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We determine the distribution of the time between overflows for a single server Markovian queueing system with finite waiting 
room and state-dependent service and arrival rates. The result is subsequently used to analyse a Gl/M/oo system where the arrival 
process is the overflow process from the M/M/s/r queue. 
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1. Introduction 

Consider a queueing system !Z with s servers and r waiting places, where 0 < s < oo and 0 :z:;; r < oo. If a 
customer arrives to find s + r customers in the system, he departs never to return, and he is then said to 
have overflowed. Otherwise he enters the system and, depending on whether there are free servers or not, is 
served immediately or occupies a free waiting place until his turn to be served comes up. Our interest 
centers on the point process of overflowing customers which will be denoted by (!Z)overflow and called the 
overflow process from the system !Z. 

The study of overflow processes is of importance in teletraffic theory, since telephone systems usually 
provide for alternative routes for calls that are blocked on a specific trunk group. In this context Palm (36] 
studies the loss system GI/M/1/0 and shows that the overflow process is a renewal process. Further, he 
relates the Laplace-Stieltjes transform of the interoverflow time distribution to that of the interarrival time 
distribution. Palm also observes that the overflow process from a GI/M/s/O loss system, where s > 1, may 
be conceived as the overflow process from a (GI/M/s - l/0) 0 verflow/M/l/O system, so that his analysis 
actually pertains to GI/M/s/O for all s > 0. We refer to Khintchine [22], Takacs [44,45], Benes [4], 
Riordan (41], Pearce and Potter (37], Wallin [48] and Potter (38] for treatments of Palm's theory and its 
ramifications. Several of these authors, including Palm, give detailed results for the overflow process from 
the system M/M/s/O (see Descloux [11] for related results). As an aside we remark that the essentials of 
Palm's analysis can be traced back to Vaulot [47]. 
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Determination of the overflow process from the system GljM/s/r, when r, the number of waiting 
positions, is positive, is more difficult. For, although the overflow process is still renewal, an iterative 
argument as when r = 0 is no longer valid. The cases= 1, 0 ~ r < oo was treated by Cinlar and Disney [6], 
while for arbitrary s and r only recently De Smit [13] and McNickle (30] have derived an explicit expression 
for the Laplace-Stieltjes transform of the interoverflow time distribution. 

An even more complicated situation arises when one assumes non-exponential service time distributions, 
since then the overflow process is not in general a renewal process. The only available results are those of 
Halfin [14] who studies the overflow process from a Gl/G/1/0 loss system. 

One can generalize in another direction, however, without losing the renewal property of the overflow 
process. Namely. the overflow process from a GI/Mcn/s/r queue, the index (n) indicating state-depen
dent rates, is renewal as observed by Descloux [12], who also develops procedures for determining the 
moments of the interoverflow time distribution. 

The renewal property is also preserved in the model with which this paper is concerned. Concretely, we 
will analyse the overflow process from a Markovian queueing system with one server and a finite waiting 
room of size r ~ 0, for which the arrival and service rates may depend on the number of customers in the 
system. The queueing system is referred to as M<n/M<nl/1/r. Evidently, with appropriate interpretation 
of the service rates this model encompasses any Markovian delay and loss system M<n/Mcn/s/r where 
s > 1. 

The purpose of this paper is twofold. First, in Section 2, we will show that the overflow process from an 
M<n/M<n/1/r system is a renewal process of hyperexponential type and we derive an expression for the 
Laplace-Stieltjes transform of the interoverflow time distribution. Then we will exhibit that this knowledge 
may advantageously be used to examine Markovian queueing systems where an overflow process from one 
queue is the arrival process to another. One such system, to wit (M/M/s/r) 0 verflow/M/oo, will be studied 
in detail in Section 3. 

2. The overflow process from the M(n)/Mcn>/l/r queue 

Let the system Mcn/M< 11 /l/r have arrival rate A. 11 and service rate P.n when there are n customers in the 
system. Denoting by T0 = 0, T1, T2 , ..• the successive moments at which customers overflow, the overflow 
process { T0 , T1, T2 , ••• } is obviously a renewal process. The distribution of the time between overflows is 
given in the next theorem, where it is convenient to let K = r + 1. 

