
INFORMATION AND COMPUTATION 95, 192-217 (1991)

Process Expressions and Hoare's Logic:
Showing an Irreconcilability of Context- Free Recursion

with Scott's Induction Rule

ALBAN PoNSE*· t

Cen1re for Mathematics and Computer Science,
P.O. Box 4079, /009 AB Amsterdam, The Netherlands

In this paper processes specifiable over a non-uniform language are considered.
The language contains constants for a set of atomic actions and constructs for alter­
native and sequential composition. Furthermore it provides a mechanism for
specifying processes recursively (including nested recursion). We consider processes
as having a state: atomic actions are to be specified in terms of observable
behaviour (relative to initial states) and state transformations. Any process having
some initial state can be associated with a transition system representing all possible
courses of execution. This leads to an operational semantics in the style of Plotkin.
The partial correctness assertion {ex} p{ f3} expresses that for any transition system
associated with the process p and having some initial state satisfying ex, its final
states representing successful execution satisfy /3. A logic in the style of Hoare, con­
taining a proof system for deriving partial correctness assertions, is presented. This
proof system is sound and relatively complete, so any partial correctness assertion
can be evaluated by investigating its derivability. Included is a short discussion
about the extension of the process language with "guarded recursion." It appears
that such an extension violates the completeness of the Hoare logic. This reveals a
remarkable property of Scott's induction rule in the context of non-determinism:
only regular recursion allows a completeness result. ,c, 1991 Academic Press, Inc.

1. INTRODUCTION

A process is the behaviour of a system. A computer executing some
program or a person using a drink dispenser are two examples of processes.
In order to specify (or analyse) processes we assume that we have available
a set of atomic actions, i.e., processes which are considered to be not
divisible into smaller parts and not subject to further investigation. More
complex processes can be seen as composed out of atomic actions. In this
paper we consider processes specifiable in a simple "process language" for

* The author received full support from the European Communities under ESPRIT Project
432, An Integrated Formal Approach to Industrial Software Development (METEOR).

t E-mail address: alban(a cwi.nl

192
0890-5401/91 $3.00
Copyright r(I 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROCESS EXPRESSIONS AND HOARE'S LOGIC 193

which a set A of atomic actions is a parameter. The language contains con­
stants for all atomic actions in A and offers constructs for alternative and
sequential composition. It also provides a mechanism for specifying pro­
cesses as the solution of a system of (recursive) equations satisfying some
syntactical criteria. Any closed process expression represents a process. An
atomic action a EA is considered to be observable pointwise in time. Its
execution though takes a positive (finite) amount of time, at the beginning
of which it can be observed as the process a, and at the end of which we
say that the execution is terminated successfully. This can be formally
described as a (labelled) transition a~ J, where the label a represents
what can be observed and J is a symbol representing successful termina­
tion. By giving a calculus for deriving transitions (so called action rules),
every closed process expression can be associated with a transition system
that represents all possible courses of execution. In van Glabbeek (1987)
this is worked out for a larger process language containing also a construct
for the specification of concurrent (communicating) processes.

Here we take a less abstract point of view and use a state space for
modelling executions. Let S be a set of states. The execution of an atomic
action a in a state s ES is to be specified by functions action and effect. The
expression action(a, s) denotes what can be observed if a is executed in
state s; with effect(s, a) we denote the resulting state. If this execution
terminates successfully (which is observable), it can be formally described
by a transition

(a, s) acrion(a.s) (j, ejfect(s, a))

where (a, s) represents the process a in initial state s and ejfect(s, a) is
called a final state. We present a calculus to derive transition systems con­
cerning more complex process expressions (so called effect rules), reflecting
the observability and state transformations of any possible execution. We
will use these transition systems to define an operational semantics (cf.
Plotkin, 1983). Referring to de Bakker et al. (1986), our process language
can be classified as non-uniform.

Most of this paper is about partial correctness assertions. Let C(and /3
denote unary predicates over S and p represent some process. The partial
correctness assertion {a} p {/3} concerns some features of a number of
transition systems associated with p: if the execution of p starts in an initial
state satisfying a and terminates successfully, then the resulting final state
satisfies /3. So a partial correctness assertion abstracts from observability
and intermediate states of execution. The adjective partial expresses that
successful termination is not implied. The transition (system) displayed
above implies that the partial correctness assertion " { s} a { effect(s, a)}" is
true. A partial correctness assertion {a} a { f3} over an atomic action a can

194 ALBAN PONSE

be evaluated by investigating for any s satisfying oc(s) whether there is a
transition (a, s)-"--+ (j, s'), and if so whether /J(s') holds.

Main Results. In order to reason formally about partial correctness
assertions we present an application of Hoare's logic, an axiomatic method
for proving programs correct (for a survey of Hoare's logic see Apt, 1981,
1984). This logic contains a proof system for deriving partial correctness
assertions starting from atomic partial correctness assertions and the true
assertions about the states in S. We show that the proof system is sound
and complete (relative to all true assertions about the states in S), so a
partial correctness assertion is true iff it is derivable. Suppose one wants
to investigate a partial correctness assertion concerning a complex process
specification. Finding a derivation or showing the absence of these may
then replace the construction of a (possibly large) number of (complex)
transition systems.

Furthermore it is shown by an example that the completeness of the
Hoare logic is lost if our language would allow "guarded recursion." This
type of recursion permits a more liberal format of the defining equations,
only demanding the recursion variables in the defining terms to be
preceded by an atomic action (a "guard"). The incompleteness is then
caused by the nature of "Scott's induction rule," used for the introduction
of recursively specified process expressions in partial correctness assertions
(see e.g. de Bakker (1980) for an introduction to Scott's induction rule). It
appears that only regular recursion allows a completeness result in the con­
text of non-determinism.

Contents of the Paper. Section 2 is dedicated to the introduction of our
process language. In Section 3 we discuss the way atomic actions having a
state are to be specified and we present a calculus for deriving transition
systems. In Section 4 an operational semantics and the concept of partial
correctness assertions are introduced. We define a "partial correctness
semantics" and a specific "language of assertions," that is suitable to
formulate any partial correctness assertion. Next, in Section 5, we present
a proof system for deriving partial correctness assertions, which is shown
to be sound and relatively complete. Techniques concerning the construction
of derivations or proofs of their absence are not discussed. We end this
section with an exposure of the mentioned example on incompleteness. The
paper is concluded with a short discussion on some extensions.

Note. The process language introduced here refers to a basic fragment
of ACP, the Algebra of Communicating Processes. ACP is an algebraic
framework suitable both for the specification and the verification of com­
municating processes. For the latter it provides axiom systems concerning
the equality relation over process specifications. Here we do not consider

PROCESS EXPRESSIONS AND HOARE's LOGIC 195

such axiom systems, but from the start concentrate on a semantic

approach. However, it can be easily proved that the semantical notions

discussed in this paper satisfy the relevant ACP axioms. ACP is discussed

in, e.g., Bae ten and Weijland (1990), or Bergstra and Kl op (1986).

2. PROCESS EXPRESSIONS

Let A be some countable, nonempty set of atomic actions with typical

elements a, b, c, We introduce a language, having A as a parameter, in

which processes can be specified. Let V = {x, y, z, ... } be a countable set of

variables. The language is built inductively from V and the constants and

functions of the signature L + in Table l, and will be defined in three
stages.

2.1. Recursion-Free Processes

The signature L 0 can be used to specify finite, recursion-free processes.

