
Verification of a Distributed Summation Algorithm

Frits W. Vaandrager
CW/

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

fritsv©cwi. nl

University of Amsterdam

Programming Research Group

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

l INTRODUCTION

Heasoning about distributed algorithms appears to be intrinsirnllv diflkult and
will probably always require a great deal of ingenuity. Nevertht~lPss. ri•srn.rdi
cm formal. verification has provided a whole range of well-establisht>d ('(mn•pt;.
awl t.PC"hmques that may help us to tackle problems in this area. It st><'tlls that
by now t.hc ba ... <;ic principles for reasoning about distributed algorithms haw
111•1•11 discovered and that the main issue that remains is the problem of •walt>:
w" know how to analyze small algorithms but are still lacking mf•thod" and
tools to manage the complexity of the the bigger ones (in this ~·ontext wt• ra.n
takP "small" to mean "fits on one or two pages'').

'.\lot Pwrybody agrees with this view, however, and frequently om• mu hmr
claims that. Pxisting approaches cannot deal (or cannot deal in a natural way I

with C"ntain t.ypcs of distributed algorithms. A new approach is thrn prnpo~·d
to adrlrc•ss this problem. A recent example of this is a paper by Chou [:3). who
uffi·rs a rat.her pe88imistic view on the state-of-the-art in formal writkation:.

At. present, reasoning about distributed algorithms is still an ad
/we, trial-and-error process that needs a great deal of ingt•nuity.
What is lacking is a practical method that supports, 011 the one
haud, an ·intuitive way to think about and understand distributPd
alµ;orithms and, on the other hand, a formal technique for n•asoning
about distribut<~d algorithms using that intuitive understanding.

· · h d · f [') • ti ~ !'I Ill Tc 1 ill11strntc the short.commg of the assertional met o s o -· ;:i. • 1 • •• • •

) :~J. ('lion disrnsses a variant of Segall's PIF (Propa~ation of hl~on_i~i~ti~n _with
Vi •(•d I iack) protocol [18]. A complex and messy classical proof of tlws ,tlgont luu
is <·o 11tra.stPd with a slightly simpler but definitely more structured proof ba .. '>t><i

0 11 tlw rww method advocated by the author.
I thi11k that Chou's view of existing assertional methods hi 1_nm:h_ tn~1 . pt'S-

si 111istiC". First. of all these methods are not ad-hoe, but p:ovide srflll~~<~1 ;1
l!;llicla11c·p and structure to verifications. After one has descrl1lhed hot l l'.tfi1~ •. ilt-

. b t ns it is usua v not so l t t·u
J!.nri t h m and its spPc:ification as a strac progra1 • .. " .

593

to come up with a first guess of a simulation relation from the state space of
the algorithm to the state space of the specification. In order to state this
simulation it is sometimes necessary to add auxiliary history and prophecy
variables to the low-level program. By just starting to prove that the guessed
simulation relation is indeed a simulation, i.e., that for each execution of the
low-level program there exists a corresponding execution of the high-level pro
gram, one discovers the need for certain invariants, properties that are valid for
all reachable states of the programs. To prove these invariant properties it is
sometimes convenient or even necessary to introduce auxiliary state variables.
Frequently one also has to prove other auxiliary invariants first. The existence
of a simulation relation guarantees that the algorithm is safe with respect to
the specification: all the finite behaviors of the algorithm are allowed by the
specification. The concepts of invariants, history and prophecy variables, and
simulation relations are so powerful that in most cases they allow one to for
malize the intuitive reasoning about safety properties of distributed algorithms.
When a simulation relation (and thereby the safety properties) has been estab
lished, this relation often provides guidance in the subsequent proof that the
algorithm satisfies the required liveness properties: typically one proves that
the simulation relates each fair execution of the low-level program to a fair
execution of the high-level program. Here modalities from temporal logic such
as "eventually" and "leads to" often make it quite easy to formalize intuitions
about the liveness properties of the algorithm.

