
Semantics, Orderings and Recursion in the
Weakest Precondition Calculus

Marcello Bonsangue*
CWI,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
Email: marcello©c~i. nl.

Joost N. Kok
Utrecht University, Department of Computer Science,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

Email: j oost©cs. ruu. nl.

ABSTRACT An extension of Dijkstra's guarded command language is studied, in­
cluding sequential composition, demonic choice and a backtrack operator. To guide the
intuition about this language we give an operational semantic that relates the initial
states with possible outcome of the computations. Next we consider three orderings on
this language: a refinement ordering defined by Back, a new deadlock ordering, and an
approximation ordering of]\Telson. The deadlock ordering is in between the two other
orderings. All operators ar! monotonic in Nelson's ordering, but backtracking is not
monotonic in Back's ordering and sequential composition is not monotonic for the dead­
lock ordering. At first sight recursion can only be added using Nelson's ordering. By
extending the fixed point theory we show that, under certain circumstances, least fixed
points for non monotonic functions can be obtained by iteration from the least element.
This permits us the additior. of recursion even using Back's ordering or the deadlock or­
dering. Furthermore, we give a semantic characterization of the three orderings above
by extending the well known duality theory between predicate transformers and Smyth's
powerdomain.

Keywords weakest preconditions, predicate transformers, refinement, deadlock, back­
tracking, recursion, fixed points, fixed point transformations, Smyth powerdomain, Egli­
Milner powerdomain.

CONTENTS

1. Introduction

2. Language and Semantics

3. Orderings

*The research of this author was supported by a grant of the Universita' degli Studi di Milano, Italy.

4. Order Theory

4.1 Fixed Points

92

4.2 Predicate Transformers and Discrete Powerdomains

5. Recursion

1 Introduction

The weakest precondition calculus of Dijkstra identifies statements in the guarded com­
mand language with weakest precondition predicate transformers (see [Dij76]). The lan­
guage was extended to use it as a vehicle for program refinement. Specification con­
structs were added and a refinement ordering was defined. This approach was intro­
duced in [Bac78, Bac80] and is suited for refinement (see [BvW90, Bac90) and also
[MRG88, Mor87)). The refinement ordering can be used to add recursion to the lan­
guage, but not in a fully compositional way. For example, for each set of guards there is
a different conditional command.

Recursion was added in a fully compositional way by Nelson in [Nel87]: the guarded
command language was embedded in a language with sequential composition, demonic
choice and a backtrack operator in which the operators can be used freely. An ordering
is given for which the operators are all monotonic. This ordering is an approximation
ordering of the kind used in denotational semantics and does not seem to be suited for
refinement. It is defined with the additional notion of weakest liberal preconditions.

Our starting point is the language of (Nel87]. In this language we also have a form
of infinite behaviour (a loop construct) and atomic actions that can deadlock (to initiate
backtracking). Then we consider three orderings; besides the orderings of Back and Nelson
we define a new ordering in between. It is called deadlock ordering because it preserves
deadlocks as can be seen from the semantic characterization of the deadlock ordering. In
terms of refinement: a normal (non-miraculous) terminating statement is not refined by
a miracle in the deadlock ordering.

Only Nelson's ordering is monotonic with respect to all three operators, while the back­
track operator is not monotonic with respect to Back's ordering and the sequential com­
position is not monotonic for the deadlock ordering. At first sight only Nelson's ordering
seems to be suited to add recursion to the full language. But the fact that for Nelson's
ordering all the operators are monotonic implies that also recursion can be added with
the other two orderings.

In order to show this we extend the fixed point theory. It is well known that a monotone
and continuous function from a complete partial order to itself has least fixed point that
can be obtained by iteration from the least element. This result was extended at first
by Hitchcock and Park [HP72) showing that for a function from a complete partial order
to itself is enough to be monotone in order to have a lest fixed point. Then Apt and
Ploktin [AP86] have shown that the least fixed point property can be transferred, via a
commutative diagram, to monotone functions from a partial order to itself. Finally, in
[BK92) we show that the least fixed point property can be transferred, via a commutative

93

diagram, also to functions (even non monotone) from a partial order to itself. Here we
give a theorem that uses only part of the results given in [BK92], but this theorem is
enough to imply that for both Back's and the deadlock ordering the standard operator
associated to a declaration of recursive procedures has a least fixed point that can be
obtained by iteration from the least element. It also gives the correct result because it is
related to the least fixed point with respect to Nelson's ordering.

Moreover we provide a semantic characterization of the three orderings based on a se­
mantic model for the language that relates initial states to possible outcomes of the
computation. We start from the duality theory connecting the discrete version of the
Smyth powerdomain [Smy78] and the Dijkstra's predicate transformers [Wan77, Plo79,
Smy83, Bes83, AP86]. The presence of a backtrack operator in our language justifies
the introduction of two different versions of the Smyth powerdomain in which a constant
representing the deadlock is added in two different way. We extend the duality theory
described above to these two versions of the Smyth powerdomain giving in this way a
semantic characterization for the Back and the deadlock orderings. A similar result is
also proved for the Egli-Milner powerdomain showing its relationship with the Nelson's
predicate transformers.