Theorem. The interoverflow time distribution F(t) corresponding to an Mc,, /Mc,, /1 / K - 1 queue (1 ~ K < oo) 
with state-dependent arrival and service rates A. 11 and p. 11 , respectively, is a mixture of K + 1 distinct exponential 
distributions. The Laplace-Stieltjes transform cp(z) of F(t) is given by 

cp(z)=fo00 exp{-zt} dF(t)=QK(-z)/QK+ 1(-z), z;;?;O, (1) 

where Qk and QK+ 1 are polynomials of degree Kand K + 1, respectively, defined by the recurrence relations 

Q_ 1(x)=O, Q0 (x)=l 

A.n(.?n+1(x)=(A.n+P.11-x)Q11 (x)-p.nQn-1(x), n=O, 1, ... ,K. 

Finally, the intensity v of the overflow process is given by 

where 

'7To = 1 and 

(2) 

(3) 

(4) 
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Proof. Consider a birth-death process {X(t)} with state space S= {O, 1, ... , K, K+ l}, birth rate A.,, in 
state n (n = 0, 1, ... , K), and death rates µ. 11 in state n (n = 1, 2, ... , K) and 0 in state K + 1, so that K + 1 
is an absorbing state for {X(t)}. Clearly, F(t) equals the distribution of the time until absorption of the 
process { X( t)} when the initial state is K. So the overflow process is (intrinsically) a renewal process of 
phase type (cf. Neuts [35]). The more specific characterization of the theorem is obtained if we interpret 
F(t) as the first passage time distribution from state K into state K + 1 of { X(t)}. It then follows from a 
result of Karlin and McGregor [18,19] (see also Keilson [20]) that the Laplace-Stieltjes transform of F(t) is 
given by (1) and (2). Now writing R_ 1(x) = 0, R 0 (x) = 1 and 

Rn+ 1(x)=(-1rA. 0 A.1 ••• A.,,Q,,+ 1{x), n=O, 1, ... ,K, (5) 

we see that the polynomials R 11 ( x) satisfy a three term recurrence formula of the form 

Rn+ 1 { X) = ( X - an) Rn ( X) - b,, R 11 _ 1 ( X), n ;;;. 0, (6) 

with b0 = 0 and b,, =A.,,_ 1µ. 11 > 0 (n > 0), so that they constitute part of an orthogonal system with respect 
to a positive definite moment functional [7, Theorem 1.4.4]. This implies that the zeros of R,,(x) (and hence 
of Q,,(x)) are real and distinct [7, Theorem 1.5.2]. Further, since a,,= A,,+ µ. 11 , the parameters an and bn 
satisfy a criterion due to Stieltjes [7, p.47] implying that the zeros of Q11 (x) are positive. A further appeal to 
the theory of orthogonal polynomials [7, p.29] yields that the partial fraction decomposition 

Q k ( - Z) = Kt 1 w,, Z n , ( 7) 
QK+1(-z) n=l z+zn 

where the zn (n = 1, 2, ... , K + 1) are the {positive) zeros of QK+I• has 

W = _ __!__ QK(zJ >0. 
n z,, Q~+1(z,,) 

(8) 

Also, by (7) and the fact that Q,,(O) = 1, we have that r.~:;;11w11 = 1, as it should be. So 

K+1 
F(t) = L w11 (l - exp{ -z,,t} ), t;;;. 0, (9) 

n=l 

a hyperexponential distribution of order K + 1 with distinct parameters for the components. 
Finally, since P = -1/<f>'(O), we obtain from (1), 

P- 1 = Q~(O) - Q~+i (0). (10) 

Result (3) now follows readily from the recurrence relations (2). D 

Remarks. (1) The fact that the first passage time distribution from state K into state K + 1 of { X{t)} is 
hyperexponential of order K + 1 was shown earlier by Keilson [21], who used a different argument. 

(2) The result (3) follows also from the observation that the intensity of the overflow process equals the 
arrival rate in state K times the stationary probability that there are K customers in the system. 

(3) Substitution of A.,,= A. and µ." = nµ (n = 0, 1, ... , K) leads to results which are easily seen to 
coincide with those of Palm [36] and others on the overflow process from an M/M/ K/O system. 

( 4) Various sources give procedures for and numerical experience with the problem of determining the 
zeros of the polynomial QK+i· We mention Kuczura [27] for the M/M/K/O, case, and Machihara [28,29] 
for the M ( /1 /M ( 11 /1 / K - 1 case in general. 

