I/; be an increasing translation invariant operator on P(E). 
Then 

'l/;(X) = LJ X e A= n X EB A. 
AEV(,P) AEV(,P*) 

Here 'I/;* denotes the complementary operator given by 

(2.12) 

The kernel of an operator is too large to be of any practical use. Namely, it 
follows from the increasingness that A E V('I/;) implies that also A' E V('I/;) for 
every set A' 2 A. This has motivated MARAGOS [24] to introduce the notion 
of a minimal kernel element and to look for (continuity) conditions on 'I/; which 
guarantee that 'I/; can be represented as a union of erosions with these minimal 
kernel elements. 

Dilation and erosion are also complementary operators in the following sense: 

(2.13) 

In image processing terms, dilation of the image has the same effect as erosion 
of the background (with the reflected structuring element). But dilation and 
erosion are dual in yet another sense, namely 

Y E9 A 5;; X -<==:} Y ~ X e A, (2.14) 

for every pair of sets X, Y ~ E. This so-called adjunction relation forms the 
basis of the extension of morphological operators to complete lattices discussed 
in the following section. Since the left-hand-side is satisfied if we take X = YE9A 
we derive by substitution of this expression at the right-hand-side: 

X ~ (X E9 A) e A =: X • A. (2.15) 

In a similar way one can show that 

X 2 (X e A) E9 A =: X o A. (2.16) 

We call X •A and X o A respectively the closing and opening of X by A. From 
(2.15) and (2.16) we derive that 

X E9 A ~ ((X E9 A) e A) E9 A= (X E9 A) o A~ X E9 A, 

yielding that 

((X E9 A) e A) E9 A= X E9 A. (2.17) 

Similar arguments yield that 
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((X 8 A) E9 A) 8 A= X 8 A. 

As a direct consequence we achieve the following identities: 

(X o A) o A = X o A 

(X • A) •A = X •A, 
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(2.18) 

saying that opening and closing are idempotent operators. We can derive the 

following alternative characterization of the opening and the closing: 

X o A= LJ{Ah I h EE and Ah~ X}, (2.19) 

that is, X o A is built up of all translates of the structuring element A which are 

contained in X. For the closing X • A we derive 

Figure 3 illustrates the opening and the closing. 

FIGURE 3. Closing and opening of a set X ~ IR2 by a disk. 

Opening and closing are complementary operators in the following sense: 

(X 0 A)c = Xc •A. (2.20) 

We now give the following general definition. 

DEFINITION 2.3. An operator a : P(E) -+ P(E) is called an opening if a is 

increasing, a 2 = a (idempotence) and a(X) ~ X for X ~ E (anti-extensivity). 

An operator (3 : P(E) -+ P(E) is called a closing if f3 is increasing, (32 = f3 

(idempotence) and X ~ f3(X) for X ~ E (extensivity). 

To distinguish the opening given in (2.16) from the general concept above we call 

it a structural opening to emphasize that it uses only one structuring element. 

There are many openings which are not of the structural type. In fact, if O:i is 
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an opening for every i in some arbitrary index set I, then the operator given by 
o:(X) = LJiEJ o:;(X) is also an opening. Analogously, an arbitrary intersection 
of closings defines again a closing. In the literature one can find a number of 
alternative ways to construct openings. We refer in particular to [39,35,34]. In 
Section 5 we discuss an iterative method to construct openings and closings. The 
theorem below shows that the structural openings and closings form a basis for 
all openings and closings. We define the invariance domain Inv( 7/J) of an operator 
'ljJ as the collectionofallfixpoints of 'I/;, that is lnv(7/J) = {X ~ E 17/!(X) = X}. It 
is easy to prove that the invariance domain of an opening is closed under unions. 
Moreover, if the opening is translation invariant then its invariance domain is 
closed under translations as well. 

2.4. THEOREM. 

(a) Let n be a translation invariant opening on P(E). Then 

o:(X) = LJ X o A, 
AElnv(a) 

for every X ~E. 

(b) Let (3 be a translation invariant closing on P(JR). Then 

(3(X) = n X • A, 
Aelnv(.B) 

for every X ~E. 

(2.21) 

(2.22) 

Openings and closings play a rather prominent role in mathematical morphology. 
We shall see one particular application in Section 5 where we discuss granulome
tries. A second application is the cleaning of images. If an image is corrupted by 
noise, one can try to recover it by applying openings and/or closings. This is the 
key idea underlying the so-called alternating sequential filters. We point out here 
that it is a good custom in morphology to preserve the name 'filter' for those 
operators which are increasing and idempotent. Consider a family of structuring 
elements An, n ~ 1 such that An is An-1-open, that is Ano An-1 = An. Let 
O:n resp. f3n be the opening resp. closing by An. Then 

O:nO:n-1 = O:n and f3nf3n-1 = f3n· 

We define the alternating sequential filter of order n as 

It has been shown (40] that Vn is idempotent, whence the name filter. Further
more, the filters Vn satisfy the semigroup property 
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Here c.p ~ 'ljJ means that c.p(X) s;; '!jJ(X) for X s;; E. 
We conclude this section with a brief discussion of the relation between mor

phological operators and Boolean functions. A thorough exposition can be found 
in [15]; see also (3]. For a smooth introduction to Boolean functions we refer 
to [10]. We restrict ourselves to the case E = zd. If one wants to perform a 
dilation with the 3 x 3-square 

A=(:::). 
one has actually to repeat for every pixel h the following procedure: look at the 
values of X(·) (the characteristic function of X) at hand its eight neighbours: 
if at least one of these values is 1 then h lies in the dilated set. One can easily 
generalize this to arbitrary Boolean functions. Assume that A is a structuring 
element containing n points a1, a2, ···,an, and that bis a Boolean function of n 
variables. We define the operator 1/Jb as 

'l/Jb(X) = {h E zd I b(X(a1 + h), X(a2 + h), ... ,X(an + h)) = 1}. (2.23) 

Note that 'l/Jb also depends on A. We say that the translation invariant operator 
7/; : P(Zd) ~ P('lld) is finite if there exists a finite window A s;; zd such that 

h E '1/l(X) *=* h E 'lf;(X n AU, 

for every h E zd, X s;; zd and A' 2 A. It is not difficult to show that every 
finite translation invariant operator is of the form (2.23). The dilation can be 
represented through a Boolean function of the form b(x1, ... , Xn) = x1 + · · · + 
Xn, where '+' denotes the logic 'OR'. If bis a positive (=increasing) Boolean 
function then 'l/Jb is increasing. If b is additive (as in the example above) resp. 
multiplicative then 1/;b is a dilation resp. an erosion. 

As a first example consider the hit-or-miss operator X ~ X@ (B, C) where 
B n C = 0. This operator can be represented in terms of a Boolean function 
as follows. Let B = {a1,a2,···,am} and C = {am+1,am+2, .. ·,an}, define 
A= BUG and 

b(x1, ... ,xn) = X1 · X2 · · · · · Xm · Xm+l · Xm+2 • • • ·Xn· 

Here x means 'NOT x'. Using (2.23) we find that h E '!/Jb(X) if and only if 
a1 + h, a2 + h, · · · , am + h E X and am+l + h, am+2 + h, · · · , an + h <;l X, that is 
Bh ~ X and Ch s;; xc. This yields that 'l/Jb(X) = X@ (B,C). 

As a second example we discuss the rank operators, sometimes called order 
statistics. Let rk, k ::; n be the positive Boolean function of n variables which 
takes the value 1 if at least k variables are equal to 1 and 0 otherwise. It is 
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clear that r1 (x1, · · ·, .Tn) = X1 + · · · + Xn and rn(X1, · · ·, Xn) = X1 • · · · · Xn· If 
A is a structuring element with n points and if k :::; n then we define the rank 
operator PA,k as the operator given by (2.23) with b = rk. It is evident that 
PA,1(X) = X EB A and PA,n(X) = X 8 A. If n is odd and k = (n + 1)/2 then 
PA,k is usually referred to as the median operator. It is easy to check that the 
median operator is selfdual. (An operator 'if; is called selfdual if 'lj;* = 'lj;.) In 
Figure 4 we have illustrated the rank operator for different values of k. 