For reason of space, almost all the proofs are omitted; they can be found in [BK92].

2 Language and Semantics

We first introduce the language. We use the notation (d E)Dom to introduce the domain
Dom and a typical element d of this domain. Function application is denoted by . and
associates to the left, that is f.g.x == (f.g).x.

Let (v E) Var be a set of variables, let (t E)IExp be a set of integer expressions, and let
(b E)BExp be a set of boolean expressions. Then the set (S E)Stat is defined by

This language has three operators: the sequential composition ; , the demonic choice D,

and the backtrack operator 0.

The backtrack operator backtracks to its second component if its first component dead­
locks. The only atomic action that can deadlock is b --+: it deadlocks in a state in which
the boolean expression b does not evaluate to true. A form of infinite behaviour (the loop­
statement) is added to the language to distinguish different orderings on the language. A
similar language is studied in [Nel87]: the only difference is that we have split actions as
in [Hes89J in the sense that we consider as atomic actions both the assignment actions
v :== t and the test actions b --+.

Dijkstra's guarded command language [Dij76) can be seen as a subset of this language,
except for the do - od-construct which will be handled when we add recursion. For
example, the conditional command if b1 --+ S1Db2 --+ S2 fi can be expressed by the
statement (b1 --+ ; S1Db2 --+ ; S2)0loop E Stat. More general derived statements are
skip== true--+, abort== loop, magic== false--+, and if S fi == SOloop.

94

Next we give an operational semantic model that relates initial states with possible out­
comes of the computation. A state is a function that yields an integer for each variable in
(v E) llar, thus the set of states (O' E)E is given by E = Var -> N. Also, we assume that
we can consider integer expressions t as functions that given a state a yield an integer
t.O'. The same applies to boolean expressions b.

We introduce a set of extended statements (m E)Stat to treat backtracking in a transition
system:

where SE Stat and O' E E. After the next definition we give some more explanation.

Definition 2.1 Let Conf = (Stat U { E}) x (EU { .5}) be a set of configurations, and define
a transition relation --->~ Conf x Conf to be the least relation satisfying the following
axioms and rules:

(v := t,cr)-+ (E,cr[t.O'/v])

(b-+,O')-(E,c) ifnotb.O'

(loop,17) __,(loop, a)

(m1,l7)-+ (E,8) A (m2,a)-+ (E,8)
(m1 Dm2, a)-+ (E, 6)

(mi,a)-+ (E,6) A (ffi2,a)-+ (E,8)
(m1<>m2,a)-+ (E,6)

(m1,l7)-+ (E,6) A (m2,0'f-+ ~m2!£,q')
(m1<>m2,a)-+ (T112!E,a)

(m1, u) ---> tE, .5) A ~m2 , 0'1)---> (E, 6)
(m16 m2,0'1),17 ---> {E,6)

In the definition above O'[t.u/v] denotes the state

([t I J) f { t .17 if V :::: V1

O' .O' v . v = .
a.v otherwise.

(b _..,q) __,. (E,a) if b.a

m1, a __,. m' E, a'

m1,a __,. m{ E,a'

m1, a --> m{ E, a'

m1, a --+ m{ E, a'

Furthermore (m1IE,O') is an abbreviation for the two alternative configurations (mi,a)
and {E,a). Intuitively, (rni,O')---> (m;,O'') states that one step of execution of the

95

statement m1 in the state u leads to a state u' with in{ being the remainder of m1 to be
executed.

Definition 2.2 We say that m can diverge from u, denoted by (m, u) T, if there exists
an infinite sequence of configuration c; such that

(Vi;::: 0 : Ci ~ Ci+1)

where Co= (m, u). Furthermore, by Co ~· c~ we denote that there exists a finite sequence
of configuration c; such that

For ea.eh statement in Stat we can now define its operational semantics:

Definition 2.3 Let the function Op : Stat--. (E-. P.:E U E.i) 1 defined by:

o s -{E.i if(S,u)T
p .. u - {u'l(S,u) ~· (E,u') } otherwise

The definition of the function Op explains why Dis called demonic choice: if there is the
possibility of infinite behaviour (S can diverge) then it will be chosen. Next we discuss
the backtrack operator 0. ff we execute the statement S1 O~ in a state u then we look
if we can do a step from 81 (that possibly changes u say in u') and we remember the
starting state u changing 0 in /::;.. If this computation deadlocks at a later stage, then we
still have the alternative ~ left reinstalling the state u.

As a second step we define the weakest precondition semantics and relate it to the model
Op. Let B = {tt,.lf} be the boolean set and (P, Q e)Pred = :E--. B be predicates.

