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Abstract 

In this paper an adaptive nonlinear multigrid method is presented for the solution of the steady 2D semiconduc
tor equations. The discretization is made on an adaptive grid by means of the (hybrid) mixed finite element method 
on rectangles. The integrals involved are approximated by means of the trapezoidal rule in order to obtain a 
generalization in 2D of the well-known Scharfetter-Gummel scheme. We show that the use of the trapezoidal rule 
does not influence the accuracy of the discretization. 

The discrete equations thus obtained are solved by means of the dual version of the FAS-FMG algorithm. A 
Vanka-type relaxation is used as a smoother, and a local damping of the restricted residual is introduced in order to 
be able to use very coarse grids. Consistent with the FAS-FMG algorithm, we use the relative truncation error 
between coarse and fine grids as a refinement criterion for constructing adaptive grids. We study the relative 
truncation errors for the semiconductor equations in detail and show how they can be incorporated into a practical 
grid adaptation scheme. Results are shown for a realistic bipolar transistor problem. 

Keywords: Semiconductor equations; Mixed finite element method; Adaptive grids; Multigrid methods 

1. Introduction 

The electric behavior of semiconductor devices is usually described by the classical drift-dif
fusion model, which consists of a system of three nonlinear partial differential equations. In 
this paper we only consider the steady state equations in two space dimensions. The usual 
approach for the discretization of the semiconductor device equations is the application of a 
box method (finite volume method), where the fluxes between the control volumes are 
approximated by the one-dimensional Scharfetter-Gummel scheme (cf. (1,19]). Brezzi et al. [4] 
introduced a two-dimensional exponential fitting method for the semiconductor equations 
using a (hybrid) mixed finite element method. We also use a mixed finite element scheme, but 
by using quadrature in the evaluation of integrals involved we retain the Scharfetter-Gummel 
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scheme in the interior of the domain. The boundary treatment differs because our grid is 
cell-centered rather than vertex-centered. The advantage of this procedure is that standard 
error estimates are available for the mixed finite element method. 

To solve the system of nonlinear equations obtained after discretization, we use a nonlinear 
multigrid method. Multigrid methods are optimal in the sense that the computation time 
needed is proportional to the number of grid cells. Linear multigrid methods are used for the 
iterative solution of the decoupled device equations (Gummel's iteration). However if the 
equations are strongly coupled, convergence is slow. The nonlinear multigrid method does not 
suffer from this drawback, as the equations are solved simultaneously. 

The mixed finite elements bring about a cell-centered multigrid method, and the grid 
transfer operators are chosen in accordance with the discretization. As the semiconductor 
equations are strongly nonlinear and badly scaled, it is not straightforward to apply the 
multigrid method: special attention has to be paid to the formulation of the coarse grid 
problem. On the coarse grid we need some approximation of the solution. However, as we use 
the same discretization on all grids, this approximation implicitly determines the coefficients of 
the coarse grid problem. In this paper we discuss several possibilities of constructing a coarse 
grid approximation. In order to admit very coarse grids, it appears necessary to introduce a 
local damping of the restricted residual on the coarse grids. The amount of damping is 
determined by comparing corresponding diagonal elements of the coarse and fine grid Jacobian 
matrices. With this precaution we obtain an efficient multigrid algorithm for solving the 
discrete equations [18]. 

Another difficulty of the semiconductor equations is that they are singularly perturbed (cf. 
[16]), so we may expect that the dependent variables vary rapidly in small parts of the domain. 
Therefore it is desirable to have a fine mesh in parts of the domain where large variations of 
the solution occur. Several refinement criteria have been proposed for the semiconductor 
equations: estimates of the local truncation error, taking the singularly perturbed nature of the 
equations into account [16,25], the second derivative of the electrostatic potential [23], or 
estimates of the error in the electric field and the current densities [6]. Our adaptive mesh 
refinement scheme is based on the equidistribution of the relative truncation errors between 
the coarse and fine grids that are approximations of the coarse grid truncation errors; as there 
are three equations to be solved, we merge the different relative truncation errors into a single 
value. Using the relative truncation error as a refinement criterion is fully consistent with the 
multigrid algorithm used (cf. [11]). 

Although many adaptive schemes have been proposed for the device equations, and also 
some nonlinear multigrid algorithms (cf. [5,7,18]), the combination of these two features has 
hardly been studied (see [18]). In this paper we analyze a nonlinear multigrid method on 
adaptively refined grids. This approach appears to be very attractive: the multigrid method is 
optimal with respect to the number of grid cells, whereas the number of grid cells is minimized 
by the adaptive gridding. Moreover the multigrid algorithm provides a natural grid refinement 
criterion. 

An outline of this paper is as follows. In Sections 2 and 3 we present the equations solved 
and their discretization. The influence of the use of quadrature in the discretization is analyzed 
in Section 4. The multigrid method and the Vanka-type relaxation are presented in Sections 5 
and 6. In Section 7 we analyze the different relative truncation errors and indicate how they 
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can be used in a practical mesh refinement strategy. In Section 8 we report numerical results 
for a bipolar transistor problem. In the final section our conclusions are summarized. 

2. The equations 

The equations to be solved are: 

div D=q(p-n+D), D= -& grad l/J, 
div j,, = +qR, 

div j/I = -qR, 

j,, = +qµ., 11 ( UT grad n - n grad 1~ ), 

j" = -qµ P( Ur grad p + p grad l/J). 
(2.1) 

Here the dependent variables arc If;, n and p, which denote the electrostatic potential and the 
concentrations of electrons and holes, respectively, and D, j,, and j ,,, the displacement current 
and the current densities of electrons and holes, respectively. The first equation is Poisson's 
equation: E is the dielectric constant, q the elementary charge, and D the (given) dope 
function. The other two equations arc continuity equations for electrons and holes with zero 
time derivatives; µ.,,, and µ, t> arc the electron and hole mobilities, Ur is the thermal voltage and 
R models the recombination rate of electrons and holes. In this paper we assume µ,/I, µ,,, and 
µ,"to be constant, and we only consider the Shockley-Read-Hall model for the recombination 
rate R, 

np - I 
R = -------·-----

T1, ( n + 1 ) + T 11 ( p + I ) ' 
(2.2) 

where T,, and T 1, are the electron and hole lifetimes, respectively. 
In calculations we use the quasi-Fermi potentials </> 11 and 4>1, as dependent variables; these 

are related to n and p by 

with n; the intrinsic density of free charge carriers. 
To simplify the notation we use the following scaling: 

Symbol Scaling factor 

t/1,<f>11,<l'1, Ur 

n, p, f) 11 1 

R q ·I 

f-1-11,JL,, (Urn,c1)· 

and introduce 

/) 
j = ----,,, n,q, 

Ur 
µ, = ---·-- t" 

,,, fl;C/ . 

