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ABSTRACT
Various experimental and theoretical studies have shown that Fick's law, based on the assump-

tion of a linear relation between solute dispersive mass 
ux and concentration gradient, is not

valid when high concentration gradients are encountered in a porous medium. The value of the

macrodispersivity is found to decrease as the magnitude of the concentration gradient increases.

The classical, linear theory does not provide an explanation for this phenomenon. A recently

developed theory suggests a nonlinear relation between concentration gradient and dispersive

mass 
ux, introducing a new parameter in addition to the longitudinal and transversal disper-

sivities. Once a unique set of relevant parameters has been determined (experimentally), the

nonlinear theory provides satisfactory results, matching experimental data of column tests, over

a wide range of density di�erences between resident and invading 
uids. The lower limit of

the nonlinear theory, i.e. very low (tracer) density di�erences, recovers the linear formulation of

Fick's law.

The equations describing high concentration brine transport are a 
uid mass balance, a salt

mass balance in combination with a nonlinear dispersive mass 
ux equation, Darcy's law and

an equation of state. We study the resulting set of nonlinear partial di�erential equations and

derive explicit (exact) and semi-explicit solutions, under various assumptions. A comparison is

made between mathematical solutions, numerical solutions and experimental data. The results

indicate that the simple explicit solution can be used to simulate experiments in a wide range

of density di�erences, given a unique set of experimentally determined parameters. The analysis

shows that enhanced 
ow due to the compressibility e�ect, which is caused by local 
uid density

variations, is neglectable in all cases considered. The linear formulation of Fick's law appears to

give an upperbound for magnitude of the compressibility e�ect.

1991 Mathematics Subject Classi�cation: 35K65, 58G11, 76S05

Keywords and Phrases: High-concentration dispersion, Brine transport, Groundwater.

Note: Work carried out under project MAS1.3 "Partial Di�erential Equations in Porous

Media Research".
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1 Introduction

In recent years there has been a growing interest in the modelling of density-dependent 
ow

and transport problems. Of particular interest have been the cases where high concentration

di�erences in the system occur, e.g., in relation with the disposal of hazardous waste in salt

formations. Some of the studies have been directed at developing numerical models capable

of handling strong nonlinearities in the equations (see e.g. Leijnse [15], Kolditz et al. [14];

Oldenburg and Pruess [19]; for a list of such simulators see Kolditz et al. [14]).

Another group of studies have concentrated on the understanding of the physical processes

and the validity of the basic equations used for the modelling of 
ow and transport. Examples

are the works of Schincariol et. al. [24], Welty and Gelhar [27] and Wheatcraft [28] , Kempers

[12], [13] and Hassanizadeh and Leijnse [6], [5].

Commonly, salt is considered to be nonadsorbing so that the basic equations governing high

concentration (HC) transport in a rigid porous medium read:

n
@�

@t
+ div (�q) = 0 (1.1)

and

n
@�!

@t
+ div (�!q+ J) = 0; (1.2)

where n is porosity, � is 
uid density, q is the speci�c discharge vector (or Darcy velocity), J

is the dispersive mass 
ux vector and ! is the salt mass fraction, which is de�ned as the salt

concentration divided by the 
uid density. These are equations of mass balance and need to

be supplemented with equations of momentum balance. Commonly, the classical Darcy's law

and a linear Fickian dispersion equation are employed for this purpose. Hassanizadeh [8], [9]

suggested that these equations may not be valid when high concentration gradients exist. This

was later supported by one-dimensional displacement experiments (Hassanizadeh et al. [7]) . It

was found that the dispersivity does not seem to be a property of the medium but may vary

from experiment to experiment; it had to be decreased as the di�erence in concentration of

the resident and displacing 
uids increased. Hassanizadeh [7] showed that this e�ect could not

be modelled by a dependence of dispersivity on salt concentration. Instead, he proposed the

following nonlinear extension of the Fickian dispersion equation

J(�J + 1) = �D� grad !; (1.3)

where � is the HC-coe�cient and D is the well-know dispersion tensor given by:

D = (nDm + �T q)I+ (�L � �T )qq=q; (1.4)

Here, Dm denotes the e�ective molecular di�usion coe�cient (including tortuosity e�ects), �L
and �T are the longitudinal and transversal dispersion lengths, , q is the magnitude of the

speci�c discharge vector and I is the unit tensor. Hassanizadeh and Leijnse [5] have shown

that the new relationship gives very good �ts to their measured breakthrough curves. Their

experiments, however, were limited in number and scope. A more extensive experimental study

was later carried out by Moser [17] which included the e�ects of varying the 
ow velocity. This

paper reports on two di�erent but related studies. First, the one-dimensional equations of 
ow

and transport are analyzed mathematically. An exact and explicit solution is obtained assuming

a constant 
ow rate in the column and the dominance of the nonlinear dispersion term in (1.3).
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A semi-explicit solution, allowing local discharge variations due to high density di�erences,

is given. Moreover, a numerical solution of the full set of equations is provided. The three

solutions are compared and conclusions are drawn with regard to the relative signi�cance of

various terms, under di�erent concentration gradients. Second, the experimental data of Moser

[17] are analyzed and the validity of the nonlinear dispersion equation (1.3) is established. It is

found that the HC-coe�cient varies inversely with the 
ow velocity q.

2 Governing equations in one space dimension

Both experimetal and analytical studies reported here deal with HC solute transport in a one-

dimensional domain. Therefore the governing equations presented in the previous section reduce

to

n
@�

@t
+

@

@z
(�q) = 0; (2.1)

where n denotes the porosity of the porous medium, � the 
uid mass density, and q = q(z; t)

the speci�c discharge in the z-direction, and

n
@�!

@t
+

@

@z
f�!q + Jg = 0 (2.2)

where ! is the salt mass fraction and J = J(z; t) the dispersive mass 
ux. Following Has-

sanizadeh & Leijnse [5], J is assumed to satisfy the nonlinear dispersion equation

J(�jJ j + 1) = �D�
@!