Definition 2.4 (weakest preconditions} Let wp : Stat --. (Pred --. Pred) be defined as
follows:

wp.b-..Q=b=*Q
wp.v := t.Q = Q[t/v]
wp.loop.Q =false

wp.S1; ~.Q = wp.Si-(wp.~.Q)
wp.S1D~.Q = wp.Si,.Q /\ wp.~.Q
wp.S10~.Q = wp.S1.Q /\ (wp.S1.false ==*' wp.~.Q).

In this definition Q[t/ v] denotes syntactic substitution in Q oft for v. It is not difficult to
prove that for any statement S the predicate transformer wp.S is monotonic with respect
to=?: we have that if P =? Q then wp.S.P ==*' wp.S.Q.

The following theorem relates the weakest precondition semantics with the operational
semantics in the same way as in (Bak80]; at first generalize predicates P from E to
(1'.E U E.i) by P . ..L= false and P.X = (Vu E X : P.u).

Theorem 2.5 wp.S.P = {ulP.(Op.S.u)}

Notice that this means Op.S1 =Op.~ if and only if (VP wp.S1.P = wp.~.P).
1 I:.L denotes the set I: U { 1.}

96

3 Orderings

In this section we introduce three relations on Stat; they are pre-orders, but using The­

orem 2.5 they are partial orders when we identify statements with the same operational

semantics. We start by two orderings that can be defined by means of weakest precon­

ditions. The first ordering i;:;;B was proposed by Back [Bac78, Bac80] and is suited for

refinement (see (Bac90] and also (Mor87, MRG88]). The second ordering 1;;; 0 is a new

ordering which preserves deadlocks (as we show below when we give a semantic charac­

terization of the two orderings).

Definition 3.1 Let r;;;B, i;:;;D be two orderings on 8tat defined as follows:

(VQ: (wp.S1.Q /\ -iwp.81 .false) =? (wp.Si.Q /\ -.wp.82 .false)).

For the third ordering we need the additional notion of weakest liberal precondition.

Definition 3.2 (weakest liberal preconditions) Let wlp : 8tat -> (Pred -> Pred) be de­

fined by

wlp.b-> .Q = b =? Q

wlp.v := t.Q = Q[t/v]
wlp.loop.Q =true

wlp.S1; 82.Q = wlp.81.(wlp.S2 .Q)

wlp.81D8i.Q = wlp.S1.Q /\ wlp.S2.Q

wlp.S1<>S2.Q = wlp.S1.Q /\ (wp.S1 .false =? wlp.S2 .Q).

Note that the weakest liberal precondition differs from the weakest precondition only in

the definition of wlp./oop and wlp.S10S2. The next lemma relates wp and wlp:

Lemma 3.3 (VS, Q: wp.S.Q .;:> (wp.S.true /\ wlp.8.Q)).

Since wp is monotone with respect to the =} order, we have by the precedent lemma

(VS, Q: wp.8.Q => wlp.8.Q). We give a third ordering which was introduced by Nelson
in [Nel87].

Definition 3.4

The three orderings can be related as follows:

Theorem 3.5

97

Proof We only show the inequalities. They follow from

v := 1 GB (false-+) but v := 1 ~D (false-+)
(v := lDv := 2) Gv v := 2 but (v := lDv := 2) ~N v := 2.

We have the following problems with monotonicity of the orderings GB and GD:

1. (true-+) GB (false -+)

but

(true-+)<>v := 1 ~B (false -+)<>v := 1

2. (v := lDv := 2) GD v := 2

but

(v := lDv := 2); (v = 1 -+) ~D v := 2; (v = 1 -+).

Theorem 3.6 We have for all statements Si, S2 , S{, S~ E Stat:

S1 GB S2 AS{ GB s~:::} (\:/op E {; 'D}: Si.opS{ GB $iopS~)

D

Proof For !;N we refer to [Nel87], for Gv to [BK92] and for GB to [BvW90]. D

4 Order Theory

In this section we provide the mathematical basis for the next section. We give some
general results on fixed points and we show that under particular conditions they can
be obtained (even by iterat:.on) also for non-monotonic functions. Moreover, we give
relationships between discrete powerdomains and predicate transformers, following the
ideas of [Wan77],[Plo79], [Bes83], [AP86] and [Smy83].

Let P a partial order and A a nonempty subset of P. Then A is said to be directed if
every finite subset of A has an upper bound. Pisa complete partial order (cpo) if there
exist a least element ..L and every directed subset A of P has least upper bound (lub) LJ A.

For example, for any set X, the flat complete partial order X.i. is the set X U { ..L} ordered
by x !; y ~ x =..L or x = y.

Let P, Q be two partial orders. A function f : P -+ Q is monotone if for all x, y E P
with x !;p y we have f.x GQ f.y. Moreover, f is continuous if for each directed subset
A of P with least upper bound LJ A we have f.(U A) = LJ(/ .A); f is strict if and only if

98

f . ..Lp=..LQ. If f is continuous then it is monotone, and if f is onto and monotone then
it is also strict. Let g : P -+ P, we denote by µ.g the least fixed point of g, that is,
g.µ.g = µ.g and for every other x E P such that g.x = x then µ.g [;:;; x.

