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ABSTRACT

The aim of the eu project riftoz is to analyse regional di�erences in tropospheric ozone over Europe.

One of the key activities within riftoz therefore involves recovering ozone concentrations from available

measurements. This will be done by running the atmospheric chemistry model lotos over the selected period

using a data assimilation technique to incorporate the measurements. A commonly used data assimilation

technique is the (extended) Kalman �lter. This �lter has proved to be very useful in many applications.

However, the models involved in these applications are usually only weakly nonlinear, whereas atmospheric

models, like lotos, are often highly nonlinear.

The paper presents �rst results on data assimilation with a highly nonlinear test model using the (extended)

Kalman �lter algorithm. The test model has been designed such that the essential characteristics of the lotos

model, including sti� (photo-)chemistry, have been retained. Application of the standard algorithm for Kalman

�ltering is infeasible because of the huge computational and storage requirements. Instead, a reduced rank

approximation of the covariance matrix is used, which reduces the computational burden to an acceptable

amount of CPU time. Also attention is paid to reducing the number of noise parameters in the �lter algorithm

in order to further restrict the number of model evaluations that is required to solve the �ltering problem. The

results of the tests are very promising and show that Kalman �ltering may be successfully applied to atmospheric

chemistry models.

1991 Mathematics Subject Classi�cation: 93E11, 65C20

Keywords and Phrases: Data assimilation, Kalman �lter, Square root �lter, Air quality.
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1. Introduction

The �nal goal of eu project riftoz (Regional dIFferences in Tropospheric OZone) is to produce a

reliable data set of ozone concentrations for the summer of 1997 and to analyse why ozone behaves

di�erently in di�erent parts of Europe, using this data set. Of course ground measurements as well

as satellite observations will be available. However, these ground level data are irregularly distributed

over the horizontal domain whereas the satellite observations will only be available once in three days

and only in cloud-free situations with a low aerosol loading. Therefore, a model simulation with the

model lotos will be performed. In order to incorporate the available measurements, data assimilation

will be performed. The present paper examines whether the (extended) Kalman �lter algorithm is

a suitable data assimilation technique for atmospheric chemistry models. This �lter technique has

proved to be very useful in many applications. However, the models involved in these applications are

usually only weakly nonlinear, whereas atmospheric chemistry models, like lotos, are often highly

�
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nonlinear. In order to test the Kalman �lter for this kind of applications, a 3D atmospheric chemistry

test model is used. This test model has been designed such that the essential characteristics of

the lotos model, including sti� chemistry, have been retained. Attention will be paid to ways to

restrict the computational work as much as possible. In that connection, it will be shown how the

operator splitting, that is applied in lotos and also in the test model, enables further restriction of

the computational work. The implementation of the �lter is based on the Reduced Rank Square Root

algorithm, presented in [7].

The paper is organized as follows. In Section 2 a short description of the Kalman �lter for linear

and non linear models is given. Section 3 describes the Reduced Rank Square Root (rrsqrt) imple-

mentation. In Section 5 the test model and the data assimilation experiments are de�ned and their

results are presented. The conclusions drawn from the experiments are summarized in Section 7.

2. The Kalman filter

2.1 The linear case

Suppose we have a linear deterministic model

xk+1 = Akxk; xk 2 Rn; Ak 2 Rn�n; (2.1)

that describes the approximate (discrete) time behavior of a state vector x(t) where xk denotes the

approximation for x(tk) with tk = tk�1+�k. The time interval between two successive approximations

need not be constant. Suppose also observations yk of (linear combinations of the elements of) the

state vectors at (some of) the time levels t = tk are available. Hence,

yk = Ckxk ; yk 2 Rm; Ck 2 Rm�n; (2.2)

In practice, models are often far from perfect, not so much because the state vectors are numerical

approximations of the solution of the model equation but in particular because often a number of

parameters, including the initial and boundary conditions, are unknown or only approximately known.

Also, measurements will not be perfect. An observation error will sometimes be present. In addition,

an observation may be not be representative for the volume considered by the model. To obtain an

optimal estimate of the state using both sources of information, the model and the observations, a

�lter technique is used. In order to be able to use a �lter technique stochastic descriptions of the

model and the measurements are necessary instead of deterministic ones. Therefore, we replace the

model (2.1) by its stochastic extension

xk+1 = Akxk + Fwk ; wk 2 Rp; F k 2 Rn�p; (2.3)

where x now is a stochastic variable. The vector wk represents the system noise with zero mean and

covariance matrix Qk = E[wk(wk)T ]. A discussion on how to identify the system noise is postponed

until later. Similarly, the measurements are represented as

yk = Ckxk + vk; vk 2 Rm; (2.4)

where vk denotes the measurement noise. The measurements are supposed to be independent, i.e. the

covariance matrix Rk = E[vk(vk)T ] is diagonal.

