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l INTRODUCTION 

Heasoning about distributed algorithms appears to be intrinsirnllv diflkult and 
will probably always require a great deal of ingenuity. Nevertht~lPss. ri•srn.rdi 
cm formal. verification has provided a whole range of well-establisht>d ('(mn•pt;. 
awl t.PC"hmques that may help us to tackle problems in this area. It st><'tlls that 
by now t.hc ba ... <;ic principles for reasoning about distributed algorithms haw 
111•1•11 discovered and that the main issue that remains is the problem of •walt>: 
w" know how to analyze small algorithms but are still lacking mf•thod" and 
tools to manage the complexity of the the bigger ones (in this ~·ontext wt• ra.n 
takP "small" to mean "fits on one or two pages''). 

'.\lot Pwrybody agrees with this view, however, and frequently om• mu hmr 
claims that. Pxisting approaches cannot deal (or cannot deal in a natural way I 

with C"ntain t.ypcs of distributed algorithms. A new approach is thrn prnpo~·d 
to adrlrc•ss this problem. A recent example of this is a paper by Chou [:3). who 
uffi·rs a rat.her pe88imistic view on the state-of-the-art in formal writkation:. 

At. present, reasoning about distributed algorithms is still an ad 
/we, trial-and-error process that needs a great deal of ingt•nuity. 
What is lacking is a practical method that supports, 011 the one 
haud, an ·intuitive way to think about and understand distributPd 
alµ;orithms and, on the other hand, a formal technique for n•asoning 
about distribut<~d algorithms using that intuitive understanding. 

· · h d · f [') • ti ~ !'I Ill Tc 1 ill11strntc the short.commg of the assertional met o s o -· ;:i. • 1 • •• • • 

) :~J. ('lion disrnsses a variant of Segall's PIF (Propa~ation of hl~on_i~i~ti~n _with 
Vi •(•d I iack) protocol [ 18]. A complex and messy classical proof of tlws ,tlgont luu 
is <·o 11tra.stPd with a slightly simpler but definitely more structured proof ba .. '>t><i 

0 11 tlw rww method advocated by the author. 
I thi11k that Chou's view of existing assertional methods hi 1_nm:h_ tn~1 . pt'S-

si 111istiC". First. of all these methods are not ad-hoe, but p:ovide srflll~~<~1 ;1 
l!;llicla11c·p and structure to verifications. After one has descrl1lhed hot l l'.tfi1~ •. ilt-

. b t ns it is usua v not so l t t·u 
J!.nri t h m and its spPc:ification as a strac progra1 • .. " . 
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to come up with a first guess of a simulation relation from the state space of 
the algorithm to the state space of the specification. In order to state this 
simulation it is sometimes necessary to add auxiliary history and prophecy 
variables to the low-level program. By just starting to prove that the guessed 
simulation relation is indeed a simulation, i.e., that for each execution of the 
low-level program there exists a corresponding execution of the high-level pro
gram, one discovers the need for certain invariants, properties that are valid for 
all reachable states of the programs. To prove these invariant properties it is 
sometimes convenient or even necessary to introduce auxiliary state variables. 
Frequently one also has to prove other auxiliary invariants first. The existence 
of a simulation relation guarantees that the algorithm is safe with respect to 
the specification: all the finite behaviors of the algorithm are allowed by the 
specification. The concepts of invariants, history and prophecy variables, and 
simulation relations are so powerful that in most cases they allow one to for
malize the intuitive reasoning about safety properties of distributed algorithms. 
When a simulation relation (and thereby the safety properties) has been estab
lished, this relation often provides guidance in the subsequent proof that the 
algorithm satisfies the required liveness properties: typically one proves that 
the simulation relates each fair execution of the low-level program to a fair 
execution of the high-level program. Here modalities from temporal logic such 
as "eventually" and "leads to" often make it quite easy to formalize intuitions 
about the liveness properties of the algorithm. 

As an illustration of the use of "classical" assertional methods, I present in 
this paper a verification of the algorithm discussed by Chou [3]. Altogether, it 
took me about two hours to come up with a detailed sketch of the proof (during 
a train ride from Leiden to Eindhoven), and less than two weeks to work it out 
and write this paper. The proof is completely routine, except for a few nice 
invariants and the idea to use a prophecy variable. Unlike history variables, 
which date back to the sixties [9], prophecy variables have been introduced only 
recently [1], and there are not that many examples of their use. My proof is 
not particularly short, but it does formalize in a direct way my own intuitions 
about the behavior of this algorithm. 