~---------~~---------~ ~---------~ 

FIGURE 4. The rank operator applied to a noisy image X (black 
pixels) for different values of k. The structuring element is the 
3 x 3-square consisting of 9 pixels. From left to right and top to 
bottom: the original image X and the transformed image PA,k(X) 
for respectively k =2,4,5 (median),6,8. 

3. AN ALGEBRAIC APPROACH 

From the previous section, mathematical morphology appears as a collection of 
image transforms based on set-theoretical operations such as union, intersection 
and complementation. Furthermore, these transforms are built in such a way 
that they are translation invariant. Although this paper deals exclusively with 
transforms mapping one image into another, the goal of mathematical morphol
ogy is much wider. Using techniques from integral geometry, stereology, and 
stochastic geometry the field is also concerned with image measurements, i.e., 
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transforms mapping an image onto a number or a collection of numbers (e.g., 
the moments of a size distribution). 

In the previous section we were only concerned with binary images, in which 
case the image space can be modeled appropriately by P(E), E being the Eu
clidean space JRd or the discrete space zd. But depending on the kind of images 
one wants to consider, the sort of information one needs to extract, or the math
ematical techniques one would like to use, other object spaces might be more 
appropriate. For instance, integral geometry relies heavily upon the theory of 
convex sets [8, 27], meaning that if one is about to use integral geometric tools, 
a restriction to convex sets may be necessary, or at least helpful. In stochastic 
geometry one has to supply the underlying space with a topology. Such is possi
ble if one takes the space of closed sets or the space of compact sets as the image 
space [27]. Turthermore, it is important to extend mathematical morphology 
to grey-scale images which can be modeled mathematically as functions. Here 
several possibilities occur: one can choose continuous, discrete or finite grey
value sets, one can restrict to (semi-) continuous functions, convex functions, or 
functions with compact domains. 

Besides this enormous variation in object spaces there is yet another gener
alization which is quite important. It is, namely, by no means obvious why 
morphological operators have to be translation invariant. In fact, one can think 
of a number of situations (e.g. radar imaging) where rotation invariance is to 
be considered more appropriate. Turthermore, one can easily think of situations 
where perspective transformations come in naturally; think, for instance, of the 
problem of monitoring the traffic on a highway with a camera at a fixed position. 
It is obvious that in such a configuration the detection algorithms should take 
the distance between the camera and the object (e.g. a car) into account. 

These considerations are sufficient motivation to think about an abstraction 
of mathematical morphology which includes all mentioned object spaces and al
lows the generalization of translation invariance to other transformation groups. 
Such an abstraction was initiated by MATHERON and SERRA in [40]. They ar
gued that the structure of a complete lattice is the appropriate framework for 
a general theory of mathematical morphology. Their work, however, did not 
include invariance under transformation groups. Such an inclusion was first 
made by HEIJMANS and RONSE in [17, 36] for Abelian transformation groups. 
Later this was generalized to non-Abelian transformation groups by ROERDINK 

[31, 32]. For a comprehensive discussion of the complete lattice framework of 
morphology we refer to our forthcoming book [15]. 

In this section we give a short overview of the main results in [17, 36] and 
illustrate them by a concrete example. In fact, Section 6, where we discuss 
morphology for grey-scale functions, comprises another application. 

Although we expect that most of the readers will be familiar with the basic 
theory of complete lattices, we briefly recall some basic notions. A complete 
lattice is a set .C with a partial order ':S' such that every subset 'H of .C has 
a least upper bound V 'H., called the supremum, and a greatest lower bound 
/\'H. called the infimum. The least and greatest element of .C are respectively 
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denoted by 0 and J. We refer to [2] for a general account of the theory of 
complete lattices. From now on we denote by .C an arbitrary complete lattice. A 
trivial but very useful fact is the observation that .C endowed with the opposite 
ordering X S.' Y iff Y S. X, is also a complete lattice, called the opposite or dual 
of C, and denoted by C'. To every definition, statement, property, etc. referring 
to C there corresponds a dual one referring to .C', interchanging the role of S. 
and s_'. This principle is known as the duality principle. 

We mention some examples of complete lattices which are relevant in the 
context of mathematical morphology. We have already met P(E) in the previous 
section; this is a complete lattice if we take set inclusion as the partial ordering. 
If Eis a topological space, then the closed sets :F(E) ordered by inclusion form 
a complete lattice; in this case the supremum of a collection Xi, i E J, of closed 
sets is given by uiEJ X;, where the bar denotes closure. Analogously, the open 
sets form a complete lattice (this lattice is isomorphic to the opposite of :F(E) ). 
If E is a real vector space, then C(E), the convex subsets of E ordered by 
inclusion define a complete lattice. The infimum is the ordinary set intersection 
and the supremum is given by 

V X;. = co(LJ Xi)· 
iEI iEI 

Here co(·) denotes the convex hull. If E is a nonvoid space and T a complete 
lattice then we denote by Fun(E, T) the space of all functions mapping E into T. 
With the pointwise ordering of T ( F S. F' iff F ( x) S. F' ( x) for every x E E) this 
becomes a complete lattice. This space will play an important role in Section 
6, A choice for T which is particularly important is T = i" := JR. U { -oo, +oo }. 
As a special example of the function lattice we mention the space of Boolean 
functions of n variables. 

The lattice C is called distributive if 

X !\ (Y v Z) = ( X !\ Y) V ( X f\ Z) 
XV (Y !\ Z) =(XV Y) f\ (XV Z), 

for all X, Y, Z E C. [, is called modular if it satisfies the identity 

XV (Y f\ Z) = (X VY) !\ Z if X S. Z, 

for all X, Y, Z E .C. Any distributive lattice is modular but the converse is not 
true in general. 

If X, Y E C are such that X f\ Y = 0 and X V Y = I then Y is called the 
complement of X. We write Y = xc. A Boolean lattice is a complete distributive 
lattice in which every element has a complement. An operator '!/; : [, -+ C is 
said to be increasing if it preserves the order structure, that is X ~ Y implies 
that 7/;(X) S. 7/;(Y). It is called decreasing if it reverses the order structure. The 
increasing operators on C define a complete lattice under the ordering 
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'l/J 5 'l/J' ~ 'l/J(X) 5 'l/J'(X) for all X EC. (3.1) 

A mapping 'l/J on .C is called a lattice automorphism if 'l/J is an increasing bijec
tion. Then 'l/J(ViEJ X;) = ViEI 'lf;(X;) and 'l/J(/\iEJ Xi) = /\;EI 1/J(Xi), for every 
collection X;. A decreasing bijection is called a dual automorphism. A dual 
automorphism which satisfies 

'lj;2 =id, 

id denoting the identity operator, is called a negation. If 'If; is a negation then 
X* = 'lj;(X) is called the negative of X; although such a nomenclature is in 
general ambiguous due to the fact that negations are not necessarily unique, it 
will not give rise to any confusion. Note that on a Boolean lattice the complement 
operator is a negation. On Fun (E, i:) the mapping F--+ -F defines a negation. 

If 'lj; is an operator mapping C into another complete lattice M, and if both 
lattices have a negation, then we define the complementary operator 'If;* : .C --+ M 
as 

'l/J*(X) = [1/J(X*)]*. (3.2) 

Note that 'If;* is increasing (decreasing) if and only if 'ljJ is increasing (decreasing). 
The basis for the definition of morphological operators on complete lattices is 

formed by the concept of adjunction. 

DEFINITION 3.1. Let C, M be complete lattices, let € be an operator from C 
into Mand 8 an operator from Minto .C. The pair (c, 8) is called an adjunction 
between C and M if 

8(Y) 5 X ~ Y 5 c(X), 

for every X E C and Y E M. Then 8 is called a dilation and c: an erosion. 
We summarize some basic properties 

PROPOSITION 3.2. Let (€, 8) be an adjunction between .C and M. Then 
{a) c(I} =I and 8(0) = 0. 
{b} c(/\;EI X;) = /\iE/ c(Xi) for every collection X; E C (i E I). 
{c} 8(ViEJ Yi)= ViEI 8(Y;) for every collection Yi EM (i E J). 
{d} €8 ~ idM. 
{e} 8c: 5 idc. 
(f) c& = €. 

(g) 8c:8 = 8. 
{h} c(X) = V{Y EM I 8(Y) 5 X}. 
{i) 8(Y) = /\{X E .C I Y 5 c(X)}. 