Let P, Q be two partial orders. Then P x Q is the cartesian product ordered coor­
dinatewise and P -+ Q is the function space ordered pointwise. Moreover, if 1-1 .y

exist for y E Q and f : P -+ Q then the partial order determined by 1-1 .y is the
partial order that has for elements x E 1-1 . y ~ P ordered as in P, that is, for each
Xi, X2 E 1-1 • Y, X1 [;:;; X2 {:;> X1 [;p X2.

4.1 Fixed Points

For any partial order P, function f: P-+ P and ordinal..\, define J<>.> E P by

r>.> = 1. u 1<b.
k<>.

Of course/<>.> need not to exist, since Uk<>.J<h need not to exist. Note that J<0> =f . ..L
when the least element ..L of P exists. If J<>.> does not exist , then for any A' ~ ..\ /°"·'>
does not exist, and if f is monotone then J<"> is monotone in ..\. We say (f <>->)>. stabilizes
at k if whenever..\ ~ k then J<>.> = J<k>; the closure ordinal is the least ordinal k by
which the sequence stabilizes. If f is monotone then J<k> is the least (pre-)fixed point
off since f .J<k> = J<k+l> and f.a [;:;; a implies J<>.> !;;; a for all ..\. If P is a complete
partial order and f is monotone then of course J<>.> always exists and moreover, (!<">)>.
stabilizes (HP72). If additionally f is continuous then it has closure ordinal s w.

The following theorem, that can be found in [AP86), shows that under certain circum­
stances g<>.> always exists and stabilizes for a monotone function g : Q -+ Q even if Q is
not a complete partial order:

Theorem 4.1 Let (P, [;p) and (Q, [;Q) be two partial orders, and f: P-+ P, g: Q-+ Q
be two monotone functions and h : P -+ Q be a strict and continuous function such that
the following diagram commutes:

f
P----P

h * h

Q--~Q
g

Then if f <>.> exists so does g<>.>, and indeed g<>.> = h.f<>.>. In particular if µ.f exists
(being an J<>.>) then so does µ.g and µ.g = h.µ.f.

We can even drop the condit.on of g to be monotone provided that h satisfies some extra
conditions (in [BK92) even a more general theorem is proved but this is not needed here):

99

Theorem 4.2 Let (P, !;;;;p) and (Q, b:q) be two partial orders, and f : P -+ P be a
monotone function, g : Q -+ Q be a function and h : P -+ Q be an onto and monotone
function such that for ally E Q the partial order h-1 .y has a top element and the following
diagram commutes:

f
P-----P

hl * h

Q---Q
g

Then if µ.f exists so does µ.g, and indeed µ.g = h.µ.f. Moreover, if h is also continuous
then for each ordinal..\ if f<l.> exists so does g<l.>, and g<l.> = h.f<l.>.

Proof The proof contains part of the proof of the Theorem 4.1 [AP86): assume µ.f exists,
then µ.f = f <a> for some ordinal a. We have:

h.f<a> = h.f<a+l> = h.j.f<at> = g.h.j<a>.

So h.J<<>> is a fixed point of g. Now it remains to prove that h.f<a> = µ.g. Let y E Q
such that g.y = y and let a E P be the top element of the partial order generated by
h-1.y.

First we prove f.a b: a, indeed, f .a E h-1 .y because

h.f.a = g.h.a = g.y = y

and as a is the top element of h-1 .y we obtain f .a b: a.

As second step we prove by transfinite induction J<l.> !;;;; a for each ordinal ..\:

..\ = 0) f <O> =..i!;;; a

..\ > 0) { induction hypothesis }

=> { definition of U }

=> { f is monotone }

f. LJ f<k> !;;; f .a
k<l.

=> { definition of/<'-> }

J<'-> r;;.f.a

100

Hence also /<a> !;;;; a and by monotonicity of h:

h.j<a> !;; h.a = y

Therefore h.j«» = h.µ.f is the least fixed point of g.

Suppose now J<><> exists for some ordinal .>., and let h be continuous. Thus it is also
monotone and hence it is also strict as it is onto. The fact that h.j<><> = g<>.> follows
the line of the proof of the Theorem 4.1 (see [AP86]). o
Note that even if g: Q-+ Q is not monotone and Q is not a complete partial order, the
theorem above ensures the existence of a. least fixed point for g that can be obtained by
iteration, since g" exists for all ordinals .>..

4.2 Predicate Transformers and Discrete Powerdomains

Let E be a nonempty set of states, fixed for the rest of this section, and assume, in order
to avoid degenerate cases, its cardinality be greater than 1. Recall that a predicate is
a function from states to the boolean set B = {tt,jf}. With every predicate P E Pred
we can associate the set { uJ P.u = tt} <;;; E while with every set A we can associate the
function in Pred, P(A) = >.u E E.(if u E A then tt else ff). If A is a subset of E then
A= {ul P(A).u = tt} and conversely, if Pisa predicate then P = P({uJ P.u = tt}).