It might very well be the case that for more complex distributed algorithms, 
such as [17], new methods will pay off and lead to shorter proofs that are closer 
to intuition. This paper shows that, unlike what is claimed by Chou [3], the 
old methods still work very well for a variant of Segall 's PIF protocol. 

2 LABELED TRANSITION SYSTEMS AND SIMULATIONS 

In this paper we use a very simple and well-known transition system model. 
The model is a simplified version of the I/O automata model [10, 11]: it does not 
deal with fairness or other forms of liveness and there is no distinction between 
input and output actions. In this section we review some basic definitions 
and results concerning automata and simulation proof techniques. For a more 
extensive introduction we refer to [12]. 
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DEFINITION 1 A labeled transition system or automaton A consists of four com
ponents: 

• A (finite or infinite) set states(A) of states. 

• A nonempty set start( A) s;;; states( A) of start states. 

• A pair (ext(A), int(A)) of disjoint sets of external and internal actions, 
respectively. The derived set acts (A) of actions is defined as the union of 
ext(A) and int(A). 

• A set steps(A) s;;; states(A) x acts( A) x states(A) of steps. 

We let s, s', u, u' , .. range over states, and a, .. over actions. We writes ~.4 s', 
or just s ~ s' if A is clear from the context, as a shorthand for ( s', a, s) E 
steps(A). 

An execution fragment of an automaton A is a finite or infinite alternating 
sequence, a = soa1s1a2s2 · · ·, of states and actions of A, beginning with a 
state, and if it is finite also ending with a state, such that for all i, s; a~_:t/ Si+i· 

The function first gives the first state of an execution fragment and, for finite 
execution fragments, the function last gives the final state. An execution of 
A is an execution fragment that begins with a start state. A state s of A is 
reachable if s = last (a) for some finite execution a of A. 

The trace of an execution fragment a, written trace(a), is the sequence of 
external actions occurring in a. A sequence /3 of actions is a trace of automaton 
A if there i8 an execution a of A with /3 = trace(a). The set of traces of A 
i8 denoted by traces( A). Supposes and s' are states of A, and j3 is a finite 
sequence of external actions of A. We write s :::£.As', or just s' ~ s, if A has a 
finite execution fragment a with first( a)= s, trace(a) = /3 and last( a:)= s'. 

DEFINITION 2 Let A and B be automata with the same external actions. 

1. A refinement from A to B is a function r from states of A to states of B 
that 8atisfies the following two conditions: 

(a) Ifs is a start state of A then r·(s) is a start state of B. 

(b) Ifs ~As' and both sand r(s) are reachable, then r(s) =£.sr(s'), 
where /3 = trace((s, a, s')). 

2. A forward simulation from A to B is a relation between states of A and 
statc8 of B that satisfies the following two conditions: 

(a) If.~ is a start state of A then there exists a start state u of B with 
(s,u.) E f. 

(b) If 8 ~A s', (s, u) E f and s and u are reachable, then there exists 
a state ·u.' of B such that u=£.su' and (s',u') E f, where /3 = 
tnu:<:((8, a, .91)). 
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3. A history relation from A to B is a forward simulation from A to B whose 
inverse is a refinement from B to A. 

4. A backward simulation from A to B is a relation between states of A and 
states of B that satisfies the following three conditions: 

(a) Ifs is a start state of A and u is a reachable state of B with ( s, u) E b, 
then u is a start state of B. 

(b) If s ~A s', ( s', u') E b and s and u' are reachable, then there exists 
a reachable state u of B such that u:IJ;,Bu' and (s,u) E b, where 
{3 = trace((s, a, s')). 

( c) If s is a reachable state of A then there exists a reachable state u of 
B with (s,u) E b. 

5. A prophecy relation from A to B is a backward simulation from A to B 
whose inverse is a refinement from B to A. 

A refinement, forward simulation, etc. is called strong if in each case where 
one automaton is required to simulate a step from the other automaton, this 
is possible with an execution fragment consisting of exactly one step. 1 

A relation Rover 81 and 82 is image-finite if for all elements s1 of 81 there 
are only finitely many elements s2 of 82 such that (s1, s2) ER. 

THEOREM 1 Let A and B be automata with the same external actions. 