(3.3) 

From (2.14) it follows that the pair (cA, 8A) defines an adjunction on P(E). 

PROPOSITION 3.3. With every erosion€ : C --+ M one can associate a unique 
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dilation 8 : M _.... £ such that ( c:, 8) forms an ad junction between £ and M. 
Dually, with every dilation 8 : M -+ £ one can associate a unique erosion 
c:: £-+ M such that (c:,8) forms an adjunction between£ and M. 

PROPOSITION 3.4. If (c:i,8i) is an adjunction for every i EI, then (/\;EJ£i, 
ViEJ 8;) is an adjunction as well. 

PROPOSITION 3.5. Let£, M be complete lattices with a negation and let (c:, 8) 
be an ad junction between [, and M. Then ( 8*, c:*) defines an adjunction between 
Mand£. 

Let T form an abelian group of automorphisms on £. An operator 'I/; on £ is 
called T -invariant if 

'l/;r = n/;, r E T. 

A T-invariant operator is called a T-operator. Similarly, a T-invariant dilation 
is called a T-dilation. If£= P(JR) and T is the group of translations, then 'T
invariant' means 'translation invariant'. If (c:, 8) is an adjunction on£ and if c: or 
8 is T-invariant, then both operators are T-invariant. If T ET then ( r- 1 , r) is a 
T-adjunction. Together with Proposition 3.4 this yields that (/\iEJ T;-l, viEI ri) 
is a T-adjunction if Ti E T for i E J. Below we will give assumptions under 
which every T-adjunction is of this form. It is not difficult to show that in the 
translation invariant case discussed in the previous section this is true indeed. 
Essentially, two properties of the space P(E) are used here: (1) every set is 
a union of points, and (2) the translation group acts simply transitive on the 
points. The latter means that for every two points there is a unique translation 
mapping the first point onto the second. The Basic Assumption below essentially 
generalizes these two properties. 

A subset £ of [, is called a sup-generating family if every element of £ can be 
obtained as a supremum of elements of£. As a special example we mention the 
set of atoms in an atomic lattice: see [2]. Note that P(E) is atomic, the atoms 
being the singletons. 

3.6. BASIC ASSUMPTION 

£ is a complete lattice which possesses a sup-generating family f, and T is an 
abelian automorphism group on £ such that (i) f, is invariant under T, (ii) T is 
simply transitive on £. 

From now on we assume that the Basic Assumption holds. We indicate how 
one can define Minkowski addition and subtraction on .C. First we fix an origin 
o E .C. For every h E £ there is a unique Th E T which transforms o to h. We 
can now define a Minkowski addition and subtraction as follows: 

8A(X) := X EB A= VaEi(A) Ta(X) 
t:A(X) := x e A= /\aEi(A) r; 1(X), 
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for X, A E £. Here £(A) = {a E C I a ::; A}. Note that DA 
C:A = /\aEP.(A) r,;:-1. 

V r and aEP.(A) a 

3.7. PROPOSITION For every A E £,the pair (cA,6A) forms a T-adjunction on 
.C. Moreo·uer, any T-adjunction has this form. 

Now one can proceed by establishing properties similar to those stated in the 
previous section, including the representation theorem 2.2. We will not do so, 
however; the interested reader can find the details in [17] or [15]. 

Taking Definition 2.3 as a starting point, the concept of the opening and clos
ing can easily be extended to the given abstract framework. As in the translation 
invariant case the concept of a structural opening plays an important role. A 
comprehensive discussion can be found in [36] and [15]. 

We conclude this section, mainly intended as a trend-setter, with the following 
example. Take E = IR'.2 \ {O} and £ = P(E). Furthermore, let T be the 
abelian group of rotations and scalar multiplications. It is obvious that the Basic 
Assumption is satisfied, so we can define Minkowski addition and subtraction 
in this case. Note that here the size of a translate of the structuring element 
depends on its distance from the origin; see Figure 5. 

(1,0) 

0 0 

FIGURE 5. The effect of a dilation and erosion which are invariant 
under rotation and scalar multiplication. To compute the erosion 
we have used that X 8 A= (X" EB Ay. 
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If the that T is abelian is dropped then we have to distinguish 
between two different cases, (i) the simply transitive case, and (ii) the multi
trnnsitive case. Needless to say that this situation is considerably more complex 
than the Abelian case. \Ve refer to [31, 32] and [15] for a detailed discussion. As 
an application of the nonabelian, multiply transitive case we mention 
the rotation-translation group on P(JR2 ). 

4. MORPHOLOGICAL FILTERING 
In Section 2 we have alreadv indicated the importance of openings and closings 
(and alternating sequential .filters) with respect to image filtering, i.e., the pre
processing of an image with the intention to remove noise, to sharpen the edges, 
to enhance the contrast, etc. Suppose we apply an operator 1/J to an image X in 
order to make it more suitable to analysis. If ?/J is not idempotent then 7j;2 (X) # 
li'(X) in general. If ~1(X) contains less noise than X, then its seems reasonable 
to assume that t'12 (X) contains less noise than 7/J(X). This sug~ests that we 
should apply ~, until the result remains unchanged. Denoting by 7f;(X) the final 
result of such an iteration procedure (presuming that it converges eventually) it 
is dear that · = ~-,,and hence that·~ is idempotent. Obviously, idempotence is 
a desirable property in any image filtering procedure. As we have seen, openings, 
closings, and alternating sequential filters satisfy this requirement, which makes 
them suited for the removal of noise. 

The iteration procedure above raises a number of questions. 
QUESTION 1. What kind of convergence has to be considered? 
QUESTION 2. For which operators V' does iteration yield an idempotent opera
tor? 
Before we deal with these problems we give some basic concepts from the theory 
of morphological filtering. Again we do not pursue completeness, but rather do 
we intend to give the reader a flavour of the mathematical concepts and tools 
which play a role. Throughout this section we assume that our image space £ is 
an arbitrary rnmplete lattice. Unlike in the previous section we do not assume 
our operators to be invariant under some transformation group. 

The theory of morphological filtering was initiated by Matheron. His main ideas 
are contained in Chapter 6 of [40]; see also other chapters in this book. Most of 
the concepts introduced below can be found in this reference. See also [12, 18, 
23, 36]. In S~'Ction 2 we have seen that an arbitrary union of openings is again 
an opening. This is not true for intersections; furthermore, the composition of 
two openings is not an opening in general. This shows in particular that the 
P.roper~y of idempotence is not preserved under suprema, infima and composi
tmns: if"'"' ~1 are increasing idempotent operators, then neither of the operators 
::~ \/ · {) i\ t;' , ·P~' is idempotent in general. Though this is rather unfortunate, 
lt. do~'s. not mean that nothing can be said. In fact, supremum preserves one half 
ol the idempote.nce property. To be specific, ( cp v 7f-1 )2 ~ 'f!2v1112 = 'f! v 7jJ and we 
say that c;-' V 4 • 1s an overfil ter. 
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DEFINITION 4.1. Let 1/; be an increasing operator on£. We say that 'ljJ is 
(a) a (morphological) filter if 'l/;2 = 'ljJ 
(b) an underfilter if 'lj;2 ::::; 'ljJ 
( c) an overfilter if 'ljJ2 2: 1/; 
(d) an inf-overfilter if 'ljJ = 1/;(id A 'l/J) 
(e) a sup-underfilter if 1/; = 'lj;(id V 'l/J) 
(f) a strong filter if 'ljJ is both an inf-overfilter and a sup-under:filter 
(g) an opening if 'ljJ is increasing, idempotent and anti-extensive ( 'ljJ ::::; id) 
(h) a closing if 'ljJ is increasing, idempotent and extensive ( 'ljJ 2: id). 
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The latter two definitions generalize Definition 2.3 to the complete lattice frame
work. From Proposition 3.2 (d)-(g) it follows immediately that 8c is an opening 
on£, and that c6 is a closing on M if (c, 6) is an adjunction between£, and M. 

It is clear that underfilters and overfilters are dual concepts in the sense of the 
duality principle. The same remark applies to inf-overfilters and sup-underfilters. 
For that reason we will restrict to (inf-) overfilters. We start with some basic 
properties. 