An optimal estimate x̂k+1 of xk+1 in (2.3) is given by the Kalman �lter equations

x̂k+1f = Akx̂k (2.5)

P k+1
f = AkP k(Ak)T + F kQk(F k)T (2.6)

Kk+1 = P k
f (C

k)T
h
Ck+1P k+1

f (Ck+1)T +Rk
i�1

(2.7)

x̂k+1 = x̂k+1f +Kk+1(yk+1 � Ck+1x̂k+1f ) (2.8)

P k+1 = P k+1
f (I �Kk+1Ck+1) (2.9)
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The �rst step, given by equation (2.5), is just a model evaluation. In the second step (2.6), the

covariance matrix P k = E[(xk � x̂k)(xk � x̂k)T ] is updated. The third and fourth step form the

measurement update. In the last step, the covariance matrix is updated again because of measurement

update of the state vector.

From the �lter equations, it is seen that the initial estimate x̂0 and the covariance matrix P 0 =

E[(x0 � x̂0)(x0 � x̂0)T ] for the initial conditions must be speci�ed. Since usually nothing is known

about the covariances, P 0 is often set to zero. Note that the covariance matrix P is always symmetric

and positive semi de�nite.

It is also seen from the �lter equations, that the computational work involved with the measurement

update is quite large. In the �rst place, the computation of AkP k(Ak)T in (2.6) is 2n times as expensive

as one model evaluation. For small problem dimensions, this may not be much of a problem, but for

large n this factor is infeasible. In the Reduced Rank Square Root algorithm (see Section 3) this

problem is circumvented. In the second place, in case the number of measurements m is large,

computing the Kalman gain Kk+1 is also expensive, since it involves n times the solution of a m�m

matrix-vector equation.

Fortunately, the computational e�ort for the measurement update can signi�cantly be reduced in

case the measurements are uncorrelated. In that case it can be shown (see e.g. [2, 6]) that the following

iterative procedure may be applied (dropping the superscripts k + 1):

ai = (ciPi�1c
T
i +Rii)

�1

bi = (1 +
p
aiRii)

�1

Ki = aiPi�1c
T
i

Pi = Pi�1 � aiPi�1c
T
i ciPi�1

xi = xi�1 +Ki(yi � cixi�1)

9>>>>>=
>>>>>;

i = 1; : : : ;m (2.10)

with P0 = P k+1
f and x0 = x̂k+1f . The row vector ci is equal to the ith row of the matrix Ck+1. As

�nal result we have P k+1 = Pm and xk+1 = xm. From the measurement update (2.10) the following

can be seen. Suppose CT
i is the unit vector "k, i.e. the kth entry is one and all others are zero. It

is then easily seen that the kth element of the Kalman gain (which is a vector) Ki is a nonnegative

number bounded by one, so that the kth entry of xi will be closer to the measurement than the kth

entry of xi�1. Further, if the di�erent measurement sites are uncorrelated (the corresponding entries

of Pi are zero), this will also be the case after the measurement updates.

2.2 The nonlinear case

We now suppose that the model is nonlinear and can be written as

xk+1 = f(t; xk; wk): (2.11)

The measurements are still supposed to be of the form (2.4). The �lter equations (2.6)-(2.9) may now

be applied to the linearized model with

Ak =
@f

@xk
(x̂k; 0); F k =

@f

@wk
(x̂k ; 0): (2.12)

In the �rst step (2.5) of course the model itself is applied, i.e.

x̂k+1f = f(t; x̂k; 0):

The procedure for the non linear case is called the Extended Kalman Filter (ekf). Even though we

now have a procedure that deals with non linear models, for models with a large dimension n it is

computationally still infeasible to apply the ekf. The computational burden has even become much

havier than in the linear case, because now two large Jacobian matrices have to be computed.



4

2.3 Filter divergence

Filter divergence occurs if the computed error variances (in the measurement points) are small whereas

the residues, i.e. the di�erence between the measured and computed solution, are large. Filter

divergence often happens when the dynamics of the model are (too) far from reality. For more details

we refer to [4], where also a nice example of �lter divergence in the linear case is worked out. In

atmospheric models �lter divergence may also occur. For example, the wind �elds may be in error,

the chemical mechanism does not describe the true chemical process accurately etc.

