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Analysis of DNAPL Infiltration in a Medium with a Low-permeable Lens

M.J. de Neef
Institute of Applied Mathematics, Martenssirafie 3, 91058 Erlangen, Germany

J. Molenaar

CWI, P.O. Box 94079, 1090 GB Amslerdam, The Netherlands

Abstract

In this paper we study the infiltration of DNAPL in a porous medium containing a single low-permeable lens.
Our aim is to determine whether DNAPL infiltrates into the lens, or not. A key role is played by the capillary
pressure: DNAPL cannot infiltrate into the lens unless the capillary pressure exceeds the entry pressure of the
lens. In the model this is reflected by an interface condition for the capillary pressure. Both a homogeneous
medium and a medium with a lens are analyzed. For the homogeneous configuration we derive an estimate of
the stationary DNAPL plume width as a function of depth, and an asymptotic solution for small saturations.
For the configuration with a lens we assume that the lens is much larger than the width of the unperturbed
DNAPL plume in the homogeneous medium. We show that DNAPL infiltrates into the lens if a critical inflow
rate is exceeded. This inflow rate is determined explicitly. A numerical algorithm is presented in which the
extended capillary pressure condition is incorporated. Good agreement is found between the numerical and

analytical results.

AMS Subject Classification (1991): 35R05, 65M06, 76T05

Keywords & Phrases: heterogeneity, two-phase flow, capillary pressure, DNAPL, entry pres-
sure

1. INTRODUCTION

The infiltration of Dense Non-Aqueous Phase Liquid (DNAPL) into aquifers forms a serious
environmental problem. DNAPL’s are organic compounds with a higher density than water;
examples are chlorinated solvents used in industry. Since DNAPL’s are heavier than water
they easily invade the saturated zone of the subsurface, posing a threat to the ground water
quality. Even small concentrations of DNAPL are toxicologically significant.

Several remediation techniques exist to remove DNAPL from the subsurface. The effectiv-
ity of hydraulic remediation techniques (pumping of contaminated ground water) is limited
if the DNAPL has entered less-permeable regions like lenses of very fine sand. The reason is
that the low-permeability zones are hardly reached, because the preferred flow path of water
is in the high-permeability zones. This applies equally well to other remediation techniques
like in situ biodegradation and surfactant enhanced dissolution, since both techniques use



water for transport of the remediating substances. Excavation is often not feasible because
of the great infiltration depth. So lenses of low permeability infiltrated by DNAPL may form
persistent sources of ground water contamination. Therefore it is important to know under
what circumstances DNAPL penetrates low-permeability lenses.

Capillary forces play a main role in this problem, in particular the entry pressure of the lens
and the corresponding threshold saturation. The entry pressure is the minimum pressure that
is needed for a nonwetting fluid (DNAPL) to enter a medium that is saturated by a wetting
phase (water). A high entry pressure corresponds to a low-permeable medium. In this paper
we only consider media with nonzero entry pressures.

The effect of capillary forces and heterogeneity is analyzed mathematically and numerically
by Van Duijn, Molenaar & De Neef [6]. By a regularization procedure they derive the interface
conditions needed at discontinuities in the permeability. Several authors study the problem of
DNAPL infiltration numerically. Kueper and Frind [12][13] develop a finite difference model
for two-phase flow in heterogeneous media and apply it to DNAPL infiltration problems.
They perform sensitivity analyses for a geometry with a single lens, as well as for random
permeability fields. However they do not focus on the problem of DNAPL infiltration into
low-permeability lenses. Helmig [10] develops a numerical model based on the finite element
method, and simulates the laboratory experiments by Kueper et al. [11]

In this paper we consider a porous medium containing a single low-permeable lens. DNAPL
is released through an opening in the impermeable top boundary, and sinks down towards
the lens. Arriving at the lens it cannot immediately enter, because the capillary pressure is
still smaller than the entry pressure of the lens. Hence DNAPL accumulates on top of the
lens and spreads laterally due to diffusion. It may happen that so much DNAPL accumulates
on the lens that the capillary pressure exceeds the entry pressure: DNAPL then infiltrates
into the lens.

The objective of this paper is to show under what conditions DNAPL does infiltrate into
the lens. We study this problem for lenses that are greater than the width of the stationary
DNAPL plume in absence of the lens. Large lenses obstruct the flow such that distinct
accumulation of DNAPL occurs on their top boundary. For small lenses we expect that the
effect of accumulation is less, since DNAPL can relatively easily flow around.

An outline of this paper is as follows. In Section 2 we state the model equations and the
interface conditions used at the boundary of the lens, where the permeability is discontinuous.
In Section 3 we analyze the stationary flow problem. Two configurations are studied: one
without a lens (homogeneous case), and one with a single lens (heterogeneous case). In the
homogeneous case we derive an estimate for the width of the DNAPL plume as a function
of depth. Further, we give an analytical solution for low DNAPL saturations. In the het-
erogeneous case we derive an explicit criterion that determines whether DNAPL infiltrates
into the lens or not. In the analysis it is assumed that the DNAPL is in vertical equilibrium
(VE) when it spreads laterally on top of the lens. We show that DNAPL infiltrates into
the lens, if a critical DNAPL discharge in the opening is exceeded. In the final section we
present a numerical algorithm for the heterogeneous problem that incorporates the interface
conditions. With this numerical scheme several simulations are carried out for a test problem.
These computational results are in good agreement with the analytical results obtained in



Section 3.

