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We determine the distribution of the time between overflows for a single server Markovian queueing system with finite waiting 
room and state-dependent service and arrival rates. The result is subsequently used to analyse a Gl/M/oo system where the arrival 
process is the overflow process from the M/M/s/r queue. 
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1. Introduction 

Consider a queueing system !Z with s servers and r waiting places, where 0 < s < oo and 0 :z:;; r < oo. If a 
customer arrives to find s + r customers in the system, he departs never to return, and he is then said to 
have overflowed. Otherwise he enters the system and, depending on whether there are free servers or not, is 
served immediately or occupies a free waiting place until his turn to be served comes up. Our interest 
centers on the point process of overflowing customers which will be denoted by (!Z)overflow and called the 
overflow process from the system !Z. 

The study of overflow processes is of importance in teletraffic theory, since telephone systems usually 
provide for alternative routes for calls that are blocked on a specific trunk group. In this context Palm (36] 
studies the loss system GI/M/1/0 and shows that the overflow process is a renewal process. Further, he 
relates the Laplace-Stieltjes transform of the interoverflow time distribution to that of the interarrival time 
distribution. Palm also observes that the overflow process from a GI/M/s/O loss system, where s > 1, may 
be conceived as the overflow process from a (GI/M/s - l/0) 0 verflow/M/l/O system, so that his analysis 
actually pertains to GI/M/s/O for all s > 0. We refer to Khintchine [22], Takacs [44,45], Benes [4], 
Riordan (41], Pearce and Potter (37], Wallin [48] and Potter (38] for treatments of Palm's theory and its 
ramifications. Several of these authors, including Palm, give detailed results for the overflow process from 
the system M/M/s/O (see Descloux [11] for related results). As an aside we remark that the essentials of 
Palm's analysis can be traced back to Vaulot [47]. 
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Determination of the overflow process from the system GljM/s/r, when r, the number of waiting 
positions, is positive, is more difficult. For, although the overflow process is still renewal, an iterative 
argument as when r = 0 is no longer valid. The cases= 1, 0 ~ r < oo was treated by Cinlar and Disney [6], 
while for arbitrary s and r only recently De Smit [13] and McNickle (30] have derived an explicit expression 
for the Laplace-Stieltjes transform of the interoverflow time distribution. 

An even more complicated situation arises when one assumes non-exponential service time distributions, 
since then the overflow process is not in general a renewal process. The only available results are those of 
Halfin [14] who studies the overflow process from a Gl/G/1/0 loss system. 

One can generalize in another direction, however, without losing the renewal property of the overflow 
process. Namely. the overflow process from a GI/Mcn/s/r queue, the index (n) indicating state-depen­
dent rates, is renewal as observed by Descloux [12], who also develops procedures for determining the 
moments of the interoverflow time distribution. 

The renewal property is also preserved in the model with which this paper is concerned. Concretely, we 
will analyse the overflow process from a Markovian queueing system with one server and a finite waiting 
room of size r ~ 0, for which the arrival and service rates may depend on the number of customers in the 
system. The queueing system is referred to as M<n/M<nl/1/r. Evidently, with appropriate interpretation 
of the service rates this model encompasses any Markovian delay and loss system M<n/Mcn/s/r where 
s > 1. 

The purpose of this paper is twofold. First, in Section 2, we will show that the overflow process from an 
M<n/M<n/1/r system is a renewal process of hyperexponential type and we derive an expression for the 
Laplace-Stieltjes transform of the interoverflow time distribution. Then we will exhibit that this knowledge 
may advantageously be used to examine Markovian queueing systems where an overflow process from one 
queue is the arrival process to another. One such system, to wit (M/M/s/r) 0 verflow/M/oo, will be studied 
in detail in Section 3. 

2. The overflow process from the M(n)/Mcn>/l/r queue 

Let the system Mcn/M< 11 /l/r have arrival rate A. 11 and service rate P.n when there are n customers in the 
system. Denoting by T0 = 0, T1, T2 , ..• the successive moments at which customers overflow, the overflow 
process { T0 , T1, T2 , ••• } is obviously a renewal process. The distribution of the time between overflows is 
given in the next theorem, where it is convenient to let K = r + 1. 