In the literature various ways are described to try to prevent �lter divergence. Here, we briey

discuss some possibilities. The emphasis is on errors caused by deviations between the true and

modeled wind �elds. Note that in atmospheric models advection is to a large extent responsible for

the horizontal coupling between grid cells. This implies that correlations between grid cells are mainly

caused by horizontal advection.

� Memory reduction. The idea behind this is that information present in the �lter is not valid any

more after some time, either because of modelling errors or due to the nonlinearity of the model.

In the context of deviations in the wind �eld the information is, so to speak, just transported into

the wrong direction and hence becomes more and more inaccurate. Therefore it makes sense

to only take into account recent information and to "forget" old information. A systematic

approach is given in [4], section 7.10. This approach, however, is rather expensive because

the �ltering procedure has to be applied twice and, in addition, two extra matrix inversions

are involved. Therefore, we do not consider this approach for the present application. A very

simple appraoch to achieve memory reduction is followed by Ca~nizares et al. [1]: after each

time step the covariance matrix is multiplied by a memory reduction factor � < 1. In this way

old information becomes exponentially less dominant. There is, however, the risk that "false

certainty" is introduced into the system, for (co)variances are decreased by the reduction factor.

Hence � may not be chosen too small.

� Overweighting recent data. This approach is based on a similar assumption as memory reduc-

tion. By multiplying the standard deviation of the measurements and the covariances by an

appropriate factor, it is achieved that the inuence of old information decreases exponentially

in time. Instead of equation (2.7) we apply

Kk+1 = P k
f (C

k)T
h
Ck+1P k+1

f (Ck+1)T + e��Rk
i�1

(2.13)

and instead of (2.9)

P k+1 = e�P k+1
f (I �Kk+1Ck+1) (2.14)

with � > 0, see [4] for details.

� Increase the noise input, thus increasing the uncertainty in the model. This in turn causes the

�lter to relatively more weight to the measurements.

The �rst possibility to increase the noise input is simply add a noise vector W with speci�ed

statistics directly to the stochastic extention of the model equation (2.3). In the Kalman �lter

equations we then only have to add the covariance matrix E[WW T ] to the right hand side of

(2.6). The covariance between two grid points P1 and P2 is then often described by

Cov(P1; P2) = �2 expf�� � dist(P1; P2)g;

where � and � need to be speci�ed. Dist(P1; P2) denotes a measure for the distance between

the points P1 and P2.

The second possibility to increase the noise input is to introduce a few parameters that describe

the the deviations in e.g. the wind �eld. The vector w in (2.3) is then extended with these
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parameters. In contrast to the �rst possibility, this acts on directly on the part of the dynamics

in which errors are assumed. A complication, however, is that adding noise to wind �elds should

preserve the divergence-freeness.

3. The Reduced Rank Square Root algorithm

It is convenient not to work with the convariance matrix P , but with its square root S (i.e. SST = P ).

A major advantage is that P then always is semi positive de�nite, no matter how S is approximated.

Another important advantage is that S need not have n columns, but can have q < n columns. The

trivial example is P = 0 in which case one column with all entries zero su�ces. This property will

be exploited in the Reduced Rank Square Root algorithm (rrsqrt) that is presented in [7]. For the

moment being we just assume S 2 Rn�q. The algorithm consists of three steps.

1. Time step

The time step performs the time propagation of the state vector xk and the square root of the

covariance matrix.

x̂k+1f = Akx̂k (3.1)

Sk+1
f = [AkSk; F k(Qk)1=2]; (3.2)

where the notation [A1; A2] means that A1 is extended with the columns of A2.

2. Reduction step

Since due to (3.2) the number of columns of S will grow rapidly, the corresponding computation time

for the �lter evaluations will grow as well. Therefore, the number of colums of Sk+1
f is reduced to

q � n. Supposing that Sk has already q columns, Sk+1
f will have q +m columns, hence Sk+1

f has to

be approximated such that it has only q columns. This is done by taking only the q leading singular

values of Sk+1
f (Sk+1

f )T into account. Let

Sk+1
f = U�V T

denote the singular value decomposition of Sk+1
f . Then

(Sk+1
f )TSk+1

f = V �T�V T ;

Sk+1
f (Sk+1

f )T = U��TUT ;

from which we conclude that the �rst (q +m) singular values of Sk+1
f (Sk+1

f )T and (Sk+1
f )TSk+1

f are

the same. Since the latter is only a (q +m) � (q +m) matrix, it is much more e�cient to compute

the singular value decomposition of (Sk+1
f )TSk+1

f . The square root of Sk+1
f (Sk+1

f )T is now given by

U� which is approximated by its �rst q columns, i.e. the last m entries of � are neglected. Since U

is not known, we use the identity

U� = Sk+1
f V:

By multiplying both sides by V T , it is easily seen that this equality holds, since V V T = I .