For each atomic action a EA there is a constant a E L 0 and there is a

special constant () called deadlock (D ~A). There are two binary functions

in L 0 , + (sum) and· (product). A process expression over Lo is just a term

over this signature possibly containing variables from V. We mostly leave

out the symbol · in process expressions and take · to be most binding of all

operators and + to be stronger binding than +, e.g., xy + z means

(x·y)+z.
Let :?10 be the least set such that

• A0 £; :?10 , where A,1 ~Au { D },

• if p, q E :?10 , then p + q E :?10 and pq E &0 .

So ;?10 is the set of closed process expressions over Lo and every element of

.01'0 specifies a recursion-free process.

Constants:

Binary functions:

Constants:

(n EN)

Unary functions:

64'.i 195:12-6

TABLE 1

The Signature L: +

a for any atomic action a EA
ii deadlock (ii~ A)
+ alternative composition (sum)

sequential composition (product)

(x I £) if Eis a pure system over .r,
and x is a solution of E

projection, n E N

196 ALBAN PONSE

Some intuitions: "deadlock" is the acknowledgment of a process that it
has no possibility to do anything any more; p + q represents the process
which first makes a choice between its summands p and q, and then
proceeds with the chosen course of action; pq represents the process p,
followed after possible successful termination of p by q. The process p does
not terminate successfully if it ends in deadlock.

2.2. Recursively Specified Processes

We extend our process language with a mechanism for specifying
processes recursively. This gives us in particular the means to specify
possibly infinite processes. We first give an example and then start with
some formal definitions.

EXAMPLE. Consider an ~utomaton which behaves as follows: after the
insertion of a coin and a push on a button a or b it serves a drink encoded
by that button; if the button for restitution is pushed, the inserted coin will
be returned. Assume that the automaton is tacitly maintained: all drinks
are always in stock and there is always room for insertions. Our running
example concerns the (proper) behaviour of a user of this automaton, and
can be described as a composition of the following atomic actions:

in (insert a coin)

Pa• Pb (push one of the buttons a orb respectively)

pr (push the button for restitution and collect the returned coin)

co (collect the delivery of the automaton)

s t (stop behaving as a user).

The recursive specification

x= in((p,. +Pb) co +pr) x+ st

expresses that the left-hand side of this equation is specified recursively by
the right-hand side. A user behaviour X satisfying this specification consists
of

either inserting a coin or stopping the behaviour;

in case of the first atomic action, pushing a button for one of the
drinks or handling restitution;

in case of the first alternative, collecting the delivery of the automaton,
then restarting the preceding process.

(to be continued)

. DEFINITION 2.2.1. A recursive specification E = { x = tx Ix E Ve} over E;
1s a set of equations where VE is a set of variables and t x some process

PROCESS EXPRESSIONS AND HOARE'S LOGIC 197

expression over I:; only containing variables of VE (the set v E need not be
finite).

So up till now I: o is the only signature over which recursive specifica­
tions can be defined. A solution of E is an interpretation of the variables in
VE as processes in any of the semantics to be introduced, such that the
equations of E are s~tisfied. ~or instance the recursive specification { x = x}
has any process as its solution and { x = ax} has the infinite process "a'""
as its solution. We introduce the following two syntactical restrictions on
recursive specifications:

DEFINITION 2.2.2. Let E = { x = tx Ix E VE} be a recursive specification
over I:;.

1. We call E guarded iff each occurrence of a variable yin the expres­
sions tx occurs in a subterm p · M with p E &;. We speak of guarded systems
instead of guarded recursive specifications. 1

2. We say that Eis pure iff for any subterm M ·N occurring in any
of the tx we have that M contains no variables of VE·

The notion "pure" is typical for this paper. By considering only systems
that are pure, we can prove our completeness result. Remark that the
specification of X in the example above is pure. Now the signature .E, in
which we are interested, can be properly defined in an inductive manner.
We will study partial correctness assertions over this signature.

DEFINITION 2.2.3. Solutions of pure systems.

1. The signature l:;+ 1 is obtained by extending I:; in the following
way: for each pure system E = { x = tx I x E V c} over I:; a set of constants
{ (x I E) I x E VE}, where (x I E) denotes the x-component of a solution
of E, is added to I:;.

2. The signature I: is defined as U11 1:11 (n E f\J). We call a recursive
specification E pure (or guarded) over .E if E is a pure (guarded,
respectively) system over I:; for some i.

A process expression over E; is a term over this signature possibly con­
taining variables from V. For instance (x I { x = (y I { y = ay + b})x + c}) is
a closed process expression over I: (even over 1:2), but (x I {x = axa + aa})
is not since it refers to a specification which is not pure. Unless stated
otherwise we consider process expressions and pure systems over E.

We introduce some more notations: let E = { x = tx I x E VE} be a pure
system, and t a process expression. Then (t I E) denotes the process

1 In Section 5.3 we return to this definition of guardedness.

198 ALBAN PONSE

expression in which each occurrence of x EVE in t is replaced by <x I £);
e.g., <aax I {x=ax}) denotes the process expression aa(x I {x=ax}). If
we assume that the variables in a recursive specification are chosen freshly,
there is no need to repeat E in each occurrence of (x I E). Variables
reserved in this way are called formal variables and denoted by capital
letters. We adopt the convention that (x I £) can be abbreviated by X
once E is declared. As an example consider E = { x = ax}: the closed
process expression aaX abbreviates aa<x I { x = ax}).

Let f?J be the least set satisfying

• Ao£f?J,

• if p, q E f?J, then p + q E f?J and pq E f?J,

• if E = { x = tx I x E VE} is a pure system over 'E, then
{ (x I£) I xE Vd £f?J,

and &;+ 1 defined likewise by only considering pure systems over 'E;. Any
element of f?J (&;+ 1 respectively) containing constants of the form (x I E)
defines a recursively specifiable process.

2.3. Finite Projections

The signature 'E +, defined as an extension of 'E by adding unary
operators nn for all n E N to 'E, is only needed for technical matters. The
projection operator nn transforms a process into deadlock after it has
performed n atomic actions: e.g., n 1(ab) behaves as the process ab and
a·n2(b) behaves like ab.

Let f?J + denote the set of closed process expressions over this signature,
so f?J + is the least set satisfying

• f!}s;f?J+,

• if p, qEf?J+ and nE N, then p+qEf?J+, pqEf!J+ and nn(P)Ef?J+.

Remark that the nn-operators do not occur in recursive specifications.

3. PROCESSES HAVING STATES

In this section we discuss the specification of atomic actions having states
in terms of observable behaviour and state transformations. Furthermore
we introduce a calculus for deriving transition systems concerning the
behaviour of processes having a state.

3.1. Structures

Let S be a nonempty set of states, with typical elements s, s', The
"state labelled process expression" (p, s) denotes the process p having

PROCESS EXPRESSIONS AND HOARE'S LOGIC 199

states. The idea is that the execution of an atomic action a in states results
in an action a' representing the observable activity of this execution (an
atomic action or ()), and in a resulting state s'. 2 This idea is formalized by
functions

action: A x S ~A Ii and effect: S x A ~ S

which determine the relation between elements a EA and elements s of S
the set of states. The functions action and effect were introduced in Baete~
and Bergstra (1988). By action(a, s) we denote the activity which can be
observed when a is executed in state s; by effect(s, a) we denote the state
resulting from this execution. The case action(a, s) = 8 describes the
(observable) situation in which a in s cannot be executed successfully. In
this case it is not necessary that ejf'ect(s, a) have a special value (e.g., s or
some special "error state"), for we will be only interested in states resulting
from successful executions. This "operational view" on the execution of
elements of A in some state will be generalized to an operational semantics
based on transition rules in the style of Plotkin. We here introduce the
following

Ahhre!'iation. We write a(s) instead of action(a, s), and s(a) instead of
e//('ct(s, a).