Theorem. The interoverflow time distribution F(t) corresponding to an Mc,, /Mc,, /1 / K - 1 queue (1 ~ K < oo) 
with state-dependent arrival and service rates A. 11 and p. 11 , respectively, is a mixture of K + 1 distinct exponential 
distributions. The Laplace-Stieltjes transform cp(z) of F(t) is given by 

cp(z)=fo00 exp{-zt} dF(t)=QK(-z)/QK+ 1(-z), z;;?;O, (1) 

where Qk and QK+ 1 are polynomials of degree Kand K + 1, respectively, defined by the recurrence relations 

Q_ 1(x)=O, Q0 (x)=l 

A.n(.?n+1(x)=(A.n+P.11-x)Q11 (x)-p.nQn-1(x), n=O, 1, ... ,K. 

Finally, the intensity v of the overflow process is given by 

where 

'7To = 1 and 

(2) 

(3) 

(4) 
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Proof. Consider a birth-death process {X(t)} with state space S= {O, 1, ... , K, K+ l}, birth rate A.,, in 
state n (n = 0, 1, ... , K), and death rates µ. 11 in state n (n = 1, 2, ... , K) and 0 in state K + 1, so that K + 1 
is an absorbing state for {X(t)}. Clearly, F(t) equals the distribution of the time until absorption of the 
process { X( t)} when the initial state is K. So the overflow process is (intrinsically) a renewal process of 
phase type (cf. Neuts [35]). The more specific characterization of the theorem is obtained if we interpret 
F(t) as the first passage time distribution from state K into state K + 1 of { X(t)}. It then follows from a 
result of Karlin and McGregor [18,19] (see also Keilson [20]) that the Laplace-Stieltjes transform of F(t) is 
given by (1) and (2). Now writing R_ 1(x) = 0, R 0 (x) = 1 and 

Rn+ 1(x)=(-1rA. 0 A.1 ••• A.,,Q,,+ 1{x), n=O, 1, ... ,K, (5) 

we see that the polynomials R 11 ( x) satisfy a three term recurrence formula of the form 

Rn+ 1 { X) = ( X - an) Rn ( X) - b,, R 11 _ 1 ( X), n ;;;. 0, (6) 

with b0 = 0 and b,, =A.,,_ 1µ. 11 > 0 (n > 0), so that they constitute part of an orthogonal system with respect 
to a positive definite moment functional [7, Theorem 1.4.4]. This implies that the zeros of R,,(x) (and hence 
of Q,,(x)) are real and distinct [7, Theorem 1.5.2]. Further, since a,,= A,,+ µ. 11 , the parameters an and bn 
satisfy a criterion due to Stieltjes [7, p.47] implying that the zeros of Q11 (x) are positive. A further appeal to 
the theory of orthogonal polynomials [7, p.29] yields that the partial fraction decomposition 

Q k ( - Z) = Kt 1 w,, Z n , ( 7) 
QK+1(-z) n=l z+zn 

where the zn (n = 1, 2, ... , K + 1) are the {positive) zeros of QK+I• has 

W = _ __!__ QK(zJ >0. 
n z,, Q~+1(z,,) 

(8) 

Also, by (7) and the fact that Q,,(O) = 1, we have that r.~:;;11w11 = 1, as it should be. So 

K+1 
F(t) = L w11 (l - exp{ -z,,t} ), t;;;. 0, (9) 

n=l 

a hyperexponential distribution of order K + 1 with distinct parameters for the components. 
Finally, since P = -1/<f>'(O), we obtain from (1), 

P- 1 = Q~(O) - Q~+i (0). (10) 

Result (3) now follows readily from the recurrence relations (2). D 

Remarks. (1) The fact that the first passage time distribution from state K into state K + 1 of { X{t)} is 
hyperexponential of order K + 1 was shown earlier by Keilson [21], who used a different argument. 

(2) The result (3) follows also from the observation that the intensity of the overflow process equals the 
arrival rate in state K times the stationary probability that there are K customers in the system. 

(3) Substitution of A.,,= A. and µ." = nµ (n = 0, 1, ... , K) leads to results which are easily seen to 
coincide with those of Palm [36] and others on the overflow process from an M/M/ K/O system. 

( 4) Various sources give procedures for and numerical experience with the problem of determining the 
zeros of the polynomial QK+i· We mention Kuczura [27] for the M/M/K/O, case, and Machihara [28,29] 
for the M ( /1 /M ( 11 /1 / K - 1 case in general. 

3. The system (M/M/s/r)0 verflow/M/oo 

We consider an M/M/s/r queue (s servers, r waiting places) with arrival rate A. and service rate µper 
server, and let a= A./µ. The overflow process from this queue is offered to an infinite server system also 
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with service rateµ, per server, and we are interested in the stationary distribution { p(i), i = 0, 1, ... } of the 
number of busy servers in the secondary system. 