3. The system (M/M/s/r)0 verflow/M/oo 

We consider an M/M/s/r queue (s servers, r waiting places) with arrival rate A. and service rate µper 
server, and let a= A./µ. The overflow process from this queue is offered to an infinite server system also 
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with service rateµ, per server, and we are interested in the stationary distribution { p(i), i = 0, 1, ... } of the 
number of busy servers in the secondary system. 

This model is of importance in a teletraffic context, where it is customary to characterize a stream of 
calls by the trunk occupancy distribution it induces on an infinite trunk group. For r = 0 the model is a 
classical one [23,49] and of basic interest in the analysis and design of public telephone trunk networks. 
The presence of waiting positions is a more modem development which occurs for instance in mobile 
communication systems (the context which incited this study) and private-line networks. 

The system (M/M/s/r) 0 vernow/M/oo has been the subject of a paper by Rath and Sheng [40] who 
describe an approximative procedure for determining the distribution of the number of busy servers in the 
secondary system. Exact analyses of the model have been performed by Basharin [1], Herzog and Kuhn [15] 
and Kokotushkin (see [2]). In [1J and [15] algorithmic solutions are given to the problem of determining the 
moments of the stationary busy-server distribution, the variance of this distribution being explicitly 
determined by Herzog and Kuhn. Both these analyses are based on the equilibrium equations for the joint 
probabilities p(i,j) of having i customers in the M/M/s/r system andj busy servers in the infinite server 
system. Kokotushkin's analysis has yielded explicit expressions for the moments of the busy-server 
distribution, which are cited in [2]. His approach is apparently based on the concept of 'Markov chain 
flows', which is identical to Kosten's [24) concept of 'Markov driven flows' (MDF's). Indeed, Kosten's [24) 
results for the system MDF/M/oo can be used to reproduce Kokotushkin's results. We will show, 
however, that the simplest way to derive explicit expressions for the binomial moments 

Bk=f(~)p(i), k=l,2, ... 
1=k 

(11) 

is to exploit the overflow theorem of the previous section and standard results for the G I /M / oo system. 
Before elaborating on this approach we remark that it does not seem possible to obtain the explicit results 
of this section by applying the techniques of Ramaswami and N euts [39) for the system PH/G / oo. 

In concurrence with previous notation we let F(t) denote the interoverflow time distribution of the 
M/M/s/r queue and <f>(z) its Laplace-Stieltjes transform; also, v- 1 will denote the mean interoverflow 
time. The classical results of Takacs [43,45] and Cohen [8] for the system GI/M/ oo then state that 

k-1 

Bk=kv nKJ, k=l,2, ... , 
µ, )=1 

where the empty product is interpreted as unity and 

Application of our theorem with K = s + r and 

now yields 

and 

An = A and µ, n = min { n, s } µ, n = 0, 1, ... , s + r, 

-1 
P = Aas+r { s-1 an + a-" 1 -( a/s r+ I } 

s!s' n1:o n! s! 1 - a/s 

(12) 

(13) 

(14) 

(15) 

<f>(z)=Qs+r(-z)/Qs+r+l(-z), z;;.O, (16) 

where the Q; are determined by (2) and (14). According to Karlin and McGregor [17] we have 

Qn(µx) = cn(x, a), n = 0, 1, ... , s, (17) 
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and, with ~(x) = ~(x, a, s) = -!(as)- 112(s +a - x), 

Qs+n(µx) = (s/a)"12 { c,(x, a)U,,(H x )) -(s/a)112 c,_ 1(x, a)U,,_ 1( Hx )) } , 

n = 0, 1, .. ., r + 1. 

Here the c,, are Charlier polynomials with parameter a, defined by the recurrence relation 

c_ 1(x,a)=O, c0 (x,a)=l 

( n + a - x) c,, ( x, a) = nc,, _ 1 ( x, a) + ac,, + 1 ( x, a), n ~ l, 

and the U,, Chebysev polynomials of the second kind, recurrently defined by 

V_ 1(x)=Q, V0 (x)=l 

2x u;, ( x) = un-1 ( x) + U,, +I ( x), n ;;;, 1 

(cf. [7]). Writing 

v,,(x) = v,,(x, a, s) = (s/a)"12U,,(H-x)), n ~ 0, 

and suppressing the parameter a in c,,, we readily arrive at 

q,(. )=acs(-J)v,(J)-scs_ 1(-J)v,_ 1(J) 
]µ ac,.(-J)v,+ 1(J)-sc,_ 1(-J)v,(J)' j;;, 1. 