@z
; (2.3)

where � is a material coe�cient which may depend on the 
ow velocity and D is the well-known

one-dimensional dispersion coe�cient, given by

D = nDm + �Lq: (2.4)

Neglecting pressure e�ects and assuming isothermal conditions, the relation between density �

and salt mass fraction ! is given by an equation of state

� = �fe

!: (2.5)

The constant 
 in (2.5) is a curve �tting constant given by 
 = 0:6923 � ln(2) and �f is the

(reference) density of fresh water. After combining (2.1) and (2.2) (see e.g. Van Duijn et.al,

1993) and substitution of (2.5) in the result, we obtain a set of three equations in terms of �, q

and J :

n
@�

@t
+

@

@z
(�q) = 0; (2.6)

n
@�

@t
+ q

@�

@z
+ 


@

@z
J = 0; (2.7)

and

J(�jJ j + 1) = �D
1




@�

@z
: (2.8)
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Next we introduce the following set of dimensionless variables:

z� := z
q0

D0
; t� := t

q20
nD0

; q� :=
q

q0
; J� := J

1

�fq0
and � :=

�� �f

�s � �f
: (2.9)

The relative density di�erence is de�ned as

" =
�s � �f

�f
: (2.10)

Moreover, we de�ne a dimensionless parameter ��0 such that

��0 = �q0�f : (2.11)

For convenience we introduce a parameter �, de�ned as the ratio

� =
D

D0
: (2.12)

Here, D0 and q0 denote reference parameters, de�ned by the conditions of the experiments.

Substitution of (2.9) and (2.10) in equations (2.6)-(2.8) yields (dropping the asterisks notation

for convenience)

@�

@t
+

@

@z
(q�) +

1

"

@q

@z
= 0; (2.13)

@�

@t
+ q

@�

@z
+ 


@J

@z
= 0; (2.14)

and

J(�0"jJ j+ 1) = �
�




@�

@z
: (2.15)

We assume that z is in the direction of decreasing density, such that @�=@z < 0. This implies

J > 0 for all (z; t) 2 R �R+. Under this assumption, (2.15) can be solved in terms of @�=@z,

yielding

J = �
1

2�0"
+

1

2�0"

s
1� 4�0"

�




@�

@z
> 0 (2.16)

An implication of taking the full 
uid mass balance (1.1) into account is that local density

gradients cause enhanced 
ow in the column. During all our experiments, see Section 8, the

in
ow rate was kept constant. The scaled dispersion parameters �0 and � are velocity dependent.

However, we disregard variations of these parameters due to the enhanced 
ow by assuming that

�0 and � (and thereby the unscaled � and D) only depend on the mean or background 
ow in

the column. Under this assumption, substitution of (2.16) in (2.14) gives

@�

@t
+ q

@�

@z
+




2�0"

@

@z

s
1� 4�0"

�




@�

@z
= 0: (2.17)

Equations (2.13) and (2.17) are in `standard' form. The analysis will be con�ned to this set of

equations, subject to initial/boundary conditions imposed by the experiments.
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As in Hassanizadeh & Leijnse [5], we introduce the notion of a (scaled) apparent dispersion

coe�cient �app de�ned by

J = ��app
@�

@z
: (2.18)

Substitution of (2.18) in (2.16) and solving for �app yields

�app

�
=

2

1 +
q
1� 4�0"

�




@�

@z

: (2.19)

Regardless of the choise of the reference dispersion coe�cient D0, the ratio �app=� is equal to the

ratio �Lappa=�L, as de�ned in [5]. Notice that the apparent dispersion coe�cient decreases when

the gradient �@�=@z increases for any �0; " > 0. In the limit @�=@z ! 0, which is in general

the case for large times or when "! 0, we obtain the well known convection-di�usion equation

@�

@t
+ q

@�

@z
� �

@2�

@z2
= 0: (2.20)

3 Boundary and initial conditions

In order to keep the mathematical analysis as simple as possible we assume that the experimental

column of �nite length may be replaced by an in�nitely long column. E�ects due to the inlet

boundary of a �nite column usually vanish rapidly as time proceeds. This was explicitly shown

by Ogata & Banks [18] for tracer transport in �nite and semi-�nite columns. The experimental

column is initially �lled with fresh water (�f ). At t = 0, brine (�s) starts entering the column

with uniform speci�c discharge qs. The origin z = 0 coincides with the position of the inlet �lter

of the column. This implies the following scaled initial condition for the in�nite column:

�(z; 0) = �0(z) =

(
1 for z < 0

0 for z > 0
(3.1)

for z 2 R, while the boundary condition for the scaled speci�c discharge is given by

q(�1; t) = 1 for t > 0: (3.2)

Subtraction of (2.14) and (2.13), and using (2.16), yields

@q

@z
=


"

"�+ 1

@J

@z
=

"

"�+ 1

�q
1� 4�0"

�




@�

@z

@2�

@z2
; (3.3)

which indicates that (3.1) and (3.2) are su�cient conditions to obtain a unique solution. More-

over, this expression implies that density variations (" > 0) a�ect the compressibility of the 
uid,

which in turn causes enhanced 
uid 
ow. In the limit "! 0 the right hand side of (3.3) vanishes,

implying q = 1 in the whole 
ow domain. The limit �0 ! 0, i.e. constant di�usivity/dispersivity

in Fick's law, has been studied in detail by Van Duijn et. al. [2], Van Duijn et. al. [3] and Van

Duijn & Schotting [4], for various 
ow geometries. They showed that the compressibility e�ect

due to local density variations is in general small, and even negligible in some cases.
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4 The explicit solution

As a �rst step in our analysis, we make two approximations:

� The 
uid mass balance equation (2.13) is disregarded by assuming a constant 
ow rate

q(z; t) = 1 for all (z; t) 2 R�R+ in the column. The implications of taking the full 
uid

mass balance equation, i.e. (2.13), into account are analyzed in the next section.

� In the nonlinear mass 
ux equation (2.16), the nonlinear term is assumed to dominate

such that

�4�0"
�




@�

@z
>> 1; (4.1)

This assumption is justi�ed when there exists a sharp front with a large " (which has been

the case in experiments reported here).