This model is of importance in a teletraffic context, where it is customary to characterize a stream of 
calls by the trunk occupancy distribution it induces on an infinite trunk group. For r = 0 the model is a 
classical one [23,49] and of basic interest in the analysis and design of public telephone trunk networks. 
The presence of waiting positions is a more modem development which occurs for instance in mobile 
communication systems (the context which incited this study) and private-line networks. 

The system (M/M/s/r) 0 vernow/M/oo has been the subject of a paper by Rath and Sheng [40] who 
describe an approximative procedure for determining the distribution of the number of busy servers in the 
secondary system. Exact analyses of the model have been performed by Basharin [1], Herzog and Kuhn [15] 
and Kokotushkin (see [2]). In [1J and [15] algorithmic solutions are given to the problem of determining the 
moments of the stationary busy-server distribution, the variance of this distribution being explicitly 
determined by Herzog and Kuhn. Both these analyses are based on the equilibrium equations for the joint 
probabilities p(i,j) of having i customers in the M/M/s/r system andj busy servers in the infinite server 
system. Kokotushkin's analysis has yielded explicit expressions for the moments of the busy-server 
distribution, which are cited in [2]. His approach is apparently based on the concept of 'Markov chain 
flows', which is identical to Kosten's [24) concept of 'Markov driven flows' (MDF's). Indeed, Kosten's [24) 
results for the system MDF/M/oo can be used to reproduce Kokotushkin's results. We will show, 
however, that the simplest way to derive explicit expressions for the binomial moments 

Bk=f(~)p(i), k=l,2, ... 
1=k 

(11) 

is to exploit the overflow theorem of the previous section and standard results for the G I /M / oo system. 
Before elaborating on this approach we remark that it does not seem possible to obtain the explicit results 
of this section by applying the techniques of Ramaswami and N euts [39) for the system PH/G / oo. 

In concurrence with previous notation we let F(t) denote the interoverflow time distribution of the 
M/M/s/r queue and <f>(z) its Laplace-Stieltjes transform; also, v- 1 will denote the mean interoverflow 
time. The classical results of Takacs [43,45] and Cohen [8] for the system GI/M/ oo then state that 

k-1 

Bk=kv nKJ, k=l,2, ... , 
µ, )=1 

where the empty product is interpreted as unity and 

Application of our theorem with K = s + r and 

now yields 

and 

An = A and µ, n = min { n, s } µ, n = 0, 1, ... , s + r, 

-1 
P = Aas+r { s-1 an + a-" 1 -( a/s r+ I } 

s!s' n1:o n! s! 1 - a/s 

(12) 

(13) 

(14) 

(15) 

<f>(z)=Qs+r(-z)/Qs+r+l(-z), z;;.O, (16) 

where the Q; are determined by (2) and (14). According to Karlin and McGregor [17] we have 

Qn(µx) = cn(x, a), n = 0, 1, ... , s, (17) 
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and, with ~(x) = ~(x, a, s) = -!(as)- 112(s +a - x), 

Qs+n(µx) = (s/a)"12 { c,(x, a)U,,(H x )) -(s/a)112 c,_ 1(x, a)U,,_ 1( Hx )) } , 

n = 0, 1, .. ., r + 1. 

Here the c,, are Charlier polynomials with parameter a, defined by the recurrence relation 

c_ 1(x,a)=O, c0 (x,a)=l 

( n + a - x) c,, ( x, a) = nc,, _ 1 ( x, a) + ac,, + 1 ( x, a), n ~ l, 

and the U,, Chebysev polynomials of the second kind, recurrently defined by 

V_ 1(x)=Q, V0 (x)=l 

2x u;, ( x) = un-1 ( x) + U,, +I ( x), n ;;;, 1 

(cf. [7]). Writing 

v,,(x) = v,,(x, a, s) = (s/a)"12U,,(H-x)), n ~ 0, 

and suppressing the parameter a in c,,, we readily arrive at 

q,(. )=acs(-J)v,(J)-scs_ 1(-J)v,_ 1(J) 
]µ ac,.(-J)v,+ 1(J)-sc,_ 1(-J)v,(J)' j;;, 1. 