2. MobpeL EQUATIONS

We consider the standard model for flow of two immiscible and incompressible fluids in a
homogeneous porous medium. Let 5, denote the saturation of the wetting fluid and S, the
saturation of the nonwetting fluid,

Sw+ S = 1. (2.1)

Both phases satisfy the fluid-balance equations,

Qba;;a +divg, =0, a=n,w, (2.2)

where ¢ is the porosity of the porous medium and ¢, the specific discharge of phase a. These
specific discharges are given by Darcy’s law,

0o = — Ao (grad po — pagey), a=n,w, (2.3)

where Ay, po and p, are the mobility, pressure and density of phase «, g the acceleration of
gravity, and e, the unit-vector in the direction of gravity. The mobility of phase a is given

by

Aa(Sa) = kM7 a=n,w, (2.4)
Lo

where k is the absolute permeability of the porous medium, and k,, and p, the relative
permeability and the viscosity of phase a. The total flow ¢; of both phases is given by

Gt = Qu + Gn- (25)

Due to interfacial tension there is a pressure difference between the nonwetting and the
wetting phase, which is called the capillary pressure p,,

Pn — Pw = pc(sw)' (2'6)

For a given rock type the capillary pressure p. is a known function of the saturation.

In the Equations (2.1)—(2.6) we have four unknowns, S, and p,. Two of them are eliminated
easily by using (2.1) and (2.6). Because we are interested in DNAPL flow, it is convenient to
take the reduced DNAPL saturation s as one of the two dependent variables,

Sn - Snr

ST S-S =0

S



where §,, denotes the residual saturation of phase a. For the other dependent variable we
take the wetting phase pressure p,,. This choice appears to be advantageous in the case of
heterogeneities. If no confusion can arise, we drop the subscript w of p,,.

After some rearrangements the model equations are written as

aﬁ% +divg, = 0, (2.8)
divgy = 0, (2.9)

where

G = Jott — Aufn (gl’adpc - Apgeg), (210)

¢ = —A,(gradp. — Apgey) — (A + Ap) (grad py, — puwgey) (2.11)
and

o= _n_ d Ap=

n= e ad e = pu.

The function f, is called the fractional flow function of the nonwetting phase. In view of
(2.4) it is a function of s only.

In this paper we restrict ourselves to capillary pressure curves with a nonzero capillary
entry pressure p. and an infinite capillary pressure at the residual water saturation,

Pe(8) = peJ(s), (2.12)
with
J(0)=1, and J(1)= oo, (2.13)

where J is the rescaled J-Leverett function. For example, the Brooks-Corey model [2] features
a nonzero entry pressure, whereas the Van Genuchten model [9] does not. According to the
Leverett scaling [14] we have

Pe X 0'\/%, (2.14)

where o denotes the interfacial tension between the two fluids. We note that a lower perme-
ability yields a higher entry pressure.

A nonzero entry pressure has interesting consequences if there are subdomains with different
entry pressures. In each subdomain the equations (2.8)-(2.11) apply. To connect the solutions
in the different subdomains we use interface conditions.

The interface condition regarding the fluxes is immediate. Conservation of mass at the
interface implies that the normal components of the fluxes ¢, and ¢ must be continuous
across an interface.
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Figure 2.1: Capillary pressure p. on both sides of an interface. If the entry pressures p. are
unequal, p. cannot always be continuous.

The next interface condition involves the capillary pressure p.. The boundedness of ¢, and
¢: in equations (2.10)—(2.11) implies that p. and p,, should be continuous across an interface
if both phases are mobile (A, > 0 and A,, > 0). However, if the entry pressures are different
on each side of the interface, a continuous capillary pressure is not always possible. This is
illustrated by Figure 2.1. Figure 2.1 shows two capillary pressure curves for different entry
pressures po and pT, where pT > p. Let s~ denote the saturation on the side with lowest
entry pressure, and s the saturation on the other side. The capillary pressure cannot be
continuous at the interface, if s~ is below the threshold saturation s*,

J(s%) = % (2.15)

This problem has been analyzed by Van Duijn e.a.[6] for a one-dimensional flow without
gravity. A similar analysis for a line normal to the interface gives the following extended
capillary pressure condition. If s~ > s* the capillary pressure must be continuous. However,
if s7 < s* the capillary pressure is discontinuous, and s™ must be zero. A consequence of this
condition is that DNAPL can enter a region with higher entry pressure, only if its saturation
exceeds the threshold saturation s*.

The last interface condition concerns the water pressure p,,. Because the capillary pressure
can be discontinuous, it follows from (2.6) that p, and p, (or both) may be discontinuous.
The boundedness of g,, in (2.3) implies that p,, can only be discontinuous if s~ = 1 or sT = 1.
However, it follows from the extended capillary pressure condition that the capillary pressure
is only discontinuous if s~ < s* and sT = 0. Therefore p,, must be continuous, even if p, is
discontinuous. Hence p,, is discontinuous whenever p. is discontinuous.