(2.3) 
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The set of equations (2.1) expressed in the variables (If;, <Pn' <PP) is strongly nonlinear, but the 

range of the values assumed by ( !/J, <P n, <P) is of the same order as the voltages applied to the 
device. This makes them better suited for numerical computation than e.g. (if!, n, p) (cf. [19]). 

In the discretization of (2.1) we use the Slotboom variables 

<P = e-<Pn 
n ' 

<P = e +<Pp 
p ' 

for which the equations appear in symmetric positive-definite form: 

-div(J.L.µ grad l/J) = e-"1<PP- e"1<Pn + D, 

-div(J.Lne+~, grad <Pn) = -R, 

-div(J.Lpe-"' grad <PP)= -R. 

(2.4) 

(2.5) 

The boundary conditions are of Dirichlet type (l/J, <P", <PP given) at the Ohmic contacts; at 

the remaining parts of the boundary homogeneous Neumann conditions are given: n ·i.µ= n ·j" 

= n ·jP = 0, with n the outward normal unit vector at the boundary. 

3. The mixed finite element discretization 

The set of equations (2.5) can be written as 

u-A grad u = 0, 

div u = f, 

u=g, 

n · u = 0, 

in D, 
in D, 
On aJ1 0 , 

On a{)N, 

(3.la) 

(3.lb) 

(3.lc) 

(3 .ld) 

where anD and anN denote the parts of the boundary with Dirichlet or homogeneous 
Neumann boundary conditions, respectively. The sign is chosen such that A> 0. 

Before we discuss the discretization of (3.1) we introduce some notation. Let L2(fl) be the 

space of square integrable functions on [1 with inner product ( ·, ·) and norm II · II 0 , and let 
H 8 c(div, D) be defined by 

HBC ( div' n) = { (1' I u E ( L2 ( n)) 2' div <T E L 2 ( [1)' n . u = 0 on an N} ' 

with norm II · II H defined by 

II u ll 2H = II u 11 20 + lldiv u 116. 

For ease of notation we write V = H 8 c(div, D) and W = L2(fl). The bilinear forms a: Vx V ~ IR 
and b : V X W ~ IR are defined by 

b ( O'' t) = f, t div u d n. 
fl 
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Using this notation we write (3.1) in its weak form: find (u, u) E V x W: 

with 

a( u, T) + b ( T, u) = ( g, T) ;1nlJ, 

b(u, t) = (f, t), 

'VT E V, 

'<it E W, 

(f, t) = f ft d.Q. 
n 

65 

(3.2) 

For the discretization of (3.2) we assume that .Q can be divided by a regular partitioning in 
open disjoint, rectangular cells .Qi, {l = U fli. On this partitioning of the domain we define 
lowest-order Raviart-Thomas elements [21]. On each cell n; we have the characteristic 
function e;, and for each edge E< £ 1 rt. oflN, of a cell n; we define the "tent function" ei, i.e. 
the vector function of which each component is piecewise linear on each fl 1 and which satisfies 
ei · nk = o.ik, where nk denotes the unit vector normal on the edge Ek in the positive coordinate 
direction; o1k is the Kronecker delta. Furthermore we introduce the function ei EL 2(fl), 
defined on the cell edges £1, E1 rt. ililn, 

{ 1 xEJ:.: 1, (!i(x)= , 
0, x ff= E1, 

and the "half tent" function e;·1 = e;e 1 E ( L}(fl)) 2 for E 1 rt. il.flN. Our discrete approximation 
spaces are defined hy 

V,, = span(ei) c V, 

W1r = span(e') c W, 

M;, =span( e1 ), 

H" = span(e'·' ). 

The mixed finite clement discretization of (3.1) is: find (u,,, u") E V,, x W" such that 

a ( Uh , T 1i) + h ( 'Th , Uh ) = ( !.: , 'T 1) ;1Jl 11 , 'if Th E V,, , 

h(u,,, t 11 ) = (f, t,,), '<tt1r E Wh. 

(3.3) 

(3 .4a) 

(3 .4h) 

Assuming a piecewise constant approximation for J.:, the integrals (J;, T 1) and h(,,.,,, t 1,) are 
easily evaluated. The integrals a(u11 , T 11 ) and (f, t 11 ) in (3.4) arc approximated by a repeated, 
weighted trapezoidal rule for rectangles: 

J w(x)z(x) d.!1 = L J w(x)z(x) d!l == L ~ z(x'"')~1 .... w(x) d!l, 
!l j Jl' I I' ' I .~.:;,4 

(3 .5) 

where x'·'' arc the four vertices of !l', and !l'·'' the four quarter rectangles, parts of !l', 
associated with these vertices, respectively. 

If ( f, tit) is approximated hy U.5) with w =tit and z = f, we obtain from (3.4h) 

'V!l': [h 1d'· 1cr 1 = area(!l')! L f(x'·"), (3.6) 
,, 1,2,:;,4 
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with 

{ 
+ 1, 

di·j= -1, 

0, 
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if Ej is an N- or E-edge of{)/, 

if Ej is an S- or W-edge of fl;, 

otherwise, 

(3.7) 

and hj the length of edge Ej. We notice that (3.6) and (3.7) imply discrete current conserva
tion. 

