
CWI Tracts 

Managing Editors 

J.W. de Bakker (CWI, Amsterdam) 
M. Hazewinkel (CWI, Amsterdam) 
J.K. Lenstra (CWI, Amsterdam) 

Edltorlal Board 

W. Albers (Maastricht) 
P.C. Baayen (Amsterdam) 
R.T. Boute (Nijmegen) 
E.M. de Jager (Amsterdam) 
M.A. Kaashoek (Amsterdam) 
M.S. Keane (Delft) 
J.P.C. Kleijnen (Tilburg) 
H. Kwakernaak (Enschede) 
J. van Leeuwen (Utrecht) 
P.W.H. Lemmens (Utrecht) 
M. van der Put (Groningen) 
M. Rem (Eindhoven) 
A.H.G. Rinnooy Kan (Rotterdam) 
M.N. Spijker (Leiden) 

Centrum voor Wlskuncle en lntormatlca 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded 
on February 11 , 1946, as a nonprofit institution aiming at the promotion of mathematics, 
computer science, and their applications. It is sponsored by the Dutch Government through 
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 



CWI Tract 

A program generator 
for recognition, parsing 
and transduction with 
syntactic patterns 

G.J. van der Steen 

55 

Centrum voor Wiskunde en Informatica 
Centre for Mathematics and Computer Science 



1987 CR Categories: F.1.1, F.1.2, F.2.2, F.4.2, H.3.1, H.3.3, 1.2.2, 1.2.7, 1.5.4, 1.7, J.5. 
ISBN 90 6196 361 3 
NUGl-code: 811 

Copyright© 1988, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



Preface and acknowledgements 

This study is an account of an evolutionary process. It describes the development of a 
program-generator during the years that I worked in the computer department of the Faculty 
of Arts of the University of Amsterdam. There l was confronted with a number of 
computational problems, which initially seemed to diverge widely, but which gradually 
became unified when I tried to develop formalisms for them. It was fascinating to extend the 
technique of LR parser-generation and the construction of formal automata for which 
programs can be generated. I suspect that a number of my research fellows in the faculty, 
who were my clients, initially suffered from my tendency towards unification. But I hope I 
gave back a system in which they can express far more problems than they ever expected, 
and with a runtime behaviour which excells similar systems. In general I thank the faculty 
for the confidence they had in the way I thought things had to be done. The resulting system 
has now found its way to the industry. 
During my research I cooperated with a large number of people. Hugo Brandt Corstius 
specified the first wishes for a pattern recognition program for large corpora of texts. Jan van 
Katwijk generously provided me with the code of his own LALR(l) parser-generator, which 
served for me as a solid initial system. For the programming of the compiler part of the 
Parspat system I got the invaluable help of Marijke Elstrodt. We went through a number of 
crises during the time that I extended the formalism together with new techniques for 
compilation. Marijke had to keep the system running for all former applications and at the 
same time program the new techniques. The runtime part was partly programmed by Menno 
Ytsma, who mysteriously appeared out of nothing, volunteered unpaid for a year, and then 
disappeared when the stock market no longer obeyed his calculations. Casper Dile performed 
a good job by extending the runtime part and keeping it in a healthy condition. Pieter 
Masereeuw has taken up the development of user-interfaces. Joos Skolnile programmed the 
concept of the external trie-datastructure. 
During a number of years the use of grammatical formalisms in Corpus-linguistics is debated 
in working groups of the ZWO-werkgemeenschap "Computerlinguistiek en Mathematische 
Linguistiek". I profited from discussions with Jan Aarts, Dile Bakker, Marcel Dekker, Hans 
van Halteren, Theo van den Heuvel, Job Honig and Jan de Jong. Suggestions for the 
improvement of programs I got from numerous people, but especially I like to thank Bieke 
van der Korst, Jurjen van den Hoek, Ph. Houwink ten Cate, Jan de Jong, Pieter 
Masereeuw, Willem Meijs, Gerard Molenaar, Leo Plenckers, Gerhard Riesthuis, Gerjan 
van Schaaik and Thera Wijsenbeek for their close collaboration and for their willingness to 
provide me with examples of the use of the Parspat system and its predecessors. 
With the research department of BSO we set up a good collaboration, not least because of the 
excellent work being done there by Bieke van der Korst. 
I thank Jan van Leeuwen for the careful reading of versions of my manuscript and for his 
suggestions for improvement. He has the gift to be critical and stimulating at the same time. 
Wim Klooster I thank for his continuous interest in the application of Computer Science in 
the Humanities and for his comments on earlier drafts of this book. 
Willem Meijs corrected and commented on my English. 





Contents 

1. Introduction and goals ............................................................................. . 1 

1. 1 Analytic aspects of computational grammatical systems ...................................... 2 
1. 1. 1 Recapitulations .................................................................................. 2 
1.1.2 Sources of ambiguities ......................................................................... .4 
1.1.3 Formalism, programming and program-generation ........................................ .5 
1.1.3.1 Formalism as static description of a process .............................................. 5 
1.1.3.2 LR parser-generation and beyond ........................................................... 8 
1.2 Functional aspects of computational grammatical systems ................................... 8 
1.2.1 Characteristics of input. ........................................................................ 9 
1.2.2 Characteristics of output. ....................................................................... 9 
1.2.3 Characteristics of the interaction between components of a grammatical system. ..... 10 
1.2.3.1 First situation: no feedback between layers ............................................. 10 
1.2.3.2 Second situation : feedback between layers ............................................. . 11 
1.2.3.2.1 Text analysis: grammatical analysis for document conversion ...................... 11 
1.2.3.2.2 Machine Translation ...................................................................... 11 
1.2.3.2.3 Corpus Linguistics ....................................................................... 12 
1.2.3.2.4 Recognition of spoken language ....................................................... .16 
1.2.3.3 Conclusions ................................................................................. .16 
1.2.4 Characteristics of a lexicon ................................................................... 17 
1.3 Genetic aspects of computational grammatical systems ..................................... 17 

2. A unifying formalism .............................................................................. 19 

2.1 Introduction ....................................................................................... 19 
2.2 The unifying formalism ......................................................................... 20 
2.2.1 The basic formalism : Chomsky type-0 grammar ......................................... 24 
2.2.2 Regular expressions ........................................................................... 29 
2.2.3 Notions for pattern matching ................................................................. 29 
2.2.3.1 Don't care .................................................................................... 29 
2.2.3.2 Arb ............................................................................................ 30 
2.2.3.3 Line ........................................................................................... 30 
2.2.3.4 Ranges of terminal symbols ............................................................... 31 
2.2.4 Notation of Actions ........................................................................... .31 
2.2.5 Variables ........................................................................................ 32 
2.2.6 Booleans ........................................................................................ 34 
2.2.6.1 Boolean "and" between rules .............................................................. 34 
2.2.6.2 Boolean negation within a rule ............................................................ 36 
2.2.7 Input ..................................................................... , ...................... .38 
2.2. 7 .1 Tree-symbols ................................................................................ 38 
2.2.7.2 The lexicon ................................................................................... 40 
2.2.8 Output. ......................................................................................... .43 
2.2.8.1 Reports ....................................................................................... 43 
2.2.8.2 Structural description ....................................................................... 43 



2.2.8.3 Output-variables ............................................................................. 44 
2.2.8.4 External tree building ...................................................................... .44 
2.2.8.5 Transduction ................................................................................. 45 
2.3 Relation to other formalisms ................................................................... .47 
2.3.1 Non-procedural recognition and parsing ................................................... 47 
2.3.1.1 String- and tree-matching .................................................................. 47 
2.3.1.2 Attribute-, affix- and augmented phrase structure grammars ......................... .49 
2.3.1.3 Transformational Grammars .............................................................. 50 
2.3.1.4 Augmented Transition Networks ......................................................... 51 
2.3.2 Non-procedural Transduction ............................................................... 52 1 

2.3.2.1 Syntax-directed Translation Schemata ................................................... 52 
2.3.2.2 Web-, Graph- and Tree-grammars ....................................................... 52 
2.3.2.3 Formula Manipulation Systems .......................................................... 53 
2.3.3 Comparison with special programming languages for pattern recognition ............. 54 
2.3.3.1 Comit and Meteor .......................................................................... 54 
2.3.3.2 Snobol. ...................................................................................... 55 
2.3.3.3 Icon and Summer .......................................................................... 55 
2.3.3.4 Prolog ....................................................................................... 56 
2.4 Useful effects of combination of formalisms ................................................ 56 
2.5 Syntax of the formalism ........................................................................ 59 
2.6 Program-generation for the sub-formalisms ................................................. 61 

3. The rationale of the Pf A .......................................................................... 65 

3.1 Introduction ...................................................................................... 65 
3.2 The evolution of automata and program generators for the grammars 

in the Chomsky-hierarchy ................................................................... 65 
3.3 Informal introduction to LR(0) parser generation and parsing by an example ........... 67 
3.4 Considerations about lookahead calculations ................................................ 71 
3.5 The relation between the finite control and the LR(0) table according to 

Knuth, Walters and Turnbull ............................................................... 72 
3.6 Earley parsing ................................................................................... 73 
3.7 Tomita parsing ................................................................................... 74 
3.8 The extension of a 2SM to a PTA. ............................................................ 76 
3.9 Example of the working of a PTA for ambiguous cf g's with regular 

expressions and reports ...................................................................... 82 
3.10 Transduction with a PTA; example ........................................................... 87 

4. The definition of a Parallel Transduction Automaton ......................................... 90 

4.1 Introduction to the formal description of the PT A. .......................................... 90 
4.2 Formal definition of a PTA. .................................................................... 92 
4.2.1 The structure of elements of configurations ................................................ 93 
4.2.1.1 Nodes of L and R .......................................................................... 93 
4.2.1.2 Parse forests and associationlists ......................................................... 95 
4.2.1.3 Structure of connectors ................................................................... 100 
4.2.2 Processors and programs ................................................................... 101 
4.2.2.1 PT : processor for the PT A .............................................................. .101 
4.2.2.2 PC: processor for connectors ........................................................... .102 
4.2.2.3 PL and PR: processors for nodes in Land R .......................................... 105 
4.2.2.3.1 PL: processor for nodes in L. ........................................................ 105 



4.2.2.3.2 PR : processor for nodes in R ......................................................... 110 
4.2.2.4 PF : processor for the parse forest ....................................................... 112 
4.2.2.5 Processors for individual instructions in PL, PR and PF ............................. 113 
4.2.2.6 PP : processor for pruning ................................................................ 142 
4.2.2.6.1 Pruning of connectors .................................................................. 142 
4.2.2.6.2 Pruning in general. ..................................................................... .142 
4.2.2.6.3 Transduction ............................................................................. 142 
4.2.2.6.4 Reporting and structure building ...................................................... 144 
4.3 Generation with a PTA ................................ , ........................................ .146 
4.4 Undecidability .................................................................................. .146 
4.5 Parallel processing ............................................................................. .146 

5. Extension of the LR-table construction method for the unifying formalism .............. .149 

5.0 Recapitulation of the LR(0) parser-generation algorithm. ................................. .149 
5.1 Regular expressions ............................................................................ 152 
5.2 Symbols ......................................................................................... .152 
5.2.1 "Don't cares" ................................................................................. .152 
5.2.2 "Arb's" ........................................................................................ 153 
5.2.3 "Lines" ........................................................................................ .153 
5.2.4 Ranges of terminal symbols ................................................................ .154 
5.2.5 Tree-symbols ................................................................................. 154 
5.3 Boolean constructs ............................................................................. .155 
5.3.1 Boolean "and" between rules: cooperation ................................................ 155 
5.3.2 Boolean negation within a rule ............................................................. .156 
5.3.2.1 Negation of a single terminal ............................................................. 156 
5.3.2.2 Negation of a string: 3 types of item dots .............................................. .156 
5.4 Boolean negation and regular expressions .................................................. .158 
5.5 Boolean negation and symbols ............................................................... .161 
5.5.1 Boolean negation and terminals ............................................................ .161 
5.5.1.1 Boolean negation and don't c.ares ....................................................... .161 
5.5.1.2 Boolean negation and arb's .............................................................. .161 
5.5.1.3 Boolean negation and lines ............................................................... 161 
5.5.1.4 Boolean negation and ranges of terminal symbols .................................... .162 
5.5.1.5 Boolean negation and tree symbols ..................................................... .162 
5.5.2 Boolean negation and nontenninals ........................................................ 162 
5.6 Boolean negation and Boolean "and" between rules ....................................... .163 