As an illustration of the use of "classical" assertional methods, I present in
this paper a verification of the algorithm discussed by Chou [3]. Altogether, it
took me about two hours to come up with a detailed sketch of the proof (during
a train ride from Leiden to Eindhoven), and less than two weeks to work it out
and write this paper. The proof is completely routine, except for a few nice
invariants and the idea to use a prophecy variable. Unlike history variables,
which date back to the sixties [9], prophecy variables have been introduced only
recently [1], and there are not that many examples of their use. My proof is
not particularly short, but it does formalize in a direct way my own intuitions
about the behavior of this algorithm.

It might very well be the case that for more complex distributed algorithms,
such as [17], new methods will pay off and lead to shorter proofs that are closer
to intuition. This paper shows that, unlike what is claimed by Chou [3], the
old methods still work very well for a variant of Segall 's PIF protocol.

2 LABELED TRANSITION SYSTEMS AND SIMULATIONS

In this paper we use a very simple and well-known transition system model.
The model is a simplified version of the I/O automata model [10, 11]: it does not
deal with fairness or other forms of liveness and there is no distinction between
input and output actions. In this section we review some basic definitions
and results concerning automata and simulation proof techniques. For a more
extensive introduction we refer to [12].

594

DEFINITION 1 A labeled transition system or automaton A consists of four com
ponents:

• A (finite or infinite) set states(A) of states.

• A nonempty set start(A) s;;; states(A) of start states.

• A pair (ext(A), int(A)) of disjoint sets of external and internal actions,
respectively. The derived set acts (A) of actions is defined as the union of
ext(A) and int(A).

• A set steps(A) s;;; states(A) x acts(A) x states(A) of steps.

We let s, s', u, u' , .. range over states, and a, .. over actions. We writes ~.4 s',
or just s ~ s' if A is clear from the context, as a shorthand for (s', a, s) E
steps(A).

An execution fragment of an automaton A is a finite or infinite alternating
sequence, a = soa1s1a2s2 · · ·, of states and actions of A, beginning with a
state, and if it is finite also ending with a state, such that for all i, s; a~_:t/ Si+i·

The function first gives the first state of an execution fragment and, for finite
execution fragments, the function last gives the final state. An execution of
A is an execution fragment that begins with a start state. A state s of A is
reachable if s = last (a) for some finite execution a of A.

The trace of an execution fragment a, written trace(a), is the sequence of
external actions occurring in a. A sequence /3 of actions is a trace of automaton
A if there i8 an execution a of A with /3 = trace(a). The set of traces of A
i8 denoted by traces(A). Supposes and s' are states of A, and j3 is a finite
sequence of external actions of A. We write s :::£.As', or just s' ~ s, if A has a
finite execution fragment a with first(a)= s, trace(a) = /3 and last(a:)= s'.

DEFINITION 2 Let A and B be automata with the same external actions.

1. A refinement from A to B is a function r from states of A to states of B
that 8atisfies the following two conditions:

(a) Ifs is a start state of A then r·(s) is a start state of B.

(b) Ifs ~As' and both sand r(s) are reachable, then r(s) =£.sr(s'),
where /3 = trace((s, a, s')).

2. A forward simulation from A to B is a relation between states of A and
statc8 of B that satisfies the following two conditions:

(a) If.~ is a start state of A then there exists a start state u of B with
(s,u.) E f.

(b) If 8 ~A s', (s, u) E f and s and u are reachable, then there exists
a state ·u.' of B such that u=£.su' and (s',u') E f, where /3 =
tnu:<:((8, a, .91)).

595

3. A history relation from A to B is a forward simulation from A to B whose
inverse is a refinement from B to A.

4. A backward simulation from A to B is a relation between states of A and
states of B that satisfies the following three conditions:

(a) Ifs is a start state of A and u is a reachable state of B with (s, u) E b,
then u is a start state of B.

(b) If s ~A s', (s', u') E b and s and u' are reachable, then there exists
a reachable state u of B such that u:IJ;,Bu' and (s,u) E b, where
{3 = trace((s, a, s')).

(c) If s is a reachable state of A then there exists a reachable state u of
B with (s,u) E b.