Summarizing we have the following interface conditions for the situation shown in Fig-
ure 2.1:
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Figure 3.2: Geometry of configuration with a single lens.

e n-q, and n- ¢ are continuous, where n denotes the unit vector normal to the interface,

e the extended capillary pressure condition,

Hot) = p=(s—) ifs— > s
pC(S)—pC(S) 1f8 287
{ st =0 if s7 < s*, (2.16)

® p,, is continuous.

3. ANALYSIS OF STATIONARY DNAPL rrLow

In this section we consider stationary two-dimensional flow of DNAPL for two configurations:
(i) a homogeneous porous medium, and (ii) a homogeneous host medium containing a hori-
zontal lens with a higher entry pressure. In both cases the flow takes place in a semi-infinite
domain, as depicted in Figure 3.2. The DNAPL sinks through an opening in the impermeable
top boundary into the domain. Gravity is directed vertically downward. In the heterogeneous
case the lens is located symmetrically beneath the opening.

For the homogeneous problem we aim at finding an estimate of the DNAPL plume width
as a function of depth. The objective for the heterogeneous problem is to find a criterion that
can be used to determine whether DNAPL infiltrates into the lens or not. In the analysis of
the latter problem we assume that the length of the lens is much greater than the width of
the stationary DNAPL plume for the configuration without a lens. In that case we expect
that DNAPL is forced to flow laterally on the lens. The condition on the length of the lens
can be checked with the estimate for the plume width.

To arrive at problems which can be treated analytically, we make a few approximations.
In both the homogeneous and heterogeneous case we assume that the total flow is negligible.
The flow is then counter-current: the specific discharge of water is then directed oppositely
to the specific discharge of DNAPL in every point of the domain. In Section 3.3 we show
that this approximation is reasonable if the DNAPL saturation is sufficiently low.



In the homogeneous case we assume moreover that the capillary diffusion in the vertical
direction is negligible compared with the flow caused by density differences. In the hetero-
geneous case we assume that the laterally spreading DNAPL on top of the lens is in vertical
equilibrium (VE), and that it drops off of the lens so quickly that the saturation at both
ends is negligibly small. VE means that the buoyancy force (caused by density differences) is
balanced by the capillary force, so that the DNAPL flow in the vertical direction is negligibly
small.

For the analysis in this section we need the properties of the functions k,, and J. It is
assumed that k., and k,, are continuously differentiable on [0, 1], that J is continuously
differentiable on [0, 1) with derivative J', and that they satisfy:

o k.p(s)is strictly increasing with k,,(0) = 0,
o kyy(s) is strictly decreasing with k,,,(1) =0,
e J'(s)>0on(0,1),J(0)=1and J(1) = oo,

o J'(8)kruw(8)krn(s) is continuous on [0, 1].

For example, the functions of the Brooks-Corey model satisfy the above hypotheses.

3.1 Stationary infiltration in a homogeneous medium

In this section we consider the stationary infiltration of DNAPL in a semi-infinite domain,
= R X (0,00). The coordinate in the vertical downward direction is denoted by z. Both
the entry pressure and the absolute permeability of the porous medium are constant in £2.

Using the approximation ¢; = 0 we obtain from equations (2.8)—(2.11) for a stationary flow
divg, =0 in Q, (3.17)
where

Gn = —Aw frngrad (p. — Apgz). (3.18)

The DNAPL enters the domain through an opening of width 2d in the further impermeable
top boundary at z = 0,

n-qp(z,0) = 3.19
0n(.0) {O if |z| > d, ( )

where n is the outwardly directed normal of the top boundary. We seek a solution s = s(z, 2)
of the above problem which vanishes as ||z|| — oc.
To simplify the above problem, we use the assumption that the force induced by the density
difference is dominant compared with the capillary force in the vertical direction,
L 1 0p.
Apg!l dy

<1 inQ. (3.20)




Neglecting the capillary diffusion term in the vertical direction in (3.17)—(3.19) yields

0 J dp.
Apgg—(fndw) = a—x(fnx\w 9 ) (3.21)

with the boundary condition at z = 0:

q, if|z] <d,

A Y 3.22
2 { 0 if |z]| > d. ( )

We note that condition (3.22) only makes sense if ¢ is smaller than the maximum value
of Apgfu(s)Au(s). Equations (3.21)—(3.22) serve as starting point for the analysis of the
homogeneous configuration.

To write the equations in dimensionless form, we redefine z and z according to

and define the dimensionless numbers

Pe @l pin i,
N, =-2° N, = R 3.23
7 Apgd T kApg s (3.23)

The number N, represents the ratio of capillary force and buoyancy force, N, the rescaled
inflow, and M the mobility ratio. From (3.21) and (2.12) we obtain

83—2,\(5) = Ncga% (D(s)g—;), (3.24)
where
and
D(s) = J'(s)A(s). (3.26)
The boundary condition at z = 0 is written as
A(s(2,0)) = vo(z) = { Ny iflel <1, (3.27)
0 if |z > 1.