A predicate transformer 7r is a function in Pred -+ Pred which satisfies some properties.
There are different definitions of predicate transformers in the literature that differ in
the sets of properties. Next we give a list of possible requirements on the function space
Pred -+ Pred that are used in various definitions of predicate transformers:

1. E is countable,

2. 'fr.false= false (exclusion of miracles),

3. 7r is monotone with respect to the => order,

4. 7r is continuous with respect to the => order,

5. 7r.(P /\ Q) = 1r.P /\ 1r.Q for all P, Q E Pred (finite multiplicativity),

6. 7r. AneN Pn = AneN 1r.P,. where N is the set of natural number and P,. E Pred for
all n E N (countable multiplicativity),

101

7. 7r. AieI P; = AieI 7r .P; where I is an index set of the same cardinality as E and
P; E Pred for all i E I (L:,-multiplicativity),

8. 7r. AiEi P; = AieI 7r .P; where I # 0 is an index set and P; E Pred for all i E I
(m ultiplicativity).

In [Dij76] a predicate transformer 7r E Pred -+ Pred satisfies the properties 1. - 5.; in
[Wan77, Plo79] it satisfies the properties 1., 2., 4. and 5.; in [Bes83] the properties 1., 2.
and 8.; in [AP86] the properties 1., 2. and 6.; and finally in [BvW90] only the property
3 .. A predicate transformer can also satisfy property 7. and we choose this property for
defining the predicate transformers that we will use in the rest of the section:

Definition 4.3 A predicate transformer is any function 7r E PTran = Pred -+ Pred
which satisfies the '2:,-multiplicativity law.

Predicate transformers as defined above are stable functions (Plo81], as is shown in the
following lemma that is a slight generalization of the stability lemma in [AP86]:

Lemma 4.4 Let 7r E PTran and let a E E such that 7r.true.a. Then there is a set
min(7r, a)~ L:, such that

(VQ : 7r.Q.a ~ min(7r,a) ~ {a'IQ.a'}).

Next we show some of the relationships among the properties enumerated above:

Lemma 4.5 Let E be a countable set of states. We have:

(4. /\ 5.)*6.~7.~8.*3.

Note that if 'f:, is uncountable we have 8. ~ 7. * 6. * 3.

The previous lemma shows that predicate transformers as defined in [Dij76] are exactly
the same predicate transformers in the sense of [Wan77, Plo79), and these are predicate
transformers as defined in [Bes83]. The predicate transformers as defined in [Bes83] are the
same predicate transformers defined in [AP86] and these predicate transformers are also
predicate transformers in the sense of our definition 4.3. Finally predicate transformers
in the sense of our definition 4.3 are also predicate transformers in the sense of [BvW90].

Thus our definition 4.3 generalizes the definitions of [Wan77, Plo79, Bes83, AP86] and
we will generalize some of their results. As far as we know similar results do not hold
for the definition of predicate transformers of [BvW90]. We will generalize the relation­
ship between the Smyth powerdoma.ih and the predicate transformers [Wan77, Plo79,
Bes83, AP86, Smy83] to two our new versions of the Smyth powerdomains. Moreover, we
will introduce a relationship between the Egli-Milner powerdomain and pair of predicate
transformers like is done in [Nel87]. The following commuting diagram summarizes all
the relationships between predicate transformers and discrete powerdoma.ins that we will
define in the next three subsections:

102

*

PTrans _:=___ STran• = (:E -s'.:E.L)
w

Egli-Milner powerdomain with empty set

Definition 4.6 Let X.J.. be a fiat domain. Then the Egli-Milner powerdomain with empty
set of X.J.., denoted by &'.X.J.., is the partial order with elements all the subset of X.J.. ordered
as follows:

A!;;;; B <=> (.l..!t A /\ A= B) v (l..E A /\ A\{.l..} ~ B).

Note that this differs from the usual definition of the Egli-Milner powerdomain because
we add the empty set. It is added by means of a smash product following the ideas of
[HP79, MM79, Abr91], in fa.et we have for all A ~ XJ..:

(A!;;;;; 0 <=> A= {.l..} V A= 0) and also (0 !;;;;; A<=> A= 0).

The partial order &' .X.J.. is also complete, as { l..} is the least element and if :F s;; &' .X.J..
is a directed family then U :F == (U :F\ { l..}) U { l.. i('v' A E :F : l..E A)}.

A meaning of a statement will be a function in the Egli-Milner State-Transformers, de­
noted by ETran•, that is, the complete partial order :E -.. &f .:EJ.., ordered pointwise.
Elements of &' .:EJ.. denote resulting computations. Non-terminating computation are rep­
resented by the element l.. in the set of all the possible computations. The empty set
is interpreted as a deadlock. The Egli-Milner State-Transformers are in the following
relation with the predicate t::ansformers (as noted by (Nel87]):

Definition 4.7 Define the Nelson's predicate transformers PTranN to be the set of all
the functions ?r E Pred -.. Pred x Pred such that:

1. 11 .71" E PTran and l 2 .?r E PTran

e. ('v'Q E Pred :l1 .?r.true /\ b .?r.Q <=>li .11"1.Q)

9. l2 .71".true =true

103

where L denotes a projection operator on the i-th component of the codomain of a function.
The functions are ordered as follows

11" GPN fr if (VQ : 11 .7r.Q =?-11 .fr.Q /\ b .fr.Q ==>b .7r.Q).