6. A compiler ........................................................................................ .165 

6.1 Overview ........................................................................................ 165 
6.2 Reading the grammar : module "Readgrammar" ............................................ 166 
6.2.1 From grammar rules with regular expressions to a datastructure ...................... .167 
6.2.1.1 The principle of the datastructure for the storage of grammar rules .................. 168 
6.2.1.2 The on-line algorithm ...................................................................... 171 
6.2.2 Parsing of grammar rules according to the metagrammar ............................... 175 
6.2.3 Implementation: Datastructures to be built ............................................... .176 
6.2.3.1 Symbol Trees .............................................................................. 176 
6.2.3.2 The, other datastructures .................................................................. .176 
6.3 Preparing useful sets and relations: module "Preparesets" ............................... .176 
6.4 Construct ltemsets : module "GenLRsets" .................................................. 177 



6.4.1 Generating a FSA for left- and right-recursive cf g's .................................... .177 
6.4.2 Optimization of the treatment of empty- and unit-rhs's ................................. .183 
6.4.3 Disambiguation of shift-reduce/reduce conflicts ......................................... .183 
6.4.4 The principle of the datastructure for the extended LR-table ........................... .183 
6.4.5 The algorithm for the construction of itemsets ........................................... .186 
6.5 Generating code for a PTA: modules "Supscanner" and "SupLRcode" ................ .188 
6.5.1 Shared code .................................................................................. .188 
6.5.2 Skip instruction with trees .................................................................. 189 
6.5.3 Variables ...................................................................................... 189 
6.5.4 Lexicon operations .......................................................................... .191 
6.6 Cascaded grammars: modules "Linking loader" and "Disassembler" ................... 191 
6.7 Relevance of the compiler for other purposes .............................................. .191 
6.8 Possible improvements of the compiler ..................................................... .192 
6.9 The choice of the programming language ................................................... .192 

7. Complexity ....................................................................................... . 193 

7 .1 The complexity of compilation ............................................................... .193 
7 .2 Other applications of the algorithms within the compiler .................................. 199 
7.2.1 Constructing position-trees ................................................................. 199 
7.2.2 Pattern matching of ill-formed input.. ..................................................... 200 
7.3 The complexity of on-line recognition for type-4 and type-3 grammars ................. 202 
7.3.1 Relation to the algorithm of Aho and Corasick. .......................................... 203 
7.3.2 Relation to the algorithm of Knuth, Morris and Pratt.. ................................. 204 
7.3.3 Relation to the algorithm of Boyer and Moore ........................................... 204 
7 .3 The complexity of on-line recognition and parsing of type-2 grammars ................ 213 
7.4.1 Within the system Parspat. ................................................................. 213 
7.4.2 Recapitulation of results about cf recognition and parsing .............................. 214 
7.4.3 Extension ofEarley's algorithm with compatibility calculation ........................ 215 
7.4.4 Worstcase languages and grammars ....................................................... 215 
7.4.4.1 The difference between recognition and parsing ...................................... 216 
7.4.4.2 The type of the language which is described ........................................... 216 
7.4.4.3 Inherent and temporal ambiguity ........................................................ 217 
7.4.4.4 The choice of the recognition/parsing strategy ......................................... 218 
7.4.4.5 The hardest context-free grammar: Ggreibach ........................................ 219 
7.4.5 Evaluation of the results .................................................................... 221 
7.4.6 Towards a linear time algorithm for general cf parsing ................................. 222 
7.5 The complexity of on-line recognition and parsing of type-1 and type-0 grammars ... 222 
7.5.1 Within the system Parspat.. ................................................................ 222 
7.5.2 Recapitulation of results about type-1 and -0 recognition and parsing ................ 223 
7.5.3 Towards improvements of the PTA ....................................................... 225 
7 .6 The complexity of transduction with finite delay of transduction grammars ............ 225 
7. 7 The complexity of the introduction of tree symbols in grammars ........................ 226 
7 .8 The complexity of the introduction of boolean operators in grammars .................. 226 
7 .9 The complexity of the introduction of variables in grammars ............................. 226 
7 .10 The complexity of the introduction of lexicon symbols in grammars ................... 228 

8. Applications ...................................................................................... 229 

8.1 Physical codings : Hittite clay tablets ........................................................ 229 
8.2 The process of the description, transformation and querying of free text. .............. 234 



8.3 Pattern recognition in American, Dutch and Latin corpora ................................ 237 
8.4 Pattern recognition in written music : the "Cantigas de Santa Maria" .................... 241 
8.5 A historical free-text database ................................................................. 244 
8.6 Pattern recognition as a research tool for documentalists .................................. 247 
8.7 An Augmented Phrase Structure Grammar for Simplified English ...................... 249 
8.8 A Transformational Grammar ................................................................ 251 
8.9 Parallel transduction rules for the translation of numbers into Dutch number names .. 254 
8.10 Parallel transduction rules for the translation of graphemes to phonemes .............. 256 
8.11 A grammar for compound Dutch words .................................................... 258 

9. Suggestions for further research ............................................................... 261 

10. Literature: ... .................................................................................... 263 

11. Index ............................................................................................ . 275 





1 

1. Introduction and goals 

Syntactic descriptions play an important role in numerous applications from Linguistics, 
Artificial Intelligence, Musicology, Biology, Shape Analysis. They are a model of the appa
ratus by which we can select meaningful impressions from the outside world and by which 
we can express our messages to that world. 

Most of the formalisms for syntactic descriptions stem from Linguistics. According to these 
formalisms it is possible to generate, to recognize, to parse and to transduce parts of sen
tences of a language in a precise way. "Syntactic Pattern Recognition" (abbreviated "SPR") 
is, at this moment, an emerging field (Gonzalez and Thomason, 1978) (Fu, 1982) in which 
the syntactic methods of Linguistics are applied to other fields. A central role is played by the 
recognition and transduction of parts of datastructures of atomic symbols, formulated in 
some grammatical formalism. 

The potential applications of SPR are numerous. All natural objects in which we can project 
some ordering and all artificial objects in which some kind of ordering or sequencing plays a 
role are candidates for syntactic description and thus become objects for a syntactic treat
ment. 

Images of natural objects are perceived in a psychophysical way. It may not be obvious in 
which way we should segment the object. Pavlidis (1977) pointed out that the image 
segmentation problem is therefore not susceptible to a purely analytical solution. This gives 
rise to the problem of ambiguity. 
Fu .(1982) commented that any mathematical algorithm must be supplemented by heuristics, 
usually involving semantics, about the recognition of the class of objects under considera
tion. 
In natural language applications the same may be true on the lexical level. It is emphatically 
true when we deal with spoken language. Only systems which are transparent for am
biguities arising from different possible ways of perception and interpretation have a chance 
to become instruments for semantic analysis. 

In this book we consider the computational aspects of recognition, parsing and transduction. 

There are a number of applications in Computational Linguistics which were frustrated and 
eventually stopped by the lack of efficient computational strategies. In such a growing field 
the computer programs should be of a sufficiently general and optimized nature to become a 
stimulus instead of a hindrance to new research-projects. The programming should prefer
ably be done in an automatic way, straight from the formalism in which problems are ex
pressed. 

The attempts to automatically transform grammars into recognizing, parsing or transducing 
programs have their roots in Computer Science, where a rich literature originated on auto
matic parser generation for programming languages. These techniques can be extended to the 
domain of SPR. 



2 

In this book we provide a program generator for a formalism which unifies a number of 
popular grammatical formalisms which are in use in SPR. 

In chapter 2 we will describe this unifying formalism. In chapters 3 and 4 we will describe a 
formal machine model (a "Parallel Transducing Automaton", abbreviated "PTA") for which 
programs can be generated from grammars which are written in the unifying formalism. A 
concrete implementation of the machine and the accompanying program generator are dis
cussed in chapters 5 and 6. The name of this implementation is "Parspat" (a "£.iru,er for 
Pattern Grammars"). We will investigate the complexity of the generated programs in chapter 
7. Finally, in chapter 8, a number of applications are shown which are treated with the aid of 
Parspat. 

In order to set the scene we proceed with a short introduction to the computational aspects of 
SPR, the use of grammatical formalisms and the construction of parser generators. We will 
indicate which problems will be treated, and we will end with a list of results achieved in this 
book. 

In order to show the computational aspects of a computational grammatical system, we can 
view it as an information system. We can then make use of the traditional division between 
the functional, analytic and genetic aspects of such a system. 
In the course of our discussion we will indicate in italics which problems will be treated and 
what will be developed. The discussion will be as global as possible, only presenting details 
in order to indicate what has been done already and what the current bottle-necks are. Of 
course we will not treat every problem in this book, but we will at least give an opinion on 
how future work can be done. In order to do so we present the three aspects in an evolution
ary form. 

The analytic aspect describes the internal working of a computational grammatical system as 
a simulation of a user-defined process. 
The functional aspect describes the interaction of a computational grammatical system with 
its environment. We will discuss briefly the aspects of input and output and, if the system is 
a component of a larger computational system, the form of intermediate datastructures. 
The genetic aspect describes the way in which computational grammatical systems originate 
and change in the course of time. 

1.1 Analytic aspects of computational grammatical systems 

The analytic aspect describes the simulation of a user-defined process. In computational 
grammatical systems the following processes play a role : 

- recognition, which can be simulated by formal recognition 
- interpretation, which can be simulated by formal parsing 
- change, which can be simulated by formal transduction. 

We give a short recapitulation of some characteristics of the three processes and indicate in 
which kind of applications they play a role. 

1.1.1 Recapitulations 

A recognizer is a process which takes as input a string and either accepts or rejects it de
pending on whether or not the string is a sentence which may be produced by the syntactic 
description. 



3 

A parser is a recognizer which also outputs a structural description of the sentence according 
to the syntactic description. 
A transducer is a recognizer or parser which emits output-symbols. 

A process is said to be: 
- Off-line when a response about rejection or acceptation is given after processing of the 
whole input. This assumes that the output is of limited length. 
- On-line when there is a response after each symbol of the input, indicating possible contin
uation or rejection. 
- Real-time when the on-line response will come within a guaranteed time. The term indicates 
the cooperation with other processes where this guarantee is imperative; usually, rejection 
will not occur and the input is potentially of unlimited length. 

In the following table we indicate for some typical applications the desirable characteristics of 
their implementation. 

recog- par- trans- off- on- real-
nition sing ductionline line time 

Typical applications : 
- eeg-analysis X X 

- shape analysis X X X 

- pattern-invocations X X X 

- text manipulation X X 

- exploration of texts X X 

- free-text database systems X X 

- text -to-speech systems X X X X 

- speech-recognition X X X X 

- grammatical analysis X X X X 

- machine translation X X X X X 

Current bottle-necks are: the limited availability of on-line and real-time recognition, parsing 
and transduction algorithms for a large number of syntactic formalisms. 

In this book we concentrate ourselves on on-line recognition, parsing and transduction. 

Ways of analysing complexity: exponential versus polynomial 

We recapitulate here some familiar complexity classifications from (Garey and Johnson, 
1979). The "time complexity function" for an algorithm expresses its time requirements by 
giving, for each possible input length, the largest amount of time needed by the algorithm to 
solve a problem instance of that size. (The term "problem" may, without loss of generality, 
be interpreted as an algorithm for the recognition of some input.) A "polynomial time algo
rithm" is defined to be one whose time complexity function is O(p(n)) for some polynomial 
function p, where n denotes the input length. Any algorithm whose time complexity function 
cannot be so bounded is called an "exponential time algorithm". Ifp(n) is a linear function in 
n we speak about a "linear time algorithm". 

Many exponential time algorithms that we encounter are merely variations on exhaustive 
search, whereas polynomial time algorithms generally are made possible only through the 
gain of some deeper insight into the structure of a problem. There is a wide agreement that a 
problem has not been "well-solved" until a polynomial time algorithm is known for it. 



4 

Hence, we shall refer to a problem as intractable if it is so hard that no polynomial time algo
rithm can possibly solve it. Problems for which polynomial time algorithms exist are usually 
classified as "P-problems", in contrast to "NP-problems". For the latter ones no polynomial 
time algorithm has been found, but there is a polynomial time algorithm to verify that given 
solutions are correct. A problem is NP-complete if it is in NP and every NP-problem is 
polynomially reducible to it 1. 