As mentioned earlier, it is necessary that N, is less than the maximum value of A(s) on [0, 1].
Let 5 denote the maximum value such that A’ > 0 on (0, 5), as shown in Figure 3.3. For most
models found in the literature (e.g., the Brooks-Corey model) 5 coincides with the value at
which A attains its maximum on [0, 1]. We only consider the case that N, < A(3).
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Figure 3.3: Choice of 5: A(s) is invertible on [0, 5].

Estimate of the DNAPL plume width
We rewrite equation (3.24) so that it can be recognized as an equation of diffusion type. To
that end we define v = v(z, 2) as

v = A(s).

Since A(s) is strictly increasing on [0, ], it is invertible. Let A~! denote the inverse function of
A, defined on [0, 7] with © = A(5). Then we obtain from equations (3.24)—(3.27) the following
problem for v:

ov d s/~ 0Ov
(I) a—Ncga_x<D(U)a_x)7 —co <z < oo, z2>0,
v(z,0) = vo(a), —00 < x < 00,
where
- D) _
D(v) = YOT(0) for 0 < v < w. (3.28)

To keep the presentation clear and simple, we confine ourselves to functions D that are
continuous on [0,%). This is for example the case when A’ behaves as a power function near
s=0.

Problem (I) can be recognized as a nonlinear diffusion problem when z is viewed as the time
coordinate. The problem is called degenerate parabolic if D(0) = 0. A feature of degenerate
parabolic problems is that free boundaries may occur. In the (z, z)-plane they correspond
to the boundaries separating the region where DNAPL is present (v > 0) from the region
containing only water (v = 0). They constitute the boundary of the infiltrating DNAPL
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plume. For general D we cannot obtain a closed-form solution for this problem. Fortunately,
with the use of a comparison principle we can estimate the width of the DNAPL plume.

The comparison principle for Problem (I) is as follows (see e.g. [19], [16]). Let vi(z) and
vi(z) denote two functions in the boundary condition at z = 0 satisfying v{(z) < v3(z) on
R. The corresponding solutions then satisfy v'(z,2) < v*(z,2) in Q. Since v = N, is a
solution of the differential equation of Problem (I) corresponding to the conditions vy = Ng,
it immediately follows from the comparison principle that the solution of Problem (I) satisfies
v < N,. By taking N, < © we establish that v(z,2) < v in Q.

To estimate the width of the DNAPL plume, we compare the solution of Problem (I) with
the self-similar solution V (z, z) corresponding to the following boundary condition at z = 0:

N, ifz <1,
V(x,O):{ Oq . (3.29)

so that vo(z) < V(z,0) (see (3.27)). Hence by the comparison principle it follows that
v(z,2) < V(z,z) in Q. The similarity solution V is obtained by using the similarity trans-
formation

z—1

V(z,2) = g(n), where
Then ¢ satisfies

~ !
Ing'+ Ny (Dig)g') =0, —00 < 1) < 00,
g(—o00) =N, and g(oc0)=0,

where primes denote differentiation with respect to 7. Van Duijn and Peletier [7] show that
this problem has a unique solution.

If D(O) = 0 there may exist a number a, such that g vanishes identically for n > a,, and
that ¢ is positive on (0, a,,). In the (z, z)-plane this situation corresponds to a free boundary
& = 1 + ay+/z, which separates the region V' > 0 from V = 0. In [7] a condition is given for
the existence of this finite number a,: it exists if and only if

/Nq @ dg < oo. (3.30)

This condition is satisfied because

I = /ONq @d‘q _ /(;A—l(Nq) l,\)((j)) ds — J(Z\‘l(Nq)) 1< oo (3.31)

Thus a free boundary exists separating the region V' = 0 from V' > 0. From (3.31) we also
have that D(0) = 0.
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Since the solution v of Problem (I) has to be nonnegative, it follows from the comparison
principle that v is identical to zero for z > 1+ a,+/2. By symmetry we have that v vanishes
for |z| > 1+ an+/z. In [1] it is shown that the number a,, is bounded by @ = 2,/N,I;. Let
f(z) denote the half of the width of the DNAPL plume as a function of depth, then we have

f(z) <14 ayz, wherea= 2\/ cglJ(AT1(Ny)) — 1]. (3.32)

This estimate is not optimal; it overestimates the width in general. For small saturations,
however, we can also obtain an asymptotic expression for the plume width.

Asymptotic solution for small saturations

Here we consider a special case for which an analytical solution is known, namely when D(v)
is a power function. In general it is not a power function, but for small values of v we can
often approximate D(v) by

D(v) ~ CvP aswv |0, (3.33)
where C' > 0 and p > 0. When we substitute this in Problem (I) we obtain

ov 15] ov .

5 = Ny (vpa ) in Q. (3.34)

This nonlinear diffusion equation is known in the mathematical literature as the porous media
equation. For an overview of the mathematical results concerning equation (3.34) we refer
the reader to [18], [20]. The porous media equation has the following solution:

A z? \1/p
v(z,z) = m(l - W)‘F ; (3.35)
where
fz)=(1+ WCN%A%)I/@H), (3.36)

and (-)4 = max(0,-). We choose the parameter A such that the total discharge through the
opening is equal to 2N, (see (3.27)),

/ v(z,0)de = / A(l - $2)}|_/p dz = 2N,. (3.37)
A similar approach to obtain an asymptotic solution is found in [5] for the case of an air
sparging problem. From (3.35) it follows that the boundary of the plume is given by |z| =
f(2z). We observe that the DNAPL plume is narrower for smaller values of A, i.e., for smaller
discharges through the opening.