Now exploiting another recurrence relation for Charlier polynomials, viz., 

c,,(x + 1, a) - c,,(x, a)= -(n/a)c,,_ 1 (x, a), n;::; 0 

(see, e.g., [16]) for n = s, we obtain, from (13) and (22), 

v, ( J) - { 1 - c,. ( - J + 1) I c,, ( - J) } v, _ 1 ( J) 
Kj = { ' j ~ l, 

V, + 1 ( J) - V, (}) - 1 - Cs ( - J + 1) /Cs ( - } ) } ( v, (}) - V, _ 1 ( J)) 

For completeness' sake we note that vn(j) may be written as 

v,, (J) = ( Y2Y1-n - Y1Y2-n )/( Y2 - Y1), 

where y1 and y2 are the roots of the equation 

sx 2 - ( a + s + j) x + a = 0. 

For computational purposes, however, the recurrence relation 

v_ 1(J)=O, v0 (J)=l 

(a + s + j) v,, ( j) = av,, + 1 ( j) + sv,, _ 1 ( j), n ;;:: 0, 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

which follows from (20) and (21), is more useful. Similarly, an explicit expression for c,(-j) is given by 

c,, ( - j) = { l ~ ( s ) (J + n - 1) ! a_ n 

~ n ( ·-1)! , 
n=O j 

j=O, 

j~l 
(28) 

(see, e.g., [16]), but for numerical work one had better use the recurrence formulas (19) and (23). 
So (12), (15) and (24) give us expressions for the binomial moments Bk, which can be shown to agree 

with Kokotushkin's results as given in [2]. We remark that 

c,,(-1,a)=l/E,,(a), n=O,l, ... , (29) 
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where 

n { 11 1 }- I 
E,,(a) =; L a, 

n. i~O I. 

(30) 

is the Erlang loss function (see [16]). Thus we obtain for the variance V of the number of busy servers 

{ 
v,(l)-(l-Es)v,_1(1) } 

V= 2Bo + M- M 2 = M 1 - M + , 
- v,+ 1(1)-v,(1)-(1-E_,}(v,(1)-v,_ 1 (1)) 

where Es=£,.( a) and 

M=B 1 =v/µ. 

(31) 

(32) 

is the mean number of busy servers. The expression for V in (31) is equivalent to (but simpler than) 
formula (2.12) of Herzog and Kuhn [15]. Substitution of r = 0 in (31) immediately yields the Molina-Nyquist 
result (see [49) or [10)). 

The ratio V / M is called the peakedness factor of the overflow stream ( cf. [46)). Kokotushkin's 
asymptotic formula for this peakedness factor (see [1,2)) is valid only for a< s, but can easily be 
generalized as follows. By (15) and (32) we have 

if a< s 
if a~ s 

while from (25) we see that 

as r-> oo, 

v,_ 1/v,-> y1 = (2s )- 1 { 1 + s +a - /(1 + s + a) 2 - 4as} as r-> oo. 

Using these results in (31) gives us 

V/M-+1{1 +is-al+ V(l +s+a)2 -4as} asr-> oo, 

which incorporates Kokotushkin's result. 

4. Concluding remarks 

(33) 

(34) 

(35) 

The quantities KJ of (13) are also the basic elements in the expressions for the binomial moments of the 
stationary busy-server distribution in the system Gl/M/s/O (see, e.g., [45)). Hence, by substitution of (24) 
in these formulas we can generalize the results of Bech (3] and Brockmeyer [5] (see also Schehrer [42)), who 
analyze the system (M/M/s1/r lovernow/M/s2/0 for r = 0 on the basis of equilibrium equations. 

A further generalization of the model is obtained when we assume that next to the overflow process an 
independent Poisson stream of customers arrives at the secondary system. The problem of finding the 
stationary busy-server distribution of the secondary system may then be tackled by observing that between 
arrivals from the overflow process the number of busy servers Y(t) behaves as a birth-death process, so 
that, actually, { Y(t)} is a 'Markovian regenerative process' [9) or a 'piecewise Markov process' [26], the 
latter setting being somewhat more general. Since, by our theorem, we have at our disposal the 
Laplace-Stieltjes transform of the interoverflow time distribution, techniques similar to those of Kuczura 
[25,27] may be employed to solve the problem. 