Error detection and -correction 

Errors in a text (according to the grammar) have to be detected as soon as possible. Analo
gous to programming languages a further requirement may be that the error will be 
"repaired", as correctly as possible, in order to continue the recognition- or transducing-pro
cess. The strategy for this repair of "ill-formed input" depends heavily upon the parsing
strategy chosen. 
On-line processes require that errors are reported as soon as possible. 

In this book we will only give an advice for the building of an error detection and -correction 
component in the program generator which we will develop. 

1.1.2 Sources of ambiguities 

During recognition, parsing and transduction ambiguities may arise. The causes may be : 
- the input contains variants; 
- according to the syntactic formalism there are two or more possible ways to proceed in or-
der to reach a final structural description; 
- inherent ambiguity: according to the syntactic formalism there are several structural de
scriptions possible; 
- built-in strategies for error-recovery which try to recover along different paths; 
- built-in strategies for the handling of ill-formed input. 

With online recognition of ambiguous grammars there are 3 possibilities of proceeding after 
a new symbol is read in: 
1. no proceeding possible (and an error-recovery scheme may have to be invoked); 
2. there is exactly one possibility of proceeding (then the process is said to be deterministic); 
3. there are two or more possible ways of proceeding (the non-deterministic case). 

Ambiguities may be resolved (Winograd, 1983, p. 368) by Explicit backtracking, Chrono
logical backtracking, Deterministic parsing and Parallel parsing. 
Explicit backtracking is provided in some interpreters of formalisms and in some program
ming languages (like Icon, Summer, Prolog etc.). 
Chronological backtracking is the simple mechanism built into a number of formalisms and 
programming languages in order to try out all possibilities ("depth first"). 
Deterministic parsing forces one choice out of many. It is sometimes called "heuristic 
search". This may be interesting if one wants to test the hypothesis that the machine can be 
deterministic in the cases where a human being is deterministic too (Marcus, 1980). 
Parallel parsing tries to follow all paths in parallel ("breadth first"). It is attractive for the 
parsing of context-free grammars, because of the possibility of cubic processing time, 

1 For details, see Garey and Johnson (1979) 



5 

caused by the sharing of common paths. Winograd doubts if more complex formalisms can 
have the same kind of efficient processing. 

Bottleneck: in nearly all existing implementations of grammatical systems the handling of 
ambiguity is poor. Most implementations work with chronological backtracking techniques. 
In the on-line case this leads to exponential runtime behaviour. 

In this book we commit ourselves to parallel parsing within polynomial time when this is 
theoretically possible. We will provide for a technique for "shallow" and "deep" binding of 
variables and output in shared parse trees. 

1.1.3 Formalism, programming and program-generation 

1.1.3.1 Formalism as static description of a process 

For our purposes we define a formalism as a datastructure which can be interpreted. The se
mantics of the interpreter will determine which (input, output) pairs are valid (if such a 
determination is possible). Stated in a dynamic way an interpreter transforms an input into an 
output. The goal of the simulation is reached when the same (input, output) pairs are valid 
for both the human user and the machine. 

We will now summarize how the programming of the machine is achieved. We will do this 
from the viewpoint of a linguist who wants to create a running process on a computer. In 
our discussion we follow an evolutionary trail. 
For the linguist there are two possibilities : (1) writing a program (the programming language 
is, by default, the formalism) or (2) writing a grammar in a syntactic formalism. 
For the machine there are also two possibilities : (A) executing a machine-program or (B) 
running an interpreter for a formal machine which executes a program generated for that 
formal machine. 
Interacting between the linguist and the machine there may be a compiler which transforms a 
syntactic description into : (I) machine code for the hardware of the machine, (II) program 
code written in a programming language, or (III) machine code for the formal machine. (We 
leave out the usual compilers, assemblers and loaders which are necessary for the treatment 
of programs written in a programming language.) 

The following combinations are currently practised : 
-1- (1) (A) : the linguist writes a program directly in a programming lan
guage and runs it on the hardware. Early machine-translation systems were written directly 
in some programming language. We quote Winograd (1983): "That work predated much of 
the work on formal linguistics (and contributed to it), so from our current standpoint the 
computational techniques and theories of syntax look chaotic and outdated .. ". This is the 
oldest situation, and still in practice. There may be several reasons for it: 

- the linguist is not able to write his syntactic description in one of the existing 
formalisms 

- maybe he is able to do so, but there is no program generator available for that 
formalism 

- there is a program generator available for the formalism, but it takes too much time 
in the development phase to work with it, or it lacks sophisticated debugging tools. 

The disadvantages of this situation are numerous, but some of them are hidden for the start
ing linguist-programmer. They will manifest themselves gradually, but painfully, in the 
course of his evolution. We make the following observations : 



6 

- The choice of the programming language is important. Some languages lend themselves 
better for the programming of recognition and parsing processes than others. Languages like 
Snobol, Icon, Summer, Prolog have suitable built-in operators. Snobol has a wealth of 
pattern matching functions, Prolog facilitates the writing of attribute grammars. A linguist 
may be happy when he needs nothing more than the built-in functions. But if he wants to 
change his formalism he may be in trouble. 
- General-purpose programming languages have no facilities for the handling of ambiguities. 
The special languages which we noted have built-in strategies for the handling of ambiguities 
which all rely on backtracking. The exponential nature of backtracking manifests itself when 
larger programs are to be run. A typical consequence are the ad-hoc solutions which are in
vented by the grammar writers in order to restrain the combinatorial explosions. However, 
with every change of the grammar these inventions have to be adjusted. A striking example 
of the resulting folklore is provided by Finin (1983, p. 17): "The grammar writer may find 
this a useful arc in that it gives him greater control over the automatic backtracking done by 
the Backhouse interpreter." 
- In some applications the adjustment of the grammar will, in principle, never end. If the 
formalism is a programming language one has to be aware of the maintenance costs, which 
can become prohibitive. 
- Sequencing. Translation of grammar rules by hand into a program-notation implies a map
ping onto sequential operations, even if no sequence was intended. 
Winograd (1983, p. 310) describes the result: "The parser in SHRLDU ... Its grammar cov
ered a relatively wide range of English phenomena, but it was complex and difficult to mod
ify, since the interactions among rules were implicit in the order that things got done in the 
program." 
Grammars for natural language are in a constant process of revision and enlargement. During 
this process the complexity of the formalism will collect its debts. It depends directly upon 
the number of relations between the grammar rules. Forced sequencing will considerably in
crease this number. 
Some syntactic formalisms make use of explicit sequencing of rules, like the ordering of 
transformations in transformational grammars and the ordering of phonetic rules. It is a 
characteristic of general rewrite schemata that the order in which rules are applied may influ
ence the result. The decision to order rules should therefore remain visible in the formalism, 
and not be mixed-up with the sequencing within a program. 
- Only a few linguists will be able to read a large computer-program. For all others the pro
gram can only be judged by its behaviour, and its theoretical value will be nil. Sometimes the 
runtime behaviour of a program is heralded as being of theoretical value. In that respect psy
cho-linguistic arguments have been used, for instance to justify the sequencing of program
ming statements. We argue that these arguments should be stated beforehand and should 
play a role throughout the whole design process. 

-2- (2) (1) (A) the linguist writes a grammar and transforms it manually, in a system
atic way (as in "recursive descent" methods), into a program in a programming language and 
runs it on the hardware. This method removes some of the disadvantages which we noted 
above. But all arguments against the use of a programming language remain the same. 

-3- (2) (I) (A) the linguist writes a grammar which is compiled into machine code for 
the hardware of the machine and runs it on the hardware. This is the method which is em
ployed in parser generators for grammars which describe programming languages. The re
sulting parsers are intended to run deterministically. Well-known are the LL- and LR-parser 
generation techniques. These generate code for a pushdown automaton (PDA). Most com
puter-processors have hardware (stack-)instructions for the handling of a PDA and therefore 



7 

these parser generators are able to generate programs which are stated directly in these in
structions. The resulting parsers are therefore fast. Applications which make use of non
ambiguous context-free grammars can make use of such parser generators. 

-4- (2) (II) (A) the linguist writes a grammar which is compiled into program code 
written in a programming language and runs it on the hardware. The same technique is used 
as in -3-, but now the resulting program is written in a programming language. The advan
tages are that the parser generator becomes more portable and that built-in functions can be 
used, like i/o statements. A disadvantage is the decrease in speed. Well-known examples are 
the utilities Yacc and Lex in Unix. The allowed formalism is the same as in -3-, but more re
cently parser generators for attribute-grammars are being developed as well. 

-5- (2) (III) (B) the linguist writes a grammar which is compiled into machine code for 
a formal machine and runs it on the interpreter for the formal machine. The parser-generation 
methods of -3- and -4- were successful because they generate in a clean way code for a for
mal automaton, in this case a PDA. This automaton is directly related to the formalism of a 
context-free grammar. Recognition and parsing of ambiguous context-free grammars with 
the aid of a PDA requires the technique of backtracking. In order to process ambiguities in 
polynomial time and to process more evolved syntactic formalisms it is necessary to develop 
a more complex automaton. 
Because there is, up till now, no hardware implementation of the instructions of such au
tomata, interpreters for these automata are necessary. 

In this book we will develop the "Parallel Transduction Automaton" (PTA) for situation 5. 

More advantages of program-generation are: 
- restoration of the central use of the formalism for the description of language, as opposed 
to the recognition or generation of language. It leaves room for the automatic treatment of 
ambiguity; 
- no programming efforts; 
- possibility of greater efficiency of the resulting programs; research on improvement can be 
separated from the applications; 
- there is no temptation for the linguist to change the grammar over and over again in order to 
increase its efficiency; 
- if sequence is specified explicitly it becomes possible for a parser generator to combine 
parallel rules in order to optimize the recognition-process. 

In the foregoing we mentioned one reason why a linguist, despite the availability of a 
program generator, will stick to the writing of his own programs : it takes too much time in 
the development phase to work with it, or it lacks sophisticated debugging tools. 

In the interpreter for our PT A we incorporate tools for debugging. 



8 

In this book we opt for strategy 5. Its organisation ( (2)(JJI)(B)) is depicted in the following 
figure. We indicate the chapters in which the different parts will be treated. 

grammar written in 
syntactic 
formalism 

(2) man 
writin g 

ually 

a gram mar 

I 

a 
(ch. 

linguist 

2) 

,t 

I 

(III) 
compilation 

(ch. 5+6) 

~ 
~ 

input ~ 

output 

~ 
~ " 

ch.8 : applications 

1.1.3.2 LR parser-generation and beyond 

~ ... 
program written 
in code for 
formal machine 

(B) exec uting 
for 

machine 

(ch.3+4) program 
formal 

~ , 
interpreter for 
formal machine 

ch.7 complexity 

In general a LR parser generator tries to construct a finite automaton with states associated 
with all possible combinations of positions in grammar rules where a parse could be, at the 
same time. Because of recursion in the grammar, already existing states may be generated 
again; in that case identical states are merged and the distinction between the two states, 
which depends on the history of recognition during runtime, is postponed to the run-time 
stack. In addition to the creation of a finite automaton instructions can be generated for the 
run-time stack. Non-determinism is introduced when on the reading of an input symbol a 
transition can be made in the finite automaton as well as an instruction can be performed for 
the stack. In that case one or more look-ahead symbols (up to a certain maximum k, de
termined during compile-time) have to be sufficient to make the process deterministic (if this 
is not the case the grammar is said to be not LR(k) ). 
LR-grammars are unambiguous. They are a subset of the context-free grammars and are 
mainly used for the description of the syntax of programming languages. 
It is possible to generate with the same LR-technique code for a PDA which has a dag
structured stack. Tomita (1986) first reported on this. Independent of him we developed the 
same method but extended it for a number of generalizations of the context-free formalism. 

In this book we extend the LR(O) parser-generation technique for the treatment of Chomsky 
type-0 grammars and transduction grammars, both extended with regular expressions, don't 
cares, tree symbols, Boolean operators and variables. 

1.2 Functional aspects of computational grammatical systems 

The functional aspect of a computational grammatical system describes the interaction with 
its environment. We distinguish four components: 



9 

1. input from the environment to a grammatical system, 
2. output from a grammatical system to the environment, 
3. the interaction between components of a grammatical system, 
4. lexicons. 