• every inf-over:filter is an overfilter; 

• every extensive operator is an inf-overfilter; 

• 1/; is a filter iff it is both an underfilter and an overfilter; 

• both the set of overfilters and inf-overfilters is closed under suprema; 

• the set of (inf-) overfilters is closed under self-composition (i.e., if 1/J is an 
( inf-) overfilter then 'I/Jn is such as well for every integer n 2: 1); 

• openings and closings are strong filters; 

• if 'lj; is an inf-overfilter then id A 'lj; is an opening. 

This last property is very important because it provides a powerful technique 
for the construction of openings: see [34, 36] for more details. 

We define 1/; as the largest opening ::::; 'ljJ, that is 1/; = V { 0i I a is an opening and 
a ::::; 'ljJ }. Since every supremum of openings is again an opening this definition 
makes sense. It can be shown that 

lnv(1/;) = lnv(id /\ 'l/J) = {X E .C I 'l/J(X) 2: X}, 

and 

Let C be the smallest collection of increasing operators on .C which contains 
id A 'l/J and which is closed under compositions and infima. It is easy to see that 
1/; ::; cp ::::; id A 'lj; for every cp E C. Let 0i : = inf C, then a E C because C is closed 
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under infima. In particular o:2 :::; o: since o: ::::; id. On the other hand, a 2 E C 
and by the very definition of o: this yields that o:2 2: o:. Therefore o:2 = a and 
we co;1clude th~t o: is an opening ::::; ·~,. Since 7f; is the largest such opening and 
o: 2: ~· we may conclude that o: = ·~ = inf C. _ 

For the mathematical connoisseurs we point out that the mapping 1/J ---+ 1/J 
defines an opening on the complete lattice of increasing operators on £. Dually 
we define J, as the smallest closing :'.". 1/J. The proof of the next result can be 
found in [40, Chapter 6]. 

PROPOSITION 4.2. Let 1f; be an increasing operator on£. 
(a) 1j;ij; is an overfilter. It is the largest overfilter ::::; if;. 
(b) If '!/J is an underfilter then 7(;'1jJ is a filter. It is the largest filter :::; 1/J. 
( c) l/J~1 is an inf-overfilter. It ·is the largest inf-overfilter ::::; 'l/J. _ 
( d) Assume that£ is modular. If 1j; ·is a sup-underfilter then 1f-11/J is a strong filter. 

Note that (a) can be restated as follows: the mapping ·if;-+ ~'l/J on the complete 
lattice of increasing operators on £ is an opening with invariance domain the set 
of overfilters. We mention the following important consequence of this result. 

COROLLARY 4.3. The filters on [, define a complete lattice. 

Here we have provided the set of filters with the order given in (3.1). To prove 
this result, take an arbitrary collection 1/J; of filters and define the underfilter A 
and the overfilter µ resp. by 

..\ := /\ lf;.; and µ := V 'ljJ;. 
iE/ iE/ 

Then, by Proposition 4.2(b), 5'>. is a filter, the largest filter :::; 1/J;, i E I, and 
therefore the infimum of the ~J.; in the lattice of filters. Similarly, ftµ is the 
supremurn of the 4'; in this lattice. We can use similar arguments to show that 
the set of strong filters, the set of openings, and the set of closings form complete 
lattices. 

If£ has a negation, the mapping 'ljJ -+ if;* given by (3.2) transforms an (inf-) 
overfilter into a (sup-) underfilter, an opening into a closing and a (strong) filter 
into a (strong) filter. A filter 'ljJ is called selfdual if 'lj;* = 1/J. In image processing 
selfdual filters are rather popular since they treat fore- and background of an 
image in the same way. The example at the end of this section deals with the 
construction of a selfdual filter. 

The above considerations make clear how important it is to develop tools for 
the computation of the so-called lower and ·upper envelope '!jJ and ?j;. Below we 
explain that under certain assumptions on 'lj;, the lower envelope can be com
puted through iteration of the anti-extensive operator id /\ ii·. Dually, iteration 
of id V ~1 yields the upper envelope 0. 

Assume that ~· is anti-extensive (so that id/\ ·l/J = ?/•). In that case 
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We define 1/;00 := An'?_l 'lj;n. If 7./1 00 is idempotent, or equivalently if 'lj;7./J 00 = 'lf; 00 , 

then 'lj; 00 is an opening and we have 'J1 = 'lj;00 • Unfortunately, ij;= need not be 
idempotent. In [11] we have given the following counterexample. Let 7./J: P(Z)-+ 
P(Z) be the increasing, anti-extensive translation invariant operator given by 
'lf;(X) = (X EB A) nX, where A={ ... , -5, -3, -1, 2}. Take X = {O, 1, 3, 5, ... }, 
then, by a straightforward calculation, 'l/Jn(X) = {O, 2n+l, 2n+3, 2n+5, ... } (see 
Figure 6), and so 1./J=(X) = {O}. However, 'l/J7./J00 (X) = 'lj;( {O}) = f/J -:f. 'lj; 00 (X). 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

FIGURE 6. An example of an anti-extensive operator l/J for which 
'lj;= f 'lj;oo+l. 

Let Xn be a sequence in £, we say that Xn l X if Xn is decreasing and X = 
An>l Xn. Similarly, we define Xn T X. An increasing operator 'lj; on £ is 
called 1-continuous if Xn l X implies that 'lf;(X11 ) l 'l/J(X). If the anti-extensive 
operator 'lj; is 1-continuous, then 

yielding that ,,/; = 7./J 00 ; we refer to [36] for a number of examples. 
We show how we can extend such argmnents for operators which are not 

necessarily increasing. See [18] for a comprehensive theory. For a sequence X,, 
in [, we define 

lim inf X,, = V /\ Xn lirnsupX.,, = /\ V X,,. 
N'?_I n'?_N N'?_I n'?_N 

It is obvious that lim inf Xn ::; lirn sup X,,. We say that X,, -+ X if lim inf X,, = 
limsupX,, = X. If X,, l X or X 11 I X then Xn -+ X. An operator 'l/J on£ 
is said to be l-contiri:uous if X,,-+ X implies that limsup7./J(X,,) ::; ijJ(X), and 
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j-continuous if X 11 -> X implies that lim inf ,,P(X,.) ;:::: ,,P(X). The operator 'l/; is 
called continuous if it is both 1-continuous and i-continuous. It is not difficult to 
show that for increasing operators this definition is consistent with the definition 
given above. 

In [18] and [15] one can find a general account of 1- and i-continuous operators. 
We quote some of the main results. 

• Every erosion is 1-continuous and every dilation is i -continuous. 

• Every automorphism is continuous. 

• Let C have a negation, then 'l/; is 1-continuous iff ?./!* is i-continuous. 

• The infimum of an arbitrary collection of 1-continuous operators is 1-
continuous. 

• If C is atomic then any finite supremum of 1-continuous operators is 1-
continuous. (It is worthwile to remark that in [18] a more general result is 
stated which also includes the function lattice Fun(E), Iii.) 

REMARK 4.4. The complete lattice F(JRd) of closed subsets of JRd can be en
dowed with a topology which is based on the hit-or-miss operator of Section 
2. This topology is called the hit-or-miss topology and has been investigated 
in great detail by Matheron [27]. In [18] we have pointed out the relation be
tween the lattice convergence defined here and convergence in the sense of the 
hit-or-miss topology. 

In Section 2 we have introduced the notion of a finite operator in combination 
with translation invariance. We can easily extend this definition for operators 
which are not translation invariant. 

DEFINITION 4.5. Let E be an arbitrary set. The operator 'l/; : P(E) -> P(E) is 
finite if for every h E E there exists a finite window A(h) ~ E such that 

h E ·lf;(X) {::=} h E 'l/;(X n A') 

for X ~ E and A' 2 A(h). 

For translation invariant operators one can take A(h) =Ah· 

PROPOSITION 4.6. Every finite operator on P(E) is continuous. 

One can show that finite unions, intersections and compositions of finite opera
tors are finite. Furthermore, 'l/; is finite if and only if 'I/;* is finite. 