3. Measurement step

Assuming that the measurements are uncorrelated, the iterative procedure may be applied. Formu-

lated in terms of S, this procedure is given by

Hi = ST
i�1c

T
i

ai = (HT
i Hi +Rii)

�1

bi = (1 +
p
aiRii)

�1

Ki = aiSi�1Hi

Si = Si�1 � biKiH
T
i

xi = xi�1 +Ki(yi � cixi�1)

9>>>>>>>=
>>>>>>>;

i = 1; : : : ;m; (3.3)
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with x0 = x̂k+1f and S0 = Sk+1
f .

3.1 Approximating the Jacobian

Since really computing the Jacobian matrices according to (2.12) is far too expensive, we follow the

approach proposed in [7]. Let ski denote the ith column of Sk. Then the ith column of AkSk may be

approximated by

@f

@xk
ski �

f(xk + �si; 0)� f(xk; 0)

�
: (3.4)

This procedure requires only q instead of n model evaluations. In a similar way F k(Qk)1=2 is approx-

imated, which requires another m model evaluations.

4. Description of the test model

As horizontal domain we take an area of 3000 � 3000 km2. In vertical direction, two layers of 500m

depth each are modeled. On this domain we solve for each species ci;j , denoting the concentration of

species i in layer j the following equation.

@ci;j

@t
+

@ujci;j

@x
+

@vjci;j

@y
= Dj(ci;j) + Kj(ci;1; ci;2) + Fi(c1;j ; : : : ; cs;i) + Ei;j(x; y);

(4.1)

where (uj ; vj) denotes the velocity �eld in layer j, Dj the deposition, Kj the vertical exchange between

the two layers, Fi(c) the chemical reactions and Ei;j(x; y) the source term. The number of species

taken into account is four, i.e. s = 4. The species are NO2, NO, O3 and OH .

4.1 Chemistry

The species are coupled by the chemical reactions. From the chemical mechanism in [5], we took the

following reactions

NO2
k1�! NO +O3

NO +O3
k2�! NO2

NO2 +OH
k3�! NOa

3

O3
k4�! b1OH + b2O3

CO +OH
k5�! a1O3

CH4 +OH
k6�! a2O3

(4.2)

These reactions form the basis for many ozone chemistry models. For the corresponding reaction rates

we refer to [5]. For the second order reactions, the rates from [5] are multiplied with 2:46 � 1010 to

obtain rates in (ppb s)�1. For most of these reaction rates either the temperature Tk (in Kelvin) or

the cosine of the solar angle cos  is necessary. They are modeled by

Tk = 293:1 + 5 cos(
�

12
tod� 12);

cos  = 0:6 cos(
�

12
tod� 12);

where tod denotes the time-of-day in hours. This choice for cos  corresponds with a midsummer

day at about 530 Northern latitude. If cos  � 0, the corresponding reaction rates are zero. The

concentrations of CO and CH4 are given a constant value of 150 ppb and 1700 ppb, respectively. The

coe�cients b1 and b2 are related through the relation b2 = 1 � b2=2. In [5] these parameters depend

on the water vapour concentration. Here, they are taken constant and given the values 0.8 and 0.6,

respectively.
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4.2 Deposition

Depostion from layer one to the surface is modeled by

D1(ci;j) = � vdi ci;j ;

where vdi denotes the net deposition velocity for species i. The deposition velocity for NO2 is 2 � 10�6
and for ozone 5 � 10�6.

4.3 Vertical di�usion

The vertical exchange between the two layers is modeled by

K1(ci;1; ci;2) = �K2(ci;1; ci;2) = �(tod)(ci;2 � ci;1);

where �(tod) is chosen such that its value at 12:00h would cause the di�erence between ci;1 � ci;2 to

be decimated in 15 minutes, �(12) � 3:85 � 10�4s�1 if no other processes were present. A similar time

behavior as for the temperature is taken for �

� = 1:925 � 10�4(1 + cos0:2(
�

12
(tod� 12)) s�1:

This parametrization is meant to represent the fact that the vertical mixing is strong during day time

and weak at night. The cosine is raised to the power 0.2 in order to let the pro�le of � more look like

a block function.

4.4 Emission

At four di�erent locations in the domain NO emissions take place. Two of them take place in the

layer 1, the other two (stronger) ones in the second layer. The locations and source strenghts will be

speci�ed in Section 4.7.