For the approximation of a(uh, Th) we use (3.5) with w =A- 1 and z =uh· Th. Here the use 
of the trapezoidal rule is also called lumping, because the matrix a(Ej, Ek) is approximated by a 
matrix a(Ej, Ek) that is diagonal: 

a(tJ,Ek)=ojkf A- 1 dn. 
L1} 

Here L1~ = U{Di,v ID;,,, n Ek =I= 0}; i.e., L1~ is the dual box related to the edge Ek. If we 
consider (3.1) as a Poisson equation (A= 1), it is advantageous to use lumping: the non-lumped 
form of the discretization does not yield an M-matrix after elimination of u, which is the case if 
lumping is used (cf. [20]). Moreover for the continuity equations we are able to retain the 
Scharfetter-Gummel scheme [22] by using the quadrature rule (3.5). For the continuity 
equations A - 1 is the exponentially varying function A - l = e ± 1/1. If we approximate tf1 in L1l· by 
a linear function, interpolating tf1 from its values tfiR and tfiL in the neighboring cells D;, 
i = R,L we obtain 

with 
x-y 

Bexp(x, y) = --
ex - eY 

For the discretization of (2.5) we apply the above scheme for the discretization of (3.1) with 
u = ( t/1, <Pn, <PP), u = (j rJ;, j n' j P) and A = ( - µI/I, + f.Ln exp(+ !fr), - f.Lp exp( - t/1 )), respectively. 
In order to obtain the usual definition of (jl/I, jn, jP) (cf. [19]) we allow negative values for A. 
For an edge E1 with adjacent cells D 1, i = R,L, we obtain 

hi 
j~= - aiµt/l(l/JR-l/JL), 

hi 
j~ = + ai f-ln( cpnR - (j)nL )Bexp( -l/JR' -ijJL), 

hi 
jb = - j f.lp( <PPR - cppL )Bexp( + "'R' + "'L), 

a 

(3.8) 

with hi the length of Ei, and ai = area(L1~). We observe that after lumping the fluxes jj may 
be eliminated to yield a scheme that is equivalent to the usual box scheme (see e.g. [19]) in the 
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interior of the domain fl. However the geometry of our discretization is cell-centered as 
opposed to the usual box scheme that is vertex-centercd. 

In our calculations on adaptive grids (Section 6) we will need approximations for the 
potentials u at edges of cells. H is known that the Lagrange multipliers that appear in the 
hybrid mixed finite clement discrctization arc a good approximation for these values (cf. [3]). In 
the hybrid mixed finite element method the half tent functions ei,J are used as test functions in 
(3.4a), and a Lagrange multiplier A1z is introduced to enforce sufficient continuity of uh. 

The augmented variational equations read: find (u1;, u1;, Ah) E H1z x Wh x M1z such that 

(3.9) 

The third equation guarantct.:s that 0·1; EH Bc(div, D), hence in the interior of the domain the 
solution of (3.9) coincides with the solution of (3.4). The values A1 are the coefficients in 
A = [ >..1e 1 EM · on the interiors edges Ei the V can be expressed in the values of u; in the " l h> . • • 

adjacent cells !2', i = R,L, 

~Jlir >J)A 
1 dfl R ~JI ri..l)A 

1 
d!l 

;\l = U I ··----- ··- + U --·--------- ----

J A I dfl J A I d!2 
j~ j~ 

(3.10) 

If the weighted trapezoidal rule (3.5) is used to evaluate the integrals in 0.10), this comes clown 
to linear interpolation for the Poisson equation and exponential interpolation for the continuity 
equations as was used for the one-dimensional case in [ 12). 

4. Influence of quadrature 

In this section we study the influence of the quadrature rule (3.5) on the accuracy of the 
discrete solution of (3. J ). We assume that A and f arc given functions and that the boundary 
conditions arc homogeneous ( f.t ""' O). 

The Sobolcv spaces W 111 ·l'(fl} arc, as usual, defined by 

ll 111 u l ) = w 111 •2 ( n ) , 
with seminorm 

J 11 I m.1i,!l = ( L J I D"u I'' ll.fl) I/JI 
I a I m !l 
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and norm 

( )
1/p 

I\ U II m,p,D = L \ U \~,p,!l , 
O.;;l,;;;m 

II u II m,oo,D = max sup I D°'u I, 
O,;;;\a\,;;;m n 

II u II m = II u II m,2,D' 

where D" denotes the distributional derivative of order a. Furthermore we introduce a norm 
on the partitioning of the domain D, 

( )
1/p 

II u II m,p,11 = L, 11u11~,p,ai , 
l 

II u II m,'1 = II u II m,2,'1· 

The projection operators Il'h: V ~ V/, and II~: W ~ Wh are defined by (cf. [21]) 

(ej, u)Ej = (ej, Ilfu)Ej, "\/Ej, 

(ei, u) = (e;, II1~u), "\/Di, 

with 

<ej, u)p=f eju·nj ds. 
£1 

(4.1) 

For these projections on the lowest-order Raviart-Thomas elements the divergence operator 
and the projection operator commute (cf. [8]): 

div Hf=II~ div. 

Furthermore we have (cf. [10]) 

llIIfullv~Cllullv, "\/uEV. 
For the mixed finite element discretization of (3.1) the following result is known [8]. 

(4.2) 

(4.3) 

Theorem 4.1. If the domain D is such that the problem div(grad u) = w with homogeneous 
Dirichlet boundary conditions is regular, i.e. for each w E L 2(D) there exists a unique solution 
u E H 2(D) with II u 11 2 ~ C II w II 0 , and if a(·, ·) is such that 

3C>0: a(u,T)~Cl\ulloll-rllo, "\/u,TEV, 
then problem (3.2) has a unique solution (u, u) and problem (3.4) has a unique solution (uh, uh). 
Moreover there exists a C > 0, independent if h, such that 

II u - uh II o < Ch II u II 2, 

lldiv(u - u,,) II o < C II u 112, 

II u - u,, II o < Ch II u 112. 

Proof. For a proof see [8]. D 

The accuracy of the quadrature rule (3.5) is stated in the following lemma. 
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Lemma 4.2. For functions w,z E C 2(!2;) we have 

\Jnwz d!l- ~ ~z(xv)l2;_,,w(x) d!2\~Ch2 llwzll 2 , 1 ,'1. (4.4) 

Proof. The quadrature is exact on a; for all constant functions z, and also for constant 
functions w and linear functions z, so by using Taylor expansions around the centre of D/ we 
obtain 

IJnwz dfl- ~ ~z(xv)l1;,vw(x) dfll~ ~ll2,wz dil- ~z(xv)jn'·"w(x) dQI 

~ Ch 2 L II wz 112,1,n' = Ch 2 II wz II 2,1,'1. D 

We are now ready to estimate the influence of the use of quadrature in the discretization. 
We split this influence in errors that are induced by the use of quadrature for the right-hand 
side (f, t h) (cf. Theorem 4.3), and errors that are induced by the use of quadrature for 
a(efi, et) (cf. Theorem 4.5). As th is piecewise constant, the use of (3.5) is equivalent to 
replacing f by a piecewise bilinear interpolation function fh and using exact integration. 
Therefore we write the approximation of (f, th) by the quadrature rule (3.5) as (f1i, th). 