An atomic action a is called inert iff Ifs E S(a(s) =a) and \Is E S(s(a) = s).
The function action is said to be inert iff for all a EA it satisfies
Vs ES(a(s) = a).

We conclude this section with a definition concerning the general
framework in which we will study state labelled process expressions.

DHINITION 3.l.l. A structure <S, action, effect) is a triple containing a
nonempty set S of states and functions action: A x S ~A b and effect:
Sx A + S.

We use symbols //', //" as syntactical variables for structures.

3.2. Transition Systems
Let .'/' = < S, act ion, e.ffi'ct > be some structure. We introduce for all a E A

a binary relation --'!....+ over state labelled process expressions. In general we
mean hy a transition (p, s)-"-+ (p', s') that by performing an action a the
process p in states can evolve .into p' in states'. ~o rep;esent successful ter­
mination we introduce a special element J not m I and for all a EA a

:>As an example think of the representation of a program in a high level language as Pasml
· h . · · - bi X · declared as an integer and S denotes the m our process language. Assume t at a vana e is .

· d · . · bi Let 1 represent some valuat10n and a the set of valuations for all declare integer vana es. · . ,
l . th n ,.' .. ci 1'f 1·(") < MAXINT and fJ otherwise. Of course s (x) = assignment x : ,, x + , e ~ ·· · ~

s(x) + f and s'(1·) s(y) for any integer variable Y ~ x.

200 ALBAN PONSE

relation ~ (j, .) between state labelled process expressions and states:
the expression (p, s) ~ (j, s') denotes that the process p in state s can
terminate successfully in state s' by performing a. Typically an atomic
action a will be related to transitions (a, s)~ (j, s(a)), provided
a(s) # J. In case a(s) = () there simply is no related transition. In Table 2 we
present a proof system, the effect rules, suitable to derive transitions by
means of substitutions, where a substitution 8 is a mapping from the
variables of V to process expressions over E +. By defining 8(f(t 1 , ••. , t k))
asf(8(t 1), ••. , 8(td) (k~O) we extend the domain of any substitution 8 to
the set of all process expressions over E +. Now (8(t), s) ~ (8(t'), s') is a
derivable transition iff it is the conclusion of an effect rule of which the
8-instance of its premiss is also derivable (note that the "a E A"-rules have
empty premises).

Remark that any strw:;ture fixes the effect rules. We define ---"++ for
(J EA* as the reflexive and transitive closure of all transition relations:

(x, s) ~ (x, s) U denoting the empty string over A*)

(x, s) ___::_..... (x', s')(x', s') __::_.. (x", s")

(x, s) ~ (x", s")

(x, s) ___::_..... (x', s')(x', s') __::_.. (J, s")

(x, s) ~ (j, s")

TABLE 2

Effect Rules

(a EA).

aEA: (a,s)~ (j,s(a)) ifa(s)#<I

+:

recursion:

(x, s) ~ (x', s')

(x+y,s)~ (x',s')

(y. s)~ (y', s')

(x+y,s)~ (y',s')

(x,s)~ (x',s')

(xy,s)~ (x'y,s')

((I, I£), s)~ (y, s')

((x[E),s)_f!_; (y,s')

(x,s)~ (x',s')

(x,s)~ (j,s')

(x+ y,s)~ {j,s')

(y,s)~ (j,s')

(x+ y,s)~ {j,s')

(x,s)~ (j,s')

(xy,s)~ (y,s')

((I, I£), s) ~ (j, s')

((x I£), s)~ (j, s')

(x,s)~ (j,s')

(1tn+1(X),s)~ (j,s')

PROCESS EXPRESSIONS AND HOARE'S LOGIC 201

Instances of this relation will be called effect reductions. We here give an

example of a property of effect reductions that will turn out to be useful:

LEMMA 3.2. l (Decomposition). Let Y' = (S, action, ef]ect) be fixed. If

for some string O'E A*, SES we have (tt', s)~ (j, s'), then there are u 1,

u2 and s" such that O' 1 0' 2 = O', (t, s) ~ (j, s") and (t', s") ---4.+ (j, s').

Proof By induction on the length of u (first proving an intermediate
result). I

The next step towards our operational semantics is to associate a

transition system ts((p, s)) to any state labelled closed process expression

(p, s), representing all possible transitions. A graph rg is a transition system
for (p, s) iff

I. rg contains a node labelled with (p, s), we call this node the root
of rg,

2. (p', s') is a node of rg, and (p', s') ~ (p", s") is a derivable

transition, then (p", s"), is a node of rg and there is an arc labelled with a
from (p', s') to (p", s").

3. (p', s') is a node of rg and (p', s') ~ (j, s") is a derivable

transition, then (J, s") is a node of rg and there is an arc labelled with a

from (p', s') to (j, s").

Any such graph ~'} will be referred to as ts((p, s)). The states will be

called the initial state of ts((p, s)) and any states' such that (j, s') is a

node in rg((p, s)) will be called a final state of ts((p, s)). We return to our

running example:

EXAMPLE (continued). Concerning the recursive specification x =
in((pa + pb) co + pr) x + s t we consider a user having initially N + 1

coins and no drinks. Take Y' = (S, action, effect) with each state of S
being a pair of counters that are used to keep track of the number of coins

a user has and the number of drinks already collected: Let S =Busy v Final

where Busy=f(i,J)li+j=N} and Final={(i,J)li+j=N+I). We

define the functions action and effect as

uer {in in((i, j)) = [J

. . . der{(i-1,j)
(1,;)(in) = (i,j)

de[{ C 0
c 0 ((i, .i)) = [J

if (i, j) E Final - (0, N + 1)

otherwise

if (i, j) E Final - (0, N + 1)

otherwise

if (i, j) E Busy

otherwise

202 ALBAN PONSE

(. ")() cl,;[{(i, j + 1)
l, J co (. ")

l, J

((. ")) cl,;,f {pr pr I,) {J

(. ")() cl,;[{(i + 1, }) z,; pr (..)
l, J

if (i, }) E Busy

otherwise

if (i, }) E Busy

otherwise

if (i, j) E Busy

otherwise

and the atomic actions Pa• Pb and st inert. Assume N=O. Figure 1 con­
tains a transition system for the process X in initial state (1, 0), represent­
ing the behaviour of a user having 1 coin. (to be continued)

4. SEMANTICS

In this section we define an equality relation over transition systems,
which will be used to define an operational semantics. Furthermore we
introduce partial correctness assertions and a partial correctness semantics.
Finally we define a language of assertions, based on a structure/:/', that can
be used to refer to any part of the state space.

4.1. An Operational Semantics

Let /:/' = (S, action, effect) be some structure. The idea is that two
closed process expressions p and q are operationally equivalent in Y iff they
satisfy the following property: the representation of any execution of p in
some initial state s (in terms of its performance of atomic actions) also
represents an execution of q in initial state s, and vice versa. We now
formalize this idea. Consider the set of all transition systems. In order to
define an equality relation over this set, we use the notion of a bisimulation
(see Park, 1981):

FIG. I. A transition system.