1.2.1 Characteristics of input 

Input to a recognition- or transducing-process is text. In its broadest definition it is a se
quence of discrete entities. These entities may stem from written characters, music, speech, 
signals. The text may be already organized in some data-structure, or, on the other hand, it 
may have to be captured from an uninterrupted stream of information, hidden in a signal. 
Nearly all texts contain errors, originating from human interfering or from physical distor
tions. 
Texts are often embedded in some medium which itself may be a text too. These "carriers" 
have to be removed before the actual treatment of the text starts. We may here think of texts 
originating from photo-typesetters, transcriptions of dialogues or simply a corpus with a 
wealth of enrichments, from which we only want to use the "bare" text. 
Texts may contain "don't cares" which can get a (multiple) assignment during the analysis of 
the text. 
Alternatives in a written text may arise from alternative readings in manuscripts. For an ex
ample we refer to section 8.1.When a text contains alternatives it may take the form of a 
(labeled) network. When texts are enriched by codings on the text-, word- and higher levels 
alternatives may arise from unresolved ambiguities. 

In this book we permit the input to the PTA to be in the form of a labeled tree. 

1.2.2 Characteristics of output 

A recognition process outputs, in principle, "yes" or "no". 
A parsing process outputs a structural description of the sentence according to the syntactic 
description. In the case of a context-free grammar this is a parse tree. 
A transduction process emits output-symbols. We distinguish two situations. The first one 
concerns a recognition process which generates a message when some point in the (pattern-) 
grammar is reached. We call such messages "reports". The purpose of these symbols is to 
trigger other cooperating processes, written in some programming language. These pro
cesses are often embedded in an on-line environment. 
The second situation in emitting output-symbols is to transform a text. In the case of 
"pattern-transduction" pieces of a text will be transformed. 

The PTA output may contain: structural descriptions, reports, the variables which are 
associated with the start-symbol and transformed text. The output will be generated as early 
as possible. 



10 

1.2.3 Characteristics of the interaction between components of a 
grammatical system 

The output of a transducer may be the input to another one. If the transducers are produced 
according to a grammatical formalism we may speak of "cascaded grammars". For instance 
this may be the case in general transduction schemes for spoken language or for machine 
translation. The sequence in the cascade has to be explicitly defined. 
In the following figure we depict the layers of a grammatical system, but abstract away from 
its correspondence with linguistic levels. We suppose that the process for each layer is con
structed according to a grammar. The whole grammatical system consists of these cascaded 
grammars. Such a grammatical system may be used for different purposes. It is possible that 
for some of these purposes some layers do not have to function. Input and output of the 
whole system are, in general, not related to the first and the last layer. In our discussion 
these aspects will not be of relevance. 

_.. output 

input _. 
recognition in a layered system 

Two situations can be distinguished. In the first one there is no feedback between the layers. 
In the second situation feedback between a number oflayers is necessary. We give some ex
amples. 

1.2.3.1 First situation : no feedback between layers 

It is possible that in a cascade of transducers, consisting of e.g. two transducers, the first 
one is of a fixed nature, but the second one is in an experimental stage. One might think of 
the first one as transducing raw input text into a well-defined datastructure, e.g. a tree, with 
each node enriched ("decorated") with information from a lexicon. The second transducer 
(the last one in a cascade can also be a parser, or a recognizer) is doing grammatical analysis 
according to an ever changing (and hopefully improving) grammar. Input to this transducer 
is then the decorated tree. This tree has to be formed once and stored in external memory : it 
is an intermediate text. 
One may imagine a second step: after the settlement of the second grammar correct parse 
trees are created, as structured output. These parse trees may be stored as intermediate texts 
(including ambiguities). Then a third recognizer may be constructed, acting as a pattern 
matcher, in order to search for and to count syntactically interesting patterns. 
This example describes current practice in Computational Linguistics (cf. Aarts and Van den 
Heuvel, 1984). 
Suppose that even the third (pattern-)grammar becomes a fixed one. Then one may imagine 
that all three transducers work together as co-processes, transmitting output as soon as pos
sible to each other. 
One step further could be that all three transducers are combined into one and that an auto
matic parser generator creates an overall, efficient, recognizer which is able to locate in raw 



11 

texts, stemming from photocomposers, meaningful syntactic patterns, expressed in elements 
of parse trees. 
In this evolutionary story we may first start with off-line processes, but in the last stage on
line processes become a necessity. 

1.2.3.2 Second situation : feedback between layers 

We give four examples. They stem from the applications of Grammatical Analysis for 
document conversion, Machine Translation, Automatic word- and sentence coding in Corpus 
Linguistics and Speech Recognition. In the first application the layers correspond with the 
context-free parsing of a sentence and the recognition of restriction-patterns in the emerging 
parse trees. These patterns serve to restrict the generation of ambiguous parses which are not 
allowed. In the other applications the layers correspond with two or more of the traditional 
linguistic levels of phonological, morphological, lexical, syntactic, semantic, pragmatic and 
discourse analysis. 
The four applications have in common that they (want to) make use of integrated linguistic 
grammatical knowledge on a number of levels together, but that each level is implemented 
according to the insights of specialists for each of the levels. In all four applications there is 
an urgent need for a simple and efficient feedback between the levels. 

1.2.3.2.1 Text analysis: grammatical analysis for document conversion 

Winograd (1983) describes 50 working systems which are based on some grammatical for
malism. The most outstanding program in the category "text analysis" is the "Linguistic 
String Parser" of the group of Sager (1981) in New York (see also section 2.3.1.1). We 
quote partially from a summary in (Hobbs and Grishman, 1976) : "It is capable of handling a 
great proportion of English grammatical constructions, including conjunctions and compara
tives. It contains a two-stage syntactic analysis of English sentences into a simple underlying 
representation. The output of the first stage is a set of trees making explicit the surface 
structure of an English sentence; each tree represents a syntactically valid analysis of the 
sentence in accordance with the linguistic string theory of Harris (1962). The second stage 
takes these parse trees and transforms them into a kind of predicate notation. 
The grammar for the first stage consists of a set of (about 180) BNF productions and a set of 
(about 180) conditions on the application of these productions; the conditions are expressed 
in a specially designed Restriction Language. The grammar for the second stage consists of 
transformations written in an extension of the Restriction Language. Each transformation 
performs certain tests on the structure of the tree and the attributes of the sentence words, 
and, if the requisite conditions are met, alters the tree. The sequencing among the transfor
mations is specified entirely within the transformations themselves" (end of partial quota
tion). 
The system is in use for the automatic transduction of medical reports into entries for a 
database system. It uses a restricted lexicon, specifically designed for that application. See 
for an example section 2.3.1.1. 

1.2.3.2.2 Machine Translation 

In (Maas and Maegaard, 1984), the Eurotra-formalism (as developed up till that moment) is 
described for writing transduction processes which operate on trees. These processes consist 
of sub-processes, operating in parallel or serial and each consisting of a set of general 
rewriting rules. The rules are unordered. Each process has its own allowed input
("expectation") and output- (''goal") datastructure, which serve as filters. According to the 



12 

documentation, the treatment of ambiguities has to be completely transparant for the writer of 
the grammar rules. 
In (Slocum, 1985) a survey is presented of current machine translation projects. The 
METAL German-English system accommodates a variety of linguistic theories/strategies. 
The German analysis component is based on a context-free phrase-structure grammar, aug
mented by procedures with facilities for, among other things, arbitrary transformations. The 
English analysis component, on the other hand, employs a modified GPSG approach and 
makes no use of transformations. 
The Ariane-78 translation system (developed in Grenoble by the GETA institute) supports 
grammars which are actually networks of subgrammars; that is, a grammar is a graph speci
fying alternative sequences of the applications of the sub grammars and optional choices of 
which subgrammars are to be applied. In principle this system is open ended and could ac
commodate arbitrary semantic processing. It nevertheless suffers from a rigid implementa
tion in low level languages. We quote: "As a result, the GETA group has been unable to ex
periment with any radically new computational strategies. Back-up, for example, is a known 
problem (Tsjujii, personal communication): if the GET A system 'pursues a wrong path' 
through the control graph of sub grammars, it can undo some of its work by backing up past 
whole graphs, discarding the results produced by entire subgrammars; but within a sub
grammar, there is no possibility of backing up and reversing the effects of individual rule 
applications" (end of quote). In fact, the formalism of Ariane-78 and the proposed Eurotra
formalism resemble each other. 
About the multilingual system SUSY (developed in Saarbrucken): " .. the linguistic rules 
were organized into strictly independent strata and, where efficiency seemed to dictate, in
corporated into the software. As a consequence, the rules were virtually unreadable, and 
their interactions, eventually, became almost impossible to manage". 
Slocum concludes that "it is critically important that a development group be able to conduct 
experiments that produce results in a reasonable amount of time. After too long a delay, the 
difference becomes one of category rather then degree, and progress is substantially - per
haps fatally - impeded." 

1.2.3.2.3 Corpus Linguistics 

A broad definition of a corpus may be: a fixed amount of text, selected and prepared for 
some analysis. Sources of texts may vary widely. They may be transcribed from old 
manuscripts, from spoken language (for instance for the study of dialectal variations or of 
children's language), or they may originate from wordprocessors, photo-composing ma
chines and automatic reading machines which process journals or dictionaries. Sometimes it 
is necessary to discriminate scrupulously in order to prepare statistically relevant portions of 
texts. On the other hand linguists may use a corpus in order to browse through them in 
search of some interesting pattern, unforeseen by the original compilers of the corpus. 

There are several computing centers in the Humanities all over the world which act as 
archives for machine readable texts (e.g. in Oxford, Pisa, Irvine). A number of corpora are 
available for general use which are provided with tags at word-level. As examples we men
tion the following corpora : 
- The Brown Corpus, American English, 1 million words, 16 genres, morphologically 

coded (Francis and Kucera, 1964). Results of research based on this corpus are frequently 
published in (Icame-News). Some publications are (Hofland and Johansson, 1982), (Meijs, 
1982), (Meijs, 1984), (Francis and Kucera, 1982), (Leech, Garside and Atwell, 1983b). 



13 

- The Lob Corpus, British English. Analogous to the Brown Corpus (Johansson, Leech and 
Goodluck, 1978). Results again in (lcame). Further: (Atwell, Leech and Garside, 1984), 
(Hofland and Johansson, 1982). 
- The "Eindhoven Corpus", (600.000 words, 9 genres), Dutch language, morphologically 

coded (Uit den Boogaart, 1975). Results e.g. in (Renkema, 1981). 
- The "Liege Corpus" (300.000 words), Latin, with morphological codes and lemmata. Re

sults e.g. in (De Jong and Masereeuw, 1985). 

Corpora are used for obtaining quantitative measurements on the use of language. These 
measurements may be of interest for a number of purposes. Among them we name Corpus 
Linguistics and applications in the "Language Industry". 

In Corpus Linguistics corpora are the "physical" objects on which linguistic hypotheses 
have to be validated. The hypotheses may concern the applicability of grammar rules and 
restrictions on the use of them, or the characterization of different groups of language users, 
different registers, etcetera. From recent literature we quote a few topics : 
- differences in style (Renkema, 1981), 
- collocational distinctiveness: "All recurring sequences are potential collocations" 

(Kjellmer, 1984), 
- adverbial realisation and position (Quirk, 1984 ), 
- elliptic structures and their syntactic description (Meijs, 1984), and 
- postmodifying clauses (De Haan, 1984). 

Atwell, Leech and Garside (1984) describe two potential industrial applications of corpus
based research: 
- in IKBS (Intelligent Knowledge-Based Systems) applications, such as testing and im

provement of stylistic acceptability of texts produced by natural language synthesis pro
grams: acceptability of style and collocations, 
- !\pplication to word-processing, especially when probabilistic parameters are included. 
Resources for the applications will be grammars and dictionaries of a probabilistic nature, 
derived from corpus-based research. At the phrase level there are proposals for the construc
tion of a "distributional lexicon" (Atwell, Leech and Garside [1984]) which has to contain: 
- significant word-word collocations and combinations, 
- significant combinations, positive or negative, of words and syntactic constituents con-

taining them, and 
- significant combinations of a word and an adjacent syntactic category. 

Both kinds of applications have to make use of quantitative measurements. These may con
cern prosodic elements, syllables, phonemes, combinations of characters, morphemes, 
wordforrns, lemmata of words, combinations of words, part-of-speech codings, grammati
cal constructions and combinations of elements from these various domains (Engels [1981], 
Francis and Kucera [1982], Geens, Engels and Martin [1975], Hofland and Johansson 
[1982], Renkema [1981], Uit den Boogaard (1975] ). 