Theorem 4.3. Let (uh, u1i) be the solution of 

a(uh, Th) +b(Th, uh) =0, 

b( uh, t1z) = (f, t1i) 

and let (IT h, u 1) be the solution of 

a(uh, Th) +b(T1z, Uh) =0, 

b( /Th, th) = (fh, th), 

Under the conditions of Theorem 4.1 we have 

II u1z - uh II a~ Ch 2 II f II 2,L1, 

II uh - uh II o ~ Ch 2 II f II 2,Ll· 

Proof. First we prove that II uh - a,, 11 20 ~ Ch 2 II f II 2,Ll II uh - u1z II 0 : 

II u,, - a,, II~~ c I a( u,, - uh' O'h - u1z) I = c I b( uh - uh' U1z - uh) I 
= C I (f- fh, uh - uh) I ~ Ch 2 II f(u,, - uh) II 2,1,,i 

~ Ch 2 I\ f II 2,'1 II uh - u,, II a. 

Suppose that if! is the solution of div(grad if!)= uh - uh. Let T1z =III~ grad l/J, then 

div Th= div II'; grad I/I= rr: div grad if!= u,, - uh, 

(4.5) 

(4.6) 

(4.7) 

( 4.8) 
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lluh-u,,116= lb(-r,,, u,,-uh)I = la(o-,,-u,,, -r,,)I 

~ c II u,, - uh II o II n: grad If! II o 

~ c II u,, - uh II 0 llgrad If! II v~ c II uh - uh II 0 II uh - uh II O· 

Hence 

lluh-u,,llo~Clluh-uhllo. (4.9) 

Combining (4.8) and (4.9) proves the theorem. D 

Before we state a theorem on the influence of the use of quadrature in the evaluation of 
a(·, · ), we remark that the space Vh has the following inverse property: 

hllo-hllv~Clluhllo, 'Vu,,EVh. (4.10) 

In the proof of the theorem we need the following estimate for the norm II · 11 2,1,.11 that appears 
in the right-hand side of (4.4). 

Lemma 4.4. Let uh,Th E vhi> then 

II uh· Th II 2,1,.11 ~ C II uh II v II Th II v, 

with C independent of h. 

Proof. By repeated use of Cauchy's inequality we obtain 

For uh E V;1 we have 

L L L f I Daa-h,d I 2 d.!2 
i I a I ..;; 2 d =x ,y a• 

(4.11) 
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Theorem 4.5. Let (uh, ii") be as in Theorem 4.3, and let (ii,,, u1) be the solution of 

a( uh, T1i) + b( Th, uh)= 0, 'VT,, E v;,, 
b(ah, r11 ) = (f", t"), '\11 11 E w11 . 

If ii(·, · ) is such that 

3 a" > 0 : a ( er h ' er h ) ?:=- ah 11 (Th 11 ~), vu E v,, 
and the conditions of Theorem 4.1 hold, then 

II uh - o-h II o ~ Ch 2 II A 1 11z.,,.na,~ 1 II a" 11 i , 

II u,, - llh II (I~ Ch 2 II A 1 II 2,7',n( ah I II uh II v + II <Th II v). 
Moreot·er, if 11 u II v is bounded then 11 ah 11 ,. and 11 ii" 111 are bounded. 

Proof. Subtracting (4.12) from (4.6) yields 

so 

h(<T" -iih, div(O-h -0:1i)) =II <liv(0-1z -u1z) 11~1 = o. 
By using ( 4.4 ), ( 4.11), ( 4.13) and ( 4.17) we obtain 

a" 11 u" - ;;h 11~1 ~ a(u" - a-h, u-,, - u1z) 

71 

(4.12) 

( 4 .13) 

(4.14) 

(4.15) 

(4.16) 

( 4 .17) 

~ I ii( uh' CT1z - (Th) - a( u,,, (Th -- <Th) I + I a( <Th' iih - "") - ii( uh' U1z - uh) I 

= I a( 0-11 , ,;,, - a,,) - ii( u1z, iih -- ,;")I 

~ Ch 2 II A 1<r1z · ( ,;" - <rh) 112.1 . ..i 

~ Ch 2 II A ' II 2.,,a II ;;h · ( ,;" - <Th) II 2.1 . .J 

~ Ch 2 II A 1 112,,,a I/ <T 11 II 1- II <Th uh II v 

= Ch 2 II A I 112.-r~.n II {i-,, II v II ,;h -· U;, 11 o-

This proves the first part of the theorem. Next suppose that if1 is the solution of div(grad 1/;) = 
ll1i -·uh. Let Th= 11;; grad ~I, then 

II u It - uh II~) = I h ( Th , Li" - uh) I = I a (uh , T" ) - a ((Th ' Th ) I 

~ la(U-11 -ii", T 11 )1 +la( ii", r 11 )-ii(u1z, r1i)I 

~ c( II;;" - ah 11oIIT1z11 o + h 2 II A 1iih. 'T1z 112.1 . ..i) 

..; Ch 2 II A I 112,,,.,n( ah I II''" II v II Th II (J + II U1z II vii 7'11 II v) 
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~Ch2 llA- 1 112.oo,n(a; 1 lluh llv+ 110-h llv) II grad l/lllv 

~ Ch2 II A - 1 11 2,oo,n( a; 1 II uh II v + II uh II v) II uh - uh II o· 
Now it remains to prove that 11uh11 v and 11 iih 11 v are bounded. It follows from Theorem 4.1 
that II 0'1z II v is bounded; from (4.7), (4.14) and (4.10) we obtain 

II u1z - u1z II v < Ch II f 112 . .'1 

and 

II iih - u1z II v~ Ch II A- 1 II2,oo,na; 1 II u1z II v, 

therefore we conclude that II uh II v and 11 u1z II v are bounded. D 

From Theorems 4.1, 4.3 and 4.5 we conclude that the quadrature rule (3.5) does not spoil the 
order of accuracy of the discretization, because the errors introduced by the quadrature are of 
higher order than the discretization errors. 