We remark that (3.35) is the asymptotic solution of equation (3.34) subject to the original
boundary condition (3.27), for large values of z (see [8]). From (3.36) we observe that f(z) =
O(2"/(+2)) for large values of z. This is in agreement with the estimate (3.32) for the width
of the plume, because p > 0.
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Figure 3.4: Flow of DNAPL over lens.

3.2 DNAPL infiltration into a lens with high entry pressure

In this section we consider the stationary flow of DNAPL and water in a domain containing
a single horizontal lens. The entry pressure of the lens p! is greater than the entry pressure
of the host medium p?. We want to determine the conditions for which a stationary solution
is possible such that DNAPL does not infiltrate into the lens. The DNAPL saturation on the
outside of the lens must then be smaller than the threshold saturation s*.

The configuration is depicted in Figure 3.2. The upper boundary of the lens is located
at a depth H with respect to the top boundary of the domain and the length of the lens is
2L. The normal component of the DNAPL discharge on the top boundary is prescribed by
(3.19). The configuration is symmetrical with respect to z = 0; therefore we only consider
the right half of the domain.

To obtain a problem that can be treated analytically we have to make some simplifications.
The validity of the simplifications has to be verified by numerical experiments.

Like for the homogeneous case we assume that the total flow ¢; is negligible. Furthermore,
we assume that the DNAPL flow on top of the lens is mainly horizontal towards the sides.
We expect that this is the case when the lens is much longer than the stationary DNAPL
plume width at z = H corresponding to a homogeneous configuration without lens. The
plume width can be estimated with the use of (3.32) or (3.36).

In this section we restrict the analysis to the horizontal flow on top of the lens. The
situation is depicted schematically in Figure 3.4. The discharge of DNAPL transported over
the lens to the right end is equal to half the discharge of supplied DNAPL in the opening of
the top boundary of the domain. We assume that the flow on top of the lens is in vertical
equilibrium. It means that the flow in the vertical direction is negligible in comparison with
the flow in the horizontal direction, which yields
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Pec
0z

= Apg if0<s<l. (3.38)

Moreover, we assume that the DNAPL drops off at the end of the lens so quickly that the
saturation there is negligibly small, i.e., s(z, H) is positive for # < L and s(z,H) — 0 as
x — L.

After integration of the horizontal component of ¢, as given in (3.17) with respect to the
height, we obtain

— < < .
= : Awfn— " dz for0<z <L, (3.39)

where Q; = 2dg’,. To put equations (3.38) and (3.39) in dimensionless form we redefine z
and z as

xi=—, and z =
and define the dimensionless numbers

2k H ph
£ and N, = <. 3.40
Lpn Qi 7 ApgH (3.40)

N, =

The number N. is the capillary number, which represents the ratio of capillary and viscous
forces in the horizontal direction. Note that the top boundary of the lens is located at z = 1.
Writing (3.38) and (3.39) in dimensionless form we obtain

1 B I
- Nc/ M) Li(s)ydz=1, 0<w<t, (3.41)
0 oz
and
J .
Ncgﬁ_zj(s) =1 if0<s<1. (3.42)

We seek a solution s(z, z) of equations (3.41)—(3.42) that satisfies 0 < s(z,1) < s* for z < 1
and s(1,1) = 0.

Let sp(z) denote the DNAPL saturation on the lens boundary z = 1. From (3.42) we then
obtain

J(s(z, 7)) = J(sp(x)) — 1N_C;. (3.43)

Hence, if we know the saturation on the lens boundary sy(z) then the saturation distribution
s(z,z) is given by (3.43). The approach is to substitute (3.43) into (3.41) and to rewrite
(3.41) as an ordinary differential equation for s;. From (3.43) we obtain

L I(s(2.2) = - J(5(0) (3.44)
—J(s(z,2)) = —J(sp(2)). .
Oz ’ de
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The integrand in (3.41) vanishes when s = 0, because A(0) = 0. From (3.43) we find that no
DNAPL is present for values of z satisfying

2< 1= Ny(J(sp(z)) — 1) := z0(2). (3.45)
Using (3.43)—(3.45) we obtain from (3.41) the following problem for s;:

d
—A’C<D>(sb)£ =1 for0<a<1,

(II)
sp(1) =0,

where (D), which can be interpreted as an effective vertically averaged diffusion function
(cf. (3.26)), is given by

1

(D))= T'(ss) [

20

Ns(z,2)) dz = NoyJ'(s5) /Osb D(s)ds, (3.46)

s(z, z) by (3.43), zo by (3.45), and D(s) = J'(s)A(s). We note that (D)(0) = 0 and (D)(sp) >
0 for s, > 0. Hence it follows from the differential equation that sy(z) is strictly decreasing
if s > 0. Integration of the differential equation for s, yields the implicit solution

N, /Osb(x)wxu) du=1-1z. (3.47)

If sp(z) < s* DNAPL does not flow into the lens. Since sy(z) is strictly decreasing, it is
therefore necessary that s;(0) < s*, and hence

Nc/s*<D>(u) du> 1. (3.48)

Using (3.46) we can simplify this expression to
NeNegl(s™) > 1, (3.49)

where

* *

1(5*):/05 (J’(u) /OUD(s)ds) du:/os [J(s%) = J(s)] D(s) ds. (3.50)

Note that I is a strictly increasing function of s* with /(0) = 0. Substituting the expressions
for the dimensionless numbers (3.40) into (3.49), we find that s, < s* provided that

o 2kp(ph)?