In order to obtain quantitative measurements and to facilitate grammatical analysis it is often 
necessary that corpora be enriched with codes (or "tags"). These codes may be attached on 
different levels (Eeg-Olofsson and Svartvik, 1984), such as text, word, phrase, clause and 
discourse level. Tagging on a higher level usually implies tagging on a lower level. The tag
ging may be done by hand or (mainly) by a computer program. 



14 

On the text-level we may expect codings which depend on the sources of the material. Tran
scribed spoken language may be provided with prosodic markers (stress, pitch indications 
for e.g. the fall or rise of the voice, stress, pauses, duration) and tone unit boundaries. 
Transliterated text and old manuscripts may be enriched by philological marks such as: 
"broken", "difficult to read", "possible reading is .. ", "variant of .. " etcetera (see also sec
tion 8.1). In some cases the tagging of a corpus on the word level is used mainly as a step
ping-stone to phrase level tagging. In that case the system of word-class tags will continually 
be revised and supplemented to suit the needs of higher-level tagging (Eeg-Olofsson and 
Svartvik, 1984). 
The composition of these tags varies from corpus to corpus, depending on the initial pur
poses for which a corpus was coded. Usually they are constructed hierarchically, consisting 
of characters and digits. These tags may be of a morphological, grammatical or semantic na
ture. 
It is not a trivial task to define units on the word level. Among the problem-cases are: con
tractions ("don't"), multi-word adverbs ("as well"), conjunctions ("as though"), pronouns 
("each other"), complex prepositions ("from the point of view of"), complex adjectives ("up 
to date") and proper names ("New Guinea"). 
We quote (Eeg-Olofsson and Svartvik 1984, p. 56) : "Multi-word tags cause certain techni
cal problems of ambiguous segmentation. For instance, the number of tags assigned to the 
word combination "sort of" must be two in the context "that sort of life", but only one in 
"they sort of agreed" (end quote)". 
There are fewer corpora with codings on the phrase level than with codings on the word 
level. The composition of the tags may vary with the grammatical insights of the composer 
of the corpus. 
Some wordgroups, belonging to each other, may be separated by other wordgroups. This 
may be indicated by separate tags on the clause-level. Tags on the clause-level dominate tags 
on the phrase-level. They may signal the applicability of a transformational rule. 
On the discourse level speech-specific items are handled that cannot be appropriately taken 
care of at the syntactic levels, like 'apologies', 'softeners' and 'hedges' (Stenstrom, 1984). 

It is a major undertaking to shift the burden of coding from the linguist to the computer. It 
requires the translation of the skills of a linguist to a procedure which has to be implemented 
in a computer-program. These skills are often of an implicit nature, sometimes depending on 
years of experience. They may vary from linguist to linguist. One of the obvious benefits of 
such an undertaking, however, will be that linguistic insight is made explicit in a precise 
way. 
Up till now linguistic scholars made their insights explicit in dictionaries and in grammars. 
The exploitation of these two tools had to be exercised and shortcomings had to be adjusted 
by intuition, especially when semantic features were needed. 
This is the reason why the shift to machine-coding takes place in a gradual way. In an itera
tive way lexicons, grammar rules and programs are constantly being improved until they be
have in a consistent and stable way for a fixed corpus. They may then be used on a new 
corpus which must be constructed in the same way as the former one. Implicit in this ap
proach is the hypothesis that on a new corpus stability will be reached in less time. The test
ing of this hypothesis has to wait for more experience. 
The process of automatic tagging on the word level may include the following stages 
(Garside and Leech [1982], Leech, Garside and Atwell [1983a, b], Atwell, Leech and Gar
side [1984]) : 

1. pre-editing, to deal with formulae, capitalization and other oddities (may disappear when 
a precise formalism for the input is given), 
2. programs to assign a list of one or more tags, in sequence of probability, 



3. human post-editing, with a logging of detected errors and 
4. proofreading of the enriched corpus. 

Resources for the programs in 2. are: 

15 

A. procedures for doing morphological analysis of the word at hand. For languages with 
simple flexion these procedures may suffice with an inspection of a list of suffixes. 

B. procedures for doing a dictionary-lookup. This dictionary may be an existing one or a 
list that is gradually built up during an initial interactive tagging. 

C. procedures for doing some kind of syntactic "look-around". Up till now two methods 
have been used for this: 

- "context-frame rules" : describing the local context of a word in order to disambiguate 
between several possible tags (Garside and Leech, 1982). These rules may be ranked by 
probability. 

- a transition probability matrix (tunable for different genres of a corpus) for pairs or 
triplets of word-tags, again to be used in order to disambiguate. 

The ultimate goal of automatic coding is, as Eeg-Olofsson and Svartvik (1984) point out: "to 
create a truly integrated system where knowledge derived from any level of analysis (e.g. 
syntactic expectations from the phrase level analysis) could be used to direct the tagging at 
any other level (e.g. the word level)". 
The achievement of this goal will depend directly on the adaptability of programs to deal with 
grammars and lexicons of different kinds and on all levels. In contrast to the development 
and analysis of programming languages it is not possible to assign tags on a lower level 
without knowledge (explicit or implicit) of tags on a higher level. 

There are a number of reasons why Corpus Linguistics is of computational interest. 
Firstly, all aspects of Computational Linguistics are represented. 
Secondly, often a transduction is necessary from the organisation of the text in manuscript 
form to an organisation suitable for the further automatic processing of the text. Sometimes 
the organisation of the text is not known and some discovery procedure has to be set up. In 
(Van der Steen, 1982) we described a general method for the syntactic description of the or
ganisation of texts using extended context-free grammars in order to unravel the original text 
in atomic parts and to reorganize these parts (see also section 8.2). 
Thirdly, the location of interesting patterns within a large corpus requires efficient recogni
tion strategies. In (Van der Steen, 1982) and (Van Halteren, 1985) programs are described 
which assist the linguist in the formulation of queries in text corpora without the need to 
concern himself with a programming language. The command language of these programs 
acts like the query-language for a database system. The corpus, in this case, serves as the 
database. 
Fourthly, the tagging and/or parsing of large amounts of texts demands the most efficient 
parsing strategies. 
Fifthly, the amount of interaction between the different levels, which may correspond to the 
layers in a computational grammatical system. 

The algorithms which are developed in this book are in daily use in the practice of Corpus 
Linguistics. 



16 

1.2.3.2.4 Recognition of spoken language 

As we mentioned in the introduction, the segmentation of a continuous signal into discrete 
entities enables a syntactic approach. If the signal is speech then the segmentation may need 
all linguistic levels which we mentioned above. 
On each level ambiguities may arise which may be resolved by analyses on other levels. 
Current systems implement this resolution in an ad-hoc fashion. 
De Mori (1983) describes syntactic approaches to the interpretation of speech-patterns. Syn
tactic rules are mainly written in the atn-formalism or in markov-chains. The syntactic analy
sis of a speech segment is accompanied by probability calculations in order to prune unlikely 
continuations. 
What is needed is a simple communication between the different levels which have to be 
processed. The ultimate goal is the same as was mentioned under "Corpus Linguistics". 

In this book we will not handle probabilities within formalisms or texts. 

1.2.3.3 Conclusions 

From the preceding four applications we conclude that input and output of the whole system 
may occur in different layers. The layer in which the output occurs does not need to be the 
highest layer which is in function (for instance in the case of a speech recognition system 
where semantic analysis may be necessary in order to give a correct written representation of 
the spoken input). 
With regard to the communication between layers we learn from the first application, text 
analysis, that the process of pruning of the results of a former layer works well. In that ap
plication the context-free parser generates a large number of parse trees which are sub
sequently checked by the layer with the restriction-rules. The feedback of the restriction-level 
can be of an on-line nature : it says yes or no to the possible continuation of the construction 
of a parse tree in the parsing layer. The message yes/no could be widened to the set of al
lowed next characters in the construction of the current parse tree. 
From the other applications we learn that a closer cooperation between the layers is needed. 
The conceptual hierarchy of the layers does not imply a hierarchy in processing of the layers. 
In principle the processes in the layers run in parallel. Some experimental systems therefore 
work with a "blackboard" on which all layers may write and read messages. We interpret 
this "blackboard" as a set of global variables for all (or some) layers. 

It is generally agreed that the use of global variables is an unsafe solution for the problem of 
communication between modules. They admit side effects, for instance in our case when (the 
all-pervading) ambiguities between layers arise. The usual remedy of procedure parameters 
seems to fail because of the parallellism of the processes. On the other hand, the layers form 
a conceptual hierarchy. From the viewpoint of the grammar writer who writes a grammar for 
some layer it is comfortable to have at his disposal the formalism of parameter passing to a 
lower layer. 

Therefore, instead of global variables, a better idea seems to be to use variables as in attribute 
grammars and in Prolog, attached to nonterminals. In order to enable processing with in
complete results these variables must have the unification property, as in Prolog. For the 
grammar writer it is then transparant in which direction analysis and transduction works. For 
the processing it means that after the evaluation of a variable in one layer the evaluation of 
another variable in another layer can be completed. 



17 

It is desirable that in all layers the same grammatical formalism can be used. This formalism 
has to be sufficiently rich to support grammars for different layers. The interpreter of the 
formalism has to support unification for at least the variables that take care of the communi
cation between the layers. 

1.2.4 Characteristics of a lexicon 

A lexicon attempts to describe the objects of a natural language, sometimes based on the in
tuition of the lexicon-maker, sometimes based on a large number of short quotations from 
the object-language. Objects on the word level are described by phonological, morphologi
cal, syntactic and semantic entities, sometimes with a circularity in the semantic description. 
In general the trend in linguistics is to increase the role of the lexicon and to decrease the role 
of the grammar. 
Objects may have more than one description. They may be disambiguated in a more or less 
informal way by giving examples. Disambiguation in the lexicon may be more formalised by 
the introduction of a sentence-pattern, allocated to each alternative. We give an example from 
the Longman Dictionary of Contemporary English (LDOCE, 1978). 
An example: 

The grammatical information to the verb "appear" is: 
appear v; wv6; IO, 3; (it) L (to be) 1, 7, 9; it+ 15a, b, 6a. 
Here "v" indicates that we are dealing with a verb; wv6 that the use of it in the 
"progressive form" is infrequent; IO that it may be used in an intransitive way; 3 that 
a "to"-infinitive construction may follow; L indicates that it may also appear as a 
copula (possibly preceded by "it" and followed by "to be") followed by a nominal 
(1), adjectival (7) or adverbial (9) constituent. 15 means that "appear" may be fol
lowed by a "that"-subordinate clause (in which case "it" has to be subject), where the 
"a" indicates that the word "that" may be omitted; "5b" that "so" or "not" may follow 
("it appears so", "it appears not") as a replacement of a "that" -subordinate clause. 
"6a" indicates that a "wh"-subordinate clause may follow too. 

This kind of information may be used in syntactic disambiguating strategies (Akkerman, 
Masereeuw and Meijs, 1985). 

Conceptually, the lexicon is part of a syntactic description, but in practice it plays a separate 
role. Most implementations make use of an external datastructure for which it is necessary to 
know the whole entry before it can be looked up. This causes troubles with multi words and. 
words which appear in the grammar itself. 

In this book we will restrict ourselves to the use ofwordclass-information. We will use as 
an efficient external datastructure the trie to implement the lexicon. The access to the lexicon 
runs in parallel with the parsing process and is transparent for ambiguities, multiwords and 
words which appear in the grammar. The access-time is independent of the size of the 
lexicon. 

1.3 Genetic aspects of computational grammatical systems 

In the above we treated computational grammatical systems as information systems. In the 
case of the treatment of natural language these systems will never reach a final stage. There 
are two reasons : 

- there is no natural language for which a complete grammar exists, 
- there is a constant movement in linguistic theories, and change in formalisms. 



18 

We argued above that we can help the testing of grammars by the development of tools. One 
tool is a program generator. 
Program generation for some formalism is in itself subject to a process of evolution. The 
typical stages are : 
- the resolution of undecidability problems (usually with heuristics stemming from the appli
cation), 
- the development of naive algorithms (usually exponential in running time), 
- the improvement in speed to polynomial or linear algorithms, 
- the improvement of the constant factors, 
- the optimizations within the program, not dealing with the algorithm, and 
- the adaptations in the hardware of the machine (e.g. development of micro code). 