5. A prophecy relation from A to B is a backward simulation from A to B
whose inverse is a refinement from B to A.

A refinement, forward simulation, etc. is called strong if in each case where
one automaton is required to simulate a step from the other automaton, this
is possible with an execution fragment consisting of exactly one step. 1

A relation Rover 81 and 82 is image-finite if for all elements s1 of 81 there
are only finitely many elements s2 of 82 such that (s1, s2) ER.

THEOREM 1 Let A and B be automata with the same external actions.

1. If there is a refinement from A to B then traces (A) ~ traces (B).

2. If there is a forward simulation from A to B then traces(A) ~ traces(B).

3. If there is a history relation from A to B then traces(A) = traces(B).

4. If there is an image-finite backward simulation from A to B then traces (A)
~ traces(B).

5. If there is an image-finite prophecy relation from A to B then traces (A) =
traces(B).

3 DESCRIPTION OF THE ALGORITHM

Consider a graph G = (V, E), where Vis a nonempty, finite collection of nodes
and E ~ V x V is a collection of links. We assume that graph G is undirected,
i.e., (v, w) E E ~ (w, v) E E, and also strongly connected. To each node
v in the graph a value weight(v) is associated, taken from some set M. We
assume that M contains an element unit and that there is a binary operator o

1 Here we use the word "strong" in the sense of [14). Actually, the notions of simulation
that we consider here are weak in the sense of [12) since their definitions include reachability
conditions.

596

on M, such that (M, o, unit) is an Abelian monoid (so o is commutative and
associative and has unit element unit).

Nodes of G represent autonomous processors and links represent communi
cation channels via which these processors can send messages to each other.
We assume that the communication channels are reliable and that messages are
received in the same order as they are sent. We discuss a simple distributed
algorithm to compute the sum of the weights of all the nodes in the network.
The algorithm is a minor rephrasing of an algorithm described by Chou [3],
which in turn is a variant of Segall's PIF (Propagation of Information with
Feedback) protocol [18].

The only messages that are required by the algorithm are elements from M.
A node in the network enters the protocol when it receives a first message from
one of its neighbors. Initially, the communication channels for all the links are
empty, except the channel associated to the link eo from a fixed root node v0

to itself, which contains a single message.2 When an arbitrary node v receives
a first message, it marks the node w from which this message was received.
It then sends a unit nws:;age to all its neighbors, except w. Upon receiving
subsequent messages, the values of these messages are added to the weight of
v. As soon as, for a non-root node, the total number of received messages
equals the total number of neighbors, the value that has been computed is
sent back to the node from which the first message was received. When, for
root node v0 , the total number of received messages equals the total number
of neighbors, the value that has been computed by vo is produced as the final
outcome of the algorithm.

In Figure 1, the algorithm is specified as an automaton SUM using the
standard precondition/effect style of the I/O automata model [10, 11, 4]. A
minor subtlety is the occurrence of the variable v in the definition of the step
relation, which is neither a state variable nor a formal parameter of the actions.
Semantically, the meaning of this v is determined by an implicit existential
quantification: an action a is enabled in a state s if there exists a valuation ~
of all the variables (including v) that agrees with s on the state variables and
with a on the parameters of the actions, such that the precondition of a holds
under ~- If action a is enabled in s under ~ then the effect part of a together
with ~ determine the resulting state s'.

For each link e=(v, w), the source v is denoted source(e), the target w is
denoted target(e), and the reverse link (w,v) is denoted e-1 . For each node v,
from (v) gives the set of links with source v and to(v) gives the set of links with
target v, so eEfrom(v) {::} source(e)=v and eEto(v) {::} target(e)=v. All the other
data types and operation symbols used in the specification have the obvious
meaning. The states of SUM are interpretations of five state variables in their
domains. The first four of these variables represent the values of program
variables at each node:

2The assumption that eo = (Vo, Vo) E E is not required, but allows for a more uniform
description of the algorithm for each node.