1. If there is a refinement from A to B then traces (A) ~ traces ( B). 

2. If there is a forward simulation from A to B then traces(A) ~ traces(B). 

3. If there is a history relation from A to B then traces( A) = traces(B). 

4. If there is an image-finite backward simulation from A to B then traces (A) 
~ traces(B). 

5. If there is an image-finite prophecy relation from A to B then traces (A) = 
traces(B). 

3 DESCRIPTION OF THE ALGORITHM 

Consider a graph G = (V, E), where Vis a nonempty, finite collection of nodes 
and E ~ V x V is a collection of links. We assume that graph G is undirected, 
i.e., (v, w) E E ~ (w, v) E E, and also strongly connected. To each node 
v in the graph a value weight( v) is associated, taken from some set M. We 
assume that M contains an element unit and that there is a binary operator o 

1 Here we use the word "strong" in the sense of [14). Actually, the notions of simulation 
that we consider here are weak in the sense of [12) since their definitions include reachability 
conditions. 
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on M, such that (M, o, unit) is an Abelian monoid (so o is commutative and 
associative and has unit element unit). 

Nodes of G represent autonomous processors and links represent communi
cation channels via which these processors can send messages to each other. 
We assume that the communication channels are reliable and that messages are 
received in the same order as they are sent. We discuss a simple distributed 
algorithm to compute the sum of the weights of all the nodes in the network. 
The algorithm is a minor rephrasing of an algorithm described by Chou [3], 
which in turn is a variant of Segall's PIF (Propagation of Information with 
Feedback) protocol [18]. 

The only messages that are required by the algorithm are elements from M. 
A node in the network enters the protocol when it receives a first message from 
one of its neighbors. Initially, the communication channels for all the links are 
empty, except the channel associated to the link eo from a fixed root node v0 

to itself, which contains a single message.2 When an arbitrary node v receives 
a first message, it marks the node w from which this message was received. 
It then sends a unit nws:;age to all its neighbors, except w. Upon receiving 
subsequent messages, the values of these messages are added to the weight of 
v. As soon as, for a non-root node, the total number of received messages 
equals the total number of neighbors, the value that has been computed is 
sent back to the node from which the first message was received. When, for 
root node v0 , the total number of received messages equals the total number 
of neighbors, the value that has been computed by vo is produced as the final 
outcome of the algorithm. 

In Figure 1, the algorithm is specified as an automaton SUM using the 
standard precondition/effect style of the I/O automata model [10, 11, 4]. A 
minor subtlety is the occurrence of the variable v in the definition of the step 
relation, which is neither a state variable nor a formal parameter of the actions. 
Semantically, the meaning of this v is determined by an implicit existential 
quantification: an action a is enabled in a state s if there exists a valuation ~ 
of all the variables (including v) that agrees with s on the state variables and 
with a on the parameters of the actions, such that the precondition of a holds 
under ~- If action a is enabled in s under ~ then the effect part of a together 
with ~ determine the resulting state s'. 

For each link e=(v, w), the source v is denoted source(e), the target w is 
denoted target(e), and the reverse link (w,v) is denoted e-1 . For each node v, 
from ( v) gives the set of links with source v and to( v) gives the set of links with 
target v, so eEfrom( v) {::} source( e)=v and eEto( v) {::} target( e )=v. All the other 
data types and operation symbols used in the specification have the obvious 
meaning. The states of SUM are interpretations of five state variables in their 
domains. The first four of these variables represent the values of program 
variables at each node: 

2The assumption that eo = (Vo, Vo) E E is not required, but allows for a more uniform 
description of the algorithm for each node. 
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Internal: MSC 
REPORT 

External: RESULT 

State VariaQles: busy E V -+ Bool 
parentE V -+ E 
total E V-+ M 
cnt E V-+ lpt 
mq EE-+ M* 

Init: /\ •b'usy[v) 
/\: mq[e] =if e=eo then append( unit, empty) else empty 

MSG(e: E,m: M) 
Precondition: 

v = target(e) /\ m = head(mq[e]l 
Effect: 

mq[e] := tail( mq[e]) 
if •busy[v] then busy[v) := true 

parent[v] := e 
total[v) :;;;;: weight(v) 
cnt[v] := size(from(u)J - 1 
for f E from(v)/{e' 1 } do rru;[f] := append(unit, mq[fj) 

else total[v] := total[v] o m 

REPORT(e: E,m: M) 
Precondition: 

cnt[v] := cnt[v] -· 1 

v = source(e) f- vo /\ busy[v) /\ cnt[u] = 0 /\ c · 1 "'" parntl[r] i\ 111 lotal[l>) 
Effect: 

busy[v) :=false 
mq[e] := append(m, mq[e]) 

