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It's not unlike a technique of probabilistic mathematical proof 

in which you allow a receiver to select one of two cases. 

-Norman Shapiro 

[responding] Yes, you're right .... 

but the residue of doubt is provably, negligibly small. 

-Michael Rabin 1977 

Introduction 

The problem solved here may be defined in the following way: Both parties y and z agree 

on a Boolean expression called a predicate; y claims to know a secret value satisfying the predi

cate; z wants very high certainty that y does have such a value; while y is willing to demonstrate 

possession of the secret satisfying value, y is unwilling to reveal the secret value to z. The solu

tion requires z to assume that y cannot quickly solve certain problem instances provided by z. 

But y is sure not to reveal anything about the secret, even if z has unlimited computing power. 

Relation to Other Work 

The result presented is a dual of those by [Goldreich, et al 86] and [Brassard & Crepeau 

86]: their model is an x with infinite computational ability and a z with limited ability; here z 

may have infinite computational ability and y has only limited ability. Besides being of theoreti

cal interest for this reason, the approach presented here offers several advantages: 

• The only possibility for cheating is to solve specific instances of the hard problem (factoring 

in the example construction) within the time allotted to compute legal responses. 

• A variation is secure even if some known fraction of instances of the assumed hard problem 
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can be solved within the allotted time. 

• If there are multiple solutions, no information about which one(s) the prover knows is 

released by the protocol, even to someone who actually has infinite computing power. 

• The model is consistent with previous proposals of the author [Chaum 85b], where an indi

vidual may have to demonstrate something to an organization that has potentially unknown 

resources or abilities. In fact, the result is a special case of a protocol previously presented 

by the author [Chaum 85a], whose properties are described in [Chaum 85b page 1039]. But 

the underlying problem assumed hard in that work differs from those relied on here. 

• Giving the verifier a chance to cheat of less than 2• requires only an amount of computa

tion linear in s and the number of gates needed to represent the predicate. For s = 100 and 

say 200 digit composites, this requires for each gate only about as much computation as a 

single RSA decryption. 

• The protocol is easily adapted to the dual model. 

1. PROTOCOL 

In overview, the protocol presented involves y making known to z transformed and 

encrypted copies of a truth table for each gate of a circuit representation of the predicate, after 

which z is allowed to "select one of two cases". The basic idea of getting exponential security by 

one party first committing by revealing encrypted forms and then allowing the other party to 

choose between several cases, which is relied on here, was first proposed in the context of crypto

graphic protocols by Rabin in [77] (which is the subject of the discussion quoted at the beginning 

of this article). 

1.1 Protocol Set-Up 

Initially y and z agree on a predicate and its realization by a circuit comprising m gates 

g,, ... , gm, defined by their respective truth tables T 1, ... , Tm. The gates are interconnected 

by n wires w 1, ••• , Wn, with each column of every truth table corresponding to a wire. Thus the 

predicate may be thought of as a Boolean function on say r secret input bits involving m elemen

tary Boolean operations each (except one) of whose output bits becomes an input for one or 

more other elementary operations without feedback. This means that the memoryless circuit has 

r input wires, each of which is an input to one or more gates (elementary operations defined by a 

corresponding truth table); n - r - 1 internal wires, each serving as the output of a single gate 

and "fanning-out" to serve as input to one or more other gates; and a single output wire of a sin

gle gate, which is the output of the whole circuit. 

Consider a gate gk with I inputs and an output defined by a truth table Tk (subsequently 

denoted without subscript) represented in matrix form as T=(t;,;), with i E { 1, ... , 2'} and j E Wk. 
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where Wk is the set of wires corresponding to the inputs and outputs of gate gk and (the cardi

nality) # Wk = l + 1, which is the total number of inputs and outputs of gate gk, and 

Wk c { w" · · · , Wn }. The entries of Tare O's and I's, i.e. t;,1 E {O, l}, in the usual way: the rows 

(apart from the last column) contain all defined input configurations, and the last entry in each 

row is the corresponding output. 

It is sufficient to consider all the wires as having secret values, except the single output wire 

for the whole predicate. Since the value of this wire should be 1, the truth table of its gate is 

modified as follows: all rows with 0 in the output column are removed, and then the output 

column itself is removed. 

First, y choses an inversion 11 at random for each wire w1, i.e. 11 E{O,1} for 

j E { w l> ... , wn }, where random choices (as used throughout) are uniform choices that are sta

tistically independent of everything else. 