597

Internal: MSC
REPORT

External: RESULT

State VariaQles: busy E V -+ Bool
parentE V -+ E
total E V-+ M
cnt E V-+ lpt
mq EE-+ M*

Init: /\ •b'usy[v)
/\: mq[e] =if e=eo then append(unit, empty) else empty

MSG(e: E,m: M)
Precondition:

v = target(e) /\ m = head(mq[e]l
Effect:

mq[e] := tail(mq[e])
if •busy[v] then busy[v) := true

parent[v] := e
total[v) :;;;;: weight(v)
cnt[v] := size(from(u)J - 1
for f E from(v)/{e' 1 } do rru;[f] := append(unit, mq[fj)

else total[v] := total[v] o m

REPORT(e: E,m: M)
Precondition:

cnt[v] := cnt[v] -· 1

v = source(e) f- vo /\ busy[v) /\ cnt[u] = 0 /\ c · 1 "'" parntl[r] i\ 111 lotal[l>)
Effect:

busy[v) :=false
mq[e] := append(m, mq[e])

RESULT(m: M)
Precondition:

busy[vo] /\ cnt[vo] = 0 /\ m = total[v0]

Effect:
busy[vo] :=false

FIGURE L Autornaton 8UM.

598

• busy tells for each node whether or not it is currently participating in the
protocol; initially busy[v] equals false for each v; ·

• parent is used to remember the link via which a node has been activated;

• total records the sum of the values seen by a node during a run of the
protocol;

• cnt gives the number of values that a node still wants to see before it will
terminate.

State variable mq, finally, represents the contents of the message queue for each
liuk. Initially, mq[e] is empty for each link e except e0 .

Automaton 8UM has three types of actions: an action MSG. which describes
the receipt and processing of a message, an action REPORT, by which a non
root node sends the final value that it has computed to its parent, and an action
RESULT, which is the last action of the algorithm, used by the root node to
output the final result of the computation.

4 CORRECTNESS PROOF

The correctness property qi of SUM that we want to establish is that each
maximaJ execution of the automaton consists of a finite number of internal
actions followed by the single output action RESULT(L,vEV weight(v)).

Intuitively, propagation of messages occurs in two phases. First unit messages
aw sent from node v0 into the network, and then partial sums flow back from
the network to v0 . In the first phase a spanning tree is constructed with root
v 11 and this spanning tree is used to a('cumulate values in the second phase.

4. 1 A riding a Hi8tory Virriable
A fin.;t. irn port.ant obs<>rvat.ion about the algorithm is that in each run at most
mw message travels on each link. In order to state this property formally as
an invariant, we add a so-called "history variable" sent to automaton SUM
that wcords for each link c how many messages have been sent on e. Figure 2
rl<'scril><~s the automaton 8 UM" obtained in this way. Variable sent is an aux
iliary /history variabll; in t.lw sense of Owicki and Gries [16] because it does not
oc('llf in ('ondi tions nor at the right-hand-side of assignments to other variables.
C:l<'arly, adding ,;er1.t does not. change the bchavior of automaton SUM. This
can lw formalized via the following trivial lemma, which in turn implies that
SUM satisfies corrcd.ncss property <P if and only if SUMh does.

LEMMA 2 The inv(Tse of the prnjection .funct·ion tha.t maps states from Sl!Mh
to slo/;es of SUM is o, strong history relation fnmi SUM to SUM".

Invariant. 1 below givc~s a basic: sanity property of SUM": at any time the
1111111 lwr of llH'Ssag<'s in a. link is at most equal to the number of messages that
hav'' li<'<'ll s<'nt on that link.

599

Internal: MSG
REPORT

External: RESULT

State Variables: busy E V --; Bool
parentE V --; E
total E V--; M
cnt E V-+ Int
mq EE--; M*
sent E E -> Int