PROCESS EXPRESSIONS AND HOARE'S LOGIC 203

DEFIN!TION 4.1. l. Let Y' = (S, action, effect) be fixed. A binary rela­
tion R s; (& + x S) x (.qi'+ x S) is a bisimulation iff the following conditions
are satisfied (a EA):

1. If (p, s) R(q, s) and (p, s)-"7 (p', s'), then :l(q', s') such that
(q, s) ~ (q', s') and (p', s') R(q', s').

2. If (p, s) R(q, s) and (q, s) ~ (q', s'), then 3(p', s') such that
(p, s) ~ (p', s') and (p', s') R(q', s').

3. If (p, s) R(q, s), then (p, s) ~ (j, s') for some s' iff (q, s) ~
(j, s').

Two transition systems ts((p, s)) and ts((q, s)) are bisimilar, we write

ts((p, s)) +-+ ts((q, s)), iff there exists a bisimulation R with (p, s) R(q, s).

Remark that equality of initial states is demanded here.

It is not difficult to see that +-+ is an equivalence relation. Let [(p, s)] be

some unique representation of the equivalence class of ts((p, s)). We define
an operational semantics as follows:

DEFIN!TION 4.1.2. Let .cl'= (S, action, effect) be fixed.

1. A closed process expression p is interpreted m .cl' as
{[(p, s)] I sES}.

2. Two closed process expressions p and q are operationally

equivalent in .cl', we write //' I= p =op q, iff for all s ES we have
ts((p, s)) ±± ts((q, s)), that is iff { [(p, s)] I s E S} = { [(q, s)] I s E S}.

Remark that if we want to consider a structure//'= (S, action, effect) in

which for two atomic actions a and b we have for all s ES that a(s) = b(s)

and s(a)= s(h), then //' I= a =op b. This reflects the circumstance that in .cl'

the constants a and h apparently denote the same atomic action. We finally

prove that for any structure //' the relation = 0 P is a congruence, which
implies that closed process expressions occurring in a specification may be

replaced by operationally equivalent expressions.

THEOREM 4.1.3. For all //' the relation =op is a congruence with re5pect

to the operators involved.

Proof Fix .CJ" and assume //' I= p = 0 P p', Y' I= q = 0 P q'. We have to

show .cl' I= p D q =opp' D q' for DE { +, ·} and ff I= nn(P) =op nn(p')

for all n EN. As an example we consider sequential composition: suppose
that for any s ES we have ts((p, s)) +-+ ts((p', s)) by a bisimulation R 1p,•

and ts((q, s)) +-+ ts((q', s)) by a bisimulation R(q.sJ· Fix s0 ES. We define :

relation R as follows:

R ~r { ((rq, s), (r'q', s)) I {r, s) R1p,iol(r', s)} u U R 1q,s)·

SES

204 ALBAN PONSE

We have (pq, s0) R(p'q', s0) and we show that Risa bisimulation. Suppose
(t,s)R(t',s) and (t,s)~ (u,s'). In case (t,s)R!q.s"l(t',s) for some s" we
are done, so assume t = rq and t' = r'q'. Now (r, s) Rrp.so)(r', s) and by
inspection of the effect rules we find two possibilities for u:

u = Pq. In this case it must be that (r, s) ~ (v, s'). Because R(p,so)
is a bisimulation satisfying (r, s) R(p,sol(r', s) there is (v', s') such that
(r', s) ~ (v', s') and (v, s') R(p,sol(v', s'). We derive (r'q', s)~ (v'q', s') and
by definition of R also (vq, s') R(v'q', s').

u = q. In this case it must be that (r, s) ~ (j, s'). Because R(p,sol
is a bisimulation satisfying (r, s) Rrp.soJ(r', s) there is s' such that we have
(r', s) ~ (j, s'). We derive (r'q', s) ~ (q', s') and by definition of R also
(q, s') R(q', s'). I

4.2. A Partial Correctness S«.mantics

We introduce a logical language ff', a language of assertions, in order to
reason formally about any structure. Let Pred be some set of unary
predicate symbols. We define ff' as follows:

one variable: v

unary function symbols: effect a (for all a EA)

unary predicate symbols: stop a (for all a EA)

unary predicate symbols: p (for all PE Pred)

connectives: i,V,/\,-Jo,~

auxiliary symbols:), ,, (

A parameter for !f' is the set Pred of unary predicate symbols. 2'-formulae
are called assertions and we use et., fJ, ... as syntactical variables for
assertions. Remark that a term always contains exactly one occurrence
of the variable v.

Having defined 2' we can give the definition of a partial correctness
assertion in syntactical terms:

DEFINITION 4.2. L Syntax of partial correctness assertions and correct­
ness formulae.

L A partial correctness assertion over !f' is an expression of the form
{IX} p { j3}, where p is a closed process expression over I:+.

2. A correctness formulae over !f' is an expression of the form
{IX} t { j3}, where t is a process expression over I:+.

So a partial correctness assertion can be regarded as a "closed" correct­
ness formula. We use the more general concept of "correctness formulae"

PROCESS EXPRESSIONS AND HOARE'S LOGIC 205

to define a proof system in which we can derive partial correctness asser­

tions concerning recursively specified processes. Though this proof system

is only suitable to derive partial correctness assertions concerning process

expressions over I:, we use the n 11 -operators of I:+ in proving its
soundness.

We now turn to the semantics of assertions and correctness formulae.

Let .</' = (S, action, effect) be some fixed structure. We define an inter­

pretation .'/ of Y' in Y by fixing a set { P I PE Pred} of unary predicates
over S. Assertions are interpreted as

.'/' I= .1 r.J. iff Vs ES(//' f= .t r.x[s])

.'/'I= J r.x(effecta(v))[s] iff V.1·ES(Y f=Jr.x[ejfect(s,a)])

//' I= 1 stop"[s] iff action(a, s) = b

.'!' F=J P[s] iff P(s) holds

and compound formulae as usual; e.g., ,CJ' f=-"r.x---+/)[s] iff Y f=.1r.x[s]=>

«f I= 1 /1[s].
We write Tr_.1 for the set of all true assertions in !£', so a E Try iff

Y I= .1 r.J., i.e., iff Vs ES (.CJ' f= .1 o:[s]).
Before defining the way correctness formulae are interpreted we intro­

duce some more notation: let t be some process expression over I:+ and

x a sequence of variables. We write t = t(x) to indicate that all variables

occurring in t are among the elements of the sequence x. If j5 is a sequence

of elements of :Jf' 1 (the set of closed process expressions over J; +), then

t(p) denotes the closed process expression obtained by replacing all

variables in t by the corresponding fa-elements. We write "V p" if we want

to consider all sequences of length .'i: over :¥' +.

DEFINITION 4.2.2. Let //', :.!' be fixed and .~ an interpretation of !£'
in //'.

I. A partial correctness assertion { r.x} p {If} over !£' is true in Y
under .1, we write .'/' f= .1 {a.} p { (J }, iff for all s, s' ES, CJ EA* we have

«I' f= , o:[s] and (p, s) ~ (j, s') => Y F=.1 fJ[s'J.

2. A correctness formula { ci:} t(.'i:) {IJ} over !£' is true in Y under .'/,

we write «I' f=.,, I o:) t {IJ}, iff

Vp[Y F.1 {o:} t(p) {/)}].