Q:<Q; = i Apg L I(s™), (3.51)
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where 7 is the critical discharge. Thus if ¢); > @7, there is no stationary solution for which
s is smaller than s* on the entire lens boundary, and consequently DNAPL infiltrates into
the lens. We remark that this criterion does not depend explicitly on the depth H of the
lens. For the time-dependent problem we expect that there is also a ¢ such that DNAPL
infiltrates into the lens if (); > Q. The critical discharge derived here serves as an estimate
of its order of magnitude. In Section 4.2 we check the validity of criterion (3.51) for the
time-dependent case.

3.8 Validity of the approzimation ¢ = 0

In both the homogeneous and heterogeneous case we used the assumption that the total flow
¢: is negligible. Here we show that with certain natural boundary conditions at infinity this
is a reasonable approximation for the homogeneous case if

(s < 1. (3.52)

Hence (3.52) is satisfied for sufficiently low DNAPL saturations.

The exact stationary flow problem is governed by

divg, =0, (3.53)

divg; =0, (3.54)
where ¢, is given by (2.10) and ¢ by (2.11). At the top boundary of the domain n-¢, is given
by (3.19) and n - ¢ = 0. The amount of DNAPL entering is equal to the amount of water
leaving through the opening. Let ¥, = p, — pwgz denote the water potential. At infinity,
the DNAPL saturation vanishes and the water pressure becomes hydrostatic. Therefore we
prescribe the following conditions at infinity:

s — 0, ty — 0 as ||z|| — oc. (3.55)

To prevent flow at infinity we seek solutions of (3.53) and (3.54) for which [|g:|| = O(||z||™")
as ||z]| — oo.

To show the structure of ¢; we rewrite expression (2.11) as
Ap
g = —Mi(s)grad P + (1 + p—fn(s)) A(s) grad pugz,
where Ay = Ay, + A, and P the global pressure (see e.g., [3]) defined by
P = [ f(uplw)dut po. (3.56)
0

Then using (3.52) we find for ¢,

g = —Ai(s) grad ¢y, where ¥y = P — pypgz. (3.57)
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From (3.55) and (3.56) it follows that ¢ — 0 as ||z|| — oo.

Let us define Qg = {(z,2) € Q: 2% + 22 < R?}. The boundary of Qg is denoted by 9Qpg.
When we multiply (3.54) by 1, and integrate over Qpg, we find

/ grad ¢y - g = / (n - q)¢n, (3.58)
Qn 90R

where n denotes the outwardly directed normal at the boundary 0Q2g. The right-hand side
of (3.58) vanishes for R — oo in view of the boundary condition at z = 0 and the behavior
of ¢ and 9 at infinity. Then letting R — oo in (3.58) we obtain after substitution of (3.57)

/Q/\tH erad |2 = 0.

Since A; is bounded away from zero, it follows that ||grad x| = 0 in Q. Hence for the
approximated total flow rate (3.57) we obtain ¢; = 0 in .

The above argument cannot be applied to the heterogeneous configuration, because v is
in general not continuous across the lens boundary. However, if we assume that n-¢; = 0 on
the lens boundary it can be concluded that ¢; = 0 in the entire domain.

4. NUMERICAL APPROACH

4.1 Discretizalion

In standard numerical simulators it is tacitly assumed that the capillary pressure is continuous
across heterogeneities. However, the extended capillary pressure condition shows that the
capillary pressure need not be continuous. For the problem of DNAPL infiltration into a
low-permeable lens the existence of the threshold saturation s* is crucial. Therefore a careful
discretization near the lens is needed. In this section we present a numerical algorithm, into
which the interface conditions as discussed in Section 2 are explicitly incorporated. In [6] we
have developed a similar discretization for one-dimensional problems. Here we present the
two-dimensional extension of this algorithm.