5. Vanka-type relaxation 

The efficiency of any multigrid algorithm depends on the choice of the relaxation procedure. 
Several procedures have been proposed for the system of equations that arises from the mixed 
finite element discretization. Block-wise relaxation with current conservation has been used by 
Schmidt and Jacobs [24] for the solution of Poisson's equation with Neumann boundary 
conditions; Maitre et al. [15] give an analysis of Uzawa relaxation. The relaxation method we 
use is related with the one proposed by Vanka [26] for the solution of the incompressible 
Navier-Stokes equations. 

In Vanka-type relaxation, all cells in a grid are scanned in some predetermined order. When 
a cell is visited the potentials related to that cell and the fluxes at its edges are relaxed 
simultaneously. In [17] a smoothing analysis is presented for Vanka relaxation applied to the 
mixed finite element discretization of Poisson's equation. For the semiconductor equations 
Vanka-type relaxation in a cell leads to a system of fifteen equations. The fluxes appear linearly 
in these equations so they are easily eliminated, reducing the system to be solved for each cell 
to a set of three nonlinear equations. To solve this small nonlinear system, we first try Newton's 
method combined with Schilders' correction transformation [19]. The advantage of Newton 
iteration is that it converges quadratically in the neighborhood of the solution. If Newton's 
method fails we resort point-wise to Gummel iteration, which is less efficient but more robust 
(cf. [18]). An analysis of point-wise Gummel iteration is presented in [13]. 

A consequence of the use of lumping in the discretization is that the equation related to an 
edge only depends on the flux at that edge and the potentials in the adjacent cells. Therefore it 
is a property of a Vanka-type relaxation that all equations related to edges are satisfied after a 
complete relaxation sweep. Underrelaxation of the fluxes, as proposed by Vanka [26], would 
spoil this property. Furthermore for our problem the use of a damping parameter (unequal to 
one) does not enhance the convergence properties of Vanka-type relaxation (cf. [17]), therefore 
we apply the Vanka-type relaxation without a damping parameter. 
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Vanka relaxation can also be used in a line-wise version. Again we can eliminate the fluxes 
to obtain a nonlinear system of which the Jacobian is a band matrix with 10 diagonals. If good 
initial estimates are available this system can be solved by Newton iteration. An experimental 
comparison of the efficiency of point- and line-wise Vanka relaxation is presented in Section 8. 

6. Multigrid and adaptive grids 

In our multigrid algorithm we use a hierarchy of grids. Starting from a coarsest grid, we 
construct finer grids by cell-wise refinement, i.e. the cells on the coarse grid can be split into 
four equal, smaller ones. The refinement of the cells need not be done uniformly: we may 
refine cells in part of the domain according to some refinement criterion. In this way adaptive 
grids are obtained. 

Our algorithm for solving the discretized equations on the adaptive grids is the dual version 
of the FAS-FMG algorithm (cf. [2,11]). For the solution of the set of nonlinear equations, 
obtained after discretization, 

Nh(qh) = fh, 

we consider the nonlinear coarse grid correction stage of a two-grid algorithm 

NH( ijH) = NH(RHqh) + RH(fh - N,,(q,,)), 

ii,,= qh + P,,(qH -RHq,,), 

(6.1) 

(6.2) 

(6.3) 

where NH denotes the nonlinear coarse grid operator, Ph the prolongation operator for the 
solution, and RH and RH the restriction operators for the solution and the residual, respec
tively. The coarse grid operator NH is constructed by discretization on the coarse grid, and on 
all grids we apply the same method of discretization. 

In the dual version of FAS-FMG we rewrite (6.2) in the form 

NH(iiH) =RHfh +THh' 

where 

THh = NH( RHqh) - RHNh(qh) 

(6.4) 

( 6.5) 

denotes the relative truncation error that can be used as an approximation of the local 
truncation error of the coarse grid discretization. In this way the fine grid is considered as a 
means of improving the right-hand side of the coarse grid equations; therefore a grid needs not 
to be refined locally if the relative truncation error is sufficiently small. If this is the case we put 
THh = 0. In Section 7 we describe how the relative truncation error is used as a refinement 
criterion. 

As usual, the coarse grid problem (6.4) is not solved exactly, but its solution is approximated 
by a combination of relaxation sweeps and coarse grid corrections on even coarser grids. Only 
on the coarsest grid the problem is solved accurately. Details on the coarse grid solution 
procedure are given in Section 8. 

By using cell-wise refinement for all or part of the coarse grid cells, we get a nested sequence 
of approximating subspaces, VH c vh and WH c wh. In this way the mixed finite element 
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method induces a natural set of grid transfer operators. For the operators RH and Ph we use 
these natural prolongations and restrictions. This means that the prolongation for the poten
tials corresponds to piecewise constant interpolation, and for the fluxes to piecewise lin~r 
interpolation in one direction and piecewise constant in the other. The natural restriction RH 
is the transpose of Ph because the spaces of test and trial functions are identical (cf. Se~on 3). 

A priori there is no reason to assume that these transfer operators Ph and RH are 
sufficiently accurate. As Vanka relaxation can be considered as a collective Gauss-Seidel 
procedure applied to the system of equations obtained after elimination of the fluxes (and 
hence the discrete equivalent of a second-order differential equation), the piecewise constant 
interpolation for the quantities related to cells seems too inaccurate. However in [17] we have 
shown by Fourier analysis that the natural transfer operators can be used in combination with 
Vanka-type relaxation indeed. 

It remains to specify the restriction operator RH for the solution. At coarse grid edges Eft 
that are split into Ei1 and Ei2 we require current conservation 

erk= (RHO'hiH = H u11 + u12 ). (6.6) 

This choice for RH implies that we also have current conservation at the green edges: from 
(6.4) and (6.5) it follows that at convergence of the FAS-FMG algorithm we have O'H = RHu,,. 
So all currents that flow out of the cells on the fine grid over a green edge, flow into the cells 
on the coarse grid. 