As a result of these approximations, (2.17) reduces to

@�

@t
+
@�

@z
+

s
�


�0"

@

@z

�
�
@�

@z

� 1

2

= 0: (4.2)

After di�erentiating (4.2) with respect to z and introduction of the variable

w = �
@�

@z
; (4.3)

we obtain

@w

@t
+
@w

@z
=

s
�


�0"

@2

@z2
w

1

2 ; (4.4)

subject to the initial condition

w(z; 0) = w0(z) = �(z) for z 2 R; (4.5)

where �(z) denotes the Dirac delta function. The solution satis�es the `mass' conservation

property Z +1

�1

w(z; t) dz =

Z +1

�1

w0(z) dz = 1 for t > 0: (4.6)

The latter follows immediately from (3.1). Because q = 1 = constant, it is convenient to

introduce a moving coordinate de�ned by

s = z � t; (4.7)

and the transformation

w(z; t) = v(s(z; t); t); (4.8)

where v(s; t) is the solution of the initial value problem

@v

@t
=

s
�


�0"

@2

@s2
v
1

2 for (s; t) 2 R�R+; (4.9)
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subject to

v(s; 0) = v0(s) = �(s) for t > 0: (4.10)

Next we introduce a similarity variable of the form

v(s; t) = t�f(�) with � = st�� (4.11)

Substitution of (4.11) in the conservation integral (4.6) yields

t�+�
Z +1

�1

f(�) d� = 1 for t > 0; (4.12)

implying

�+ � = 0 and

Z +1

�1

f(�) d� = 1: (4.13)

After substitution of (4.11) in (4.9), and using (4.13) in the result, we obtain

� = �
2

3
and � = +

2

3
: (4.14)

Thus, the function f has to satisfy the boundary value problem

2

3
(�f)0 +

s
�


�0"
(f

1

2 )00 = 0 for � 2 R; (4.15)

where the primes denote di�erentiation with respect to �, subject to

f(�1) = 0: (4.16)

Integration of (4.15) yields

2

3
�f +

s
�


�0"
(f

1

2 )0 + C1 = 0: (4.17)

Then we use conditions (4.16) to obtain C1 = 0. Integrating (4.17) once more gives

f(�) =
1�

1
3

q
�0"

�

�2 + C2

�2 ; with C2 =

 
3�2

4

!1

3
�
�


�0"

� 1

6

; (4.18)

where the value of the integration constant C2 is determined using the conservation integral in

(4.13). Back transformation to the original scaled density variable yields (skipping all details)

yields

�(z; t) = �
Z
�

0
f(�) d� + C3; (4.19)

where C3 denotes an integration constant. Initial condition (3.1) implies: �(�1; t) = 1 and

�(+1; t) = 0, which is used to obtain C3. The �nal result, in the original scaled variables, is

given by

�(z; t) =
1

2

8>><
>>:1�

arctan

�q
B

C
(z � t)t�

2

3

�
C
p
BC

�
(z � t)t�

2

3

C(B(z � t)2t�
4

3 + C)

9>>=
>>; ; (4.20)

7



for (z; t) 2 R�R+, where

B =
1

3

s
�0"

(�
)
and C = C2 =

 
3�2

4

! 1

3
�
�


�0"

� 1

6

: (4.21)

A comparison of (4.20) with experimental data will be given in Section 9.

5 A semi-explicit solution

In this analysis we drop the the constant 
ow rate assumption. Thus we solve (2.13) and (2.17),

subject to the initial/boundary conditions (3.1) and (3.2), for " > 0 and �0 > 0. Assumption

(4.1) is maintained. The idea is to apply a variant of the Von Mises transformation (see e.g. Von

Mises & Friedrichs [16] and Van Duijn & Schotting [4]) in order to reduce the system (2.13),

(2.17) to a single nonlinear di�usion equation. First, we introduce a new scaled density variable

u = �+
1

"
for " > 0: (5.1)

Substitution of (5.1) in equations (2.13),(2.17) yields

@u

@t
+

@

@z
(qu) = 0 (5.2)

and

@u

@t
+ q

@u

@z
+

�


�0"

@

@z

�
�
@u

@z

� 1

2

= 0: (5.3)

Hence, the initial/boundary conditions in the new variable are given by

u(z; 0) = u0(z) =

8><
>:

1 + 1
"

for z < 0

1
"

for z > 0

(5.4)

and

q(�1; t) = 1: (5.5)

Considering the 
uid balance equation (5.2) as the divergence operator in the (t; z)-plane, acting

on a vector (u; qu) we introduce a modi�ed stream function 	 = 	(z; t), which satis�es

u =
@	

@z
and qu = �

@	

@t
: (5.6)

The Von Mises variables are

t = t and 	 =

Z
z

&(t)
u(�; t) d�; (5.7)

where &(t) is a yet unknown function of time, which will be determined from the boundary

condition on q, i.e. 5.5, such that &(0) = 0. The Von Mises transformation is

u(z; t) = û(	(z; t); t) = û(	; t): (5.8)
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Under this transformation, the system of equations (2.13) and (2.17) reduces to single nonlinear

di�usion equation

@û

@t
+

s
�


�0"
û
@

@	

�
�û

@û

@	

� 1

2

= 0: (5.9)

Multiplication of (5.9) by û and introduction of the new variable # = û2 yields

@#

@t
+

s
2�


�0"
#
@

@	

�
�
@#

@	

� 1

2

= 0; (5.10)

subject to

#(	; 0) = #0(	) =

8><
>:

(1 + 1
"
)2 for 	 < 0

(1
"
)2 for 	 > 0

(5.11)

Next, we look for a similarity solution of the form

#(	; t) = g(�) where � = 	t�
2

3 : (5.12)

The function g(�) is the solution of the boundary value problem8>>><
>>>:
�
2

3
�g0 +

s
2�


�0"
(f�g0g

1

2 )0 = 0 for � 2 R

g(�1) = (1 + 1
"
)2 and g(+1) = (1

"
)2

(5.13)