So the truth of a partial correctness assertion { r.x} p { /)} expresses the

fact that any successful execution of p in an initial state satisfying r.x, results

206 ALBAN PONSE

in a final state satisfying f3. A semantical relation based on partial
correctness assertions can be defined as follows:

DEFINITION 4.2.3. Let Y, !£' be fixed and Y an interpretation of !!' in
Y. We call two closed process expressions p and q over I:+ equivalent
under partial correctness in Y, !!', Y, we write Y f= .? P =pc q, iff for all
..<t'-assertions a, f3 we have

y I="" {a} p {/3} y I=.? {a} q {/3}.

Obviously =pc is always an equivalence relation; we show that it is also a
congruence:

THEOREM 4.2.4. For all Y, !!', Y the relation =pc is a congruence with
respect to the operators involved.

Proof Let Y, ..<t' be fixed, Y an interpretation of!!' in Y and assume
y I=,,- p=pc p', y F.? q=pc q'. We have to showy F.? p 0 q=pc p' 0 q'
for DE { +, ·} and Y I=,,- rr.n(P) =pc rr. 11(p1

) for all n EN. As an example we
consider alternative composition: it is sufficient to show that if we have a
reduction (p + q, s) ~ (j, s'), then (p' + q', s)-4+ (j, s'). This follows
easily: suppose the first transition in our reduction, say (p + q, s) ~ (r, s"),
is a consequence of (p, s) ~ (r, s"), then (p, s) ~ (j, s') is also

derivable. By assumption we have (p', s)-4+ (j, s') for some string
p EA*, so using the first transition of this reduction we derive
(p'+q',s)-4+(j,s'). I

We extend the relation =pc to open process expressions in the obvious
way: Y I=,,- t =pc t' iff

Vp[Y I=,,- t(p) =pc t'(p)]

for t = t(.i) and t' = t'(x). In the following lemma we present a useful
property of this extended relation.

LEMMA 4.2.5 (distributivity). Let Y, !!', Y be fixed. For all t, t', t" over
I:+ we have

Y F.? t(t' + 111
) =pc tt' + tt" and Y F.? (t + t') t" =pc t/ 11 + t 1t 11

•

Proof By induction on the length of derivations, using decomposition
(see Lemma 3.2.l). I

Because the relation =pc identifies in particular closed process expres­
sions having bisimilar transition systems, we have the following
correspondence with the relation =op:

PROCESS EXPRESSIONS AND HOARE'S LOGIC 207

THEOREM 4.2.6. If for some Y and closed process expressions p and q we

have Y' f= J P =op q, then for any !!! and interpretation .f of!!! in Y also

.9'' F= ·" P =pc q.

The converse does not hold: as an example consider a structure
Y = < { s }, action, effect) with the atomic action a inert. Marking roots
with the symbol L the transition system

l
(a(a+b), s)~ (a+b,s)~ (j, s)

represents the process expression a(a+ b) in Y, and the transition system

l
(b, s) +--".-- (aa + ab, s) ~(a, s) ~ (j, s)

represents the process expression aa + ab. Now these transition systems are
not bi similar, for the latter contains the "deadlock state" (b, s), which can­
not be related by a bisimulation to any state present in the upper transition
system. We conclude Y If a(a + b) = 0 P aa + ab, whereas by distributivity

we have Y F= ·" a(a + b l =pc aa + ao for all !!, .!!.
We finally introduce for any structure .Cl' a special language of assertions,

suitable to refer to any unary predicate over the state space of .'f.

DEFINITION 4.2.7. Let Y = (S, action, effect) be some fixed structure
and 2' a language of assertions such that Pred contains exactly one
predicate symbol for each subset of S. We write in this case !f'.,,,, the
language of assertions about S, and we interpret the symbols of Pred as
the corresponding predicates over S. We omit the subscript .f when inter­
preting assertions of !!',, ..

5. DERIVING PARTIAL CORRECTNESS ASSERTIONS

In the following we consider various proof systems in a natural deduc­
tion format (see e.g., van Dalen, 1983), suitable to derive correctness for­
mulae, and in particular correctness assertions. We use symbols <P, <!>', ... as
syntactical variables for (possibly empty) sets of correctness formulae.

Let // = (S, action, effect) be some structure, 2' a language of asser­
tions, .~ an interpretation of 2' in Y, and G some proof system. We write
Tr,,,., <J> f--c ~if there is a derivation of a correctness formula rjJ in G which
uses hypotheses from Try· and <!>. If G is known from the context we omit
the superscript G in f-- 0 . A partial correctness assertion {a} p { {J} over 2'
is called derivable iff Tr Y f--c {a} p { {J} (so <J> = 0). A proof system is
always associated with a signature I G s; I: of the process expressions

208 ALBAN PONSE

occurring in all derivable partial correctness assertions. We need not write
here Ee; s;:: E +, for the n,,-operators will never occur in derivable partial
correctness assertions.

We call a proof system G sound iff for all structures .<!', interpretations
.f of a fixed language 2, and correctness formulae over !!' we have

Tr.,,., cJJ f-- {ex} t {/3} => Vp[Y' F .1 c!J(p) => Y' F= ·' {a} t(p) {/3} J,

where <P(p)~r{{cx}t(p){/3}1{a}t{P}Ec!J}. So in particular any
derivable partial correctness assertion is true in Y' under §.

The proof system G is (relatively) complete iff for any structure Y' and its
language of assertions !f'.v· the converse holds for all partial correctness
assertions {ex} p {/3} over !f'.v·· where p is a closed process expression over
E:

The adjective "relatively" refers to the fact that Tr.v, may be used in deriva­
tions: relative to all true assertions about Y', we have that truth in .<!'
implies derivability.

5.1. The Proof System H

In Table 3 we present the proof system H associated with E. Rule VI,
known as Scott's induction rule (see, e.g., de Bakker, 1980), should be used

axiom

II axioms (a EA)

III alternative composition

IV sequential composition

V consequence

VI Scott's induction rule

TABLE3

The Proof System H

{a}b{Pl

-i stop"(v) /\ a(v)-> /)(effect"(v))

{a}a{P)

{a} t {Ii) {a) t' {/)}
{a} I+ t' { /i)

{a) t {P) {/)} t' {l'}
{a} II' { y}

a-> a' {a') t {P'} /)'-> p
{ C(} I {P}

If E = { x = t, I x E V d is a pure system, then
[{{a,)x{/.i,} lxEVc}]

{c.:y} ly {P .. }
{a,} < z I £) {f3,}

for all y EVE

ZE VE

PROCESS EXPRESSIONS AND HOARE'S LOGIC 209

as follows: if E={x=txlxEVE} is a pure system, ex" {3, (xEVt;) are
assertions, and ·

then

for _any y E VE the partial correctness formula { ixr} 1.1 {/3y} is
derived from a set of hypotheses r,. containing no other
correctness formulae with free variables in VE than those in
{ {ixx} X {fix} I XE VE},

for any z E VE the
{ o:J (z I E) {fi=} can
{ {o:,} X {fix} I XE VE}.

partial correctness assertion
be derived from u XE VE r, -

In other words, any hypothesis in { { ixx} x {/3 J I x E V 1,.} is cancelled after
the application of Rule VI. This is indicated by the square brackets. We
show by our running example how to use H (see also Fig. 2):

EXAMPLE (continued). Concerning the recursive specification x =
in((pa + p 1,) co + pr) x + s t we introduced a user having initially N + l
coins and no drinks, and the structure //' = (S, action, effect) with
S =Busy u Final, where Busy = { (i, j) I i + j = N} and Final=
{ (i, j) I i + j = N + I } . We define the following predicates over S:

in it((i, j)) ~ i=N+ 1 and)=0

busy((i, j)) ~ (i, j) E Busy

jlnal((i, j)) ~ (i, j) E Final.