4.5 Initial and boundary conditions

The initial conditions are summarized in Table 1 For the inow boundaries, time dependent boundary

NO2 NO O3 OH

layer 1 10 1 40 0

layer 2 20 0 30 0

Table 1: Initial conditions in ppb

conditions for NO2 and O3 are speci�ed. In the �rst layer they are modeled by

NO2 = 30 + 20 cos(
�

12
(tod� 12)); O3 = 20 cos(

�

12
(tod� 12))

and by

NO2 = 30 + 15 cos(
�

12
(tod� 12)); O3 = 15 cos(

�

12
(tod� 12))

in the second layer. All other boundary conditions are zero.

4.6 The wind �elds

For both layers, the well-known rotational wind �eld is taken, but with di�erent centers of rotation

and di�erent scaling. They are given by

u1(x; y) = 2�U1(y � y1) v1 = � 2�U1(x� x1)

u2(x; y) = 2�U2(y � y2) v2 = � 2�U2(x� x2)

where x1 = y1 = y2 = 1:5 � 106, x1 = 2:25 � 106, U1 = (2=3) � 10�6 and U2 = 10�6.
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4.7 Numerical aspects

The horizontal domain is divided into 30 � 30 grid cells. This results into a dimension of the state

vector equal to 7200. (For the lotos model this will be about 2:5 � 104.) NO emissions take place

in the cells (10,20) and (20,10) of the �rst layer. The strength of the emission is such that the NO

concentration would increase with 2.5 and 5.0 ppb per hour if no other processes are taken into

account. In the second layer, NO emission takes place in the cells (10,10) and (20,20) such that the

concentrations would increase by 10.0 and 7.5 ppb per hour. The time interval considered is a period

of 4 days, starting at 12:00h at day 1 and ending at 12:00h at day 4.

To generate measurements a model run is performed in which the model equations are solved very

accurately. This has been done by using the implicit-explicit scheme (see [9]) with very small time

steps of one minute. Each hour the O3 concentrations at 25 di�erent locations are stored, that will

serve as measurements Mi;j for the data assimilation runs. The indices i and j refer to the grid cells

and may take the values 5, 10, 15, 20 and 25.

In the data assimilation runs, so-called operator splitting is applied, similar as in lotos. This

means that the model equation is split up in a number of subprocesses. Each subprocess is then

solved separately using the outcome of the previous subprocess as initial condition. For the present

test model three subprocesses are identi�ed: chemistry, advection and emission. The vertical exchange

between the layers and the deposition are included in the chemistry. The chemistry is numerically

solved by the method twostep [8, 10, 5]. The advection operator is spatially disretized by the

3rd order limited � = 1
3
discretization, integrated in time with a second order explicit Runge-Kutta

formula [3, 5].

The di�erent solution methods prevent that the assimilation runs are able to follow the "reality"

exactly.

5. Experiments with the test model

For NO and OH the initial conditions are set to zero in both layers. For O3 and NO2 they are taken

10 ppb in both layers. The boundary conditions are unchanged. It is supposed that the reaction rates

k1 and k2, the parameters b1 and b2, the emissions and the di�usion parameter � are not exactly

known. This is simulated by putting

k1 = k1 � (0:75 + w1) (5.1)

k2 = k2 � (0:75 + w2) (5.2)

b1 = b1 � (0:75 + w3) (5.3)

E10;10 = E10;10 � (0:75 + w4) (5.4)

E10;20 = E10;20 � (0:75 + w4) (5.5)

E20;10 = E20;10 � (0:75 + w5) (5.6)

E20;20 = E20;20 � (0:75 + w5) (5.7)

� = � � (0:75 + w6): (5.8)

The parameter b2 follows from the relation b2 = 1� b1=2. The wi are supposed to be independent of

each other and their standard deviations are given the value 0.5. The measurements have standard

deviation of 1.0.

The experiments will be done with di�erent values for the maximum number of modes. As measure

for the error between the exact solution and the solution produced by the data assimilation run, the

following norms are used

ERR2 =

0
@ 1

900

X
i;j

(cexij � cassij )2

1
A

1

2

; (5.9)

INF = maxjcexij � cassij j; (5.10)
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where cex and cass denote the solutions for O3 in the �rst layer from the reference run and from the

assimilation run, respectively. The norms ERR2 and INF are computed using the concentration �eld

at the end of the time interval considered. Also a norm is introduced to measure the error in the

measurement points at time t = tk

EMk =

0
@ 1

jJ j
X

(ij)2J

(cexij (t
k)� cassij (tk))2

1
A

1

2

; (5.11)

with J the set of indices of the measurement points. The total error in the measurement points is

measured by the average EMA over the EMk

EMA =
1

96

96X
i=1

EMi: (5.12)

In order to be able to identify the occurence of �lter divergence the norm V AR is introduced, which

denotes the average computed variance over measurement points and time steps.