Because it is not possible to obtain an exact solution of (5.13) we have to resort to a numerical

method. Since g is strictly decreasing we may de�ne the inverse of g and a 
ux variable according

to

� = �(g) and h(g) = f�g0g
1

2 ; (5.14)

implying

� =
3

2

s
2�


�0"
g
dh

dg
; (5.15)

and the boundary value problem8>>><
>>>:

h2
d

dg

�
g
dh

dg

�
=

2

3

s
�0"

2�

for g 2 [(

1

"
)2; (1 +

1

"
)2]

h((1 + 1
"
)2) = 0 and h((1

"
)2) = 0:

(5.16)

We solve this boundary value problem by discretizing the equation on a equidistant grid and

solve the resulting set of nonlinear algebraic equations iteratively by means of a standard multi-

dimensional Newton method. This yields numerical approximations of h and thereby dh=dg. The

latter is used in (5.15) to compute g(�). Once an accurate approximation of the function g(�)

has been obtained we return to the original variables in the (z; t)-plane as follows. Integration

of the �rst equation in (5.6) yields

z =

Z
 (z;t)

0

1

û(s; t)
ds+ &(t) for (z; t) 2 R�R+: (5.17)
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Di�erentiating (5.17) with respect to t and using (5.6) and (5.8) in the result yields

q = & 0(t)�
Z 	(z;t)

0

ût

û2
(�; t) d�: (5.18)

Next we use the boundary condition (5.5) to determine the function &(t), yielding

&(t) =

Z
t

0

�
1�

Z 0

�1

ût
û2

(�; �) d�

�
d� for t > 0: (5.19)

Finally, after substitution of (5.19) in (5.17) and expressing û(	; t) in terms of the similarity

solution g(�) we obtain

z = t
2

3

Z
�

0

1

g(�)
1

2

d� + t+
1

2
t
2

3

Z 0

�1

�g0

g
3

2

d�; (5.20)

(5.21)

q = 1 +
1

3t
1

3

Z
�

�1

�g0

g
3

2

d�; (5.22)

and

u(z; t) = û(	; t) =
q
g(�) := �(z; t) +

1

"
: (5.23)

Van Duijn & Schotting [4] showed that in the linear Fickian case, i.e. D = constant (�0 = 0),

the speci�c discharge distribution in an in�nitely long porous column decays with t�
1

2 , while

here the speci�c discharge exhibits t�
1

3 -decay.

6 A numerical solution of the full set of equations

Finally, for reference purposes, assumption (4.1) is also relaxed and the full set of equations

(2.13)-(2.14), subject to (3.1) and (3.2), is solved numerically. This is achieved by solving the

reduced equations (2.17) and (3.3) with standard schemes. The Heaviside initial condition for

u is approximated by a very steep error function on a �ne equidistant grid. Equation (3.3)

is discretized explicitly in space, providing a numerical approximation of the speci�c discharge

distribution at that time level. A standard Crank-Nicholson scheme is used to discretize (2.17),

yielding a numerical approximation of the density distribution at the new time level. The

corresponding set of nonlinear algebraic equations is iteratively solved using a multi-dimensional

Newton method. Once the density distribution at the new time level is known, we return to the

discrete version of (3.3) to compute the speci�c discharge distribution at that time level, and so

on.

7 Comparison of solutions

The explicit solution (4.20) is obtained under two simplifying assumptions , i.e. the explicit

approximation (implying constant q in the column) and the assumption that �4�0" �

@�

@z
>> 1.

The latter is the only simplifying assumption needed to obtain the semi-explicit (Von Mises)

solution , which incorporates the compressibility e�ect due to local density variations in the 
uid.
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The numerical solution is based on the full set of equations, i.e. (2.13)-(2.15), subject to (3.1)

and (3.2). The compressibility e�ect causes local deviations from this constant (background)

velocity at points where j@�=@zj > 0, see e.g. (3.3) or expression (5.22), implying additional net

displacement of the density front. The parameter controlling the magnitude of this e�ect is the

relative density di�erence. Note that in view of (3.3), given a scaled density distribution u(z; t),

we may conclude @q=@zj�0=0 > @q=@zj�0>0. Hence, the linear Fickian case, which corresponds

to �0 = 0, gives an upper bound for the magnitude of the enhanced 
ow.

At the short time scale we expect only little di�erence between the approximate solutions

and the numerical solution. Figure 1 shows scaled density distributions at dimensionless times

t = 0; 0:25; 0:5; 0:75 and 1.0. The parameters used to produce the graphs are: " = 0:2, q0 =

3:209 � 10�5 m/s, �f = 1000 kg/m3, � = 1, �0 = 1:0 � 104 m2/kg/s, hence �0 = �q0�f � 320.

The corresponding scaled speci�c discharge distributions are given in Figure 2. In case of the

semi-explicit solution, the decay of the maximum of the speci�c discharge distribution is given

by

qmax = 1 + t�
1

3G; (7.24)

and

zmax = t+
3

2
t
2

3G; (7.25)

where G = 1
3

R 0
�1

�g0=g
2

3 d� � 5:7736 �10�2 for this parameter set. The additional displacement

of the density front caused by the compressibility e�ect, is small but noticeable on the scale

of Figure 1. The semi-explicit solution moves slightly faster than the corresponding numerical

solution, which is due to the fact that assumption (4.1) leads to a higher apparent dispersivity

in that case.

Figure 3 shows scaled density pro�les for large times, i.e. t = 0; 250; 500; 750 and 1000. At

this time scale the semi-explicit and explicit solutions are indistinguishable. As to be expected

the approximate solutions become progressively inaccurate in regions where @u=@z becomes

small, i.e. the top and toe regions of the density pro�les. The compressibility e�ect is no longer

noticeable. The corresponding speci�c discharge distributions are given in Figure 4. At these

times the enhanced 
ow is negligible, i.e less than 1 % of the scaled background 
ow.
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Figure 1. Comparison of solutions: density pro�les at dimensionless times t=0, 0.25, 0.75 and 1.0 for
" = 0:2, � = 1:0 and �0 = 320.
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Figure 2. Comparison of solutions: speci�c discharge pro�les at dimensionless times t=0, 0.25, 0.75 and
1.0 for " = 0:2, � = 1:0 and �0 = 320.
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Figure 3. Comparison of solutions: density pro�les at dimensionless times t=0, 250, 750 and 1000 for
" = 0:2, � = 1:0 and �0 = 320.
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Figure 4. Comparison of solutions: speci�c discharge pro�les at dimensionless times t=0, 250, 750 and
1000 for " = 0:2, � = 1:0 and �0 = 320.