So we have for instance Y I= init _,final with init and final denoting the
associated predicate symbols. Let afi be short for the assertion
1 stop)v) 11 ix(v) _, fi(effecta(v)). In Fig. 2 we display a derivation of

J husy husy husy rhusy infi11al stl'.11"1 init -;finafl
tPahu.\'I'' Phhu.n'' co/i'!wl' p _Ima/' husy' jma/' J . . .

f- { init} X {final}

by which we conclude Tr,,I' f- {init} X {final}. (end example)

5.2. The Proof System H Is Sound and Complete

LEMMA 5.2. l. The proof system H is sound.

Proof Let Y', !!' be fixed and ~ an interpretation of ff' in Y'. Assume

Try., <Pr-- {ix} t {,B}

210 ALBAN PONSE

bu.sy
Pa huy

b1.uy

Pb bu'y

{busy) Pa {busy) {busy) Pb {busy)

{busy) Pa +Pb {busy) {busy) co {final)

in ~~;~ {busy) (Pa+ Pb)co {final)

{final) in {busy) {busy) (Pa+ Pb)co + pr {final)

{final) in((Pa +Pb)co+ pr) {final)

{final) in((pa + Pb)co + pr)r {final)

btuy
pr Jina.I

{busy} pr {final}

[{final) x {final}]

{final) in((pa + Pb)co + pr)x + st {final}

init- final {final) X {final)

{ init) X {final}

FIG. 2. A derivation in H.

{final) st {final)

for some term t over I: +, assertions a, {J, and a set <P of correctness
formulae. It suffices to show that for each derivation of {a} t {fJ} using
hypotheses in Try. u <P it holds that

'(v[Y' F= ,,., <P(fi) Y F= 1 {a} t(fi) {fJ}].

We use induction on the length of derivations, and only consider the cases
of a derivation of {a} t { fJ} in which Rule IV or Rule VI is applied last (the
other cases are straightforward).

I. Assume there is a derivation of {a} t {fJ} in which IV was applied
last, so t=t 1t 2 and there are <P 1,<P2 r:;;.<P and y such that Tr 9 ,<P 1 f-­
{a}t1 {y} and Try,<P 2 f--{y}t 2 {fJ}. Suppose p0 is such that
Y' F=.1 </J(.Po); then Y f= . .,, <P;(p0) (i = 1,2) and by induction
Y'f=._,,{er:}ti(p0){y} and Yf=.>'{y}t2(p0){{J}. We have to show
Y' F="' {a}t,t2(p0){f}: let s be such that Y' f= 1 a[s] and

(t 1 12(p0),s)-+>(j,s'). By decomposition (see Lemma3.2.1) there is s"

such that (t,(p0),s)-+> (j,s") and (t 2(p0),s")-+> (j,s'). Using the
induction hypothesis we find Y' f= ·-" y[s"] and consequently Y f= J fi[s'],
which was to be proved.

2. Assume {a} t { fi} follows from an application of VI, so
{er:} t {fJ} = {az} (z I E) {fJz} for some pure system E= {x= tx I XE V1J
and there are assertions ax, f3x (x E V El and <P' r:;;. <P such that Try., <P',
{ {ax} x {fJx} I XE V1,J f- {a,.} t, {fJ,.} for all yE VE and <P' contains no
correctness formulae with free variables in v E· Suppose ,<;7 F .1 <P(fio) for
some Po· We have to show Y' f=.1 {az} (z I E) {fJz}· By the induction
hypothesis we have

\lp[Y' F= ·" <P' u {{a,} x {fJJ I XE VE}(p)

=> Y' F= ·" { { aY} ty(p){{J"} I x E V d].

PROCESS EXPRESSIONS AND HOARE'S LOGIC 211

Define E' = { ~ = t', I x E VE'} as the system obtained from E by removing

all brackets m the expressions t, as allowed by distrihutivitr (see

Lemma 4.2.5), so VE= VE'· It follows that ·

\lp[Y' F=.,, <P'u { {!>:,} x {13,}) xE V1:·Hfi)

For a start we prove as an intermediate result

Y' I= .1 { {a,} n"(<x) E')) {/3,}) x E VE }

for all n E N by induction on n:

(1)

n = 0. By lack of an effect rule introducing the n0 -operator

it follows that no expression (n 0(p), s) can reduce to (,/,.), so

Y F.; { {o:,} no((x) £')) {fl,} I XE Vd.
n + 1. Let x 0 E VE' and suppose Y I=,; a,0 [s] and

(n,, + 1((xo I E')), s) ~ (j, s'). Assume t',0 = L: P;.\'; + L: q1, where p;, q1

are closed process expressions and the .\'; are in VE'. At least one of the

following cases must hold:

• (n,,+1(qi0),s)~ (j,s') for a summand qio of t',0 because

(q10 , s) ~ (j, s').

• (n,, + i ((p ;0 Y ;0 I £')), s) ~ (J, s') for a summand p 10 _1\1 of t',0

because (rr,,+ 1 ((p;0 J;0) E')),s)....E.+. (nrn(<y 10) E')),s")--4+ (j,s') for

some m ~ n, s" ES and pv = (J.

In both cases it follows that (t',0 (11:"((x I E'))), s) ~ (j, s'). Let ij,

(kE N) be obtained from fio by replacing any "VE.-coordinate" by

nk((x I E')). Because <P' does not contain correctness formulae with free

variables in VE" it follows that Y} I=; <t>'(ijd for all k EN. By the "local

induction hypothesis" we have 9' F= .; { {a,} rr 11 ((x I E')) {f:I,} Ix E V1o l

and using q,, in (1) we find that.</ F.; {0:,0 } t',0(11:,,((x I£'))) {11,,J We

conclude ,</I=.; {J,0 [s'], which proves the intermediate result.

So in particular we have !I F= ·" {a:} n,,(<: I E')) {{3=} for all n. Now

suppose Yl=.;rx=[s] and ((:)£'),s)~(j,s'). By inspection of

the effect rules for the n,,-operators it follows easily that for n sufficiently

large (rr,,((z)E')),s)~(j,s'), so 9'f= 1 /fJs'], which shows that

Y f= 1 {o:z} (z) £') {fJ=}· By regarding effect reductions as parts com­

posed by the effect rule recursion, it follows that .'/' F= .1 < x I E' > =pc

(x I £) for all x E VE· We conclude Y F= .? { :x,} (z I £) {11=}, as was to be

proved. I
We now turn to the issue of the (relative) completeness of H. We intro­

duce the following abbreviations:

212 ALBAN PONSE

• H 0 denotes the proof system containing rules I-V; obviously Ho is
associated with E 0 .

• H; + 1 denotes the proof system H with the applicability of Rule VI
restricted to pure systems over L;. So H; + 1 is associated with the signature

E; + i ·

We will prove that His complete by showing that H 0 is complete, and that
the completeness of H; leads to the completeness of H;+ 1 •

LEMMA 5.2.2. The proof system H 0 is complete.