The choice of a restriction operator for the potentials is less straightforward. In principle we 
could use the L2-projection of any of the possible variable sets (t/J, <f>n, t/JP), (t/J, <Pn, <PP) or 
( t/J, n, p ). The use of a restriction based on the Slotboom variables (If;, <1> n, <PP) is suggested by 
the discretization. However in numerical experiments we observed that this may lead to coarse 
grid operators NH of which the Jacobian matrix is ill-conditioned. Therefore we consider the 
other two possibilities. 

For the semiconductor equations (2.5) without any scaling, the residual of the conservation 
law (3.lb) for the continuity equations corresponds to the rate-of-change in the carrier 
concentrations. Without row scaling this means that the size of the residuals varies widely in 
nagnitude throughout the domain. It may also happen that the diagonal elements of the 
Jacobian matrices differ by orders of magnitude between a father cell and its four kid cells, 
especially if the transition between the n- and p-region is not properly resolved on the coarse 
grid. In this case a small residual (after row scaling) on the fine grid may result in a large 
correction on the coarse grid. For the lD case, De Zeeuw [7] proposed to introduce a residual 
damping operator DH in the coarse grid operator (6.2). This DH is a diagonal matrix with 
entries in [O,l] which are determined by comparing the diagonal elements of the coarse and fine 
grid Jacobian matrices. The modified coarse grid equation then reads (cf. 6.2): 

NH(ijH) =NH(RHqh) +DH(RHq,,, q,,)RH(fh -Nh(qh)). (6.7) 

The elements of DH differ from 1 only in small parts of the domain {}, (the transition regions), 
and the effect of damping is compensated in these regions by additional relaxation on the fine 
grid. This technique has been used successfully for 2D problems (cf. [18]). 

This discussion makes clear that it is attractive to use a restriction that leads to coarse and 
fine grid Jacobians, the corresponding diagonal entries of which are of comparable magnitude. 
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The restriction based on the L 2-projection of the variables (ifr, n, p) seems to have this 
property: by rewriting (2.5) in the form 

-div(µ,nn grad <f>n) = +R, (6.8) 

-div(µ,Pp grad </>P) = -R, 

we see that the diagonal elements of the Jacobian matrices with respect to the variable set 
(l/J, <f>n, cf>P) should be of comparable magnitude on the coarse and the fine grid, because the 
concentrations (n, p) are of comparable magnitude in the corresponding cells on the coarse 
and the fine grid. Indeed in numerical experiments we observe that the diagonal elements of 
the damping operator DH are all equal to 1. Unfortunately we also observe that the coarse grid 
matrix tends to ill-conditioning in cases close to thermal equilibrium. We think that this is due 
to the following: for thermal equilibrium we have the trivial fine grid solution c/Ji h = <P; h = O. 

· nl · 11 • p, In a coarse gnd cell JL H = U in;., i = 1, ... , 4, which has some kid cells in the n-region and 
others in the p-region, we find 

n~Pk = ( i ~n~ )( i ~P~) » 1, 
l l 

which implies that cf>~.H =F c/J~.H, so we get nonzero values for c/J~.H and/or c/J~,H on the coarse 
grid which is unphysical. 

Therefore we propose a restriction that is based on the L 2-projection of the variables 
(i/J, <f>n, cf>P). In numerical experiments we observe (Section 8) that this choice yields a multigrid 
algorithm that is both robust and efficient, although the introduction of the residual damping 
operator DH is necessary. The precise construction of DH is described in [18]. 

We complete this section by describing the treatment of the "green" edges that appear on a 
partially refined grid. An edge is called green if it is not part of a physical boundary, and if the 
adjacent cells have a different level of refinement (cf. [18,24]). A straightforward approach is to 
impose inhomogeneous Neumann boundary conditions at the green edges on the fine mesh, as 
uk is given on the coarse mesh (cf. [24]). However this can lead to patches on the fine grid that 
have only Neumann boundary conditions, so that the solution uh is only determined up to an 
arbitrary constant. As there is no way to fix this constant for the semiconductor device 
equations, we have to impose Dirichlet boundary conditions at (at least some of) the green 
interfaces. 

The Lagrange multipliers A.h, as introduced in Section 3, are a good approximation of the 
potentials uh at the edges. So at a "green" edge Eh, which is part of the coarse grid edge E~ 
we use the Lagrange multiplier A.~ as a Dirichlet boundary condition on the fine grid. As 
noticed before, the flux al at the green interface Eh is still a variable, so also on partially 
refined grids we have discrete current conservation due to the choice of the restriction operator 
for the fluxes uh. 

7. Adaptive mesh generation 

As was seen in the previous section, it is fully consistent with the FAS-FMG method to use 
the relative truncation error as a refinement criterion in an adaptive mesh refinement strategy. 
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Fig. 1. Numbering of cells used in calculation of relative truncation error. 

Therefore, before describing the adaptive mesh generation, we study the relative truncation 
error more closely. 

Both for the equations related to the cells and to the walls relative truncation errors are 
defined. These are denoted by THh(!21) and THh(Ek), respectively. Using the definitions of the 
grid transfer operators given in Section 6, we find for the general problem (3.4), with a source f 
which is piecewise constant, that 7'Hh(J1~) in a cell n1, n~ = u i= l,4nh, is given by (cf. 3.6) 

THh(J11)=f(x~)-i L f(xL), (7.1) 
i= 1,4 

where xL denotes the center of flh. If lumping is used we obtain for THh(Ek) with Ek= Ei1 U E~2 

(for the numbering of the cells see Fig. 1) 

( E j ) ~ j H H ~ j h h ~ j h h uR - uL 1 ( u5 - u3 u6 - u4 ) 
THh H = aH 2h - 2 ah1 h + ah2 h ' (7.2) 

with 

etc. 

L I " . R I " . UH=4£_,U/z, UH=4£_,U/z, (7.3) 
i=1~ i-5~ 

nd 2h the distance between x1 and x~. Due to the choice of the restriction operator RH for 
the fluxes (6.6), uh does not appear in the relative truncation errors. 