For an arbitrary operator 'l/; on C we define 

1./!oc(X) = limsup·ip"(X) 
'l/!oc(X) = liminf·lf;n(X). 
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If 'l/Joo = 'l/;00 then we write 'lj;n ---> 1jJ00 • 

If 'lj; is anti-extensive, or more generally if 'l/;2 5 'lj;, then '!j;n+I :::; 'lj;n and in that 
case we have 'l/;00 = 'l/;00 = /\n>I 1/Jn. In [18] we have established the following 
results. -

THEOREM 4.7. Let 'lj; be an arbitrary operator on .C. 
(a) If 'lj; is anti-extensive and !-continuous then 'l/;00 = /\n>I 'lj;n is idempotent. 
(b) If 'ljJ is extensive and j-continuous then 1/J00 = V n>l 'I/Jn is idempotent. 
( c) If 'lj;n ---> 'lj; 00 and 1f; is continuous then 'lj;00 is idempotent. 

COROLLARY 4.8. Let 'l/; be an increasing operator on .C. 
(a) If'lj; is !-continuous then1/;= /\n;:::i(id/\'l/;)n. 

(b) If 1f; is j-continuous then,(/;= V n?:;l (id V 'lf;)n. 

In [36] we have discussed some examples of openings generated by iteration. 
Here we discuss the construction of a morphological filter which utilizes Theorem 
4.7(c). For Ewe take the discrete hexagonal grid. Let H be the discrete hexagon 
with radius one centered at the origin. Then H contains seven points, the origin 
ao and its six neighbours, denoted by ai, · · ·, a5; see Figure 7(a). Let b be the 
Boolean threshold function (see [29] and [3]) 

b(xo,x1,···,x6) = { ~'. 

Let 'lj; = 1/Jb be given by (2.23): 

if3xo + X1 + X2 + ... + X6 2: 5 
otherwise. 

'lj;(X) = {h EE I 3X(h) + X(a1 + h) + · · · + X(aB + h) 2: 5}. 

A moment of reflection shows that this operator acts as follows: a point h in 
the set X lies in the transformed set 'lj;(X) if and only if at least two of its six 
hexagonal neighbours also lie inside X. If, say, only one neighbour lies in X then 
3X(h) + X(a 1 + h) + · · · + X(a6 + h) = 4 and the threshold 5 is not reached. If h 
lies in xc it will be contained in 'lj;(X) if at least five of its hexagonal neighbours 
lie in X. In Figure 7(b) Wb changes the value of the central point whereas in (c) 
this value remains unchanged. 
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~ a2 0 0 0 • 
~ ao 81 • • 0 • • 0 

a5 as 0 0 0 0 
(a) (b) (c) 

0 • ? ? 

• 0 • tjlb ----- ? • • 
• • • • 

(d) 

FIGURE 7. See text 

In this procedure the background is treated analogously: a point in the back
ground xc with at least two neighbours in xc stays in the background after 
transformation. In other words, the operator 'ljJ is selfdual. In fact, the selfdu
ality of 7jJ is a consequence of the selfduality of the generating Boolean function 
b. Since b is positive the operator 7jJ is increasing. Furthermore, it is evident 
that 7jJ is finite and from Proposition 4.6 we conclude that it is continuous. We 
show that the sequence 7/Jn is convergent. This is an immediate consequence of 
the following nice property of 7/J: for every X the sequence X, 7/J(X), 7jJ2(X), · · · 
is pointwise monotone. This means that for every point h the value [7/Jn(X)](h) 
(which is 0 or 1) can change at most at one instance. So either it is of the form 
0, 0, · · ·, 0, 1, 1, 1 · · · or of the opposite form. To see why this property holds 
consider the configuration in Figure 7(d). Here the central point changes its 
value from 0 to 1; however, it's neighbours a5 , a6, a 1 remain unchanged at this 
step. But the configuration formed by the points ao, a 5 , a6, a1 is stable under 
7/J, meaning that it's values remain constant at subsequent iteration steps. We 
may now conclude that 'I/Jn ___, '!/!=, where 7jJ 00 (X) is the pointwise limit under 
the iteration procedure described above. From Theorem 4.7(c) we conclude that 
7jJ00 is a filter. Since 'I/; is selfdual, the operator 'l/;00 is selfdual as well. 

5. GEOMETRICAL ASPECTS 

The theory discussed so far may have given the reader the impression that math
ematical morphology is a highly algebraic theory. This impression is correct to 
a limited extent only. As we pointed out in the introduction, the primary goal 
of morphology is to extract geometric information from an image. For that mat
ter topological and geometrical concepts are of paramount importance to the 
field. In this section we illustrate this fact by means of two examples. First we 
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introduce the geodesic operators; these form a class of transformations which 
has proved very useful for many different applications, including image segmen
tation. And secondly, we discuss granulornetries which form the basis for the 
computation of size distributions. For both examples the notion of a metric 
plays an important role. 

Throughout this section we assume that E = !Rd. 

DEFINITION 5 .1. A metric on E is a function d : E x E -+ Il4 such that for 
x,y, z EE, 
(Dl) d(x,y)=O~x=y 
(D2) d(x,y) = d(y,x) 
(D3) d(x,z)::;d(x,y)+d(y,z). 
The latter property is called the triangle inequality. d is called a translation 
invariant metric or T-metric if it satisfies the additional property 
(D4) d(x + h, y + h) = d(x, y) 
for x, y, h E E. If, moreover, 
(D5) d(>.x, >.y) = i>.ld(x, y), 
for >. E IR, then d is called a linear metric. 

Let B(>.) be the ball centered at 0 with radius >. ~ 0, 

B(>.) = {:r: EE I d(x, 0)::; >.}. 

A set X ~ E is called symmetric if X 
{-x Ix EX}. 

X, where X has been defined as 

PROPOSITION 5.2. Let d be a T-metric, then the balls B(>.) have the following 
properties 
(Bl) B(O) = {O} 
(B2) B(>..) is symmetric and 0 E B(>.) 
(B3) B(>..) ffi B(1l) ~ B(>.. + µ) 
(B4) B(>..) = n B(A'). 

A'>>. 

PROOF. (Bl) and (B4) are obvious. (B2) follows readily from the observation 
that 

d(x, 0) = d(x - x, 0 - x) = d(O, -x) = d(-x, 0). 

To prove (B3) take x E B(>..) and y E B(µ). We show that x + y E B(). + Jl). 
Since d(O,x)::;). and d(O, y) = d(O, -y)::; µwe get that d(x, -y)::; >. + µ. Now 
our claim follows from the observation that 

d(x, -y) = d(x + y, 0) = d(O, x + y). D 

On the other hand, the existence of a family of sets B(>.) which satisfy the 
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axioms (Bl)-(B4) implies the existence of a T-metric d, namely 

d(x, y) = inf{>. ~ 0 Ix - y E B(.>..)}. 

If, moreover, d is a linear metric, then the function p : E -+ JR+ given by 

p(x) = d(x, 0) (5.1) 

defines a norm, and the unit ball with respect to this norm 

B = {x EE I p(x) S l} 

is convex. Furthermore, this set is compact with respect to the topology gener
ated by this norm. Conversely, if Bis compact, convex and symmetric, and if 0 
is contained in the interior of B, then 

PB(x) = inf{>. > 0 Ix E >.B} (5.2) 

defines a norm on E. The function PB is called the Minkowski functional or gauge 
function; see [42]. In this case the balls of radius >. are given by B(>.) = >.B. It 
is easy to check that 

>.B tB µB = (>. + µ)B, >., µ;:::: 0, (5.3) 

if Bis convex. In fact, the inclusion '2' holds for any set B. One may wonder 
which sets B "solve" equation (5.3). Is convexity required? Obviously, the 
set B ~ IR2 consisting of the closed first and third quarter-plane satisfies the 
equation but is definitely not convex. A very general answer to the question has 
been given by MATHERON [27]. Let K' be the space of nonvoid compact subsets 
of JR.d provided with the topology generated by the Hausdorff metric [8, 27]. 

THEOREM 5.3. Let B(·): R+-+ K' be a continuous mapping. Then 

B(>.) EEl B(µ) = B(>. + µ), >., µ ;:::: 0, (5.4) 

if and only if B(>.) = >.B for some compact, convex set B. 