For the discretization of the equations (2.1)—(2.6) we use the standard fully-implicit scheme
(see e.g. [17]) on a Cartesian grid, with the reduced DNAPL saturation s and the water
pressure p as the independent variables. For ease of notation we consider a constant mesh
size h. We assume that the lens is resolved by the grid. Integration of the conservation laws
(2.2) over the cell (¢,7) yields

_9 (Sm+1 _ S;fr]) +

Af \Tii

1
+1 +1 +1 +1 _
7 (qﬁm/zj = opi1/25 F G jyrj2 ~ qg;i,j—lﬂ) =0, (4.59)

é 1 1
o (T =)

1
+1 +1 +1 +1 _
7 (2 = G2 + O g2 = Citaya) = 0, (4.60)
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where the subscript (7,j) denotes the discretization cell, the superscript m the time, and
q;'f;."_l_ll/” the approximation of the flux ¢, at the edge between the cells (¢,7) and (i + 1, 7).
The use of the backward Euler scheme in equations (4.59)—(4.60) guarantees the stability of

the time integration scheme. The flux Upiit1/2,5 is approximated in the usual way,

Qoi1/2,5050,5 i g3 Sit1,o Pig1,j) = —Aaig1/2, Pasit1/2,j: @ = 0,0, (4.61)
where
1
(I)w;i+1/2,j = E(p”l’j - Pi,j) — Pwl€g,,
1
(I)n;i+1/2,j = E(pﬂ-l,j + Pejit1,; — Pij — pc;i,j) — Pnd€gy,1,

€41 the component of e, in the first coordinate direction, and A
phase mobility,

o Rkl ) e 0@ 5 <0,
ayi4+1/2,j — kk?"a(si+l,j)/ua7 if Qa;i{—l/lj > 0.

wit1/2, the upwind weighted

(4.62)

We are now ready to define the discretization of ¢ at the lens boundary. Because the

ai+1/2,5
saturation s is discontinuous, we introduce dummy variables s' and s” that can be considered
as approximations of the left and right limit values of s at the interface (see also [4]). Further
we introduce the dummy variable p™ which is an approximation of the continuous water
pressure p at the interface. Using equation (4.61) and the dummy variables s', 5", p™ we
define approximations ¢!, and ¢, to the flux Qi1 /2,5 inside the cells (¢,7) and (i +1, 7). Next

the dummy variables are eliminated by using continuity of flux,
{ {
qa(si,ppi,j; s ’pm) = q(Z(ST7pm; Si+1,j7pi+1,j)7 a =n,w, (463)

and the extended capillary pressure condition (2.16) for s’ and s”. This system of three
nonlinear equations is solved by Newton’s method. Thus we obtain s', s, p™, and the
desired approximation to the flux:

l r
qoz;i—l—l/?,j =4y = 44- (464)

The time step at”™ is chosen adaptively, such that the changes in the saturation are of order
AS,

AS
At = - ——Al". (4.65)
max; ; |si7]- - 877

The ratio at™*t! /at™ is bounded between 0.5 and 2.0, and in our actual computations we take
As = 0.05.

In every time step we have to solve the system of nonlinear equations equations (4.59)-
(4.60), which is done by Newton’s method. In the linearization we need the derivatives of
Qosig1/2,5 with respect to the independent variables in the adjacent cells. At heterogeneities
the calculation of these derivatives is not trivial. However, a simple but tedious calculation
shows that the dummy variables s, s” and p™ can be eliminated from these derivatives.
Therefore the linear system to be solved retains its usual sparsity pattern. The linear system

is solved efficiently by means of a multigrid method (see [15]).
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Parameter Value Meaning

10) 0.34 porosity

kp, 7.0 x 10712 m? permeability host medium
ki 5.3 x 10712 m? permeability lens

Pl 2218 Pa entry pressure host medium
P 2550 Pa entry pressure lens

2d 0.04 m width of opening

2L 1.12m length of lens

H 0.10m depth of lens

A 2.48 parameter Brooks-Corey model
Lo 1.00 x 1073 Pas viscosity water

o 0.57 x 1072 Pas viscosity DNAPL

Puw 1.00 x 1073 kgm=3 density water

Pn 1.46 x 1073 kgm™> density DNAPL

Table 4.1: Data set of parameters used in numerical simulations.

4.2 Computational Resulls

We now use this algorithm to compare the numerical solution with the approximations de-
rived in Section 3. We consider both the spreading of a DNAPL plume in a homogeneous
medium, and the infiltration of DNAPL in a laboratory set-up with a single lens. The relative
permeabilities and capillary pressure functions are given by the Brooks-Corey model:

J(s)=(1-s)7" (4.66)
and

Fra(s) = 87 (1= (1= $)F2Y) 0 hpu(s) = (1 - )2 (4.67)

The value for A is given in Table 4.1 together with other relevant parameter values.

Stationary DNAPL flow in a homogeneous medium

In Section 3.1 we considered the stationary infiltration of DNAPL in a homogeneous porous
medium. An approximation of the saturation profile was derived under the assumption that
the DNAPL saturation is small. For the Brooks-Corey model we have the small saturation
approximation (3.33) with p = 1 and C' = (p/A)[A/(2+ A)]P. Figure 4.5 shows the quality of
the small saturation approximation for A = 2.48.

Let us now compare the explicit solution (3.35) of the porous media equation with the
numerical solution. For that purpose we use the data given in Table 4.1. DNAPL infiltrates
through the opening of width 2d with a rate ¢!, = 1.35 x 107" ms™'. This is the largest flow
rate that we consider in the next section, thus the case with the largest spreading of the
DNAPL plume (cf. Section 3.1.1).
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Figure 4.5: Small saturation approximation for Brooks-Corey function with A = 2.48.