Next,y successively transforms each T, first to a permuted form T', second to an obscured 

form T", and third to an encrypted form E as follows: (a) Each Tis transformed into a matrix 

T'=(t';), by a random row permutation. (b) Each T' is transformed into a table T"=(t'';,1) for 

which all entries in all columns corresponding to inverted wires are inverted: t ";,J =t ';,/B11. (c) 

Each entry of the obscured form T" is encrypted in a special way to yield E=(e;,1): for each 

entry in T" a random residue modulo N that is coprime with N, shown as r;,1, is chosen with 

Jacobi symbol (r;,1 / N) equal 1 when t "i,J = 1 and equal - l otherwise, and e;,1=T~l (mod N), 

where N is supplied toy by z. 

Then y displays all the matrices E to z and allows z to choose between two cases: 

(1) Display by y of 11 and, for each gate, all the r;/s used in forming the corresponding Es. 

This allows z to recover every T" from the Jacobi symbols of the r;Js, to check that the 

entries of each E are the squares of the corresponding r;,1, and to verify that each T" 

satisfies t 111,; = t ';,/cB 11, for some row permutation T' of T. 

(2) Display by y of one row of r;,/s for each E, which should correspond to the actual row of 

the truth table that is satisfied by the secret wire values. This allows z to check that the 

entries of a row of each E are the squares of the corresponding r's, to recover the 

corresponding rows of the T'"s from the Jacobi symbols of the r;/s, and to verify that all 

entries t ";,1 of the displayed rows with the same j are equal. 

2. SECURITY 

Theorem: No Shannon-information about the secret wire values is revealed by y following the proto

col, assuming N has only two odd prime factors and they are each congruent to 3 modulo 4. 

Proof" First note that no information in the Shannon sense is revealed before z chooses a case, 

since each quadratic residue displayed has exactly the same probability of corresponding to a 1 as 

to a 0, because it has exactly two distinct roots with each Jacobi symbol. The secret wire values 
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have no influence on what is revealed in case L In case 2, the indices of the displayed rows 
reveal nothing since the permutation of rows is chosen at random; a bit with index j in a 
revealed row corresponds with the jth wire, is equal to all other such bits with index j, and is just 
the exclusive-or of the secret wire value with Jj, which is just the encryption of the secret value 
under a true one-time pad.D 

'Theorem: The probability that y satisfies z's verification cannot exceed 0z when y is unable to learn 
secret wire values satisfying the circuit, assuming y cannot find two square roots of the same residue 
modulo N that have distinct Jacobi symbols. 

Proof It is sufficient to show that if y can satisfy z in both cases, then y can learn wire values 
satisfying the circuit. All T" are uniquely determined (from the assumption), are known toy, 
and contain only valid truth table rows when exclusive-ored with the corresponding bits of the 
I/s known toy, as a consequence of y being able to satisfy case I. From case 2, y knows a way 
to choose one row from each table T 11 such that each wire is assigned the same value in all the 
chosen rows. Thus, y can form the exclusive-or of the I/s known from case 1 with the rows 
known from case 2, which yields a valid row for each gate (from case 1) with an assignment of 
bits to wires that satisfies each such row (from case 2).0 

Lemma: If the above protocol is successfully repeated s times, using moduli each of which can be fac
tored in the allotted time with independent probability p, then the probability of one-half in the previ
ous theorem may be replaced by (-0! + p /2"f. 

Proof Follows immediately from elementary probability theory. 

3. DISCUSSION 

The protocol description used certain well known number theoretic functions (first intro
duced by Blum [82]) for clarity and concreteness, but the present results should not be inter
preted as limited to these specific functions. A natural generalization is to any pair of so called 
"claw free" (as defined in [Goldwasser et al 85]) one-way bijections with the same image. Other 
choices of encryption functions switch the protocol to the dual model mentioned in the introduc
tion: any suitable encryption of a single bit (or actually row of bits) with a unique inverse mes
sage could be used to encrypt a T" to form an E. 

In the protocol presented above, y must be convinced that N is a "Blum integer," or better, 
that it is of the form used in [Goldwasser et al 85]. There are at least two ways to address such a 
requirement. One is just to complete the protocol and then let y reveal the factorization of N to 
convince z that no cheating has occurred. When such an after-the-fact check is not acceptable, 
and where the particular encryption functions used require some such checking based on trap
door information, z could use a protocol of the dual type to convince y that a predicate indicat
ing suitability of the functions is satisfied. 

Other claw free functions based on the discrete log problem do not require such checking 
[Damgard 86]. 
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