The following two theorems state the order behavior of the relative truncation errors on 
uniform grids in the limit case of vanishing mesh width for the three semiconductor equations. 
We assume that (l/J, <Pn, <f>P) E (C3(D))3 and that (l/J 1, </>~, </>~) are the averages of (r/J, <f>n, <f>P) 
over the cell !21• 

Theorem 7.1. If the nonlinear source fin (3.lb) satisfies f(x, l/J, <Pn, <PP) E C 2(D X IR 3), then for 
all three equations we have for h ~ 0 

ITHh(fl1)1 :r;,.Ch21f(x, l/J, <Pn, </>p)l2,oo,!Jft· (7.4) 
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Proof. Using a Taylor expansion around x~, the center of !2f7 , we obtain from (7.1) 

- ( f( x J,, <P/i, <P;,H, 4'~.u) + i ,E,, ( x; -x~) · grad f ( xJ,) 

+ t __ L :~ L ( x;, - xj1 ) · grad <P( xj1 )) 
<l>··-•/1,</>,,,</1,. 'f' 1-l.4 

+ Ch 2 I f(x, i/J, <:/>,,,<Pp) I 2,--,,,nf1 

= Ch 2 I f(x, 1/;, </J,,, <Pp) I 2,oc_,Jlf1· 

The last equality follows from a symmetry argument. D 

77 

We notice that the requirement for the source term f in Theorem 7.1 holds for the 
Shocklcy--Read-Hall recombination model, as well as for the Auger model, but it excludes the 
avalanche-generation term modeling impact ionization. 

In the next theorem we give the order behavior of the truncation error at walls Tflh( Ef1). 

Theorem 7.2. For Poisson's equation we have 

1711;,( Ef,) I ~ Ch 2 , 

and for the continuity equations for the electrons and holes 

(7 .Sa) 

(7 .Sb) 

(7 .Sc) 

respectiuely, where C is bounded by the supremum norm of the first, second and third order 
deri1 1ati/l<?s of (~1, <!>,., </>"). 

Proof. We only give a proof for the continuity equation for holes. The length of E/1 is denoted 
by 2k and the mesh size perpendicular to E/1 by 2h. By using Taylor expansions of 1/1 and <Pp 
around xc (sec Fig. 1) and (7.2) and (7.3), we obtain for h small enough 

1/11{ - 1/1L 
I 'T ( F 1 ) I = c }/ II 

"" 'JI · cxp(t/111 ) - exp( 

exp( </{ 11 ) - exp( c/JJ;,lf) 
~---

h 
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+ !/It - I/It exp( <t>!,h) - exp( <1>;,h)) 
exp( ifrt) - exp( 1/11;) h 

~ C exp(</>~ - I/Jc) I (1 + Ch 2 )(1 + Ch 2 )(1 + Ch2 )( hax<f><j + Ch3) 

-(1 + ikoy</><j + Ch2)(l -ikay!/lc + Ch2)(1 + Ch2 ) 

X ( thax<f><j + ihka;YJPc + Ch3) 

-(1- tkay<f><j + Ch 2 )(1 + ikoyl/Jc + Ch2)(1 + Ch 2 ) 

x ( thox<f>; - ihka;Y<P<j + Ch 3 ) I 

~ Ch2 exp( <P<; - t/Jc). D 

Our adaptive mesh refinement scheme aims at equidistribution of the relative truncation 
errors; so from Theorems 7.1 and 7.2 we conclude that it makes sense to refine the mesh in 
areas where the relative truncation errors are large. 

In all finest cells and walls we define error indicators 11(Di, <f>) and 11(Ef,, </>), with 
<f> = ljf, <f>n, cf>P, by the relative truncation error in the parent cell and wall, respectively. Next the 
three error indicators are merged by a summation of the normalized values, so we obtain single 
error indicators 11(.Di), 7](Eh) E [O, l], for all cells and walls: 

(ni) = !:_" l11{!2i, </>)I (Ej) = !:_" l11(Ef., </>)I (7_6) 
11 h 31; 1ia(<I>) ' 11 h 31; 71£(<1>) ' 

with, respectively, 

(7.7) 

If the relative truncation errors are uniformly distributed then the error indicators are all equal 
to 1. 

The actual mesh refinement procedure consists of two steps. In the first step we refine all 
:ells and walls of which the error indicators 11(!2i) and 1J(Ef,) are larger than user-defined 
)ammeters 8a and 8£, respectively; a wall is refined by refining both cells adjacent to it. In the 
second step we add some additional refinements in order to maintain a certain grid regularity: 
a cell is split if at least three of its neighbors are split, and the parent wall of a green wall is 
refined if it is also green. 

In the next section we use this grid adaptation scheme in practical calculations. 

8. Numerical experiments 

As a test problem for our multigrid algorithm we use a bipolar npn-transistor from the 
CURRY example set [14]. Fig. 2 gives a schematic view of the geometry of the transistor and 
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emitter 

11=0.llxlli1'' 

ll"'l.lxJ01" 

(a) 

(b) 

Fig. 2. (al ( icorm:try and (b) doping prnfik: of transi~tor. 

the doping profile. 'l'he length of the device is 20 µm and the width is 8 µm; for a precise 
description of the doping profile we refer to [ 14]. The gencration--rccombination rate is given 
by the SRI I model (2.2), with carrier lifetimes T,, '"' T,, = 10 1' s. The applied voltages at the 
collector and the base arc kept constant at v;, '"' 1.0 V and Vi, "'" 0.0 V, respectively. Starting 
from v;, "'" 0.50 V, the applied voltage at the emitter is lowered during the simulation to 
V0 0.80 V in steps of 0.05 V. 

The coarsest grid used in our calculation consists of 4 X I 0 squares. In fact this mesh is too 
coarse to resolve the contacts properly. An obvious generalization of the discrctization (Section 
3) is us<:d to tr<:at these parts of the boundary. It is assumed that the currents through such a 
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Table 1 
Collector currents (A/ cm) 

MFEM Reference 
uniform mesh solution 

v. 16X40 32X80 64X 160 56X62 

-0.50 9.Sx10- 5 1.4X10- 5 1.0X 10 5 9.8x 10 6 

-0.55 5.8X 10- 4 9.5X10- 5 7.0x10- 5 6.7X 10-5 

-0.60 3.4X 10-4 6.4x 10- 4 4.8x10- 4 4.6x10- 4 

-0.65 1.8X 10- 2 4.3x10- 3 3.3x10- 3 3.1x10- 3 

-0.70 8.4x10- 2 2.8x10- 2 2.2x10- 2 2.1x10- 2 

-0.75 3.2x 10- 1 1.7X 10- 1 1.4x10- 1 l.3x10- 1 

-0.80 1.1x10+ 0 7.9x 10- 1 1.1x10- 1 6.9X 10-t 

boundary edge, which are determined by the Dirichlet boundary conditions and the potentials 
in the adjacent cell, only flow through that part of the edge that is covered by the contact. This 
approach makes it possible to use rather coarse and regular coarsest grids in our calculations, 
even if tiny contacts are present. After a sufficient number of refinements is made on the finer 
grids these contacts are properly resolved. 