In this book we show, among other things, 
- how to parse on-line in exponential time ambiguous type-0 grammars and transduction 
grammars, enriched with variables, with an on-line construction of the parses, with the aid 
of the "Parallel transducing Automaton" (PTA) 
- how to parse on-line in polynomial time, with an on-line construction of the parse trees, 
extended context-free grammars with don't cares 
- how to reformulate the problem of pattern matching of Aho and Corasick into the problem 
of LR-parsing, with the same linear time behaviour 
- how to extend the LR parser generation method for the treatment of grammars with 
Boolean expressions 
- how to extend the I.R parser generation method for the treatment of term-rewriting systems 
- how to improve the LR parser generation method in such a way that pattern matching with 
a number of keywords, containing regular expressions and don't cares can be implemented 
to run in sub-linear time 
- how to generate in all these cases the minimum of code for the PTA in order to use only 
those parts which are necessary 
- how to implement the PTA on parallel hardware. 

The adjustment of a program generator to new formalisms can be established by : 
- a description of the formalism by a (meta)grammar; notational variants between formalisms 
can be treated by changing this metagrammar or/and doing some preprocessing, 
- incorporating existing formalisms as much as possible, 
- trying to unify a new formalism with the already existing ones, and extending the program-
generation technique. 

With the transduction formalism developed in this book it is easy to write such preproces
sors. 

In this way we hope to contribute to the evolution of computational grammatical systems. 



19 

2. A unifying formalism 

2.1 Introduction 

What is desirable in a fonnalism for the automatic processing of texts ? 
In a paper (1985) with the title "Hiding complexity from the Casual Writer of Parsers" Dahl 
writes as follows: "[It] raises the question of whether it is indeed possible to construct a for
malism that combines efficiency with high expressive power, and that hides from the user all 
details that can be automated, thus providing a simple way of describing the purely creative 
grammar-writing aspects. So far it is difficult to see just how much should be made 
transparent, just how much expressive flexibility is appropriate without the fonnalism be
coming too powerful and introducing new problems on this account, and just how to ensure 
efficiency without burdening the user with machine-oriented concerns such as control". 

These remarks reflect the current state of the genetic aspect of computational grammatical 
systems which we discussed at the end of chapter 1. We suggested that high expressive 
power can be reached by unification of frequently used fonnalisms and that program genera
tion should hide the details that can be automated. Program generation should be possible for 
all formalisms, however powerful they may be. 

Winograd (1983) discusses a large number of syntactic formalisms. Some of them have been 
used only experimentally, others are in use in practical natural language systems. We are in
terested in the latter category and in the question how we can build effective systems. 

In this chapter we present a unifying syntactic formalism and relate it to the fonnalisms 
which are in use in practical systems and in some applications m SPR. One may change the 
syntax of the unifying formalism, to make it more readable or to adapt it to personal pref
erences. (At this stage we are not interested in notational variants of the formalism.) Then we 
will discuss the useful effects of the unification of existing formalisms. Finally we will 
summarize what has been done already on automatic program generation for fonnalisms 
which are embedded in the unifying fonnalism. 

Terminology 

In the sequel we will use the following abbreviations: 

cf 
cfg 
ecfg 
cs 
csg 
lhs 
rhs 
sub-formalism 
FSA 
PDA 

for context-free 
for context-free grammar 
for extended context-free grammar 
for context-sensitive 
for context-sensitive grammar 
for left-hand side ( of a rule) 
for right-hand side (of a rule) 
for fonnalism that is embedded in the unifying fonnalism 
for Finite State Automaton 
for Push Down Automaton 



20 

Notations and definitions: 
- a "symbol" is an atomic entity, such as a letter or a digit; in Parspat it is an Ascii-character 
- an alphabet is a finite set of symbols 
- a string (or word) is a finite sequence of symbols from some alphabet 
- € denotes the empty word 
- A* is the set of all strings over the fixed alphabet A 
- 0 denotes the empty set 

2.2 The unifying formalism 

A grammar which is written according to the unifying formalism is called a "CT-grammar". 

Definition. 
A CT-grammar G is a 9-tuple (N, I, T, S, Z, C, R, P, M) where 
- N is a finite set of nonterminal symbols; those symbols that are rewritten, as only symbol, 
at a lhs 
- I is a finite set of intermediate symbols; intermediate symbols are introduced in a lhs of a 
grammar rule, where llhsl > 1 
- Tis a set of terminal symbols (not necessarily finite); terminal symbols may be read from 
the input 
- N, I and Tare disjoint sets; Vis the union of N, I and T 
- S is a distinguished start-symbol, with S e Nor S = £ ; if S =£then the grammar is a 
transduction grammar, otherwise it is a Chomsky-type grammar 
- Z is a finite set of variable symbols which can act as a parameter to a nonterminal symbol; 
expressions of variables and constants may be assigned to a variable and Boolean expres
sions can be formed with them 
- C is a finite set of cooperation symbols with which Boolean relations between rules can be 
expressed 
- Risa finite set of report-numbers with which a position within a rhs can be marked 
- P is a finite set of rewriting rules 
- M is an ecfg which describes the syntax of the symbols and the rules; we refer to this syn-
tax by the term "unifying formalism"; Mis called the metagrammar of G. 
ti 

In the sequel we will use the following notations : 
- a, b, c, ... (other than€) are elements ofT 
- A, B, C, ... are elements of N 
- w, x, y, ... are words in T* 
- X, Y, ... are elements of V 
- a, 13, "(, ... are words in V* 
- lal denotes the length of a 
- j:a is the j-th symbol of a if 1 <=j<=lal . 
ti 

For a CT-grammar G= (N, I, T, S, Z, C, R, P, M) only the set P of production-rules has to 
be specified by the grammar writer. Usually the metagrammar M has been fixed for a 
number of applications. The other sets are derived from P with the aid of M in the following 
way. 
The first rule of P determines whether G is a phrase structure grammar ("PSG") or a 
transduction grammar ("TDG"). If the length of the lhs of the first rule is 1 then it is a PSG 
and the notion at the lhs is the start-symbol. Otherwise it is a TDG. 



21 

T, Z, C and Rare determined by the syntax of the metagrammar. I is the set of symbols 
which can not be defined otherwise. 

G will be transformed into a process GP by a compiler and an interpreter, as discussed in 
section 1.1 .• The semantics of G will be determined by the (input, output) pairs of GP. 
It will depend upon the operating environment of GP whether input and output are related to 
other processes, to disk-files or to strings which are provided by surrounding programs. 
For instance, in the Parspat system the compiler and the runsystem can be provided to a pro
gram as an external procedure written in a programming language, or they can be called from 
the shell of an operating system 
In general we abstract from the environment and use the name of the process GP also as a 
function to denote the transformation of input into output. The sources of input and output 
stem from the functional environment of grammatical systems. In section 1.2 we identified a 
number of these sources. 

We will denote the input and output of a particular process GP by a number of parameters 
and write GP(ln, Lex, Rec, Pa, Ou, Rep, Bld), where 
- In is the input as a string in T*, 
- Lex is the lexicon which has to be used, 
- Rec is a Boolean variable which will receive the value true in case the recognition succeeds, 
and false otherwise, 
- Pa is the parse which will be created on-line; if GP is called with E as actual value for Pa no 
parse will be produced, 
- Ou is the output as a string in (V +Z)* : the symbols in V* may be accompanied by variable 
symbols in Z with their value (this will be discussed later on); if GP is called with E as actual 
value for Ou no output will be produced, 
- Rep is a string in R *; if GP is called with E as actual value for Rep no reports will be pro
duced, 
- Bld is a string in B*; if GP is called with E as actual value for Bld no builds will be pro
duced. 

Definition. 
A cascaded grammar C is a set {Gl' G2, ... , Gm-I• Gm}, m>l, where G1 .. Gm-l are TDG's 
and Gm is a TDG or a PSG. 
A cascaded process Cp is a set { Gp/lni, Lex1, Reel' Pa1, Ou1, Repi, Bld1), .•. ,GPm(Inm, 
Lexm, Reem, Pam, Oum, Repm, Bldm) }, m>l. All processes Gpp···,GPm run in parallel. · 
The output of one process may be the input to another one. This is indicated by parameters 
with the same name. 
A 

In the unifying formalism six components are distinguished : 
1. the BNF notation for Chomsky type-0 grammars, 
2. regular expressions, 
3. reserved notions for patterns, trees and references between lhs's and rhs's, 
4. the use of variables, 
5. notations for Boolean construct 
6. notations for output. 
Although the unifying formalism is a whole we prefer to discuss it according to these six 
components with the risk of some overlap. In the following subsections each component will 
be discussed by going into 
a) its functional aspects as related to applications, 



22 

b) its functional aspects as related to other sub-formalisms, 
c) its lexical considerations, 
d) its syntax, presented as rules of the metagrammar, 
e) its semantics and 
t) some examples. 
In trivial cases we will leave out some of these points. The semantics will be presented in
formally from a generative point of view. They are constructively specified in the chapters 4, 
5 and 6. More elaborate examples can also be found in chapter 8. 
Many grammatical formalisms (e.g. ecfg's, atn's, attribute grammars, Chomsky type-0 
grammars) will be obtained as subsets of the unifying formalism. This will be exemplified in 
section 2.4. In section 2.5 we present the whole metagrammar. 
Our discussion starts with an overview of the lexical aspects of the unifying formalism, as 
defined by the metagrammar. 

The metagrannnar 

The metagrammar describes the syntax of the rules and defines the lexical symbols. It may 
be compiled by the compiler in order to generate a parser which analyses grammars written 
in the unifying formalism: 

metagrammer 
in source 

ompiler 

Using a metagrammar has the advantage of being able to quickly change the spelling of 
reserved symbols in a U-grammar. Furthermore, by supplying a more restricted (compiled) 
metagrammar, users can be restricted in the choice they can make of the different sub-for
malisms. As such it is easy to restrict the use of a program generator to only cfg's, 
patternmatching, atn's, attribute-grammars, tree-transduction, and so on. 

Lexical aspects. 
Some of the terminals in the metagrammar are the reserved symbols for a usergrammar. By 
changing these terminals the user can redefine the reserved symbols of his grammar. 
Reserved symbols can be divided into reserved operands , operators and delimiters. We will 
list them in the following table according to the metagrammar which we will use in this 
chapter. The functioning of the reserved symbols will be discussed further in the following 
subsections. 

~: 

The reserved operand symbols are : 
for patterns 

DONTCARE SIGN * 
ARB SIGN = 

Function: 

don't care 
arb 



LINE SIGN 
RANGE SIGN 

for trees: 
OPEN_TREE 
OPEN_LAB_TREE 
CLOSE_TREE 
OPEN_TREES 

OPEN_LAB_TREES 

CLOSE_TREES 

for variables : 
LAST TERMINAL 

The reserved operator symbols are : 
NEG SIGN 
ALTERNATIVE AND 
COVER SIGN 
ASSIGNMENT SIGN 
EQUAL SIGN 
UNEQUAL SIGN 
CONCATSIGN 

( 
:( 
) 
( .. ( 

: ( .. ( 

) .. ) 

% 

& 
I\ 

\= 
II 

23 

line 
range of characters 

opening tree-bracket 
labeled opening tree-bracket 
closing tree-bracket 
a number ofOPEN_TREE's, to be matched by 

the number of corresponding CLOSE_ TREES 
a number ofOPEN_LAB_TREE's, including 

their preceding labels; the number has to be 
matched by the number of 
corresponding CLOSE_TREES 

a number of CLOSE_TREE's, to be matched by 
the number of corresponding OPEN_TREES 

reference to last terminal read in 

negation 
Boolean "and" of alternatives in a rhs 
coversymbol, behind a nonterminal 
assign a value to a variable 
within Boolean expressions : equal 
within Boolean expressions : not equal 
within expressions of variables : concatenation 

The reserved regular expression symbols are: 
OPEN_REGEXPR [ 
CLOSE_REGEXPR ] 
ZEROMORE * 
ONEMORE + 
ONE 1 

The delimiters are: 
REWRITE SIGN 
TRANSDUCTION SIGN 

OCTAL SIGNS 

CONTINUATION SIGN 

ALTERNATIVE SIGN 
END OF RULE SIGN 
COMMENT SIGN 
ACTION BRACKETS 

< 

< 
> 

these symbols surround a regular expression 
behind a ']' : 0 or m0re times the enclosed part 
behind a ']' : 1 or more times the enclosed part 
behind a ']' : 1 times the enclosed part 

rewrite a lhs to a rhs 
transduction;written 

between lhs and rhs when llhsl = 1 
between the angle brackets an octal number, 
representing the ascii-value of a character 

concatenation; written between parts of 
arule 

between alternatives 
end of a rule 
comment between !'s 
between these brackets actions 

are denoted 

There is one reserved nonterminal universe, which plays a role in Boolean constructs (to be 
discussed later). 