RESULT(m: M) 
Precondition: 

busy[vo] /\ cnt[vo] = 0 /\ m = total[v0 ] 

Effect: 
busy[vo] :=false 

FIGURE L Autornaton 8UM. 
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• busy tells for each node whether or not it is currently participating in the 
protocol; initially busy[v] equals false for each v; · 

• parent is used to remember the link via which a node has been activated; 

• total records the sum of the values seen by a node during a run of the 
protocol; 

• cnt gives the number of values that a node still wants to see before it will 
terminate. 

State variable mq, finally, represents the contents of the message queue for each 
liuk. Initially, mq[e] is empty for each link e except e0 . 

Automaton 8UM has three types of actions: an action MSG. which describes 
the receipt and processing of a message, an action REPORT, by which a non 
root node sends the final value that it has computed to its parent, and an action 
RESULT, which is the last action of the algorithm, used by the root node to 
output the final result of the computation. 

4 CORRECTNESS PROOF 

The correctness property qi of SUM that we want to establish is that each 
maximaJ execution of the automaton consists of a finite number of internal 
actions followed by the single output action RESULT(L,vEV weight(v)). 

Intuitively, propagation of messages occurs in two phases. First unit messages 
aw sent from node v0 into the network, and then partial sums flow back from 
the network to v0 . In the first phase a spanning tree is constructed with root 
v 11 and this spanning tree is used to a('cumulate values in the second phase. 

4. 1 A riding a Hi8tory Virriable 
A fin.;t. irn port.ant obs<>rvat.ion about the algorithm is that in each run at most 
mw message travels on each link. In order to state this property formally as 
an invariant, we add a so-called "history variable" sent to automaton SUM 
that wcords for each link c how many messages have been sent on e. Figure 2 
rl<'scril><~s the automaton 8 UM" obtained in this way. Variable sent is an aux
iliary /history variabll; in t.lw sense of Owicki and Gries [16] because it does not 
oc('llf in ('ondi tions nor at the right-hand-side of assignments to other variables. 
C:l<'arly, adding ,;er1.t does not. change the bchavior of automaton SUM. This 
can lw formalized via the following trivial lemma, which in turn implies that 
SUM satisfies corrcd.ncss property <P if and only if SUMh does. 

LEMMA 2 The inv(Tse of the prnjection .funct·ion tha.t maps states from Sl!Mh 
to slo/;es of SUM is o, strong history relation fnmi SUM to SUM". 

Invariant. 1 below givc~s a basic: sanity property of SUM": at any time the 
1111111 lwr of llH'Ssag<'s in a. link is at most equal to the number of messages that 
hav'' li<'<'ll s<'nt on that link. 
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Internal: MSG 
REPORT 

External: RESULT 

State Variables: busy E V --; Bool 
parentE V --; E 
total E V--; M 
cnt E V-+ Int 
mq EE--; M* 
sent E E -> Int 

Init: /\ -,busy[v] 
/\ Ve ( ) mq[e] = if e=eo then append unit, empty else empty 

/\. sent[e] = if e=eo then 1 else 0 

MSG(e: E,m: M) 
Precondition: 

v = target(e) Am= head(mq[e]) 
Effect: 

mq[e] := tail(mq[e]) 
if -.busy[v] then busy[v] :=true 

parent[v] := e 
total[v] :=weight( v) 
cnt[v] := size(from(v)) - 1 
for f E from(v)/{e- 1 } do mq[f] := append(unit, mq[f]) 

sent[!] :=sent[!]+ 1 
else total[v] := total[v] o m 

cnt[v] := cnt[v] - 1 

REPORT(e: E,m: M) 
Precondition: 

v = source(e) ¥- v0 A busy[v] A cnt[v] = 0 A e- 1 = parent[v] Am= total[v] 
Effect: 

busy[v] :=false 
mq[e] := append(m, mq[e]) 
sent[e] := sent[e] + 1 

RESULT(m: M) 
Precondition: 

busy[vo] A cnt[vo] = 0 Am= total[vo] 
Effect: 

busy[vo] := false 

FIGURE 2. Automaton SUM" obtained from SUM by adding history variable 
sent. 
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INVARIANT 1 For all reachable states of SUMh and for all e: 

len(mq[e]) $ sent[e] 