8 Laboratory experiments

A series of well-controlled experiments have been performed in order to address a number of open

questions related to brine transport. The experiments were aimed at determining the e�ects

of large salt concentration di�erences as well as the absolute salt concentration on dispersion

and to investigate the combined e�ect of 
ow velocity and large concentration di�erences. To

this end, four series of displacement experiments were carried out (sse Table 1 through 4 for an

overview):

� Fourteen tracer experiments where a low salt concentration solution was displaced by 
uid

with a sightly higher salt concentration (see Table 1). These are of tracer or LC-type.
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� Seven HC experiments were performed, where a low-concentration solution was displaced

by a 
uid with a high salt concentration (see Table 3). The concentration di�erences

ranged from 2.8 kg/m3 to 44.6 kg/m3. The in
ow rate for this series of experiments was

kept to a constant value of 5:4 � 10�4 m/s.

� Nine HC experiments were performed for which the concentration di�erence between the

resident and displacing 
uids had a constant value of 63.4 kg/m3, but the 
ow rate was

varied from 1:0 � 10�4 m/s to 2:3 � 10�3 m/s (see Table 2).

� Four experiments where carried out wherein a high concentration solution ( 90 kg/m3)

was displaced with a yet higher concentration solution (see Table 4).

Here, a brief description of the experimental setup and methods is given. For more details, the

interested reader should consult Moser [17].

8.1 The experimental setup

The column consisted of a 1500 mm long plexi-glass cylinder, with an internal diameter of 206

mm. The cylinder was �lled with quartz sand with an middle particle diameter of d50 = 0:5

mm and a uniformity coe�cient of Cu = d60=d10 � 1:9. A soil having a uniformity coe�cient

Cu < 2, is considered uniform. The e�ective particle diameter, computed according to Beyer

(see e.g. Langguth & Voigt [11]) is de = 0:47 mm. A sketch of the experimental setup is

given in Figure 5. In order to obtain a homogeneously packed porous medium, the column
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Figure 5. The experimental setup

was partially �lled with water and subsequent layers (thickness � 5 cm) were poured into
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Figure 6. Details of the experimental setup

the column and each layer was packed by vibrating the column. The 
uids were prepared by

dissolving certain amounts of pure NaCl in distilled water. Both fresh and salt water circuits

consisted of a storage reservoir, a pump and an over
ow reservoir to ensure constant 
uid

pressure. The over
ow reservoirs were connected to the inlet of the column by a three-way

valve, which enabled instantaneous switching between the fresh and salt water circuit. The

outlet of the column was also connected to an over
ow reservoir whose level could be varied to

create a desired pressure gradient over the porous medium. The out
owing 
uid was collected

in a vessel, which was mounted on an electronic precision balance. During the experiments, the

amount of water in the collection vessel was recorded every 10 seconds. In case of the tracer

experiments, a constant in
ow rate could be obtained by �xing the distance between the water

levels in the over
ow reservoirs. However, when the density di�erence between the resident and

displacing 
uids was signi�cant, the pressure gradient over the column would decease in time,

causing a decrease of the 
ow rate. To overcome this problem, an adjustable valve was built into

the salt water circuit. During high concentration experiments, this valve was gradually opened,

such that the 
ow rate remained constant. The salt concentration was indirectly determined

by measuring the electrical conductivity of the 
uid in the porous medium. The electrodes

consisted of three platinum/iridium wires, with a diameter of 1 mm and a length of 20 mm. The

electrodes protruded into the porous medium, as shown in Figure 6. Each and every electrode

was calibrated in-situ. A major disadvantage of relating the electrical conductivity to the salt

concentration in a 
uid is the fact that the sensitivity of conductivity measurements decreases

as the salt concentration increases. Experiments showed that salt concentrations of 10 g/kg

and 100 g/kg, could be reproduced within a relative error of respectively �1% and �2%. All

displacement experiments were carried out at constant room temperature, i.e. 20o C �1o. The
temperature of the in
ow and out
ow 
uid was constantly monitored.
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8.2 The LC experiments

In the case of LG experiments, the salt mass fraction of the resident and invading 
uids were,

respectively, 1.0 g/kg and 4.0 g/kg. The only quantity that was varied between the twelve tracer

experiments, was the 
ow rate. The molecular Peclet number, de�ned as

Pe = qd50=Dm; (8.1)

ranged from � 10 to � 3000, see Table 1. The dispersion coe�cient was determined by analyzing

the breakthrough curves, measured with electrodes 10, 11 and 12, i.e. at a distance of 130 cm

from from the column inlet. electrode level in the top part of the column.

We used a least squares method to obtain an optimal �t between the analytical solution of

the linear convention-di�usion equation (2.20) (constant 
ow rate), given by

� =
1

2

�
1� erf

�
L� qt=n

2
p
Dt

��
; (8.2)

and the measured breakthrough curves. Here, L denotes the position of the electrode, q the

speci�c discharge, n the porosity and D the �tting parameter. The porosity was determined

from the measured 
ow rate and the breakthrough time of c=c0 = 0:5. The obtained values of

D and n are listed in Table 1. A comparison between the results of the tracer experiments and

data from literature, collected by Pfannkuch [20], is given in Figure 7. The corresponding data

can be found in Table 1.
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Figure 7. Comparison between data from literature and the results of the tracer experiments
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Experiment Porosity Speci�c Molecular Dispersion
number discharge [mm/s] Peclet numb. coe�cient [mm2/s]

L10C04 0.382 0.010 13 0.01
L06C04 0.378 0.011 15 0.008
L07C04 0.408 0.029 37 0.038
L11C04 0.394 0.057 72 0.069
L09C04 0.403 0.143 177 0.229
L13C04 0.395 0.141 178 0.244
L04C04 0.403 0.149 185 0.230
L03C04 0.400 0.292 364 0.585
L14C04 0.397 0.294 370 0.626
L02C04 0.390 0.568 728 1.508
L15C04 0.391 0.592 757 1.543
L01C04 0.394 0.604 764 1.600
L16C04 0.385 1.189 1547 3.797
L12C04 0.387 2.312 2989 6.887

Table 1. Data of the tracer experiments.