In this context it is interesting to note that Morrison [31-34] studies similar models purely on the basis 
of equilibrium equations for the combined system of two queues, whose dimensions he substantially 
reduces. It may be shown, at least when one is interested in the stationary busy-server distribution for the 
system M + (M/M/s1/0) 0 verflow/M/s2/0, that Morrison's approach requires approximately the same 
amount of numerical work as Kuczura's method. 



E.A. van Doorn / On the oveifiow process from a lvlarkovian queue 239 

Acknowledgement 

The author wishes to thank Andre Roosma and a referee for helpful comments. 

References 

[1] G.P. Basharin, On analytical and numerical methods of 
switching system investigation, Proc. 6th Internal. Tele
traffic Congress, Munich (1970) paper 231. 

[2] G.P. Basharin, V.A. Kokotushkin and V.A. Naumov. The 
method of equivalent substitutions for calculating frag
ments of communication networks fo~ a digital computer 
I, Engrg. Cybernetics 17 (1979) 66-73. 

[3] N .I. Bech, Metode till beregning af spaerring i alternativ 
trunking-og gradingsystemer, Teleteknik 5 (1954) 435-448 
(in Danish). 

[4] V.E. Benes, Transition probabilities for telephone traffic, 
Bell Syst. Tech. J. 39(1960)1297-1320. 

[5] E. Brockmeyer, Det simple overflowproblem i telefontra
fikteorien, Teleteknik 5 (1954) 361-374 (in Danish). 

[6] E. Cinlar and R.L. Disney, Stream of overflows from a 
finite queue, Oper. Res. 15 (1967) 131-134. 

[7] T.S. Chihara, An Introduction to Orthogonal Polynomials 
(Gordon & Breach, New York, 1978). 

[8] J.W. Cohen, The full availability group of trunks with an 
arbitrary distribution of the inter-arrival times and a nega
tive exponential holding time distribution, Simon Stevin 
31(1957)169-181. 

[9] J.W. Cohen, The Single Server Queue (North-Holland, 
Amsterdam, rev. ed., 1982). 

[10] R.B. Cooper, Introduction to Queueing Theory (Edward 
Arnold, London, 2nd ed., 1981 ). 

[11] A. Descloux, On overflow processes of trunk groups with 
Poisson inputs and exponential service times, Bell Syst. 
Tech. J. 42 (1963) 383-397. 

[12] A. Descloux, On Markovian servers with recurrent input, 
Proc. 6th Internal. Teletraffic Congress, Munich (1970) 
paper 331. 

[13] J.H.A. de Smit, The overflow process of the multi-server 
queue with exponential service times and finite waiting 
room, Memorandum Nr. 408, Department of Applied 
Mathematics, Twente University of Technology, En
schede, The Nether lands, 1982. 

[14] S. Halfin, Distribution of the interoverflow time for the 
GIJG/l loss system, Math. Oper. Res. 6 (1981) 563-570. 

[15] U. Herzog and P. Kuhn, Comparison of some multiqueue 
models with overflow and load-sharing strategies for data 
transmission and computer systems, in: J. Fox, ed., Proc. 
Symp. on Computer-Communications Networks and Tele
traffic, pp. 449-472 (Polytechnic Press, Brooklyn. NY, 
1972). 

[16] D.L. Jagerman, Some properties of the Erlang loss func
tion, Bell Syst. Tech. J. 53 (1974) 525-551. 

[17] S. Karlin and J.L. McGregor, Many server queueing 
processes with Poisson input and exponential service times. 
Pacific J. Math. 8 (1958) 87-118. 

[18] S. Karlin and J.L. McGregor, A characterization of birth 
and death processes, Proc. Nat. Acad. Sci.-U.S.A. 45 
(1959) 375-379. 

[19] S. Karlin and J.L. McGregor, Coincidence properties of 
birth and death processes, Pacific J. Math. 9 (1959) 
1109-1140. 

[20) J. Keilson, A n~view of transient behaviour in regular 
diffusion and birth-death processes, J. Appl. Probab. 1 
(1964) 247-266. 

[21] J. Keilson, Log-concavity and log-convexity in passage 
time densities of diffusion and birth-death processes, J. 
Appl. Probab. 8 (1971) 391-398. 

[22] A. Khintchine, Mathematical Methods in the Theory of 
Queueing (Griffin, London, 2nd English ed., 1969). 