By definition of Nelson's predicate transformers we have that 11: PTranN -+ PTran
is onto, since for each 11"1 E PTran the function 11" : Pred -+ Pred x Pred defined by
Jr.Q = (7r1.Q,tr2.Q) is in PTranN, where

Q _ { true if Q = true
11"2. - 11"1. Q otherwise

for all Q E Pred.

For any statement S the pair (wp.S, wlp.S) defined in the definitions 2.4 and 3.2 is a
Nelson's predicate transformer and the order GPN is the lifting of GN to PTranN.

Now we can show the relationship between the Egli-Milner powerdomain and the Nelson
Predicate Transformers: define the function TJ: ETran°-+ PTranN, for m E ETran° and
PE Pred, by

TJ.m.P = ({a\P.m.a},{o-\P.(m.a\{l.})}).

Lemma 4.8 Let m E ETran°. Then the Junction TJ.m E PTranN.

Lemma 4.9 The function TJ is monotone.

The function TJ has an inverse. Define the function 'T)-1
rr E PTranN and a E 'E, by:

_1 { min(b .11",o-) if 11 .11".true.a
TJ .11".<7 = min(b .11",o-) U {.L} otherwise.

Lemma 4.10 The function TJ-1 is monotone.

Finally we have:

Theorem 4.11 The function TJ : ETran°-+ PTranN is an isomorphism of partial orders
with inverse .,,-1 .

Smyth powerdomain with deadlock

Definition 4.12 Let XJ. be a fiat domain. Then the Smyth's powerdomain with deadlock
of XJ., is defined as the partial order

S6 .XJ. ={A\ A~ X /\ A# 0} U {XJ.} U {8}

where AG B <:? (A= X.L) v (A= 8 /\ B = 8) v (A 2 B).

104

This definition differs from the original definition of the Smyth powerdomain [Smy78]
because we add an extra element 8 (interpreted as deadlock) that is comparable only
with itself and the bottom. This makes that in general S 6 .XJ.. is not a complete partial
order, in fact consider in S 6 .N.J. the following directed set which has no upper bound:

N !; N\{O} !; N\{O, l} !; ... , (this example appears also in [AP86]).

The Egli-Milner powerdomain with empty set and Smith powerdomain with deadlock are
related by the function ex : £0.x.J. -+ S 6 .X.J. defined by

ex.A= f: l XJ..

if ..l\t A /\ A '# 0
if A= 0
otherwise

as it is shown in the following lemma:

Lemma 4.13 The function ex : &.XJ.. -+ S 6.XJ.. is onto, continuous, and for each
B E 5 6 .XJ.. the partial order e/ .B has a top element.

We will use this lemma in the next section in order to apply theorem 4.2.

The Smyth State-Transformers respecting deadlock, are all the functions E -+ S 6.I:J.., or­
dered pointwise. We denote this partial order STran6 • Elements of S 5.I;.J. denote resulting
computations. All the computations that are possibly non terminating are identified with
the element {E.L}·

Next we show how STran6 is related to the predicate transformers. Take PtranD as the
set of predicate transformers PTran ordered as follows

7r !;;;pD :& if 7r .false => JI- .false A

/\(\IQ : (7r.Q A .,?r.false) =?- (i.Q /\-,:&.false)).

The order [;;;pD is the lifting of !;n to PTran.

Define for m E STran6 and Q E Pred the function/: STran6 -+ PTranD by

/.m.Q = {qlQ.m.q} U {qlm.CT = 8}

Define for 7r E PTrann and C'" E E the function 1-1 : PTrann-+ STran6 by:

_1 \ min(7r,O") !f ?r.true.u A .,7r.false.CT
1 .?r.u = 8 if ?r.false.O"

E.L otherwise.

Also in this case we have an order-isomorphism:

Theorem 4.14 The function 'Y : STran6 -+ PTranv is an isomorphism of partial orders
with inverse ,-1 .

105

Smyth powerdomain with empty set

Definition 4.15 Let X.L be a fiat domain. Then the Smyth powerdomain of X.L {with
empty set}, is defined as the partial order

ordered by the superset order, that is, A ~ B <=:> A ~ B.

This definition differs from the original definition of the Smyth's powerdoma.in [Smy78]
because we add the empty set as a top element, as suggested in [Plo79].

The partial order S1.X.L is also complete, {X.L} is the least element and if F ~ s•.x.L
is a directed family then n.r is its least upper bound. Moreover, it is also closed under
arbitrary union and intersection.