Proof Let Y be a fixed structure. We have to prove

Yf={o:}p{/3}

for all p occurring in partial correctness assertions over ff,/'. Suppose Y7 f=
{ o:} p { f3}. Recall that :?1'0 , the set of closed process expressions over I 0 , is
specified inductively (see Section 2.1). Therefore we apply induction on the
structure of p.

p = 6. By Axiom I we derive Try 1--Ho {IX} [J { f3 }.
p=aEA. We show that 1 stop 0 (v) /\ o:(v)-+-f3(effect"(v))ETr.cf·

Assume/:/' f= -, stop0 /\ o:[s], then (a, s) ~ (j, s(a)) and by supposition
we find Y f= /J[s(a)]. Therefore Y f= f3(effect)v))[s]. By the Axiom II we
derive Tr 9 1--Ho {ix} a {/3 }.

p=q+r. Note that Y f= {o:} q {/3}, Y f= {o:} r {/3}. By the induc­
tion hypothesis and Rule III we derive Tr.'/. 1--Ho {ix} q + r { f3 }.

p =qr. By decomposition (see Lemma 3.2.1) and the definition of!!',./
there must be an assertion y such that Y f= { rx} q {y} and .<J" f= { y} r { (J}.
By the induction hypothesis and Rule IV we derive Try· 1--Ho {rx} qr {/3}.

I
This is the basis for an inductive proof of the completeness of H. Before

proving the completeness of H; + 1 , we take a closer look at a statement
Y f= {ex} <x I £> {/3} with E a pure system over I:;. In the following
crucial lemma we show that such a statement implies Try. 1--11' + 1

{ix} <x I£> {/3}.

LEMMA 5.2.3. Let Y = (S, action, effect> he some structure, E =
{ x = tx I x E V c:} a pure system over L; and x 0 EVE· If H; is complete, then

Y F {o:} (xo I E) {/3}

Proof Let E'= {x=t'., I xE VE.) be the system obtained by removing
all brackets in the expressions Ix as allowed by distributivity (see

PROCESS EXPRESSIONS AND HOARE's LOGIC 213

Lemma4.2.5), so Ve= VE'. It follows that Y' f= {a} (x0 j £') {/1}. By
definition of !£,/, we can define weakest preconditions for all constants
(x I E') and f3. For any x E VE' let the assertion a, be defined as follows:

Y' F= aX~J There are s' ES, (J EA* such that

((xo I E'), s')~ ((x I£'), s) and Y' F a[s'].

Observe that Y' F= a-+ a,0 and Y' F= { a,J (x0 I E') {Ii}. We first prove
that for ally EVE

Tri/' {{a,} x {/3} I XE Vd 1-H, {a,.} t;. {{3}.

Let x 1 E V c" be fixed. We distinguish two cases:

1. For any summand pz of t',1 (p E .JJ), z E VE') we prove Try,
{ {a,} x { /3} I x E v E'} 1-11' { a,l} pz un. It is sufficient to show that
Y' F= { a,1 } p {a=}: by the completeness of H; it follows that Try 1-11'

{axil p {o:J and thus Try, { {ax} x {/3} I XE Vd 1- 11' {a,l} pz un. Sup­
pose Y' f= a,Js] for some s ES and (p, s)--2:++ (j, s"). We derive
((x 1 I E'),s)~ ((z I E'),s"). By construction of ati there is an s'ES
such that Y'f=rx[s'] and ((x0 !E'),s')--'!.+-.((x 1 1E'),s). So
((x0 I£'), s')~ ((z I E'),s"), by which we conclude Y' F ::X;[s"].

2. For any summand q of t'<i (q E 9';) we prove Tr.v,
{ { rx,} x { fi} I x E V1,.} 1-H, { ax1 } q {{3}. Again it is sufficient to show
that Y'f= {a<i}q{/3}, for Tr.'/',{{a,}x{f3}lxEVE.}1-H'{ax1 }q{IJ}
follows then by the completeness of H;. Suppose ,</' F axJs] for some
sES and (q,s)~(j,s"). We derive ((x 1 jE'),s)--2++(j,s"). By
construction of 0:, 1 there is an s' ES such that Y' F a[s'] and
((x0 I£'), s') ~ ((x 1 I E'), s). So ((x0 I£'), s') ~ (j, s"). Because
ff' f= { rx} (x0 I E') {/3} we have that Y' I= /J[s"]. We conclude Y' I=
{ rxx,} q {/J}.

So Tr.v, { {rxx} x {/3} I xE VE.} 1-H, {ay} 1:,. {/3} for all J'E VE .. We now
have to show that we may replace the expressions t'1 by t, in this result.
For simplicity consider the following typical case:

t',.=.pq+pz and t,.=.p(q+z) and Try,{{a,}x{{:l}I
~EVE.} 1-H, {rx,.} pq·+ pz {/3} with p, qES';, y, zE VE .. Now
there must be assertions y I' Y2 such that

and
Try 1-ff; {a"'} p {Y2L

Tr,.1 , { {rx,} x {/3} I xE VE.} 1-ff, {Y2} z {/3}.

214 ALBAN PONSE

Using the soundness of H we find Y I= { tX 1.} p {111 /\ Y 2 } ,

and by the completeness of Hi it follows that Tr.•/' f---H1

{ tX 1 } p {y 1 /\ y 2 } . Because y 1 /\ y 2 -> }' 1 , }' 1 /\ y 2 -> }' 2 E Tr 'I',
we can use Rule v to derive Try' { { Xx} x un I
XE Vt.} f-H, {x .. } p(q+z) {/3}.

Generalizing this argument one may conclude Try, { { tXx} x {/3} I x E V w}
f--- 11' { a 1.} t 1• {/3} for all y E V £' = V £· Using Rule VI we derive Try· 't---H,+ 1

{ IX,J (.~0 I E) {/3 }. Because IX-> 1Xx0 E Try we derive by Rule V Tr.'l' 't---H'+ 1

{x} (x 0 I E) {/3}, which completes our proof. Note that if IX represents the
empty predicate the lemma still holds. I

THEOREM 5.2.4. If the proof system Hi is complete, then the proof system
H;+ 1 is complete.

Proof: In the proof of Lemma 5.2.2 we showed that the proof system
H 0 was complete by induction on the structure of the process expression p
involved in a partial correctness assertion {IX} p {fi}. As the set~+ 1 is also
specified inductively, we only have to check one more basic clause than in
the proof of Lemma 5.2.2, namely p = (x I E) with E = { x = tx I x E V .d a
pure system over Ii. This has just been done in Lemma 5.2.3. I

COROLLARY 5.2.5. The proof system H is complete.

5.3. Guarded Systems and the Proof System H

The notion of "guardedness" is mostly defined more strictly than is done
here in Section 2.2 (see, e.g., Baeten and Bergstra, 1988a, b). In order to
discuss this restricted notion we will refer to it as follows: we call a recur­
sive specification E = { x = tx I x E VE} strictly guarded iff each variable in
the expressions Ix occurs in a subterm a· M with a EA. Let I" denote the
restriction of I obtained by considering only strictly pure systems, and .0°,
the corresponding set of closed process expressions. We define H" by
restricting the applicability of Rule VI of H to systems which are strictly
pure. Of course H_, is still sound, as it is a subsystem of H. Since H contains
no rules which decompose the process expression involved in a correctness
formula, it follows that

Try.f-H {tX} p {/J} =
for all p E ;JJ,, so H, is also a complete proof system.

We further show that if we extend I with constants for the solutions of
all guarded systems, then the proof system H with Rule VI applicable to all
guarded systems is not complete any more (and neither is H,.). Assume that

PROCESS EXPRESSIONS AND HOARE'S LOGIC 215

His still sound with respect to this extension (this is proved in Ponse and

de Vries, 1989). We show by an example that H cannot be complete:

EXAMPLE. Let Y=<{s,s'},action,effect) be a structure with action
inert and effect satisfying

s(a) = s' and s'(a)=s.