5.1 Experiment 1

This experiment consists of 3 cases, A, B and C. In case A all 25 measurements are taken into account.

In case B and C only the measurements Mij with indices i; j 2 f5; 15; 25g and i; j 2 f5; 25g are taken
into account. The results for this experiment are summarized in Table 2. The colums "split" gives

values of the error norms for the results of a model run with the correct parameters and right initial

conditions in which operator splitting is applied in the way indicated above. From the numbers

in the column "split" it can be concluded that the numerical solution is not very close to the exact

solution of the model problem. For our purpose this is a nice situation to have, because usually models

do not describe the modeled reality very accurately. The column "wrong" gives values of the error

norms in case data assimilation is not applied and the wrong initial values and parameters are used.

The numbers in this column clearly show that the results of this simulation are far from "reality".

An important observation from Table 2 is that the error norms for all number of modes used are

maximum #modes

case norm split wrong 10 25 50 75 100

ERR2 6.71 16.31 1.67 1.56 1.56 1.56 1.56

1A INF 15.75 31.27 8.33 7.84 7.91 7.90 7.90

EMA 3.24 22.85 1.36 0.94 0.94 0.94 0.94

V AR - - 0.27 0.28 0.28 0.28 0.28

ERR2 6.71 16.31 2.06 1.85 1.82 1.82 1.82

1B INF 15.75 31.27 8.18 9.28 9.68 9.73 9.92

EMA 2.83 22.55 1.28 1.14 1.11 1.12 1.12

V AR - - 0.24 0.25 0.25 0.25 0.25

ERR2 6.71 0.54 2.49 2.40 2.37 2.37 2.37

1C INF 15.75 31.27 7.41 7.41 7.37 7.40 7.37

EMA 2.22 20.18 1.63 1.59 1.58 1.58 1.58

V AR - - 0.35 0.35 0.35 0.35 0.35

Table 2: Values of the error norms for experiment 1

signi�cantly smaller than in the column "split". This shows that the extended Kalman �lter is able

to deal with the model problem. Another observation from Table 2 is that increasing the maximum
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number of modes taken into account leads to some improvement of the simulations. Figure 1 shows the

average error (absolute averaged residue) and the computed covariance for experiment 1A for 10 and

100 modes. In general, the computed covariances are smaller than the residues but �lter divergence

does not seem to occur in this case. Recall that the measurements were given a standard deviation

equal to one. From Figure 1 it is seen that the computed residues have about the same value. Figure
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12 24 48 72 96 108
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Figure 1: Average di�erence at the measurement locations (solid) and average computed covariance

(dashed) for experiment 1A. Left: 10 modes Right: 100 modes

2 shows a plot of the reference solution (at the end of the model run) and of the solution of the data

assimilation runs with 100 modes. The patterns in the plot corresponding to experiment 1A, 1B and

1C are all similar as the pattern of the reference solution. This indicates again proper functioning of

the �lter. Moreover, since in experiment 1C only 4 measurements per hour are used, Figure 2 shows

that the �lter is able to produce good approximations if only little information is available. Although

both computations give good results, Figure 1 clearly shows that using only 10 modes is by far not

enough to approximate the covariance matrix very accurately and causes loss of relevant information.

5.2 Experiment 2

In order to see if the �lter is able to perform well if the dynamics of the model are "wrong", the wind

�eld is changed. The centers of the rotational wind �eld have been moved four grid cells in eastern

direction and three in northern direction in the �rst layer and four grid cells in western direction and

three in southern direction in the second layer. In addition all wind speeds are multiplied by 2
3
. All

25 measurements are used. In case A, the �lter is applied without doing anything extra to prevent

�lter divergence, which is expected to occur in this case. In Table 4 the error norms for the present

experiment are listed.

In case B, C and D, measurements are taken to prevent �lter divergence as described in Section

2.3. In case B a memory reduction factor � = 0:9 is applied. In case C overweighting recent data is

applied with � = 0:25. Finally, in case D the vector w is extended with ten parameters describing

uncertainty in the wind �elds. In order to obtain divergence-free wind �elds, a stream function 	(x; y)

is introduced

	1(x; y) = w7x+ w8y + w9xy + w10x
2 + w11y

2; (5.13)

	2(x; y) = w12x+ w13y + w14xy + w15x
2 + w16y

2; (5.14)

from which parametrized deviations in the wind �elds are derived. As a result, the wind �elds are
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Figure 2: Real solution and the solutions for the experiments 1A, 1B and 1C from the data assimilation

runs using 100 modes
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speci�ed as

u1(x; y) = u1(x; y) + w8 + w9x+ 2w11y;

v1(x; y) = v2(x; y)� w7 � w9y + 2w10x;

u2(x; y) = u1(x; y) + w13 + w14x+ 2w16y;

v2(x; y) = v2(x; y)� w12 � w14y � 2w15x:

The standard deviation of w7; : : : ; w16 is taken 0.5, where the x� and y-coordinate are both scaled

to [0,1]. The results for this experiment are summarized in Table 4. In all cases sometimes negative

case A case B

#modes #modes

10 25 50 10 25 50

ERR2 6.01 6.36 6.36 10.29 10.09 10.11

INF 14.31 15.11 15.11 26.73 25.92 26.12

EMA 5.22 4.88 4.88 5.28 5.28 5.28

V AR 0.33 0.34 0.34 0.29 0.29 0.29

case C case D

#modes #modes

10 25 50 10 25 50

ERR2 0.20 0.19 0.19 0.14 0.13 0.14

INF 14.45 13.64 13.63 16.96 19.12 20.05

EMA 5.16 4.67 4.66 2.39 2.32 2.27

V AR 0.30 0.31 0.31 0.40 0.40 0.40

Table 3: Values of the error norms for experiment 2 using only 4 measurements

case A case B

#modes #modes

10 25 50 10 25 50

ERR2 5.11 5.11 5.09 5.11 5.11 5.11

INF 12.50 12.46 12.27 12.59 12.53 12.48

EMA 3.22 3.18 3.17 3.54 3.53 3.54

V AR 0.27 0.27 0.27 0.26 0.26 0.26

case C case D

#modes #modes

10 25 50 10 25 50

ERR2 5.07 5.01 5.02 8.93 2.82 2.35

INF 12.44 11.82 11.73 145.3 14.90 12.14

EMA 3.18 3.10 3.09 2.07 1.69 1.38

V AR 0.22 0.22 0.22 0.29 0.32 0.27

Table 4: Values of the error norms for experiment 2 using all 25 measurements

values were encountered after the processing of the measurements. In order to prevent unphysical

solutions and (numerical) instabilities negative values are cut o� to zero. The occurence of negative

values indicates that the �lter sometimes may introduce oscillations into the model leading to under-

and overshoots. The latter can be seen from the relative high values for the INF error norm compared
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Figure 3: Average di�erence at the measurement locations (solid) and average computed covariance

(dashed) for experiment 2A (left) and 2D (right) using 50 modes

to the values for ERR2.

The results for case A cleary show, as expected, that due to the modi�cation in the wind �elds �lter

divergence occurs: the computed covariances are about 0.6 whereas the average residues are about

ten times larger. Application of the memory reduction factor (case B) makes the situation even worse.

Overweighting recent data (case C) gives only very little improvement. In Figure 4 shows solution

plots of the real solution and the solution of experiment 2B, 2C and 2D. In case D more signi�cant

improvement is achieved. The error norms, except for INF , decrease considerably compared to the

case A, B and C. The computed covariances increase, as they should, whereas the average residues

decrease, though the di�erences between the two quantities are still too large. From Figure 4 it is

seen that in this case the solution pattern of the real solution is recovered in contrast to case B and

C.

5.3 Experiment 3

In experiment 2 we have seen that application of a memory reduction factor or overweighting recent

data does not lead to improvements in case perturbations in the wind �elds are present. Only if the

wrong dynamics are also taken into account by means of adding noise, improvements were obtained

(experiment 2D). Meanwhile the basic assumptions for memory reduction and overweighting recent

data are still valid, so it seems natural to consider a combination of one of these two with case D of

the previous experiment. The results for this experiment are summarized in Table 5. The error norms

printed in italics in Table 5 indicate that in the corresponding experiment (3.4) has been applied with

� = 0:25 because of instability in case of � = 1:0. It has been veri�ed that the instability was caused

by blow up in the chemistry routine due to negative initial concentrations. The latter are caused by

the fact that the initial vectors xk+�si for a model evaluation in (3.4) may have negative components.

In fact, this often happens without blow up occuring in the chemistry.