Let A, X ~ E. We say that X is A-open if X = X o A, where the opening 'o' 
has been defined in (2.16) It is obvious that B(µ) is B(>.)-open forµ~).. if the 
semigroup property (5.4) holds. Furthermore, MATHERON [27] has proved the 
following result. 

THEOREM 5.4. Let B ~ E be compact. Then µB is >.B-open forµ ~ ..\ if and 
only if B is convex. 

As a corollary we get that µB is >.B-open (µ ;:::: >.) if and only if the semigroup 
property (5.3) holds (given that B is compact). This result cannot be extended 
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to families B(.A) which are not obtained by scaling. In fact, introducing the 
notion of Stieltjes-Minkowski integral in the space K', Matheron constructed a 
class of mappings B : IR+ -+ K' such that B(µ) is B(.A)-open for µ 2: .A. As a 
special member of this class we mention 

Note that this example does not satisfy the semigroup property (5.4). 
The reason for this discussion on metrics and its relation to convexity becomes 

clear below where we treat granulometries. But first we introduce a class of 
metrics which is neither translation invariant nor homogeneous, but which is of 
great practical value. This class comprises the so-called geodesic metrics. Let 
M <;:; JR.d be a fixed set called the ma8k set or mask image. Let x, y be two points 
inside M. If x, y lie in the same (arc-connected) component of M then there 
exist paths inside M connecting x and y; see Figure 8 for an illustration. 

y 

D 
x 

M 

FIGURE 8. Left: a mask image M and two geodesic paths from 
x to y. The path at the right is the geodesic arc and its length is 
dM(X, y). 
Right: the geodesic ball BM(x, ,\) centered at x with radius,\. 
Note that BM(x, .A) has an empty intersection with the bottom
right component of M, no matter the magnitude of,\. 

The shortest of these paths is called a geodesic path and its length is denoted by 
dM (:r, y ). We call this quantity the geodesic distance between x and y. If x and 
y lie in different components of NI then we put dM(x,y) = oo. Since dM may 
take the value oo it is not a metric in the classical sense of the word. However, it 
is not difficult to show that dM satisfies the axioms (Dl) (D3). Geodesics have 
been studied in great detail by differential geometers. A nice treatment can be 
found in [4] The metric dM is also called intrinsic metric in the literature [29]. 

Using the geodesic distance we can build a class of transformations to which 
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we refer as geodesic operators. Let BM(x, >.) be the geodesic ball with centre x 
and radius >., 

BM(x,>.) = {y EM I dM(x,y) ~ >.}; (5.5) 

see Figure 8. 
On P(M) we define the geodesic dilations '51 and erosions c1 respectively as 

i51(X) = u BM(x, >.), (5.6) 
xex 

c1(X) = {x EX I BM(x, >.) ~ X}. (5.7) 

It is easy to check that the pair (c1, 81) forms an adjunction on P(M). Fur
thermore, these operators satisfy the semigroup relations 

r:,\ 0 r:µ - r:>-+µ .,.>. 0 ,,µ - ,,.>.+µ 
UM UM - UM , CAf CM - "'M • (5.8) 

As an application of the geodesic approach we mention the skeleton by influence 
zones, usually referred to as the SKIZ. Suppose that the set X ~ M is made of n 
objects, X = X1 U X2 U · · · U Xn, which have empty intersection. A point h E M 
is said to belong to the influence zone of the object Xk if dM(h, Xk) < dM(h, Xz) 
for l f= k. Here dM(h, Xk) is defined as the length of the shortest geodesic path 
from h to some point of Xk. The SKIZ is defined as the collection of boundaries 
which separate the influence zones. It is often used for segmentation problems. 
We refer to [22] and [39] for more information. 

Geodesic reconstruction 
A geodesic operator which turns out to be of great value in practice is the 
geodesic reconstruction, defined as 

PM(X) = U o1(X). (5.9) 
A>O 

Since a union of dilations is again a dilation (Proposition 3.4) we get that PM is 
a dilation. It extracts the connected components of M which have a non-empty 
intersection with X; see Figure 9. 
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reconstruction ... 

FIGURE 9. Geodesic reconstruction. 

Here we mention one application of the reconstruction p M. Suppose we apply 
some opening 7f; to an image with the intention to remove small noise particles. 
This opening may also affect larger particles, in particular their contours. We 
can neutralize this effect by taking the reconstruction of ~;(X) inside the mask 
set X. That is, we define 

ij;'(X) = Px('-/l(X)). (5.10) 

One can easily show that 7fi' is again an opening. Furthermore, this procedure 
preserves symmetry properties of 7/J. For instance, if 7f1 is translation invariant, 
then 'lj/ is such as well. 

Gmnulornetries 
A granulornetry on P(E) is a one-parameter family {7f;>. I>.> O} of openings on 
P(E) such that 

( 5.11) 

or equivalently, 

(5.12) 

The proof of the equivalence of (5.11) and (5.12) is left as an excercise to the 
reader. Granulornetries are used in practice to obtain size distributions. If rn 
denotes Lebesgue measure then m(·~J >. (X)) can be interpreted as the total volume 
of particles with size 2: >.. 

If every opening 7f1>. is a structural opening (see Section 2) then we say that 
{·4! >.} is a struct·ural gran·ulornetry. If every opening 1f-1 >. is translation invariant 
then we speak of a T-granulornetry. The following observation is of great impor
tance with respect to T-granulometries: if B is A-open then X o 13 ~ X o A for 
every set X ~ E. If B(>.) is a family of subsets of E which satisfy the semigroup 
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property B(A)ffiB(µ) = B(>.+µ), then the family 'ef!>.. given by 'ef!>..(X) = X oB(>.) 
defines a structural T-granulometry. Namely, if the semigroup relation holds 
then B(µ) is B(>.)-open ifµ 2: >., yielding that 'lj!µ, ::; 1/J>..· 

If { 1/J>..} is a T-granulometry which is scale-compatible in the sense that 

1/J>..(X) = >.'lfi1(.A-1X), for every,\> 0 and X s; E, (5.13) 

then {'If;>..} is called a Euclidean granulometry. It is apparent that condition 
(5.13) is equivalent to 

Inv( 'ef!>..) = ,\Inv( 'lf;i). (5.14) 

In fact, if {'If;>.} is a Euclidean granulometry then Inv( 1/J1) is closed under trans
lation and multiplications with scalars ,\ 2: 1. 

THEOREM 5.5. Let {1/J>..} be a Euclidean granulometry. Then there is a family 
B s; 'P(JRd) such that 

1/J>..(X) = LJ LJ XoµB. (5.15) 
µ,?_,\ BE13 

Conversely, if B ~ 'P(JRd), then 1/J>. given by (5.15) defines a Euclidean granu
lometry. 

Of particular interest are the structural Euclidean granulometries. From the 
considerations above it is easy to deduce that the openings in such a granulom
etry are of the form 1/J>.(X) = X o A.B. In order that µB is A.B-open forµ 2: ,\ 
it is necessary and sufficient to assume that B is convex (that is, if we impose 
compactness on B); see Theorem 5.4. 

It will be clear to the reader that a granulometry is a metric concept. In 
fact, we have seen that a structural Euclidean granulometry is characterized 
by a unique compact, convex set, and therefore by a linear metric (to make this 
precise one has to impose some extra conditions which guarantee that the convex 
set which defines the granulometry is compact and has nonempty interior, but 
we shall not deal with these technicalities here). If {8>. I A. > O} is a family of 
dilations on P(E) which satisfy the semigroup property 

8>..8µ, = 5>.+µ,, 

(see also (5.8)) and if c;>.. is the erosion related to 8>. by adjunction, then the 
openings 1/J>. = 8>.E:>. define a granulometry. This observation holds for arbitrary 
complete lattices, and can e.g. be used as a basis for a theory of granulometries 
on discrete spaces where the notion of convexity is rather cumbersome. An 
important problem to be dealt with concerns a general construction of families 
of dilations which do have this semigroup property. 
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6. FROM SETS TO FUNCTIONS 

We have seen that, though morphology has originally been developed for binary 
images, it can be extended to arbitrary complete lattices. In this section we 
consider lattices of functions which form representations of spaces of grey-scale 
images. There exist several, closely related, approaches to grey-scale morphol
ogy. A comprehensive discussion can be found in [15]. Other references include 
[13, 25, 39, 42]. 