24 

The symbol ' is used to surround strings of characters which have to be taken literally. For 
instance, in 'a:c' the colon is not the delimiter COLON . 
In order to improve readability spaces and returns in the metagrammar are treated as being 
not significant. 

In the Parspat system symbols in NuI are spelled as any combination of available Ascii 
characters. Terminals and intermediate symbols are single Ascii characters or lexicon sym
bols. Ascii-characters can be represented by their octal code between angle brackets. 
Lexicon symbols are spelled as a '$'-sign followed by any combination of available Ascii 
characters. 

In the following subsections we assume that the following symbols are declared as follows : 
ALFANUM:: 
ALFANUMS:: 
DEC_DIGIT:: 
OCT_DIGIT:: 
CHAR:: 

DEC_DIGIT I CHAR I "', <000> ... <377>, Ill • 

[ ALFANUM ]+. 
0 .. 9. 
0 .. 7. 
A .. ZI I a .. z. 

2.2.1 The basic formalism : Chomsky type-0 grammar 

a. application 
The formalism of general rewriting is, among others, provided in: transformational gram
mars, string-replacement, graph- and tree grammars, cs-grammars for phonological rewrit
ing and the formalisms for machine translation. Term-rewriting systems are in use in 
compilers and other symbol manipulation systems (e.g. Jouannaud, 1985). 
In the linguistic tradition, grammars are commonly used as a means to systematically de
scribe the sentences of a language. This can either be from a generative or an analytic point 
of view. In the generative case the grammar specifies the sentences by its possible deriva
tions. In the analytic case a sentence of the language is parsed. 
One of the most established formalisms for grammars is the BNP-notation. The use of non
terminals enables the sharing of common substructures and the recursion mechanism enables 
recursive writing. 
In transduction, grammatical knowledge, expressed in the grammar, is used to perform the 
operations insert, delete and change on the input, resulting in the "transduced" output. The 
result of a single transduction remains possible input of other grammar rules, until no more . 
rules can be applied. 
One essential difference between recognition and parsing on the one hand, and transduction 
on the other, is that transduction lacks a start symbol (or: distinguishing symbol). The trans
duction varies freely over the input. 

When a U-grammar G= (N, I, T, S, Z, C, R, P, M) is reduced to a Chomsky type-0 
grammar the sets of symbols I, Z, C and Rare empty. M will describe that the rules in Pare 
in general of the form: 

X1, X2, .. Xn :: Y1, Y2, .. Ym. 
where Xi, Yj e NuT. 

Depending on the maximum values allowed for n and m and restrictions on the use of termi
nals and nonterminals four different kinds of rules may be distinguished, which give rise to 
the classical "types" of phrase structure grammars and the Chomsky hierarchy. Because we 
will refer to these four types of rules frequently we give here a definition of the different 
types of rules and grammars within the Chomsky hierarchy : 



Type 3 ("regular rule") : n=l and m=l, 2. 
If m=2 then Y 1 must be a terminal and Y 2 a nonterminal. X1 is always a nonterminal. 
G is called regular if all its production rules in P are regular. 

Type 2 ("context-free rule") : n=l and m>=l . 

25 

Sometimes m=0 is allowed, i.e. the rhs may be empty. The Y-symbols may be nonterminals 
or terminals, X1 always nonterminal. (The adjective "context-free" implies that X1 may be 
rewritten independently of the surrounding symbols). 
G is called context-free if all its production rules in Pare context-free or regular; at least one 
of them has to be context-free. 

Type 1 ("context-sensitive rule") : n <= m, n>0 . 
One of the Xi's should be a nonterminal. 
G is called context-sensitive if all of its production rules in Pare context-sensitive or context
free or regular; at least one of them has to be context-sensitive. 
G is called "truly" context-sensitive (Aho and Ullman, 1972, p.97) if each production is of 
the form "a. A 13 :: a. y 13" : A may be replaced by y only in the context a._l3. In phonological 
applications this is written as : "A:: y, a._l3" . 

Type 0 ("type-0 rule") : n>m, m>0 . 
G is called type-0 if at least one production rule in P is type-0. 

The first extension of the BNF formalism is that we allow the rhs's to be empty (m=0) for 
type-3, -2 and -0 grammars. The second extension concerns IDG's. The difference with a 
type-0 grammar will be explained in the sequel. 

c. lexical considerations 
The delimiters are already listed in 2.2 together with their function. 

d. syntax 
GRAMMAR:: 
RULE:: 
ALTERNATIVES:: 
ALTERNATIVE:: 
UNIT:: 
NOTION:: 

[RULE]+. 
ALTERNATIVES,['::' I< ]1, [ALTERNATIVES],'.'. 
ALTERNATIVE, ['I', ALTERNATIVE]*. 
UNIT, [ ',' , UNIT]* . 
NOTION. 
NONTERMINAL_SYMBOL I INTERMEDIA TE_SYMBOL I 
TERMINAL_SYMBOL. 

NONTERMINAL_SYMBOL:: ALFANUMS. 
INTERMEDIATE_SYMBOL:: ALFANUM. 
TERMINAL_SYMBOL:: BASIC_SYMBOL. 
BASIC_SYMBOL:: ALFANUM I '<' , [ OCT_DIGIT ]+ , '>' . 

e. semantics 
Derivations and parses. 

In chapter 1 we defined the semantics of the interpretation of a formalism as the 
(input,output) pairs which are valid for the interpreter. Four processes for interpretation were 
distinguished. They will now be described in more detail. 



26 

1. Generation with a phrase structure grammar G. Input is the starting symbol, out
put a sentence which consists of terminal symbols. The process itself consists of a stepwise 
derivation. 
Definition. 
A derivation in G is a sequence a 1, (½, ... , am+l' m2!0, of strings such that 
for each i, lS:iS:m, there are strings pi, 'Yi• <\, ~i such that 
ai = Pi 'Yi 8i, ai+l = Pi ~i 8i, and 'Yi :: ~i E P. 
Associated with each of a 1 , ... , <Xm there must be a pair <p,r> denoting that 'Yi :: ~i is the p-th 
rule of P and the first symbol of 'Yi is the r-th symbol of ai. Each ai is a line of the deriva
tion, and the process of applying a rule to one line to produce the next line is a step of the 
derivation. 
The sequence a 1, ... ,am+l is said to be a derivation of am+l from a 1, and am+l is said to 
be derivable from a 1. 
~ 

2. Reco~ition with a phrase structure ~ammar. Input is a string w E T*. Output is 
the answer "yes" or "no" depending on whether w can be generated by G or not. With on
line recognition this answer will be given after the reading of each symbol. 

3. Parsin& with a phrase structure ~ammar. Input and output are the same as with a 
recognizer, but the process will also reconstruct all possible derivations. 
The following definition of a parse as a two-dimensional description of a set of derivations 
follows closely the one of Walters (1970). It generalizes the definition of a parse tree for 
cfg's. 
Definition. 
A parse of P from a is a bracketed diagram showing how Pis derived from a. Such a parse 
is obtained from any derivation of p from a by writing down p, then bracketing the rhs of 
the last rule used in the derivation, writing the subject of the rule above the bracket, and as
sociating the rule number with the bracket. The string resulting from the replacement of the 
bracketed symbols by those above the bracket is the penultimate line of the derivation. If this 
bracketing is continued until all the steps in the derivation have been utilized, the result is a 
parse of p as a. The set of derivations that would yield the same parse under this construc
tion is the set described by the parse. 
~ 

The equality of two parses can be tested after a structure-preserving transformation of a 2-
dimensional bracketed parse into a string-representation. 

Example. In the phrase structure grammar 

(1) S :: A, B, C. 
(2) A, B :: a, B. 
(3) C :: D. 
(4) B, D :: b, d. 

a derivation and the corresponding parse are 

s <1,1> 
A,B,C <3,3> 
A,B,D <2,1> 
a,B,D <4,2> 
a, b,d 



Definition. 

s 
l 1 AB cl 
2 ~lol3 
1a~4 

27 

Corresponding to every parse is a unique leftmost (rightmost) derivation, which can be con
structed from the parse as follows. 
Write down ex. Find the leftmost (rightmost) bracket that has no brackets above it, and delete 
it. The next line of the derivation is determined by <p,r>, where pis the rule number labeling 
the deleted bracket and r is the position of the leftmost (rightmost) bracketed symbol. Repeat 
this process until all brackets have been deleted. 
A 
The derivation in the example above is the rightmost one. The leftmost derivation is 

s 
A,B,C 
a, B, C 
a,B,D 
a, b,d 

<1,1> 
<2,1> 
<3,3> 
<4,1> 

The Parspat system delivers a parse in the form of a string from which the 2-dimensional 
bracketed parse can be reconstructed. For our example this string is : 

S 1 ( A 2[ a B 4[ b d ]4 h B C 3( D )3 )1 
The brackets are labeled with the number of the rule. The type-1 and -0 rewritings are indi
cated by square brackets. The rhs of a rule which is used in a derivation is attached to the 
first symbol of its lhs. This accounts for the 1-dimensionality. With the aid of the number of 
the rule it can be reconstructed for the 2-dimensional parse how far its brackets have to ex
tend to the right (when the size of the lhs is fixed). 
This representation may serve as a canonical representation for a 2-dimensional parse. It 
works for all types of Chomsky-grammars. With it the equality of parses may be tested. 

4. Transduction with a transduction grammar G. Input is a string « 1 E T*, output a 

string «m+lE (T+I)*. «m+l is said to be a translation of « 1. In a cascaded grammar 

C={G1, G2, ... , Gm} the strings «i are element of (T+I)* for every Gi (2;:S;i;:S;m). 
The definition of a transduction is nearly the same as that of a derivation. The only difference 
is that the lhs and the rhs of the rules are interchanged. 
Definition. 
A transduction in G is a sequence « 1, « 2, ... , «m+l• m>=O, of strings such that 
for each i, l;:S;i;:S;m, there are strings ~i• Yi• <\, ~i such that 
«i = ~i Yi<\, «i+l = ~i ~i <\, and ~i :: Yi E P. 
A 
Definition. 
«m is a normal form of « 1 if «m is a translation of « 1 and no rule is applicable to «m· 
A 
We repeat from Dershowitz (1985) three desirable properties for transduction grammars : 

(1) termination- no infinite derivations are possible 
(2) confluence- each string has at most one normal form 



28 

(this is also called the Church-Rosser property) 
(3) soundness- equal strings are only rewritten to equal strings, that is, there is 

only one possible derivation; we call this property also 
"unambiguous". 

Each of these properties is in general undecidable. Dershowitz (1985) shows that confluence 
is decidable for terminating systems. 

We are interested in the automatic construction of transducers for general transduction 
grammars, whether these grammars have the desirable properties or not, and in a classifica
tion of heuristics, stemming from applications, which may be built into the transducers in 
order to obtain one or more of the desirable properties. 

The following example shows some transductions with the ambiguous (and therefore not 
sound) transduction grammar: 

(1) a, a:: A. 
(2) b, a:: A. 
(3) c, a:: a, c. 
(4) c, b :: b, C. 

(5) A:: a, b. 
and the input string a.1 = pabcq. 
The transduction process according to this grammar terminates, is not confluent and is not 
sound. (Transductions 1 and 2 do not reject confluence because they rewrite to the same 
normal form, but 2 and 3 do; 1, 2 and 3 reject soundness because equal terms are rewritten 
to different terms.) 

p ab c q p ab c q p ab c q 

r;:7 1n ~1 r;;-;;i rc;;i I r;:, 
lrc;i IAl I r;;i 

rc-;i I ~ 7111 I I l I 
pc a a q p c a a q p c b a q 

( 1 ) (2) (3) 

Central in the processes for recognition and transduction is the (re)construction of a deriva
tion. In this book we study the on-line aspects of these processes and restrict the interpreta
tion to on-line interpretation. 
An on-line interpretation consists of an on-line (re)construction of a derivation and of the 
creation of the normal form(s) within a finite delay after the reading of the input string, 
where input and output possibly overlap in time with each other. 

f. example 
a csg which generates the language {anbncndn In~ 1} (Levelt,1973): 
Z::E,Z,Fla,b,c,d. 
E,a:: a,E. 
d,F::F ,d. 
E , b :: a , b , b . 