Init: /\ -,busy[v]
/\ Ve () mq[e] = if e=eo then append unit, empty else empty

/\. sent[e] = if e=eo then 1 else 0

MSG(e: E,m: M)
Precondition:

v = target(e) Am= head(mq[e])
Effect:

mq[e] := tail(mq[e])
if -.busy[v] then busy[v] :=true

parent[v] := e
total[v] :=weight(v)
cnt[v] := size(from(v)) - 1
for f E from(v)/{e- 1 } do mq[f] := append(unit, mq[f])

sent[!] :=sent[!]+ 1
else total[v] := total[v] o m

cnt[v] := cnt[v] - 1

REPORT(e: E,m: M)
Precondition:

v = source(e) ¥- v0 A busy[v] A cnt[v] = 0 A e- 1 = parent[v] Am= total[v]
Effect:

busy[v] :=false
mq[e] := append(m, mq[e])
sent[e] := sent[e] + 1

RESULT(m: M)
Precondition:

busy[vo] A cnt[vo] = 0 Am= total[vo]
Effect:

busy[vo] := false

FIGURE 2. Automaton SUM" obtained from SUM by adding history variable
sent.

600

INVARIANT 1 For all reachable states of SUMh and for all e:

len(mq[e]) $ sent[e]

At first sight, Invariant 2 below may look a bit complicated. It is however
easy to give intuition for it. The key part of the invariant is the first conjunct,
which states that at most one message travels on each link. The other conjuncts
are only needed to get the induction to work in the invariant proof. The second
and third conjunct imply that if in a MS G step a value is sent into some channel,
this channels must have been empty in the start state of that step. The fourth
conjunct allows to prove a similar property for REPORT steps. The routine
proof of Invariant 2, which has been omitted here, uses Invariant 1.

INVARIAN1 2 For all reachable states of SUMh and for all v and e:

/\ sent[e] $ 1
/\ len(mq[eo])=l-> (\lfEfrom(vo)/{eo}: sent[f]=O)
/\ v:f-vo /\ -ibusy[v] /\ eEto(v) /\ len(mq[e])=l-> (\lfEfrom(v): sent[!]=O)
/\ v:f-vo /\ busy[v] /\ e = parent[v]-> sent[e-1]=0

Invariant 2 is quite powerful and implies in particular that the algorithm will
always terminate.

COROLLARY 3 Automaton SUMh has no infinite executions.

PROOF: Define the state function Norm as follows:

Norm ~ 2: 2.sent[e] - len(mq[e])

eEE

Since both sending and receiving a value increases Norm, each step of SUMh
with label MSC or REPORT increases Norm. By Invariant 2, Norm can be at
most 2.size(E), for any reachable state. Therefore there can be at most finitely
many steps labeled by an internal actions in any execution of SUMh. Since
each RESULT step changes the value of busy[vo] from true to false, there can
be at most one RESULT step after the last internal step. D

A next property that we will established is that each node can be activated
only once in any run of the algorithm. We say that node v is activated in a
step if busy[v] changes from false to true in that step. This implies that v has
been activated iff it has received at least one message. The number of messages
received by a node v equals the number of messages that have been sent to v
minus the number of messages still in transit, and is therefore given by the
state function:

Received(v) ~ 2: sent[e] - len(mq[e])
eEtO(v)

The following Invariant 3 gives a characterization of the value of Received(v)
for reachable states. The proof is straightforward and uses Invariant 2.

601

INVARIANT 3 For all reachable states of SUMh and for all v:

/\ busy[v] --+ Received(v) == size(to(v)) - cnt[v] > 0
/\ -ibusy[v] --+ Received(v) == 0 V Received(v) == size(to(v))

Invariants 2 and 3 together imply that each node is activated at most once in
each execution. Because suppose that in some reachable state some node v is
both inactive and activated. This means -ibusy[v] /\ Received(v) > 0. Then
Invariant 3 gives Received(v) == size(to(v)). But this implies that no MSC
action can be enabled, because this would violate Invariant 2.

We conclude this subsection with two simple invariants that we will use later
on.