Before we start our discussion we point out that in this paper we restrict 
ourselves to the case where the grey-value set is i: = ~ U {-oo, oo }. However, 
we point out that many other choices are possible such as Z = Z U { -oo, oo} or 
the finite set {O, 1, · · ·, N}. 

Again, let E = ~d or zd and denote by Fun(E) the space offunctions mapping 
E into i:. In Section 3 we have seen that Fun(E) is a complete lattice. Elements 
of Fun(E) are written F, G, etc. On Fun(E) we can define a horizontal or spatial 
translation along h E E as 

Fh(x) = F(x - h), x EE, 

and a vertical or grey-scale translation along v E ~ as 

(F+v)(x) = F(x) +v, x EE. 

An operator 7/J on Fun(E) is called an H-operatorif it is invariant under horizontal 
translations, 

'lj;(Fh) = ['lj!(F)]h, F E Fun(E), h E E, 

and a T-operator if it is invariant under both type of translations, 

'lj!(Fh + v) = [7)!(F)]h + v, F E Fun(E), h E E, v E JR. 

The set Fun(E) is a complete lattice under the pointwise supremum (denoted 
'V') and infimum (denoted'/\'). The mapping F--+ -F defines a negation (see 
Section 3). The complementary operator of 'lj!, denoted as 'ljl*, is defined by 

'lj!*(F) = -'l/;(-F). (6.1) 

For F, GE Fun(E) we can define their Minkowski sum and difference respectively 
as 

(FEB G)(x) = V [F(x - h) + G(h)], (6.2) 
hEE 

and 

(F 8 G)(x) = f\ [F(x + h) - G(h)]. (6.3) 
hEE 
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In fact, these two operations follow from the application of Proposition 3. 7 to 
the complete lattice C = Fun(E), with T the group of horizontal and vertical 
translations; for the missing details we refer to [35, 15]. In our terminology, 
Aa(F) = F tB G defines a T-dilation and &a(F) = F 8 Ga T-erosion. From the 
abstract theory (Proposition 3.2) it follows that b..a commutes with suprema and 
that &a commutes with infirna. By composing (or alternatively, taking suprema 
and infima of) these two operators we can build openings, closings, alternating 
sequential filters, and many other grey-scale operators. 

To visualize such operators the notion of an umbra turns out to be very useful. 
Here we only sketch the idea; a comprehensive discussion can be found in [6, 15]. 
Let us, however, caution the mathematical reader that the umbra approach has 
always given rise to a lot of confusion and, even worse, wrong statements. 

A set U ~ E x lR is called an umbra if 

(x, t) EU -{:::::::} (x, s) EU for s < t. (6.4) 

If F is a function then U(F) = {(:r:, t) I F(x) :'.'.'. t} defines an umbra. To 
transform a function, one can alternatively transform the corresponding umbra. 
The idea is illustrated in Figure 10 below. Here B is a ball in E x JR.. 

FIGURE 10. Visualization of F ('fJ Band F B, wlwre Bis a disk, 
by means of the umbra transform. Note that we may replace B 
by the smallest umbra containing B. 

A useful transform in mathematical morphology is the so-called top-hat trarn;
form which can be used for the extraction of narrow pPaks. The procedure is 
illustrated in Figure 11. 
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FIGURE ll. Rolling-ball closing and opening and the top-hat 
transform. 
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We start with a grey-scale image F, compute the opening F o B = ( F 8 B) EB B 
where B is the ball depicted in Figure 11. This opening is ususally referred to 
as the rolling-ball opening [42]. Then F o B S F. The top-hat transform is the 
difference F - (F o B); see Figure 11. Note that the peaks which are sufficiently 
wide and smooth are preserved. 

Of particular interest in applications is the case where the structuring function 
G is flat, to be specific, G(x) = 0 if x EA and -oo elsewhere; here A·~ Eis the 
domain of G. We derive the following expressions: 

(6.5) 
hEA hEA 

In Figure 12 both operations are visualized by the umbra transform. 

FIGURE 12. Flat erosion CA and flat dilation LiA. 

As an illustration of the use of flat structuring elements we mention the so-called 
morphological gradient. Recall that for a continuously differentiable function on 
JRd the gradient \i' F is defined as the d-vector ( 88 F , 88 F , • · • , ~). The morpho-

x1 x2 axd 
logical gradient is defined as 
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grad(F) = lim 2
1 [(FEB rD) - (F 8 rD)], 

r lO r 

where D is the d-dimensional ball with radius 1. It is easy to show that 

grad(F) = ll\7 Fii, 

if F is continuously differentiable. For a discrete image one defines 

1 
grad(F) = 2 [(FEB D) - (Fe D)], 

where D is the discrete analogon of the unit ball. In the 2-dimensional case one 
usually takes for D the square consisting of nine points. In Figure 13 we have 
computed the discrete gradient for a specific image. 

The grey-scale operators given above have been introduced without reference 
to the binary case. It is obvious, however, that these operators are closely 
related. In fact, both cases are nothing but particular examples of the complete 
lattice framework described in Section 3. We now present an alternative way 
to construct grey-scale morphological operators. The basic idea is to threshold 
a function at any grey-value t (in other words, to take horizontal cross sections 
of the umbra), to apply a fixed increasing binary operator at every level (the 
resulting sets form again an umbra) and to compute the new function from the 
transformed umbra. 

FIGURE 13. Morphological gradient. 

This approach can be formalized if one returns to the lattice framework. This 
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has the advantage that it applies to various grey-value sets, as well as to other 
function spaces, such as upper semi-continuous functions, a class of functions 
which has proved most relevant in the context of mathematical morphology. A 
comprehensive discussion can be found in [15]. 

Let £ be a complete lattice. We define £ o iR as the space of all mappings 
X : iR ---> .C which are decreasing, and .C6. iR as the subset of mappings which 
satisfy 

X(V ti) = f\ X(t;), 
iEI iEJ 

for every family { t; I i E I} in iR (such mappings are sometimes called anti
dilations). Define the operator i : .C o "iRr ---> .CD. iR as 

(IX)(t) = f\ X(s). (6.6) 
s<t 

Then the mapping i is a closing because it is increasing, idempotent, and satisfies 
(IX)(t) ~ X(t) for every X E Co iR and t E iR. The space £6.lR is a complete 
lattice with the pointwise infimum of£ and with supremum given by I(ViE/ X;), 

for any collection {Xi I i E I} in £6."iR; here 'V' denotes the supremum in e,lR. 
For a function F: E---> iR we define its threshold set X(F, t) as 

X(F,t) = {x EE I F(x) ~ t}. (6.7) 

This mapping defines an isomorphism between Fun(E) and P(E)ei.JR with inverse 
given by 

F(X)(x) = V{t E iR Ix E X(t)}. (6.8) 

REMARK 6.1. If E is a topological space, e.g., JRd, and :F(E) is the complete 
lattice of closed subsets of E, then :F(E)D.iR is isomorphic with the space of 
upper semi-continuous (u.s.c.) functions on E. Recall that a function Fis u.s.c. 
if for every t E iR and x E E such that t > F(x) there exists a neighbourhood V 
of x such that t > F(y) for y E V. One can easily show that a function F is u.s.c. 
if and only if every threshold set X(F, t) is closed. Using the representation of 
Fun(E) given above it is easy to extend an increasing operator 7.jJ on P(E) to 
Fun(E). Namely, we can represent a function F by its threshold sets X(F, t). 
Applying 'I/; to any such set yields a family of sets 'l/;(X(F, t)) which is decreasing 
with respect tot, but which does not necessarily lie inside P(E)ei.JR. To achieve 
this, we apply i to this family. This yields an element of P(E)6.lR and hence an 
element 7.j;(F) of Fun(E). It is obvious that the following relation holds: 

X('tf;(F), t) = f\ 'tf;(X(F, s)), (6.9) 
s<t 
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or alternatively 

1/J(F)(x) = V {t E i Ix E 1/J(X(F, t))}. 