[23] L. Kosten, Uber Sperrungswahrscheinlichkeiten bei Staf
felschaltungen, Elektrische Nachrichten Technik 14 (1937) 
5-12. 

[24] L. Kosten, Approximate determination of congestion 
quantities by equivalent traffic methods, Delft Progr. Rep!. 
5 (1980) 227-252. 

[25] A. Kuczura, Queues with mixed renewal and Poisson 
inputs, Bell Syst. Tech. J. 51 (1972) 1305-1326. 

[26] A. Kuczura, Piecewise Markov processes, SIAM J. Appl. 
Math. 24 (1973) 169-181. 

[27] A. Kuczura, Loss systems with mixed renewal and Poisson 
inputs. Oper. Res. 21 ( 1973) 787- 795. 

[28] F. Machihara, Transition probabilities of Markovian 
service system and their applications, Rev. Electrical Com
munication Labs. 29 (1981) 170-188. 

[29] F. Machihara, On the property of eigenvalues of some 
infinitesimal generator, Oper. Res. Lett. 2 (1983) 123-126. 

[30] D.C. McNickle, A note on congestion in overflow queues, 
Opsearch 19 (1982) 171-177. 

[31] J.A. Morrison, Analysis of some overflow problems with 
queuing. Bell Syst. Tech. J. 59 (1980) 1427-1462. 

[32) J.A. Morrison, Some traffic overflow problems with a 
large secondary queue, Bell Sys t. Tech. J. 5 9 ( 1980) 
1463-1482. 

[33) J.A. Morrison, An overflow system in which queuing takes 
precedence, Bell Syst. Tech. J. 60 (1981) l-12. 

[34] J.A. Morrison and P.E. Wright, A traffic overflow system 
with a large primary queue, Bell Syst. Tech. J. 61 (1982) 
1487-1517. 

[35] M.F. Neuts, Renewal processes of phase type, Naval Res. 
Logist. Quart. 25 (1978) 445-454. 

[36] C. Palm, lntensitiitsschwankungen im Fernsprechverkehr, 
Ericsson Technics 44 (1943) 1-189. 

[ 37] C. Pearce and R. Potter, Some formulae old and new for 
overflow traffic in telephony, Austral. Telecomm. Res. 11 
(1977) 92-97. 

[38] R.M. Potter, Explicit formulae for all overflow traffic 
moments of the Kosten and Brockmeyer systems with 
renewal input, Austral. Telecomm. Res. 13 (1980) 39-49. 

[39] V. Ramaswami and M.F. Neuts, Some explicit formulas 
and computational methods for infinite-server queues with 
phase-type arrivals, J. Appl. Probab. 17 (1980) 498-514. 



240 E.A. van Doorn / On the overflow process from a Markovian queue 

[40] J.H. Rath and D. Sheng, Approximations for overflows 
from queues with a finite waiting room. Oper. Res. 27 
(1979) 1208-1216. 

[41] J. Riordan. Stochastic Service Systems (Wiley, New York, 
1962). 

[42] R. Schehrer. Uber die Momente hoherer Ordnung von 
Oberlaufverkehr hinter volkommen erreichbaren Bundeln. 
Wiss. Ber. AEG-Telefunken 50 (1977) 113-119. 

[43] L. Takacs, On the generalization of Erlang's formula, Acta 
Math. Acad. Sci. Hung. 7 (1956) 419-433. 

[44] L. Takacs. On the limiting distribution of the number of 
coincidences concerning telephone traffic. Ann. Math. 
Statist. 30 (1959) 134-142. 

[45] L. Takacs, Introduction to the Theory of Queues (Oxford 
University Press, New York, 1962). 

[46] E.A. van Doorn, Some analytical aspects of the peaked
ness concept, Proc. lOth lnternat. Teletraffic Congress, 
Montreal (1983) paper 4.4b-5. 

[47] E. Vaulot, Sur !'application du calcul des probabilites a la 
theorie du trafic telephonique, C.R. Acad. Sci. Paris 200 
(1935) 1815-1818. 

[48] J.F.E. Wallin, Overflow traffic from the viewpoint of 
renewal theory, Statist. Neerlandica 31(1977)171-178. 

[49] R.l. Wilkinson, Theories for toll traffic engineering in the 
U.S.A., Bell Syst. Tech. J. 35 (1956) 421-514. 