6. Computational aspects

Application of the rrsqrt algorithm to realistic atmospheric models is computationally very expen-

sive. Even for the present simple test model a data assimilation run of �ve days using 50 modes

already takes approximately ten hours of CPU time on a workstation (SGI, Indy). Since the aim is to

apply the rrsqrt algorithm to lotos for the summer of 1997, it is clear that further reduction of the
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Figure 4: Real solution and the solutions for the experiments 2B, 2C and 2D from the data assimilation

runs using 50 modes
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4 measurements 25 measurements

� � = 0:0 � = 0:1 � = 0:25 � = 0:5 � = 0:0 � = 0:1 � = 0:25 � = 0:5

ERR2 0.14 0.13 0.13 0.13 2.35 2.55 2.59 2.35

0.5 INF 16.96 19.63 19.00 16.22 12.14 8.48 10.83 12.33

EMA 2.39 2.12 2.00 2.16 1.60 1.55 1.52 1.38

V AR 0.40 0.39 0.37 0.22 0.32 0.31 0.29 0.27

ERR2 0.12 0.13 0.13 3.50 3.73 3.73 3.52 3.68

1.0 INF 14.00 13.84 14.04 12.91 21.37 26.67 23.16 25.51

EMA 1.59 1.49 1.36 1.17 1.34 1.34 1.34 1.21

V AR 0.47 0.46 0.43 0.40 0.36 0.34 0.33 0.30

ERR2 0.13 0.13 0.12 0.12 3.59 3.43 2.92 3.10

1.5 INF 11.45 10.46 10.18 9.86 25.09 16.34 20.24 21.48

EMA 1.46 1.37 1.26 1.19 1.24 1.47 1.16 1.19

V AR 0.49 0.47 0.44 0.40 0.38 0.32 0.34 0.31

Table 5: Values of the error norms for experiment 3 using 50 modes

CPU time is necessary. In this section we briey discuss two possibilities to achieve this reduction. In

future work we will investigate these possibilities more thoroughly.

6.1 Further reducing sequential CPU time

The �lter algorithm requires a number (� maxmodes) of extra model evaluations per time step for

the time propagation of the covariance matrix. If it is possible to reduce the cost of these extra

model evaluations, a considerable reduction of the total computational work can be achieved. One

possibility is to perform the extra model evaluations on a coarser grid. This requires all input data

to be available on a coarser grid as well, which is of course possible but requires a lot of work for

a large atmospheric model like lotos. Therefore we suggest a di�erent approach. Since the model

equations are solved numerically using operator splitting, it is possible to try to solve some of the

subprocesses in a cheaper way. For example, the chemical equations can be integrated less accurately.

This may lead to a signi�cant reduction in CPU time, because the chemistry takes relatively a large

part of the total CPU time. In Table 6 some preliminary results are shown. The preliminary results

maximum #modes

norm 10 25 50 100

ERR2 2.16 2.01 2.12 2.06

INF 9.93 11.21 11.35 10.89

EMA 0.82 0.54 0.41 0.31

V AR 0.28 0.30 0.31 0.31

Table 6: Results for experiment 1A using a cheaper model evaluation

indicate that it may be possible to perform the model evaluations in a cheaper way when updating

the covariance matrix. This seems to result into somewhat larger computed (co)variances, causing

the �lter to give relatively more weight to the measurements. This explains why values for EMA for

the present experiment are smaller than the corresponding values from the original experiment (see

Table 2
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6.2 E�cient Parallel Implementation

The �lter algorithm can be very e�ciently implemented on a shared memory parallel machine because

of the natural parallelism in the time step (3.1) and (3.2) of the rrsqrt algorithm. This time step

requires q+1 independent model evaluations, q being the number of modes used. For the test model a

parallel implementation (fortran 90) on a Cray C90 with four processors has been made. The singular

value decomposition in the reduction step is performed by the routine SGESVD from the LAPACK

library which exhibits very good speed up factors. Since the processing of the measurements is an

essentially sequential process, parallelism has been achieved within each measurement update on the

linear algebra level. On four processors the code running with 50 modes attains a speed up factor of

about 3.5. Although this is only an indication of the possible performance of an implementation of

the the extended Kalman Filter applied to lotos, we think that good parallel performance can be

achieved indeed. We plan to report on this in the near future.

7. Conclusions

Summarizing, the following conclusions can be drawn

� The Extended Kalman Filter (ekf) has been succesfully applied to an atmospheric chemistry

test model. This indicates that it should be possible to apply the ekf to the model lotos.

� The Reduced Rank Square Root (rrsqrt) implementation, which approximates the ekf, works

well in the present application where only 50 modes su�ce for good results. Since lotos

is a larger model and probably more noise parameters will be introduced, we expect that in

applications with lotos 50-100 modes will be needed.

� Preventing �lter divergence by some means has been shown to be necessary. Memory reduction

gave worse results and should therefore not be considered. Overweighting recent data seems to

improve the results, but is not able to prevent �lter divergence without modelling the uncertainty

in the dynamics.

� On a share memory machine excellent paralellization for the test model has been achieved by

parallelisation over the calls to the model for all modes.
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