The continuation of the boundary conditions happens on the coarsest mesh. We start by 
solving the thermal equilibrium case, i.e. no applied voltages. After changing the boundary 
conditions we solve the problem on the coarsest grid using the previously obtained solution as 
initial iterate. The solution procedure on the coarsest grid consists of a combination of 
Vanka-type relaxation sweeps and Newton steps; the relaxation sweeps are introduced to make 
the solution procedure more robust (cf. [12]). The new coarse grid solution is then interpolated 
to a next finer grid using the prolongation operator described in Section 6. This fine grid 
approximation is improved iteratively by a few W-cycles. Due to the robustness of the solution 
procedure on the coarsest grid we are able to take large steps in the continuation process. We 
have also tried the ramping procedure proposed by Edwards et al. [9,18], which aims at keeping 
the currents and the majority concentrations constant during the continuation of the applied 
voltage. This appeared to give no improvement, which-we believe-is due to the fact that the 
urrents do change when the applied voltages are altered. 

Table 1 shows the collector currents that are computed on the different grids, together with 
a reference solution computed with the CURRY package on a non-uniform 56 x 62 grid. It 
appears that the collector currents converge at least linearly (cf. Section 4) if the mesh size 
decreases. To estimate the convergence rate of the multigrid algorithm we introduce the 
average reduction factor p, 

= ( d(lO) ) 1/10 

p d(O) ' (8.1) 

where dUl denotes the maximum of the scaled residual after i FAS-sweeps. The residual is 
scaled point-wise by means of the diagonal 3 X 3 blocks of the Jacobian matrix: thus the scaled 
residual corresponds to corrections that would occur in a point-wise collective Jacobi relax
ation. The maximum of this scaled residual is taken over the grid and over the three variables 
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Table 2 
Average residual reduction factor p for W-cycles 

point-Vanka line-Vanka 

v. 16X40 32X80 64X 160 16X40 32X80 64X 160 

-0.50 0.17 0.21 0.18 0.06 0.12 0.11 
-0.55 0.18 0.20 0.18 0.07 0.13 0.12 
-0.60 0.18 0.20 0.17 0.07 0.13 0.12 
-0.65 0.17 0.20 0.17 0.08 0.13 0.12 
-0.70 0.20 0.21 0.18 0.15 0.17 0.12 
-0.75 0.31 0.24 0.17 0.21 0.21 0.12 
-0.80 0.43 0.24 0.18 0.31 0.23 0.16 

(i/J, <Pn, <PP). Every FAS-sweep consists of a W-cycle: it appears that V-cycles are less robust for 
the semiconductor problem (cf. [12,18]). 

Table 2 shows the average reduction factor p for different grids and both for symmetric 
point-Vanka and for alternating line-Vanka relaxation. We observe that the use of line-Vanka 
relaxation leads to a more efficient algorithm. The convergence behavior is not really grid-inde
pendent (in some cases it appears that the convergence is faster on finer grids!), but in all cases 
the convergence is fast, and only a few iterations are necessary to attain truncation error 
accuracy. 

Finally, we demonstrate the use of adaptive grids. Starting from the coarsest 4 X 10 grid, we 
add a single level of uniform refinement, which is necessary to estimate the relative truncation 
error on the coarsest grid. After solving the discrete equations on the first two grids, we refine 
the grid adaptively. Fig. 3 shows an example of a grid generated by the adaptive procedure. The 
finest level corresponds to a uniform 64 X 160 grid. This adaptive grid is obtained for 
~= -0.80 Vwith 8n=8E=O.l. 

It is clear that small values for & n and & E give rise to relatively fine grids, which means that 
the solution is more accurate at the expense of more computational work. Table 3 shows this 
tradeoff between the number of cells in the grid and the accuracy of the discrete solution 

Fig. 3. Example of adaptive grid. 
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Table 3 
Results for adaptive grids corresponding to a uniform 64X160 grid 

811=81, Number Relative error 
of fine cells collector currents 

0.01 5542 0.002 
0.05 3007 0.012 
0.10 1951 0.017 
0.15 1909 0.073 

calculated on the adaptive grid. The accuracy of the solution on the adaptive grid is measured 
by the relative error in the collector currents 

I
f -J I of (V) = c,U c,A 

c e f ' 
c,U 

(8.2) 

where fc,A' fc,u denote the collector currents on the adaptive grid and the corresponding 
uniform grid, respectively. In fact Table 3 shows the maximum value of of/~), and the 
maximum number of fine cells in the adaptive grid for the series of applied voltages at the 
emitter. In all cases we took on= oE. From Table 3 we conclude that we do indeed save a 
substantial amount of work by using adaptive grids. 

9. Conclusions 

We have developed an adaptive multigrid algorithm for the iterative solution of the system of 
nonlinear equations resulting from the mixed finite element discretization of the 2D stationary 
semiconductor equations. We have changed the discretization by using a quadrature rule, in 
order to obtain the Scharfetter-Gummel discretization. However we prove that the use of 
quadrature does not spoil the accuracy of the discrete approximations. 

Our multigrid algorithm for the iterative solution of the systems of nonlinear equations is 
based on a Vanka-type relaxation. In numerical experiments it appears that the line-wise 
version is more efficient than the point-wise relaxation. The use of extremely coarse grids in the 
multigrid procedure is problematic. However, we have shown that by using special grid transfer 
operators these problems can be overcome for rather coarse grids. 

Our adaptive grid refinement procedure, based on the relative truncation error, is natural 
within the framework of the multigrid algorithm. The usefulness of this method is demon
strated by means of a numerical experiment. 
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