Now exploiting another recurrence relation for Charlier polynomials, viz., 

c,,(x + 1, a) - c,,(x, a)= -(n/a)c,,_ 1 (x, a), n;::; 0 

(see, e.g., [16]) for n = s, we obtain, from (13) and (22), 

v, ( J) - { 1 - c,. ( - J + 1) I c,, ( - J) } v, _ 1 ( J) 
Kj = { ' j ~ l, 

V, + 1 ( J) - V, (}) - 1 - Cs ( - J + 1) /Cs ( - } ) } ( v, (}) - V, _ 1 ( J)) 

For completeness' sake we note that vn(j) may be written as 

v,, (J) = ( Y2Y1-n - Y1Y2-n )/( Y2 - Y1), 

where y1 and y2 are the roots of the equation 

sx 2 - ( a + s + j) x + a = 0. 

For computational purposes, however, the recurrence relation 

v_ 1(J)=O, v0 (J)=l 

(a + s + j) v,, ( j) = av,, + 1 ( j) + sv,, _ 1 ( j), n ;;:: 0, 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

which follows from (20) and (21), is more useful. Similarly, an explicit expression for c,(-j) is given by 

c,, ( - j) = { l ~ ( s ) (J + n - 1) ! a_ n 

~ n ( ·-1)! , 
n=O j 

j=O, 

j~l 
(28) 

(see, e.g., [16]), but for numerical work one had better use the recurrence formulas (19) and (23). 
So (12), (15) and (24) give us expressions for the binomial moments Bk, which can be shown to agree 

with Kokotushkin's results as given in [2]. We remark that 

c,,(-1,a)=l/E,,(a), n=O,l, ... , (29) 
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where 

n { 11 1 }- I 
E,,(a) =; L a, 

n. i~O I. 

(30) 

is the Erlang loss function (see [16]). Thus we obtain for the variance V of the number of busy servers 

{ 
v,(l)-(l-Es)v,_1(1) } 

V= 2Bo + M- M 2 = M 1 - M + , 
- v,+ 1(1)-v,(1)-(1-E_,}(v,(1)-v,_ 1 (1)) 

where Es=£,.( a) and 

M=B 1 =v/µ. 

(31) 

(32) 

is the mean number of busy servers. The expression for V in (31) is equivalent to (but simpler than) 
formula (2.12) of Herzog and Kuhn [15]. Substitution of r = 0 in (31) immediately yields the Molina-Nyquist 
result (see [49) or [10)). 

The ratio V / M is called the peakedness factor of the overflow stream ( cf. [46)). Kokotushkin's 
asymptotic formula for this peakedness factor (see [1,2)) is valid only for a< s, but can easily be 
generalized as follows. By (15) and (32) we have 

if a< s 
if a~ s 

while from (25) we see that 

as r-> oo, 

v,_ 1/v,-> y1 = (2s )- 1 { 1 + s +a - /(1 + s + a) 2 - 4as} as r-> oo. 

Using these results in (31) gives us 

V/M-+1{1 +is-al+ V(l +s+a)2 -4as} asr-> oo, 

which incorporates Kokotushkin's result. 

4. Concluding remarks 

(33) 

(34) 

(35) 

The quantities KJ of (13) are also the basic elements in the expressions for the binomial moments of the 
stationary busy-server distribution in the system Gl/M/s/O (see, e.g., [45)). Hence, by substitution of (24) 
in these formulas we can generalize the results of Bech (3] and Brockmeyer [5] (see also Schehrer [42)), who 
analyze the system (M/M/s1/r lovernow/M/s2/0 for r = 0 on the basis of equilibrium equations. 

A further generalization of the model is obtained when we assume that next to the overflow process an 
independent Poisson stream of customers arrives at the secondary system. The problem of finding the 
stationary busy-server distribution of the secondary system may then be tackled by observing that between 
arrivals from the overflow process the number of busy servers Y(t) behaves as a birth-death process, so 
that, actually, { Y(t)} is a 'Markovian regenerative process' [9) or a 'piecewise Markov process' [26], the 
latter setting being somewhat more general. Since, by our theorem, we have at our disposal the 
Laplace-Stieltjes transform of the interoverflow time distribution, techniques similar to those of Kuczura 
[25,27] may be employed to solve the problem. 

In this context it is interesting to note that Morrison [31-34] studies similar models purely on the basis 
of equilibrium equations for the combined system of two queues, whose dimensions he substantially 
reduces. It may be shown, at least when one is interested in the stationary busy-server distribution for the 
system M + (M/M/s1/0) 0 verflow/M/s2/0, that Morrison's approach requires approximately the same 
amount of numerical work as Kuczura's method. 
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