At first sight, Invariant 2 below may look a bit complicated. It is however 
easy to give intuition for it. The key part of the invariant is the first conjunct, 
which states that at most one message travels on each link. The other conjuncts 
are only needed to get the induction to work in the invariant proof. The second 
and third conjunct imply that if in a MS G step a value is sent into some channel, 
this channels must have been empty in the start state of that step. The fourth 
conjunct allows to prove a similar property for REPORT steps. The routine 
proof of Invariant 2, which has been omitted here, uses Invariant 1. 

INVARIAN1 2 For all reachable states of SUMh and for all v and e: 

/\ sent[e] $ 1 
/\ len(mq[eo])=l-> (\lfEfrom(vo)/{eo}: sent[f]=O) 
/\ v:f-vo /\ -ibusy[v] /\ eEto(v) /\ len(mq[e])=l-> (\lfEfrom(v): sent[!]=O) 
/\ v:f-vo /\ busy[v] /\ e = parent[v]-> sent[e-1]=0 

Invariant 2 is quite powerful and implies in particular that the algorithm will 
always terminate. 

COROLLARY 3 Automaton SUMh has no infinite executions. 

PROOF: Define the state function Norm as follows: 

Norm ~ 2: 2.sent[e] - len(mq[e]) 

eEE 

Since both sending and receiving a value increases Norm, each step of SUMh 
with label MSC or REPORT increases Norm. By Invariant 2, Norm can be at 
most 2.size(E), for any reachable state. Therefore there can be at most finitely 
many steps labeled by an internal actions in any execution of SUMh. Since 
each RESULT step changes the value of busy[vo] from true to false, there can 
be at most one RESULT step after the last internal step. D 

A next property that we will established is that each node can be activated 
only once in any run of the algorithm. We say that node v is activated in a 
step if busy[v] changes from false to true in that step. This implies that v has 
been activated iff it has received at least one message. The number of messages 
received by a node v equals the number of messages that have been sent to v 
minus the number of messages still in transit, and is therefore given by the 
state function: 

Received(v) ~ 2: sent[e] - len(mq[e]) 
eEtO(v) 

The following Invariant 3 gives a characterization of the value of Received(v) 
for reachable states. The proof is straightforward and uses Invariant 2. 
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INVARIANT 3 For all reachable states of SUMh and for all v: 

/\ busy[v] --+ Received(v) == size(to(v)) - cnt[v] > 0 
/\ -ibusy[v] --+ Received(v) == 0 V Received(v) == size(to(v)) 

Invariants 2 and 3 together imply that each node is activated at most once in 
each execution. Because suppose that in some reachable state some node v is 
both inactive and activated. This means -ibusy[v] /\ Received(v) > 0. Then 
Invariant 3 gives Received(v) == size(to(v)). But this implies that no MSC 
action can be enabled, because this would violate Invariant 2. 

We conclude this subsection with two simple invariants that we will use later 
on. 

INVARIANT 4 For all reachable states of SUM" and for all v: 

Received(v) > 0 --+ v == target(parent[v]) 

INVARIANT 5 For all reachable states of SUM" and for all e: 

e f. e0 /\ mq[e] f. empty --+ Received(source(e)) > 0 

4.2 Adding a Prophecy Variable 
Intuitively, in the first phase of the algorithm a spanning tree is constructed 
with root v0 , and this spanning tree is used to accumulate values iu the sec
ond phase. When the algorithm starts, it not clear how the spanniug tre<' is 
going to look like and in fact any spanning tree is still pm;sible. While the 
algorithm proceeds, the spanning tree is constructed step by step. The choice 
whether an arbitrary link will be part of the spanning tree depends on the 
relative speeds of the processors, and is entirely nondeterministic. Such un
predictable, nondeterministic behavior is typical for distributed computation 
but often complicates analysis. Fortunately, the concept of pro71hecy var-iables 
of Abadi and Lamport [1] allows us to drastically reduce the nondeterminism 
of the algorithm or, more precisely, to push nondeterminism backwards to the 
initial state. We add to SUMh a new variable tree, which records an initial 
guess of the full spanning tree and is used to enforce that the actual tree that 
is constructed during execution is equal to this initial guess. Figure 3 describes 
the automaton SUMhP obtained in this way. In Figure 3, tree is the function 
that tells for each set of links whether or not it is a tree. More formally, for 
T ~ E and E = {source(e), target(e) I e E T}, tree(T) =true iff either T == 0 
or there exists a node v E E such that for all v' E E there is a unique path of 
links in T leading from v to v'. 