INVARIANT 4 For all reachable states of SUM" and for all v:

Received(v) > 0 --+ v == target(parent[v])

INVARIANT 5 For all reachable states of SUM" and for all e:

e f. e0 /\ mq[e] f. empty --+ Received(source(e)) > 0

4.2 Adding a Prophecy Variable
Intuitively, in the first phase of the algorithm a spanning tree is constructed
with root v0 , and this spanning tree is used to accumulate values iu the sec
ond phase. When the algorithm starts, it not clear how the spanniug tre<' is
going to look like and in fact any spanning tree is still pm;sible. While the
algorithm proceeds, the spanning tree is constructed step by step. The choice
whether an arbitrary link will be part of the spanning tree depends on the
relative speeds of the processors, and is entirely nondeterministic. Such un
predictable, nondeterministic behavior is typical for distributed computation
but often complicates analysis. Fortunately, the concept of pro71hecy var-iables
of Abadi and Lamport [1] allows us to drastically reduce the nondeterminism
of the algorithm or, more precisely, to push nondeterminism backwards to the
initial state. We add to SUMh a new variable tree, which records an initial
guess of the full spanning tree and is used to enforce that the actual tree that
is constructed during execution is equal to this initial guess. Figure 3 describes
the automaton SUMhP obtained in this way. In Figure 3, tree is the function
that tells for each set of links whether or not it is a tree. More formally, for
T ~ E and E = {source(e), target(e) I e E T}, tree(T) =true iff either T == 0
or there exists a node v E E such that for all v' E E there is a unique path of
links in T leading from v to v'.

In order to show that tree is a prophecy variable in the sense of [l, 12],
we establish a prophecy relation from SUM" to SUMhP. For this, we need
three more invariants. The proof of Invariant 6 uses Invariants :3, 4 and 5.
Invariants 7 and 8 are completely trivial.

602

Internal: MSC
REPORT

External: RESULT

State Variables: busy E V--> Bool
parentE V--> E
total E V--> M
cnt E V--> Int
mq EE--> M*
sent EE--> Int
tree EV->E

Init: /\.. •busy[v]

/\..~ mq[e] =if e=eo then append(unit,empty) else empty
/\.." sent[e] =if c=eo then 1 else 0

/\..,, tree [vn] = eo I\ v = target(tree[v]) I\ tree({ tree[v] I v E V / { v0 }})

MSG(e: E,m: M)
Precondition:

v = target(e) I\ m = head(mq[e]) !\ (-,b'usy[v] _, e = tree[v])
Effect:

mq[e] := tail(mq[c])

if -,busy[v] then b11sy['v] :=true

pan:nt[v] := e
total[v] := weight(v)
cnt[v] := size(from(v)) - 1

for f E from(v)/{e- 1 } do mq[f] := append(unit,m.q[f])

else total[v] := total[v] o rn

cnt[v] := cnt[11] - 1

REPORT(e: E,m: M)
Precondition:

sent[!] :=sent[!]+ 1

v = source(c) i vu I\ busy[v] /\ cnt[v] = 0 !\ e- 1 = parent[v] /\ m = total[v]
Effect:

busy[11] :=false

m,q[c] := append(m., mq[c])

sent[e] := M:nt[e] + 1

RESULT(m. : M)
Precondition:

busy[vo] I\ cnt[vo] = 0 /\ m = total[vo]
Effect:

busy[vo] :c.-= false

Fie u1rn :~. A11tomaton S' UM hp obtained from SUM h by adding prophecy

variable tret.

INVARIANT 6 Let T be the state function defined by

T ~ {parent[v] Iv =I- v0 /\ Received(v) > O}

Then tree(T) holds for all reachable states of SUMh.

INVARIANT 7 For all reachable states of SUMhP and for all v:

Received(v) > 0 ----+ parent[v] = tree[v]

INVARIANT 8 For all reachable states of SUMhP and for all v:

tree [v0] = ea /\ v = target(tree[v]) /\tree({tree [v J I v E V / { vo}})

LEMMA 4 The inverse of the projection function 7f that maps states of SUM"P
to states of SUMh is a strong image-finite prophecy relation from SUMh to
SUMhP.

PROOF: Mapping 7f is trivially a strong refinement from SUM"11 to SUM".
Since the domain of variable tree is finite, Jr- 1 is image-finite. We prove that
JT- 1 satisfies the three conditions of a backward simulation (condition (b) in
the strong sense).

For condition (a), suppose that sis a start state of SUM" and u is a reachable
state of SUM"v with JT(u) = s. Then it follows by Invariant 8 that u is a start
state of SUM hri.