The Smyth State-Transformers domain, denoted by STran1, is the complete partial order
E -+ s•.E.L, ordered pointwise. Elements of S1.E.L denote resulting computations. All
the computations that are possibly non terminating are identified with the element {E.L}i
the empty set is interpreted as a deadlock.

Also the Egli-Milner powerdoma.in with empty set and Smith powerdomain with empty
set are related by the function dx : £'.x.L-+ s•.x.L defined by

d A _ { A if 1-~ A
x · - X.L otherwise

as is shown in the following lemma:

Lemma 4.16 The function dx : £'.X.L -+ S1.X.L is onto, continuous, and for each
B E s• .X.L the partial order dx 1 .B has a top element.

We will also use this lemma in the next section in order to apply theorem 4.2.

Next we show the relationship between Smyth state transformers and predicate trans­
formers. Take PTranB to be the set of predicate transformers PTran ordered pointwise
as follows

7r ~PB fr if ('VQ : 7r.Q =? i.Q).

Note that the order ~PB is just the lifting of !;;;B to PTran.

Define for m E STran1 and Q E Pred the function w : STran• -+ PTranB by

w.m.Q = {o-IQ.m.u}

If m.u = E.L then w.m.Q.u =ff for all the predicate Q, because q. 1-= ff.

Define for 7r E PTranB and O" E E the function w-1 : PTranB -+ STran• by:

_ 1 { min(11",o-) if ?r.true.u
w .11".0" = E.L otherwise.

It is the inverse of w, indeed we have:

106

Theorem 4.17 The function w : STran° -+ PTranB is an isomorphism of partial orders
with inverse w- 1 •

5 Recursion

In this section we add recursion to the language. Let (x E)PVar be a nonempty set
of procedure variables. We remove loop from and add procedure variables to the set of
statements Stat: it is now given by

For the semantics we introduce the set of environments Env = (PVar-+ PTran), that is,
an environment gives a predicate transformer for each procedure variable.

Next we give the extension of wp and wlp as defined in definition 2.4 and definition 3.2
to the new set of statements:

Definition 5.1 (Extension of wp and wlp) Let wp: Stat-+ (Env-+ PTran) fore E Env
be defined by

wp.b-+ .(Q = b => Q
wp.x.e.Q =e.x.Q
wp.v := t.(Q = Q[t/v]

wp.S1; S2.(Q = wp.S1.((wp.S2.(Q)
wp.S1DS2.e.Q = wp.S1.e.Q II wp.S2.(Q
wp.S1<>S2.(Q = wp.S1.e.Q II (wp.S1.(faise => wp.52.(Q)

and let wlp : Stat -+ (Env -+ ?Tran) be extended in similar way.

Take a fixed declaration d E Deel : Pvar -+ Stat. Sometimes we denote d.x = S by
x-{:= S. A declaration assigns to each procedure variable a statement, possibly containing
procedure variables. The idea is to associate with a declaration an environment by means
of a fixed point construction.

First we show how familiar constructions can be defined in a declaration: the do-loop
do S od can be defined by x-{:= (S; x)<>(true-+) and loop by x ~ x.

Define <jJ: Deel-+ (Env-+ Env) fore E Env by

<j:J.d.e.x = wp.(d.x).e.

We would like to show that (<fJ.d) has a (least) fixed point (for any declaration d) that
can be obtained by iteration, such that we can take this fixed point as the meaning of the
declaration.

In order to do this we lift Env to the partial orders (Envs, !;;;Es), (Envn, !;;;ED) and
(EnvN, !;;;EN) defined, respectively, by

• EnvB = (PVar-+ PTranB) and e1 i;;;EB e2 if (Vx E PVar: .;i.x ~PB 6.x)
• EnvD = (PVar-+ PTranD) and e1 ~ED 6 if (Vx E PVar: .;i.x !;;;PD frx)
• EnvN = (PVar-+ PTranN) and er !;;;EN e2 if (Vx E PVar: .;i.x !;;;PN e2.x).

107

Theorem 5.2 (EnvN, r;;;EN) is a complete partial ordering.

Lift the definition above of</> to <f>k : Deel-+ (Envk -+ Envk), fork E {B,D,N} and
ek E Envk, by

rP de { wp.(d.x).6 if k E {B, D}
k· • P = (wp.(d.x). !1 .6,wlp.(d.x). !2 .6) ifk = N.

The main problem is that fer a fixed declaration d the functions (<f>B.d) and (<PD.d) are
in general not monotone (adapt the examples at the end of section 3).

However, define two functions hNB : EnvN-+ EnvB and hND: EnvN -+ EnvD by:

Using the results of the previous section, we have that both hNB and hND are onto,
continuous and for every e E EnvB there is a top element in hjV1.e, and similarly for every
e E EnvD there is a top element in hjVb.f

Hence we can apply the theorem 4.2:

Theorem 5.3 The function (<Pi.d) defined above has for a fixed declaration d a least fixed
point µ.(</Jk.d) both with respect to r;;;EB, r;;;ED and r;;;EN that can be obtained by iteration
as follows: define e<O> the environment such that for all X and Q

e<O>.x.Q =false

and define for each ordinal >. > 0

e<-~> = <f>k.d. u e<"'>,
er<.\

then there is an ordinal~ such thatµ.(</>1.d) = e<>->.