For the numerical calculation we use a finite computational domain Q = (0,0.4) x (0,0.4).
Here we have taken advantage of the symmetry of the problem. At the boundaries of this
computational domain we impose n - ¢; = 0, and

n-q, =0, z=0, z>d,
n'qn:_q;-m ZIO,.ZSd,
n-grads =0, z =04,
P = ZGPw, z = 0.4.

(4.68)

These boundary conditions imply a hydrostatic pressure distribution at the side boundaries,
and negligible capillary diffusion at the bottom of the computational domain.

The problem is discretized on a grid with a mesh size of 0.0025m in both coordinate
directions. The stationary solution is obtained by putting the porosity ¢ equal to 0 in the
equations (4.59)-(4.60). The fine grid solution is obtained by a nested iteration procedure.
First the solution is calculated on a coarse grid, and this solution is then interpolated to a
next finer grid. On all grids we use the multigrid procedure to solve the discrete equations.

In Figure 4.6 contour plots of the solution are shown for the explicit solution (3.35) and
the numerical solution. We observe that the solutions differ slightly directly underneath the
opening. This is expected, because the explicit solution is obtained for different boundary
conditions at the opening. However, away from the opening the two solutions agree very well.
For this test problem the explicit solution (3.35) indeed gives a good approximation for the
spreading of the DNAPL plume

DNAPL infiltration into low-permeable lens

Let us now check the criterion (3.51) for DNAPL infiltration into a lens with higher entry
pressure than the surrounding host medium. For the data given in Table 4.1 we have the
critical saturation s* = 0.29, and the critical DNAPL discharge @} ~ 2.64 % 10~%m?s~! for
steady infiltration. We consider transient DNAPL infiltration for Q; = 1.24 + 10~ %m?s~! and
Q; = 5.40x107%m?s™1, so approximately half and twice the critical discharge @7, respectively.
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Figure 4.6: Contour plot of the explicit solution to the porous media equation (left) and the
numerical solution (right). The contour lines are drawn at equidistant levels of 0.01.

Before we proceed to the computational results, we first check whether the DNAPL plume
in the case without lens has a small width compared to the lens. Using the explicit solu-
tion of the porous media equation it follows from equation (3.36) that the full width of the
DNAPL plume is given by 2d(1+ 331.72)%43, so for H = 0.1m the ratio of the unperturbed
DNAPL plume width and the length of the lens is 0.16. For the simulations we use as com-
putational domain @ = (0,0.8) x (0,0.28). The boundary conditions are similar to those in
equation (4.68). The mesh width in our computations is 0.005m, which implies a 160 x 56
grid.

First we consider the case of slow infiltration (@Q; = 1.24 * 10™%m?s™!). Contour plots of
the numerical solution are shown in the left column of Figure 4.7. The solution is shown
after approximately 125, 375 and 750 hours. When the DNAPL plume reaches the lens, the
DNAPL saturation is too low to overcome the entry pressure (s* ~ 0.29). It spreads laterally
due to capillary diffusion, and reaching the end of the lens, it drops off. DNAPL does not
enter the lens in accordance with the criterion (3.51) for steady DNAPL infiltration. We
remark that the assumption s = 0 at the end of the lens indeed bears out in practice.

Next we consider the case of fast DNAPL infiltration (Q; = 2.70 ¥ 107m?s™!). In the
right column of Figure 4.7 contour plots of the solution are shown after approximately 25,
125 and 250 hours. As in the previous case the DNAPL plume first spreads laterally after
reaching the lens. However, in this case the lateral transport of DNAPL due to capillary
diffusion is too slow compared to the supply of DNAPL. Right underneath the opening the
DNAPL saturation is largest. There it exceeds the critical saturation s* and DNAPL starts
to infiltrate into the lens. After 250 hour a substantial amount of DNAPL has entered the
lens.

We conclude that the numerical computations confirm the analytical results of Section 3.
The porous media equations gives a useful estimation to the width of the DNAPL plume in
a homogeneous medium. Moreover the criterion (3.51) for steady state infiltration appears
to hold for the practically relevant case of transient infiltration.
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&

Figure 4.7: Contour plots of numerical solutions for problem with a single lens. Contours
are drawn at equidistant levels of 0.025, starting at s = 0.025. Left: slow infiltration (Q; =
1.24%1072m?2s™1) at T=125, 375 and 750 hr. Right: fast infiltration (Q; = 5.40 x10™%m?s™1)
at 25, 125 and 250 hr.
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5. CONCLUSION

We have studied the problem of DNAPL infiltration. For the homogeneous case we derived
both an upper bound and an asymptotic approximation to the width of the DNAPL plume.
This asymptotic approximation is based on a small saturation approximation. For the Brooks-
Corey model these two approximations show nearly the same order behavior with respect to
depth, also in the case of large saturations.

For the problem with a single lens we derived an explicit expression for the critical DNAPL
inflow. If this critical discharge is exceeded DNAPL infiltrates into the lens. Numerical sim-
ulation confirm these analytical results. In the homogeneous case the asymptotic approxima-
tion indeed gives a good estimate of the DNAPL plume width. Moreover, the criterion for
the critical DNAPL discharge appears to be valid for the practically relevant case of transient
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