To prove that Jr- 1 satisfies conditions (b) and (c) we need the following
claim: a state ·u of SUM"P is reachable iff 7r(u) is reachable and u satisfies
the properties of Invariants 7 and 8. Direction "=>" of this claim follows by
induction on the length of the shortest execution to u, and uses the fact that 7f

is a strong refinement together with Invariants 7 and 8. Direction "{=" of the
claim follows by induction on the length of the shortest execution to K(u).

Using the claim, it is routine to prove condition (b). Condition (c) follows
from the claim together with Invariant 6. D

Note that as a direct corollary of Lemma 4 all invariants of SUM" are also
invariants of SUM hp.

4.3 A Refinement
In this subsection we will prove that there exists a refinement from automaton
SUMhP to the automaton S defined in Figure 4. Automaton S is extremely
simple. It has only two states: an initial state where done=false and a final
state where done=true. There is one step, which starts in the initial state, has
label RESULT("£.vEV weight(v)), and ends in the final state.

Define state functions]nit and Done by

lnit(v)

Done(v)

•busy[v] /\ Received(v) = 0

•busy[v] /\ Received('v) = size(to(v))

604

External: RESULT

State Variables: done E Bool

Init: -,done

RESULT(m: M)
Precondition:

-,done/\ m == 2.:,,EV weight(v)
Effect:

done :== true

FIGURE 4. Automaton S.

As a consequence of Invariant 3, each reachable state of SUMhP satisfies, for

each v, either Init(v) or busy[v] or Done(v). In order to establish a refinement

from SUM"P to S, we again need two extra invariants. Invariant 9 states that,

until the moment where computation has finished, there is a conservation of

weight in the network. Invariant 10 allows us to prove that in a state where

RESULT is enabled, Done(v) holds for all nodes except v0 .

INVARIANT 9 For all reachable states of SUMhP:

•Done(v0) -+ L weight(v)

vEV

L weight(v)

{ vE V[Received(v)=O}

+ total[v]

{vEV[busy[v]}

+ head(mq(e])

{ eEE[mq[e];;6empty}

INVARIANT 10 For all reachable states of SUM"P and for all v and e:

v =f- v0 /\ e == tree[v] /\ sent[e- 1] = 1 -+ Done(v)

LEMMA 5 The function r from states of SUM"P to states of S given by

r(s) I== done ~ s I== Done(vo)

is a refinement from SUM"P to S.

4.4 Absence of Deadlock

The existence of a refinement mapping from SUMhP to S does not guarantee

that automaton SUM"P will produce any output: the automaton still may

605

have an infinite loop of internal actions or get into a state of deadlock before

an output step has been done. We can easily prove the absence of infinite loops

by using the result of Corollary 3 that SUMh has no infinite executions and

the fact that there is a strong prophecy relation from SUMh to SUMhP. The

proof that SUM"P has no premature deadlocks is more involved and requires

three additonal invariants.

INVARIANT 11 For all reachable states of SUMhP, sent[eo] = l.

INVARIANT 12 For all reachable states of SUMhp and for all v and e:

e = tree[v] /\ Jnit(v) /\ mq[e] =empty --> Init(source(e))

INVARIANT 13 For all reachable states of S UMhP and for all v and e:

•fnit(v) /\ source(e) = v /\ e- 1 ::f. tree[v] --> sent[e] = 1

LEMMA 6 A reachable state of SUM"P has no outgoing steps if and only if

Done (v0) holds in that state.

PROOF: (Sketch)
'"<=" If Done(v0) holds then we can prove using Invariant 10 that Done(v)

holds for all nodes v. Then Invariants 2 and 3 together imply that no message

is in transit. Consequently, no step of SUM"P is enabled.
"=?" Suppose that some given state is deadlocked. Then no message can be

in transit on the spanning tree, otherwise a MSC step would be enabled. This

implies, by Invariants 11 and 13, that •In1:t(u) holds for all nodes v. This

in turn implies that no message can be in transit on any link it the iwtwork

(otherwise a MSC action would be enabled). Next we use Invariant 13 to infer

that exactly one message has been sent on each link in the network, except

those on the reversed spanning tree. Finally, we prove for all nodes u of the

network, starting with the leaves of the tree, that v has received a message over

all incoming links; since no REPORT or RESULT action is enabled in 7' this

implies Done(v). D

THEOREM 7 A'Utomaton SUM satisfies property <P.