In order to show that tree is a prophecy variable in the sense of [l, 12], 
we establish a prophecy relation from SUM" to SUMhP. For this, we need 
three more invariants. The proof of Invariant 6 uses Invariants :3, 4 and 5. 
Invariants 7 and 8 are completely trivial. 
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Internal: MSC 
REPORT 

External: RESULT 

State Variables: busy E V--> Bool 
parentE V--> E 
total E V--> M 
cnt E V--> Int 
mq EE--> M* 
sent EE--> Int 
tree EV->E 

Init: /\.. •busy[v] 

/\..~ mq[e] =if e=eo then append(unit,empty) else empty 
/\.." sent[e] =if c=eo then 1 else 0 

/\..,, tree [vn] = eo I\ v = target( tree[v]) I\ tree( { tree[v] I v E V / { v0 }}) 

MSG(e: E,m: M) 
Precondition: 

v = target(e) I\ m = head(mq[e]) !\ (-,b'usy[v] _, e = tree[v]) 
Effect: 

mq[e] := tail(mq[c]) 

if -,busy[v] then b11sy['v] :=true 

pan:nt[v] := e 
total[v] := weight(v) 
cnt[v] := size(from(v)) - 1 

for f E from(v)/{e- 1 } do mq[f] := append(unit,m.q[f]) 

else total[v] := total[v] o rn 

cnt[v] := cnt[11] - 1 

REPORT(e: E,m: M) 
Precondition: 

sent[!] :=sent[!]+ 1 

v = source(c) i vu I\ busy[v] /\ cnt[v] = 0 !\ e- 1 = parent[v] /\ m = total[v] 
Effect: 

busy[11] :=false 

m,q[c] := append(m., mq[c]) 

sent[e] := M:nt[e] + 1 

RESULT(m. : M) 
Precondition: 

busy[vo] I\ cnt[vo] = 0 /\ m = total[vo] 
Effect: 

busy[vo] :c.-= false 

Fie u1rn :~. A11tomaton S' UM hp obtained from SUM h by adding prophecy 

variable tret. 



INVARIANT 6 Let T be the state function defined by 

T ~ {parent[v] Iv =I- v0 /\ Received(v) > O} 

Then tree(T) holds for all reachable states of SUMh. 

INVARIANT 7 For all reachable states of SUMhP and for all v: 

Received(v) > 0 ----+ parent[v] = tree[v] 

INVARIANT 8 For all reachable states of SUMhP and for all v: 

tree [v0] = ea /\ v = target( tree[v]) /\tree( {tree [v J I v E V / { vo}}) 

LEMMA 4 The inverse of the projection function 7f that maps states of SUM"P 
to states of SUMh is a strong image-finite prophecy relation from SUMh to 
SUMhP. 

PROOF: Mapping 7f is trivially a strong refinement from SUM"11 to SUM". 
Since the domain of variable tree is finite, Jr- 1 is image-finite. We prove that 
JT- 1 satisfies the three conditions of a backward simulation (condition (b) in 
the strong sense). 

For condition (a), suppose that sis a start state of SUM" and u is a reachable 
state of SUM"v with JT(u) = s. Then it follows by Invariant 8 that u is a start 
state of SUM hri. 

To prove that Jr- 1 satisfies conditions (b) and (c) we need the following 
claim: a state ·u of SUM"P is reachable iff 7r(u) is reachable and u satisfies 
the properties of Invariants 7 and 8. Direction "=>" of this claim follows by 
induction on the length of the shortest execution to u, and uses the fact that 7f 

is a strong refinement together with Invariants 7 and 8. Direction "{=" of the 
claim follows by induction on the length of the shortest execution to K(u). 

Using the claim, it is routine to prove condition (b). Condition (c) follows 
from the claim together with Invariant 6. D 

Note that as a direct corollary of Lemma 4 all invariants of SUM" are also 
invariants of SUM hp. 