Furthermore let a, (J 1 be assertions such that (j is only satisfied by s and (J 1

only bys'. Consider the guarded system E= {x=axa+aa}. Now it is not

difficult to see that Y f= { (J} X {a}. Suppose that His complete, and thus

Try 1- { (J} X {a}. We may assume that the last two rules applied are VI

respectively V (Rule Vis the only rule not adding complexity to the process

expression involved). So there must be r:x, f3 such that

' Tr,y., {r:x} x {/3} 1- {o:} axa+aa {/3} (2)

(3)

Now (2) implies that Try,1- {r:x} aa {/3} and by (3) we derive

Tr,y1-{a}aa{f3}. Because His sound and (aa,s)---'!..,(a,s')---'!..,(j,s),

we conclude Y f= /3 [s]. Using (3) we find

/3 +4 (J E Try. (4)

Also Tr .. 1., {r:x}x{f3}1-{r:x}axa{f3}, so there must be y1 ,y 2 such that

Try 1- { o: } a { y 1 },

(5)

and Tr.v., {o:} x {/3} 1- {yi} x {y2 }. From the derivability of {yi} x {y 2 }

we conclude
(6)

From (5), (6), and (4) we derive Try 1-{ a} a { (J }, so by the soundness of

H we have // f= {a} a { (J}. This is a contradiction, for (a, s) ---'!...., (J, s'),

but not Y f= (J[s']. So the proof system His incomplete with respect to all

guarded systems. (This holds as well for H,, since E is a strictly guarded

system.)

In terms of the semantics of partial correctness assertions there is a for­

malizable correspondence between processes defined with the use of a finite

pure (guarded) system and regular (context-free, respectively) languages

over A 6 (see, e.g., Hopcroft and Ullman, 1979, for an introduction to such

languages). So the example above shows that Scott's induction rule is not

compatible with "context-free recursion" in our set-up.

216 ALBAN PONSE

6. SOME EXTENSIONS

6.1. Involving All Guardedly Specifiable Processes

As shown in Section 5.4 we cannot add constants for all guardedly
specifiable processes to I: without losing completeness of H. A solution to
this problem is to use a number of algebraic laws that define the equality
relation over process expressions. It can be proved that all structures con­
sidered respect these axioms, and any guardedly specified process is the
solution of some pure system. By adding a proof rule substitution that
permits interchangeability of (algebraically) equivalent process expressions
in partial correctness assertions, one can prove a completeness result for all
guardedly specifiable process expressions.

6.2. Involving Silent Actions

It can be proved that the constant r, representing "silent" or "unobser­
vable" action, can be added to I: without invalidating our completeness
result. The semantical rules

r-laws: (a, s) ~ (r, s(a)) if a(s)#b

(x, s)--4 (y, s')(y, s') ~ (z, s") (x, s)--4 (y, s')(y, s') ~ cJ, s")

(x, s) ~ (z, s") (x, s) ~ cJ, s")

(x, s) ~ (y, s')(y, s')--4 (z, s") (x, s)-4 (y, s')(y, s')--4 (j, s")

(x, s)--"..+ (z, s") (x, s) ~ cJ, s")

take care that r satisfies the "r-laws of Milner": xr = x, rx + x = rx, and
a(rx+ y)=a(rx+ y)+ax (see Milner, 1980). We demand that r is inert
with respect to all structures considered. It should be mentioned that the
definition of the effect rules for the nn·operators in Table 2 should be
slightly changed, in this case.

ACKNOWLEDGMENTS

I thank Jan Bergstra for suggesting me the subject of this paper, and for his constructive
help in writing it. For critical remarks, discussions, and corrections I also thank Jos Baeten,
Henk Goeman, Jan Friso Groote, Frits Vaandrager, Fer-Jan de Vries (who suggested the
format of the recursion rule of H, presented here), and two anonymous referees.

RECEIVED Septernber 29, 1989; FINAL MANUSCRIPT RECEIVED May 17, 1990

PROCESS EXPRESSIONS AND HOARE'S LOGIC 217

REFERENCES

APT, K. R. (1981), Ten Years of Hoare's Logic: A Survey-·-Part !, A.CA! Trans. Prof<.
Languages Systems 3(4), 431-483.

APT, K. R. (1984), Ten Years of Hoare's Logic: A Survey-Part JI: Nondeterminism, Theoret.
Comput. Sci. 28, 83-109.

BAETEN, J. C. M., AND BERGSTRA, J. A. (1988a), Global Renaming Operators over Concrete
Process Algebra, Inform. Comput. 78(3), 205-245.

BAETEN, J.C. M., AND BERGSTRA, J. A. (1988b), Recursive Process Definitions with the State
Operator, in "Proceedings Computing Science in the Netherlands (S!ON)," pp. 279-294.

BAETEN, J. C. M., AND WEIJLAND, W. P. (1990), "Process Algebra," Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press.

DE BAKKER, J. W. (1980), "Mathematical Theory of Program Correctness," Prentice-Hall,
London.

DE BAKKER, J. W., KOK, J. N., MEYER, J..J. CH., 0LDEROG, E.-R., AND ZUCKER, J. I. (1986),
Contrasting themes in the semantics of imperative concurrency, in "Current Trends in
Concurrency" (1. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds.), pp. 51-121,
Lecture Notes in Computer Science, Vol. 224, Springer-Verlag, Berlin/New York.

BERGSTRA, J. A., AND KLOP, J. W. (1986), Process Algebra: Specification and Verification in
Bisimulation Semantics, in "Mathematics and Computer Science II" (M. Hazewinkel,
J. K. Lenstra, and L. G. L. T. Meertens, Eds.), pp. 61-94, CW! Monographs. Vol.4,
North-Holland, Amsterdam.

VAN DALEN, D. (1983), "Logic and Structure," Springer-Verlag, Berlin/New York.
VAN GLABBEEK, R. J. (1987), Bounded Nondeterminism and the Approximation Induction

Principle in Process Algebra, in "Proceedings STACS 87" (F. J. Brandenburg, G. Vidal­
Naquet, and M. Wirsing, Eds.), pp. 336-347, Lecture Notes in Computer Science, Vol. 247.
Springer-Verlag, Berlin/New York.

HOPCROFT, J.E., AND ULLMAN, J. D. (1979), "Introduction to Automata Theory, Languages,
and Computation," Addison-Wesley, Reading, MA.

MILNER, A. J. R. G. (1980), "A Calculus of Communicating Systems," Lecture Notes in
Computer Science, Vol. 92, Springer-Verlag, Berlin/New York.

PARK, D. M. R. (1981), Concurrency and automata on infinite sequences, in "Proceedings 5th
GI Conference" (P. Deussen, Ed.), pp. 167-183, Lecture Notes in Computer Science,
Vol. 104, Springer-Verlag, Berlin/New York.

PLOTKIN, G. D. (1983), An Operational Semantics for CSP, in "Formal Description of
Programming Concepts-II" (D. Bj0rner, Ed.), pp. 199-223, North-Holland. Amsterdam.

PoNSE, A., AND DE VRIES, f.-J. (1989), "'Strong Completeness for Hoare Logics of Recursive
Processes-An Infinitary Approach," Report CS-R8957, Centrum voor Wiskunde en

Informatica, Amsterdam.