PROOF: Follows from the fact that SUMhP satisfies <P and the existence of a

strong history relation from SUM to SUMh and a strong prophecy relation

from SUMh to SUM"P. D

5 CONCLUDING REMARKS

The verification of this paper has not yet been proof-checked by computer,

hut I expect that this will be a routine exercise, building on earlier work on

mechanical checking ofl/O automata proofs [19, 4, 15]. Although I have carried

out the verification using a simple version of the I/O automaton model, it is

probably trivial to translate this story to other state based models, such as

Lamport's Temporal Logic of Actions [8].

606

REFERENCES

l. M. Abadi and L. Lamport. The existence of refinement mappings. Theo

retical Computer Science, 82(2):253-284, 1991.

2. K.M. Chandy and J. Misra. Parallel Program Design. A Foundation.

Addison-Wesley, 1988.

3. C. Chou. Practical use of the notions of events and causality in reasoning

about distributed algorithms. CS Report #940035, UCLA, October 1994.

4. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data

link protocol. In H. Barendregt and T. Nipkow, editors, Proceedings In

ternational Workshop TYPES'93, Nijmegen, The Netherlands, May 1993,

volume 806 of Lecture Notes in Computer Science, pages 127-165. Springer

Verlag, 1994. Full version available as Report CS-R9420, CWI, Amsterdam,

March 1994.
5. B. Jonsson. Compositional specification and verification of distributed

systems. ACM Transactions on Programming Languages and Systems,

16(2):259-303, March 1994.

6. S.S. Lam and A.U. Shankar. Protocol verification via projections. IEEE

Transactions on Software Engineering, 10(4):325-342, July 1984.

7. L. Lamport. Specifying concurrent program modules. ACM Transactions

on Programming Lang·uages and Systems, 5(2):190-222, 1983.

8. L. Lamport. The temporal logic of actions. ACM Transactions on Pro

gramming Languages and Systems, 16(3):872-923, March 1994.

9. P. Lucas. Two constructive realizations of the block concept and their

equivalence. Technical Report 25.085, IBM Laboratory, Vienna, June 1968.

10. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed

algorithms. In Proceedings of the 5th Annual ACM Symposium on Princi

ples of Distrib·uted Computing, pages 137-151, August 1987. A full version

is available as MIT Technical Report MIT /LCS/TR-387.

11. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.

CW! Quarterly, 2(3):219--246, September 1989.

12. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations

- part I: Untimed systems. Report CS-R9313, CWI, Arnsterdain, March

1993. Also, MIT /LCS/TM-486.b, Laboratory for Computer Science, Mas

sachusetts Institute of Technology, Cambridge, MA. To appear in Informa

tion and Comp1ttation.

13. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag, 1992.

14. R. Milner. Communication and Concurrency. Prentice-Hall International,

Englewood Cliffs, 1989.
15. T. Nipkow and K. Slind. I/O automata in Isabelle/HOL, 1994. Draft paper.

16. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.

Acta Infor-matica, 6(4) :319-340, 1976.

17. P. Hurnblet R. Gallager and P. Spira. A distributed algorithm for minimum

weight spanning trees. ACM Transactions on Programming Languages and

Systems, 5(1):66-77, January 1983.

607

18. A. Segall. Distributed network protocols. IEEE Transactions on Informa

tion Theory, IT-29(2):23-35, January 1983.
19. J. S0gaard-Andersen, S. Garland, J. Guttag, N.A. Lynch, and

A. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis,

editor, Proceedings of the 5th International Conference on Computer Aided

Verification, Elounda, Greece, volume 697 of Lecture Notes in Computer

Science, pages 305-319. Springer-Verlag, 1993.

608