4.3 A Refinement 
In this subsection we will prove that there exists a refinement from automaton 
SUMhP to the automaton S defined in Figure 4. Automaton S is extremely 
simple. It has only two states: an initial state where done=false and a final 
state where done=true. There is one step, which starts in the initial state, has 
label RESULT("£.vEV weight(v)), and ends in the final state. 

Define state functions ]nit and Done by 

lnit( v) 

Done(v) 

•busy[v] /\ Received(v) = 0 

•busy[v] /\ Received('v) = size(to(v)) 
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External: RESULT 

State Variables: done E Bool 

Init: -,done 

RESULT(m: M) 
Precondition: 

-,done/\ m == 2.:,,EV weight(v) 
Effect: 

done :== true 

FIGURE 4. Automaton S. 

As a consequence of Invariant 3, each reachable state of SUMhP satisfies, for 

each v, either Init(v) or busy[v] or Done(v). In order to establish a refinement 

from SUM"P to S, we again need two extra invariants. Invariant 9 states that, 

until the moment where computation has finished, there is a conservation of 

weight in the network. Invariant 10 allows us to prove that in a state where 

RESULT is enabled, Done(v) holds for all nodes except v0 . 

INVARIANT 9 For all reachable states of SUMhP: 

•Done(v0 ) -+ L weight(v) 

vEV 

L weight(v) 

{ vE V[Received(v)=O} 

+ total[v] 

{vEV[busy[v]} 

+ head( mq(e]) 

{ eEE[mq[e];;6empty} 

INVARIANT 10 For all reachable states of SUM"P and for all v and e: 

v =f- v0 /\ e == tree[v] /\ sent[e- 1] = 1 -+ Done(v) 

LEMMA 5 The function r from states of SUM"P to states of S given by 

r(s) I== done ~ s I== Done(vo) 

is a refinement from SUM"P to S. 

4.4 Absence of Deadlock 

The existence of a refinement mapping from SUMhP to S does not guarantee 

that automaton SUM"P will produce any output: the automaton still may 
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have an infinite loop of internal actions or get into a state of deadlock before 

an output step has been done. We can easily prove the absence of infinite loops 

by using the result of Corollary 3 that SUMh has no infinite executions and 

the fact that there is a strong prophecy relation from SUMh to SUMhP. The 

proof that SUM"P has no premature deadlocks is more involved and requires 

three additonal invariants. 

INVARIANT 11 For all reachable states of SUMhP, sent[eo] = l. 

INVARIANT 12 For all reachable states of SUMhp and for all v and e: 

e = tree[v] /\ Jnit(v) /\ mq[e] =empty --> Init(source(e)) 

INVARIANT 13 For all reachable states of S UMhP and for all v and e: 

•fnit(v) /\ source(e) = v /\ e- 1 ::f. tree[v] --> sent[e] = 1 

LEMMA 6 A reachable state of SUM"P has no outgoing steps if and only if 

Done ( v0 ) holds in that state. 

PROOF: (Sketch) 
'"<=" If Done(v0 ) holds then we can prove using Invariant 10 that Done(v) 

holds for all nodes v. Then Invariants 2 and 3 together imply that no message 

is in transit. Consequently, no step of SUM"P is enabled. 
"=?" Suppose that some given state is deadlocked. Then no message can be 

in transit on the spanning tree, otherwise a MSC step would be enabled. This 

implies, by Invariants 11 and 13, that •In1:t(u) holds for all nodes v. This 

in turn implies that no message can be in transit on any link it the iwtwork 

(otherwise a MSC action would be enabled). Next we use Invariant 13 to infer 

that exactly one message has been sent on each link in the network, except 

those on the reversed spanning tree. Finally, we prove for all nodes u of the 

network, starting with the leaves of the tree, that v has received a message over 

all incoming links; since no REPORT or RESULT action is enabled in 7' this 

implies Done(v). D 

THEOREM 7 A'Utomaton SUM satisfies property <P. 

PROOF: Follows from the fact that SUMhP satisfies <P and the existence of a 

strong history relation from SUM to SUMh and a strong prophecy relation 

from SUMh to SUM"P. D 

5 CONCLUDING REMARKS 

The verification of this paper has not yet been proof-checked by computer, 

hut I expect that this will be a routine exercise, building on earlier work on 

mechanical checking ofl/O automata proofs [19, 4, 15]. Although I have carried 

out the verification using a simple version of the I/O automaton model, it is 

probably trivial to translate this story to other state based models, such as 

Lamport's Temporal Logic of Actions [8]. 
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