8.3 HC experiments

In the second set of high concentration experiments the mass fractions of the resident and

displacing 
uids were respectively 6 g/kg and 100 g/kg, which amounts to �� = 63:7 kg/m3

or " = 0:06. The 
ow rate was varied such that the speci�c discharge ranged from � 0:094

mm/s to � 2:302 mm/s. The results are given in Table 2. All HC experiments showed a tailing

phenomenon in the high concentration region of the breakthrough curves. This is probably

caused by di�usion of salt into pores where the 
uid is (almost) stagnant. The apparent values

of the dispersion coe�cient listed in Table 2 are only indicative and obtained by �tting the error

function solution (8.2) to the measured breakthrough curves. Because of the asymmetry in the

breakthrough curves, due to the tailing, we only used the �rst part of the breakthrough curve

data, i.e. up to c=c0 = 0:5, to determine an apparent value of the dispersion coe�cient.

Experiment Speci�c Dispersion
number discharge [mm/s] coe�cient [mm2/s]

H09C100 2.302 4.153
H05C100 1.256 1.569
H01C100 0.653 0.452
H07C100 0.644 0.422
H02C100 0.588 0.389
H10C100 0.325 0.189
H03C100 0.176 0.068
H04C100 0.141 0.069
H06C100 0.101 0.036

Table 2. High concentration experiments: constant density di�erence (�� = 63:7 kg/m3, M =

0.91) and di�erent 
ow rates.

In the �rst set of high concentration experiments, the density di�erence was varied from �� � 3
kg/m3 to �� � 45 kg/m3, while the 
ow rate was �xed at a constant value, corresponding to a
speci�c discharge of about 0:54 mm/s.
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Experiment Density Dispersion
number di�erence [kg/m3 coe�cient [mm2/s]

H01C10 2.8 1.535
H01C15 6.4 1.331
H01C20 10.0 1.246
H01C25 13.5 1.023
H01C37 21.4 0.987
H01C50 30.8 0.816
H01C70 44.6 0.641

Table 3. High concentration experiments: constant 
ow rate (q = 5:4 � 10�4 m/s) and and

various density di�erences.

Notice that experiments H01C10 and H01C15 are actually LC experiments. Table 3 clearly

shows that the apparent dispersion coe�cient decreases when the density di�erence between the


uids increases.

8.4 High absolute concentration experiments

The nonlinear dispersion theory indicates that the nonlinear e�ects depend on the 
uid velocity
and the magnitude of salt concentration gradients, but not on the absolute concentration levels of
the resident and/or displacing 
uids. To support this idea, a series of high absolute concentration
experiments were carried out. The salt concentration of the resident 
uid was 90 g/kg, while the
concentration of the displacing 
uid ranged from 100 g/kg to 150 g/kg, see Table 4. The speci�c
discharge ranged from 0.45 mm/s to 0.52 mm/s. Experiment HH01C100 (�� = 7:4 kg/m3)
can be compared with experiment H01C15 (�� = 6:4 kg/m3)in Table 3. Both are actually LC
experiments and we notice that the dispersion coe�cients have approximately the same value.
The same holds for a comparison between HH01C100 and L02C04 in Table 1. These results
indicate that the absolute salt concentration does not contribute to the nonlinear behavior of
the dispersion coe�cient.

Experiment Density Dispersion
number di�erence [kg/m3] coe�cient [mm2/s]

HH01C100 7.4 1.210
HH01C110 13.2 1.070
HH01C120 20.2 0.980
HH01C150 39.4 0.600

Table 4. High absolute concentration experiments.

Moreover, we observe in Table 4 the same tendency as in Table 3: the apparent dispersion

coe�cient decreases as the density di�erence increases. Experiment H01C70 in Table 3 gives

almost the same results as experiment HH01C150 in Table 4, despite the fact that the salt

concentration of the resident 
uid in HH01C150 is a factor 15 higher, when compared to the

initial salt concentration in H01C70.

9 Analysis of the experimental results

The results of the LC (tracer) experiments (Table 1) are plotted in Figure 8 in terms of the

molecular Peclet number, de�ned in (8.1), and the ratio of the apparent longitudinal dispersion
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coe�cient and the molecular di�usion coe�cient. A least squares curve �tting of the LC data

points, as plotted in Figure 8, yields the relation

DL

Dm

= 0:35 � P 1:26
e

for 10 < Pe < 3000: (9.3)

Bear [1] gives a similar empirical expression which reads: DL=Dm = a � Pm

e
, where a � 0:5 and

1 < m < 1:2 in the range 6 < Pe < 200. The latter is believed to be valid when the main

spreading mechanism is caused by mechanical dispersion and transversal molecular di�usion,

see [1]. In the range 200 < Pe < 104, the mechanical dispersion is dominant, and the relation

between DL=Dm and Pe is supposed to be linear. However, when we �t the experimental

data in the range 363 < Pe < 2989 we still �nd some nonlinearity and the expression reads:

DL=Dm = 0:57 � P 1
e
:18. This relation indicates that the dispersivity �L = nD=q is not really a

constant but increases monotonically with the speci�c discharge q. This can be indeed con�rmed

by the data of the LC experiments given in Table 1. The average value of �L is approximately

1 mm. This is twice the average particle diameter, as to be expected for a homogeneous porous

medium, see e.g. Scheidegger [23].
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Figure 8. The ratio of the apparent dispersion coe�cient and the molecular di�usion coe�cient as a

function of the molecular Peclet number.