We call 7/J the fiat function operator generated by 1f;. The reader can easily 
verify that this construction fails if 'l/J is not increasing. It can be shown that the 
given construction of flat operators is compatible with the formation of suprema, 
infima, compositions and negation. The latter means for example that if 'l/J is the 
generator of 'If;, then 1f;* is the generator of 1/J*. Furthermore, if 'I/; is a dilation 
(erosion, closing, opening) then 1/J is a dilation (erosion, closing, opening) as well. 
If we take for example 'if; to be the Minkowski set addition 'lf;(X) = X EEl A as 
given by (2.6) then 'lf;(F) = F EEl A given by (6.5). We briefly discuss the class 
of flat function operators associated with the finite set operators on P(Zd). In 
Section 2 we have seen that every such operator is of the form 

'l/Jb(X) = {h E zd I b(X(a1 + h), X(a2 + h), ... 'X(an + h)) = l}, 

where A= {a1,a2,· ··,an} is a structuring element and b a Boolean function. 
The operator 'l/Jb is increasing if and only if b is positive. Let b be a Boolean 
function. We can extend b to a function b~ : in -+ i in the following way: 

(6.11) 

5 where [ti ~ t] is a Boolean expression which equals 1 if t 1 ~ t and 0 otherwise. 
It is easy to show that this procedure satisfies the following properties: 

(b1. b2)"' = b1 /\ b2 
(b1 + b2r = b! v b2, 

where · and + denote the logic AND and OR respectively. For example, if 
b(x1,x2,x3) = x1x2 + x3 then b~{t1,t2,t3) = (t1 /\ t2) V t3. From now on we 
will denote a positive Boolean function and its extension to ~ with the same 
symbol. 

Now, if A= {a1 ,a2, ···,an} and b a positive Boolean function of n variables, 
then we can define the operator wb on Fun(E) by 

'l/;b(F)(x) = b(F(x + ai), · · ·, F(x +an)). 

We show that 'l/Jb coincides with the flat operator generated by 'l/Jb, which we 
denote by 'I/; for the moment. Combining (6.10) with the expression for 'l/Jb and 
(6.11) we get 

'l/;(F)(x) = V{t E i Ix E 1/Jb(X(F, t))} 
= V{t E i I b([F(x + ai) ~ t], · · ·, [F(x +an) ~ t]) = 1} 
= 1/ib(F)(x)(F(x + a1), · · ·, F(x +an)) 
= 1/Jb(F)(x). 
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This proves our claim. 
One can extend the geodesic operators introduced in Section 5 to grey-scale 

functions. Such operators appear to be quite useful in many applications. We 
refer to [45] for a number of examples. We conclude this section with a brief 
discussion on granulometries for grey-scale functions. A general account can be 
found in [21] The definition of grey-scale granulometries is identical to the binary 
case. A family of openings {7)!>. I A > O} on Fun(E) is called a granulometry if 
'I/!µ S 'l/J>. for µ ;:: >.. It is apparent that the flat extension of a binary granu
lometry to Fun(E) defines again a granulometry, called flat granulometry. We 
argue below that this class of flat granulometries is quite important. If we want 
to extend the notion of Euclidean granulometry there are several possibilities. 
First, we can choose between H-openings and T-openings. And moreover, we 
can think of at least two different kind of scalings. The first one is the umbral 
scaling given by 

(>. · F)(x) = AF(X/A), A> 0, 

which, as the name suggests, scales the entire umbra of the function. This scaling 
is also called a T-scaling, referring to the fact that it scales both the spatial and 
grey-scale variable. A second type of scaling is the spatial scaling 

(>. · F)(x) = F(Xj>.), >. > 0, 

also called H-scaling. Both scalings are depicted in Figure 14. 

FIGURE 14. Umbral versus spatial scaling. 

Therefore we can distinguish at least four types of Euclidean granulometries. 
All of them have been discussed in more or less detail in [21]. To give the 
reader an impression of the underlying mathematics we consider here the so
called (T,H)-Euclidean granulometry, where the first prefix 'T' indicates that 
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we consider T-openings, and the second prefix 'H' that we consider H-scalings. 
A first observation to make is that the flat extension of a Euclidean granulometry 
on P(E) yields a (T,H)-Euclidean granulometry on Fun(E). We can formulate 
the following generalization of Theorem 5.5. 

THEOREM 6.2. Let {'1/1.x} be a (T,H)-Euclidean granulometry. Then there is a 
family g ~ Fun(E) such that 

'1/1.x(F)= V V Foµ·G. (6.12) 
µ?_>.GEQ 

Conversely, if g ~ Fun(E) then {'1/1.x} given by 6.12 defines a {T,H)-Euclidean 
granulometry. 

For practical applications, one requires elimination of the outer supremum in 
(6.12) so that we end up with '11 .x(F) = V GEQ F o >.G. As in the binary case this 
amounts to the following condition on the structuring function G: 

>..G o G = >..G for >.. 2::: 1. (6.13) 

In [21] we have proved the following theorem. Here the domain D( G) of G is 
the set {x EE I G(x) > -oo}. 

THEOREM 6.3. Let G E Fun(E) be u.s.c. and have compact domain. Then 
condition {6.13) holds if and only if D(G) is convex and G is constant there. 
In fact this result says that every structural (T ,H)-Euclidean granulometry on 
Fun(E) ('structural' meaning that every opening involves only one structuring 
function) is the flat extension of a structural Euclidean granulometry on P(E). 
The proof of Theorem 6.3 employs Theorem 5.4, the Krein-Milman theorem and 
Zorn's Lemma; see [21]. 

7. AND SO FORTH ... 
In this paper we have only been able to touch upon a few aspects of mathematical 
morphology. Many other aspects have been kept unmentioned, and we will use 
this last section to devote some words to two or three of them. 

We point out that our choice has largely been determined by our personal 
interest and knowledge. This is why nothing has been said about the imple
mentation of morphological algorithms. It goes without saying that this is an 
extremely important subject, and, for that reason it has received a lot of at
tention in the literature. For those readers who are interested in the design of 
flexible data structures and fast algorithms we refer to the forthcoming book of 
SCHMITT and VINCENT [38]. 

Another subject which has been ignored here is the probabilistic approach. 
As we pointed out in the introduction, the strength of morphology lies in its 
intertwining with integral geometry and stochastic geometry. From the very 
beginning MATHERON and SERRA [39] have emphasized the importance of a 
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joint development of a theory of mathematical morphology and random sets. 
A major ingredient for such a theory of random set, as initiated by Matheron, 
is the so-called hit-or-miss topology on the space of closed subsets of JRd. As 
the name suggests, this topology is closely related to the hit-or-miss operator 
discussed in Section 2. During the last ten years, the theory of morphological 
operators (and more particularly, morphological filters) has started to lead its 
own life as a toolbox for image processing, including powerful algorithms for 
filtering, segmentation, skeletonization, etc. However, for a sound judgment of 
the merits of mathematical morphology as a methodology in image analysis it 
is necessary that one keeps in mind this stochastic component. 

The hit-or-miss topology mentioned above has also been used to develop a the
ory of discretization; see [39, Chapter VII] and [14]. Such a theory is required to 
bridge the gap between the analytic approach using concepts from e.g. integral 
geometry and their digital implementations. The most common discretization of 
an image uses the regular discrete grid, either square or hexagonal. The hexag
onal grid has the advantage that it possesses more isotropy (it allows rotations 
over multiples of 60°, whereas the square grid only allows 90°-rotations), but the 
visualization of an hexagonal image requires some more effort. Anyhow, discrete 
representations of images raise a number of problems which are quite familiar 
to people working in discrete geometry. Besides rotations, also such notions as 
distance, convexity, homotopy, etc. need reconsideration. But such problems 
concerning discrete topology and geometry cross the morphological borders and 
form a major challenge in digital image processing [20, 37]. 

For some applications, a regular grid is not the optimal discrete structure to 
model an image. For example, if X is an electron microscopic image of some 
cell tissue it seems plausible to model the cells in this population as the vertices 
of a neighbourhood graph. The edges of such a graph carry useful information 
about the spatial relationships between the individual cells. In his thesis [44] 
VINCENT has generalized many concepts, both algebraic and geometric, from 
classical morphology to the graph framework. His work has been extended in 
[16, 19]. 

We hope that we have succeeded in giving the reader a first impression of 
the underlying principles of mathematical morphology and in convincing him 
or her that this theory, besides taking benefit from the power of a mathemat
ical framework, also contributes to mathematics by posing many challenging 
questions. 
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