Finally we can give the following three weakest precondition semantics:

Definition 5.4 Let SE Stat, d E Deel and k E {B,D,N}. We define the following
three weakest precondition semantics Wi : Stat -+ (Deel -+ PTrank) by:

• WB.S.d = wp.S.(µ.(<f>B.c))

• WD.S.d = wp.S.(µ.(<f>D.d))

• WN.S.d = (wp.S. !i .(µ.(ef>N.d)), wlp.S. !2 .(µ.(ef>N.d))).

108

Acknowledgements

We like to acknowledge all the members of the Amsterdam Concurrency Group espe­
cially Jaco de Bakker, Franck van Breugel, Jan Rutten, and Daniele Turi, for discussions
and suggestions about the contents of this pa.per. Thanks also to Ralph Ba.ck, Manfred
Broy, Lambert Meertens, Doaitse Swierstra., Kaisa Sere, Rob Udink, Hans Zantema., and
Prakash Panaganden.

References

[Abr91] S. Abra.msky. A domain equation for bisimulation. Information and Computa­
tion, 92:161-218, 1991.

[AP86] K. R. Apt and G. Plotkin. Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724-767, October 1986.

[Bac78] R.-J.R. Back. On the correctness of Refinement Steps in Program Development.
PhD thesis, Department of Computer Science, University of Helsinki, 1978.
Report A-1978-4.

[Bac80] R.-J.R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Centre Tracts. Mathematical Centre,
Amsterdam, 1980.

[Bac90] R.-J.R. Back. Refinement calculus, part ii: Parallel and reactive programs.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness, number
430 in Lecture Notes in Computer Science, pages 67-93, 1990.

[Bak80] J. W. de Bakker. Mathematical Theory of Program Corretness. Prentice-Hall,
1980.

[Bes83] E. Best. Relational semantic of concurrent programs (with some applica­
tions). In D. Bjo:mer, editor, Proc. of the IFIP Working Conference on on
Formal Description of Programming Concepts - II, pages 431-452, Ga.rmisch­
Partenkirchen, FRG, 1983. North-Holland Publishing Company.

(BK92] M. M. Bonsa.ngue and J. N. Kok. Semantics, orderings and recursion in the
weakest precondition calculus. Technical report, Centre for Mathematics and
Computer Science. Amsterdam, 1992. To appear.

(BvW90] R.-J.R. Ba.ck and J. von Wright. Refinement calculus, part i: Sequential nonde­
terministic programs. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Stepwise Refinement of Distributed Systems: Models, Formalisms, Cor­
rectness, number 430 in Lecture Notes in Computer Science, pages 42-66, 1990.

(Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

109

[Hes89] W.H. Hesselink. :.->redicate transformer semantics of general recursion. Acta
Informatica, 26:309-332, 1989.

[HP72] P. Hitchcock and D. Park. Induction rules and termination proofs. In Interna­
tional Conference on Automata, Languages and Programming, 1972.

[HP79] M. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel program­
ming language. In J. Becvar, editor, Proc. 8th Int'l Symp. on Mathematical
Foundations on Computer Science, volume 74 of Lecture Notes in Computer
Science, pages 108-120. Springer-Verlag, Berlin, 1979.

[MM79] G. Milne and R. Milner. Concurrent processes and their syntax. J. ACM, 26,
2:302-321, 1979.

[Mor87] J. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9:287-306, 1987.

[MRG88] C.C. Morgan, K.A. Robinson, and P.H.B. Gardiner. On the refinement calculus.
Technical Report PRG-70, Programming Research Group, 1988.

[Nel87] G. Nelson. A generalization of Dijkstra's calculus. Technical Report 16, Digital
Systems Research Center, 1987.

[Plo79) G. D. Plotkin. Dijkstra's predicate transformer and Smyth's powerdomain. In
Proceedings of the Winter School on Abstract Software Specification, volume 86
of Lecture Notes in Computer Science, pages 527-553. Springer-Verlag, Berlin,
1979.

[Plo81] G.D. Plotkin. Post-graduate lecture notes in advanced domain theory (incorpo­
rating the "Pisa Notes"). Department of Computer Science, Uni v. of Edinburgh,
1981.

[Smy78] M.B. Smyth. Power domains. J. Comput. Syst. Sci., 16,1:23-36, 1978.

[Smy83J M.B. Smyth. Power domains and predicate transformers: A topological view. In
Proceeding of ICALP '83 (Barcelona), volume 154 of Lecture Notes in Computer
Science, pages 662-675. Springer-Verlag, Berlin, 1983.

[Wan77] M. Wand. A characterisation of weakest preconditions. J. Comput. Syst. Sci.,
15:209-212, 1977.