Figure 8 shows the ratio of the longitudinal dispersion coe�cient and the molecular di�usion

coe�cient as a function of the molecular Peclet number, for all experiments carried out in

this study. Given a density di�erence of 63:7 kg/m3, we observe a maximum reduction of the

dispersion coe�cient by a factor � 3:4. This factor decreases gradually when the molecular

Peclet number (actually 
ow rate) increases. This behavior can be explained as follows. The

porous medium is not completely homogeneous and permeability and porosity may vary locally in

space, which in turn causes local velocity variations in the 
uid 
ow. Hydrodynamic dispersion is

the macroscopic outcome of these varaiations. In case of tracer density di�erences, the dispersion

is not in
uenced by gravitational forces. When the density di�erence between the resident and

displacing 
uids becomes signi�cant, the gravitational forces give rise to a reduction of the

dispersion. Local horizontal density gradients cause vortices (rotation) in the 
uid motion, which

in turn diminishes the longitudinal spreading due to hydrodynamical dispersion in the main 
ow
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direction. The magnitude of the reduction of the dispersion depends upon the magnitudes of

the average 
ow rate and the density di�erence.

A typical time scale associated with gravity stabilization of local velocity variations can be

given by

tg =
��

�g��
: (9.4)

The time scale associated with the average 
ow in the column is

tc =
L

q
: (9.5)

If tc is large compared to tg, then gravity will have enough time to reduce local velocity variations.

Therefore, the ratio tc=tg is a measure for the signi�cance of gravity e�ects. In fact, this ratio

is identical to the Rayleigh number

Ra =
tc

tg
=

�g��L

��Lq
: (9.6)

When using the Kozeny-Carman equation (see Bear [1]) to compute the intrinsic permeability

of the porous medium, we obtain � � 2:0 � 10�10 m2. In case of the constant density di�erence

experiments, the Rayleigh number ranges from Ra = 1640 (Pe � 100) to Ra = 72 (Pe � 3000).

Here we used � = 1:0 � 10�3 kg/ms, �� = 63:7 kg/m3, L = 1:3 m, �L = 1:0 � 10�3m and

� = 2:0 � 10�10. Figure 8 shows indeed a decrease of the di�erence between the tracer dispersion

coe�cient and the HC dispersion coe�cient for high Peclet numbers.

In any case, Figure 8 shows that dispersion coe�cient as found in the classical Fickian

equation is a nonlinear function of 
ow velocity and salt concentration di�erences. The nonlinear

dispersion theory proposed in [5] is believed to account correctly for the density e�ects. Indeed,

the experiments reported in [6], although limited in number and scope, give evidence that,

for a certain 
ow rate, it is possible to determine a single value the parameter �, such that

breakthrough curves of experiments with concentration di�erences ranging from 1.51 g/kg (tracer

concentrations) to 232.43 g/kg can be simulated with a reasonable accuracy.

We computed an optimal value of � from the constant 
ow rate experiments, listed in Table

3, by �tting both the explicit solution and the full numerical solution to breakthrough curves.

The results for q = 5:4 � 10�4 m/s are listed in Table 5. As to be expected, we obtain an

almost constant value of � by �tting the numerical solution to the experimental data. The

�-values, obtained with the explicit solution become progressively inaccurate for decreasing

density di�erences. Both results are shown in Figure 9. When the displacing 
uid is fresh water

(�f � 1000 kg/m3), the explicit solution appears to be accurate for the range �s � 1025 kg/m3

(sea water) up to �s � 1300 kg/m3 (the saturation limit of NaCl in water). This emphasizes

the applicabillity of the explicit solution, at least for this constant 
ow rate data set. A more

general conclusion with respect to the validity of the explicit solution cannot be gained from the

experimental results presented in this study.
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Experiment density Dispersion �num �expl
number di�erence [kg/m3] coe�cient [mm2/s] [s m2/kg] [s m2/kg]

H01C70 44.6 0.641 6228 6240

H01C50 30.8 0.818 6013 6101

H01C37 21.4 0.987 6490 6749

H01C25 13.5 1.023 6447 7133

H01C20 10.0 1.246 6296 8333

H01C15 6.4 1.331 6366 11574

H01C10 2.8 1.535 6283 19841

�average 6303 -

Table 5. Obtained �-values from the constant 
ow rate experiments (q = 5:4 � 10�4 m/s)
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Figure 9 Comparison of �-values obtained by �tting the numerical and explicit solution to the

breakthrough curves of the constant 
ow rate experiments

The breakthrough curves corresponding to the constant density di�erence experiments listed in

Table 2, were analyzed in a similar fashion. The obtained �-values are plotted as a function

of the speci�c discharge on a log-log scale in Figure 10. A least squares curve �tting yields an

approximate expression for �(q), given by

�(q) =
0:0125

q1:76
for 9:0 � 10�5 < q < 3:0 � 10�3 m/s: (9.7)

This indicates that the nonlinear e�ect decreases with increasing 
ow rate. This is in correspon-

dence with our discussion of the Rayleigh number and the balance between gravitational and

convective transport. Substitution of (9.7), (2.4) (disregarding molecular di�usion) in equation

(2.8), and solving for J yields

J =
qn

2A

8<
:
s
1� 4�lA
�1q1�n

@�

@z
� 1

9=
; ; (9.8)

where A = 0:0125 and n = 1:76. This is the one-dimensional dispersive mass 
ux equation in

terms of the original variables.
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Figure 10. The parameter � as a function of q for the constant density di�erence experiments

10 Discussion

The experimental results presented in this study, con�rm the validity of the nonlinear dispersive

mass 
ux equation (2.3) and provide an empirical relationship for the HC dispersion coe�cients

in terms of the speci�c discharge. In the HC experiments, the speci�c discharge ranged from

q = 9:0 � 10�5 m/s to 3:0 � 10�3 m/s. These are relatively high when compared to groundwater

discharges in the �eld, typically ranging from 3:0 � 10�7 m/s (0.03 m/day) to 3:0 � 10�5 m/s (3.0

m/day).

When we extrapolate expression (9.7) for q > 3:0 � 10�3 m/s, neglecting any high velocity

e�ects, and pass to the (theoretical) limit q ! +1 we obtain �(+1) ! 0. This implies that

the dispersive mass 
ux equation (2.3) reduces to Fick's law and HC experiments can be sim-

ulated using the tracer equations and the tracer dispersion coe�cient. Extrapolation of (9.7)

for q < 9:0 � 10�5 m/s, and passing to the limit q ! 0 yields �(0) ! 1. This indicates that

for low discharges (high Rayleigh numbers) the gravity e�ect, i.e. the nonlinear term in (1.3),

completely dominates the dispersive behavior. From the physical point of view, both discharge

limits are realistic in a qualitative sense. Additional experiments should be carried out to gain

information about the behavior of �(q) for discharges q < 9:0 � 10�5 m/s and q > 3:0 � 10�3

m/s. A particular interesting limit to study is the transition from pure di�usive transport to

dispersion dominated transport under HC conditions.

Substitution of (9.8) in (2.1) and (2.2) yields a set of equations that no longer allows a Von

Mises transformation. In fact, application of the Von Mises transformation is restricted to those

cases where the longitudinal tracer dispersion coe�cient D is constant, i.e. not a function of

the local speci�c discharge, see [4]. A constant tracer dispersion coe�cient may account for

heterogeneities of the porous medium in an averaged sense, for instance by setting D = �Lq0,

where q0 denotes a background or mean speci�c discharge.

When using the latter, we can quantify the magnitude of the volume or compressibility

e�ect in the experiments. To this end, we use the data of HC experiment H09C100 (see Table

3) and expressions (7.24) and (7.25). The breakthrough time of the 50%-level of the density

22



in experiment H09C100 is t50% = 220 s. The dimensionless breakthrough time is given by

t�50% = 423, see the scaling rules (2.9). Tracer experiment L12C04 was used to obtain values

for D and n. At t50%, the relative magnitude of the maximum of the speci�c discharge with

respect to the back ground 
ow q0 can be determined from expression (7.24). This yields

(qmax � q0)=q0 � 0:8%. The additional relative displacement of the density front at t50%, given

by (7.25), amounts to � 1:2%. Both results indicate that volume e�ects can be disregarded.

Such variations are not noticeable within the accuracy of the experiments.
The constant 
ow rate experiments show a signi�cant reduction of the dispersion coe�cient

in case of an increasing density di�erence between the resident and displacing 
uids. The tracer
dispersion coe�cient has to be lowered by a factor � 2:4 (H01C70, �� = 44:6 kg/m3) in order
to obtain a reasonable �t between the solution of the classical equations and the experimental
data. Experiment H02C100, with approximately the same 
ow rate (5.88 �10�4 m/s instead of
5.4 �10�4m/s) and density di�erence 63.7 kg/m3, exhibits a reduction by a factor � 4. Figure
11 shows the scaled dispersion coe�cient for the constant 
ow rate experiments (including
H02C100) as a function of the density di�erence. The corresponding least squares approximation

is given by DL=D0 = 1:0158e�0:0212�� , where D0 = 1:535 � 10�6 m2/s.

DL=D0 = 1:0158e�0:0212��
Extrapolation

Experimental data

�� kg/m3

D
L
=
D
0

300250200150100500

1

0.1

0.01

Figure 11. Scaled longitudinal dispersion coe�cient as a function of the density di�erence for the
constant 
ow rate experiments.

Extrapolation of the least squares approximation yields a reduction of the tracer dispersion

coe�cient by a factor > 100 for almost saturated brines. Whether this is extrapolation is realistic

in the physical sense has to be determined experimentally in a future study.

An other question that needs to be addressed concerns the physical phenomenon that is

assumed to cause the reduction of the apparent dispersion coe�cient in HC transport of brines.

Is the explanation that local horizontal density gradients at pore scale induce 
uid rotation

(vortices) such that the dispersion of salt is reduced when compared to the tracer dispersion

correct? The latter is very likely, but cannot be proved at this time. Also, simple conceptual

models for HC transport, gaining insight in the process and its governing equations, are still

lacking. For tracer dispersion, such models, have proven to be very useful, see e.g. Taylor [25],

[26], De Josselin De Jong [10], Sa�man [21], [22].

If gravity is indeed responsible for the observed dispersion reduction in HC transport, then it

is of fundamental importance to �nd the relation between the proposed nonlinear 
ux equation

(2.3) and the induced 
ow due to local horizontal density gradients. The derivation of (2.3) in
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[5] is formally correct, but is not directly linked to the physical phenomenon that causes the HC

dispersion e�ect. Such a relation might be established by averaging the governing pore scale

equations and/or by homogenization techniques. We leave these questions for a future study.

11 Conclusions

� This study concerns the mathematical and experimental analysis of brine dispersion in a

saturated porous medium. Both low and high concentration experiments have been carried

out. The LC (tracer) experiments presented in this paper are in excellent agreement with

LC experiments reported in literature.

� The experiments show that for low concentration di�erences (even if the absolute salt con-

centration is high), the linear Fickian theory models the observed dispersion satisfactorily.

In case of high concentration di�erences, the Fickian theory fails.

� All experiments reported here, both LC and HC, con�rm the validity of the nonlinear HC

dispersion theory given in [5].

� High absolute concentration experiments show that the HC dispersion coe�cient is inde-

pendent of the absolute salt concentration of 
uids.

� The HC dispersion coe�cient � is found to be independent of the salt concentration

di�erences or gradients. It depends only on the 
ow rate. A relation between � and the

speci�c discharge is established.

� An explicit solution for HC transport (assuming dominance of the nonlinearity in the salt


ux equation and constant 
ow rate in the column) is given. This approximate solution

can be used to simulate HC experiments in a wide range of density di�erences.

� A semi-explicit solution of the full set of governing equations (again assuming dominance

of the nonlinearity in the salt 
ux equation) is obtained. Fluid volume changes due to

high concentration gradients are taken into account. The results are used to quantify the

volume e�ects in the HC experiments. It turns out that these e�ects can be disregarded

for all experiments considered.

� The constant density HC experiments show a decrease of the di�erence between the tracer

and the HC dispersion coe�cients for increasing 
ow rates. This indicates that local (pore

scale) horizontal density gradients might be responsible for the nonlinear HC dispersion

e�ect. At high 
ow rates (large Peclet numbers) local gravity driven (stabilizing) 
ows

become relatively un important (low Rayleigh numbers).
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