C ' F :: C ' C ' d . 



2.2.2 Regular expressions 

a. application 

29 

If regular expressions are used in the rules of a cfg then the grammar is called an ecfg. 
Ecfg's are quite naturally used in phonological transduction, morphological analysis and 
pattern matching. Regular expressions provide for a compact notation of repetition and em
bedded alternation. Syntax-diagrams and recursive transition networks (see also section 
2.3.1.4) are easily rewritten into regular expressions. Regular expressions are defined in 
e.g. (Hopcroft and Ullman, 1979). 

b. functionin~ within formalism 
Regular expressions could be used in the lhs. 

c. lexical considerations 
The reserved regular expression symbols were listed in section 2.2 

d. syntax 
UNIT:: ENCLOSEDPART. 
ENCLOSEDPART:: '[' , ALTERNATIVES , ']', [ 'l' I '*'I"+']. 

e. semantics 
A notion is the most simple regular expression. If r, rl and r2 are regular expressions then 
the following ones are also regular expressions : 

expression meaning 
r1 , r2 concatenation of rl and r2 
rl I r2 r1 or r2 
[ r] * 0 or more repetitions of r 
[r]+ 1 or more repetitions of r 
[r] 0 or 1 r. 
[r]l 1 r. 

A regular expression can be rewritten as a weak equivalent cfg, which means that the same 
language will be generated but not with the same derivations. In the parse of a regular ex
pression no special marker will signal the appearance of the expression. 

f. example 
[ a I b] 1 , [ c , d I [ E ]+ ]* , [ f] . 

is a regular expression. 

2.2.3 Notions for pattern matching 

2.2.3.1 Don't care 

a. application 
In a number of applications the notions "don't care" and "arb" are necessary. In pattern 
matching they are used as "wild-card's", in syntactic analysis as "any intervening material". 
In chapter 1 we indicated that "don't cares" and "arb's" may also appear in texts. 

d. syntax 
The same as for a notion in a rhs. 
TERMINAL_SYMBOL:: '*' 



30 

e. semantics 
A "don't care" generates an arbitrary terminal or an intermediate symbol. 

f. example 
Code :: '<', *, *, *, '>'. 

Code is defined here as as a sequence of three arbitrary characters, surrounded by angle 
brackets. 

2.2.3.2 Arb 

a. application 
The "arb" is named after the built-in function "arb" of Snobol. It matches a number of char
acters up to the character(s) which may be expected after the arb, according to the grammar. 

b. functioning within formalism 
The functioning of the "arb" ends with the closing bracket of the current tree-level (which 
will be further explained in the section on tree symbol). 

d. syntax 
The same as for a notion in a rhs. 
TERMINAL_SYMBOL:: '=' 

e. semantics 
The "arb" generates any sequence of terminal and intermediate symbols, possibly empty, but 
excluding the symbols which may follow the "arb" in the derivation. 

f. examples 
1. Comment :: '!', =, '!'. 
A sequence of characters which starts with an exclamation mark and which ends with an ex
clamation mark is recognized as Comment. The characters which are matched by the "arb" 
will not contain a'!'. 
2. Sentence :: =, '.' . 

Sentence is defined as the maximal character sequence not containing a dot, followed by a 
dot. Note that with such a definition an input such as: 'Dr. West reads his mail.' will be 
matched by the nonterminal Sentence upto the dot in 'Dr.' . 

2.2.3.3 Line 

a. application 
The "line" plays an essential role in the unification of parsing and pattern matching. It allows 
for the multiple matching of phrases in an input. 

b. functioning within formalism 
The functioning of the "line" ends with the closing bracket of the current tree-level (which 
will be further explained in the section on tree symbols). 

d. syntax 
The same as for a notion in a rhs. 
TERMINAL_SYMBOL:: 



31 

e. semantics 
The "line" generates any sequence of terminal and intermediate symbols, possibly empty, 
including the symbols which may follow the "line" in the derivation. 

f. example 
Ing_form :: -,'ing'. 

Ing_form is defined as a sequence of characters, ending in 'ing' and possibly including 
'ing'. The "line" and the "arb" are not exchangeable in this case: if the input is 'singing' then 
Ing_form will match twice as 'sing' and 'singing'. If instead of the line an "arb" had been 
specified then only 'sing' could match. 

2.2.3.4 Range of terminal symbols 

a. application 
On the lexical level ranges of terminal symbols may be useful, for instance in morphological 
and phonological grammars and grammars for the description of texts. 

c. lexical considerations 
The range consists of 2 dots between two terminal symbols. 

d. syntax 
NOTION:: 
USER_NOTION:: 

e. semantics 

USER_NOTION . 
RANGE_SYMBOL, ' . .', RANGE_SYMBOL . 

In the Parspat system the range functions as an abbreviation for an ordered subset of the 
ASCII character set. The range includes the two terminals immediately surrounding it plus 
those in between them, defined by the natural order of the character set. 

f. examples 
Consonant :: b .. d I f .. h I j .. n I p .. t I v .. x I z. 
Ascii :: <0> .. <377> . 

2.2.4 Notation of Actions 

a.application 
The extensions to the formalism for variables, for Boolean constructs between rules and for 
output are all denoted within braces. These extensions will be treated in the following sub
sections. In this subsection we will discuss where the actions may be placed and when they 
are executed. 

b. functionini: within formalism 
The actions may be placed before a',', a 'I', a']' and a'.'. 

c. lexical considerations 
Between the braces ' (' and '}' actions are denoted. 

d. syntax 
We extend the syntax of regular expressions in section 2.2.2 in order to formulate the 
admissible places of actions within regular expressions. 
ENCLOSEDPART:: '[' , ALTERNATIVES,']', 



32 

ALIBRNATIVE:: 
ACTIONS:: 
ACTION:: 

[ ACTIONS], [ DEC_DIGIT I '*' I '+'], [ ACTIONS ] . 
UNIT, [ACTIONS], [',',UNIT, [ACTIONS]]*. 
'{',ACTION, ['&', ACTION]*,'}'. 
REPORT_DECLARA TION I COOP _DECLARATION I 
assignment I IBST I BUILD_DECLARATION I 
GRAMMAR_CALL I PROCEDURE_CALL. 

e, semantics 
The syntax of actions is embedded within the syntax of regular expressions. The semantics 
concern the contribution of actions to input and output. This will be dealt with in the follow
ing subsections. It is here the place to discuss at which moment during a derivation actions 
are executed. 
During a derivation actions are executed between the writing of 2 symbols. In the following 
table we define which actions will be executed for all possible situations. The dot represents 
the position in the regular expression during the rewriting. 
a .a {Al} 13 

6 [ ... I a .a {Al} l. .. ]{A2} 13 

6 [ ... I a .a {Al} l. .. ]{A2}*{A3} 13 

6 [ YI a .a {Al} l. .. ]{A2}*{A3} 13 

6 .a {Al}[ a ]{A2}*{A3} 13 

6 .a {Al}[ a ]{A2}*{A3} l3 

f. example 

-a-> a a {Al} .13 
: execute Al 

-a-> 6 [ ... I a a {Al} I. .. ] {A2}.l3 
: execute Al and A2 

-a-> 6[ ... laa {Al} l. .. ]{A2}* {A3}.l3 
: execute Al, A2 andA3 (idem for]+) 

-a-> 6 [ .yl.a a {Al} l. .. ]{A2}* {A3}l3 
: execute Al and A2 (idem for]+) 

-a-> 6a{Al}[.a]{A2}*{A3}13 
: execute Al (idem for+ and 1 and for 
the absence of *, + and 1) 

-a-> 6a{Al}[a]{A2}*{A3}.l3 
: execute Al and A3 (idem for the 
absence of*,+ and 1) 

In order to illustrate the activation of actions in combination with regular expressions we give 
the following grammar as an example. The actions between braces are abbreviated by Al, 
A2, A3 and A4. 

S::T{A4}. 
T :: a, [T {Al}]* {A2}, a {A3}. 

The input 'aaaa!' will give rise to the following parse tree and sequence of actions : 
S :( T :( a T :( a {A2} a {A3}) {Al,A2} a {A3}) {A4} ). 

2.2.5 Variables 

a, iuwlication 
Variables are present in a number of grammar-formalisms. They may be divided into three 
classes: 
- formal parameters bound to nonterminal symbols (like attribute grammars and Prolog), 
- global variables, like those used in atn-grammars (scope: the whole grammar), 
- local variables, (scope: the grammar rule in which they appear). 
The possible operations on variables may be summarized by : 
- Snobol-like conditional-assignment to variables from the text, 
- assignment of expressions of other variables, 



33 

- tests on (expressions of) variables; a desirable feature (for unification) is postponed 
evaluation and assignment when variables do not have a value, 
- matching on the value of variables and assigning substructures to other variables 
- interaction with user-defined external routines. 
The only feature which is not allowed in the unifying formalism is the use of global vari
ables. The consequence for A TN grammars is that the variables which are used in a sub
A TN have to be passed by parameters. 

b. functioning within formalism 
Nonterminals and lexicon terminals may be enriched with parameters. The parameters of 
nonterminals at a lhs have to be preceded by the declarations "I:", "O:" or "IO:", which cor
respond respectively with the features "inherited", "synthesized" and the combination of 
both, which are familiar in attribute- and affix-grammars. Parameters of lexicon terminals 
need the "O:" declaration. In the latter case the actual value(s) will be supplied by the lexicon. 
The value of a variable is a string of arbitrary length. Within an expression variables may be 
concatenated, together with string-constants and the last read-in character. 
A variable is declared by its first appearance in a rhs. The scope of the variable is the gram
mar rule with that rhs. 
Operations on and with variables are denoted within the action-brackets. The operations are : 
assignment, test, grammar-call and procedure-call. 
In an assignment, an expression with variables and constants is assigned to a variable. 
A test concerns the truth-value of a Boolean expression. If this value is "false" then the cur
rent recognition path stops. 
A grammar-call consists of the name of a grammar with the seven parameters (In, Lex, Rec, 
Pa, Ou, Rep, Bld) which we discussed in section 2.2. 
In the output a number of variables with their values may appear which will be bound to 
variables with the same name in the current grammar rule. The name of the grammar can be 
external. 
A procedure-call consists of the name of an external procedure which is written in some pro
gramming language, and an unlimited number of parameters in which (expressions of) vari
ables may be passed. The first parameter is a Boolean. If it returns the value "false" then the 
current recognition path stops. 

c. lexical considerations 
Variables are denoted as strings of characters and digits. The concatenation operator is 'II'. A 
string-constant is a string of Ascii-characters between quotes. In the string the symbols '(' · 
and ')' are reserved and act as tree symbol. The reserved symbol '%' stands for the last 
symbol that is read in. 

d. syntax 
NONTERMINAL_SYMBOL::ALFANUMS, PARAMETERLIST. 
PARAMETERLIST:: '(', F_OR_A_PARAMETERS , ')' I 

'(' , ACTUAL_PARAMETERS , ')' 
F _OR_A_PARAMETERS:: PARAMETER_DECL, [',', PARAMETER_DECL]* 
ACTUAL_PARAMETERS:: ACTUAL_NAME , [',', ACTUAL_NAME ]*. 
PARAMETER_DECL:: [II O I I, 0 ]1, ':', ALFANUMS . 
ACTUAL_NAME:: ALFANUMS . 
ASSIGNMENT:: ALFANUMS , ':=' , VARIABLE_EXPR 
TEST:: VARIABLE_EXPR , ['='I '/= ']l, VARIABLE_EXPR 
VARIABLE_EXPR:: VARLIT, ['II', VARLIT]*. 
VARLIT:: ALFANUMS I LITERAL I'%' . 



34 

GRAMMAR_CAIL:: 
PROCEDURE_CAIL:: 
LITERAL:: 

dl. restriction in Parspat 

ALFANUMS, '(', [ ALFANUMS, ',']6, ALFANUMS , ')' . 
ALFANUMS, PARAMETERLIST. 

Unification of variables will be implemented in a later stage. In the current implementation 
variables which appear in an expression need to have a value assigned to them when the 
expression is evaluated. 

e. semantics 
The semantics of variables are determined by the way in which operations on variables 
influence the output stream and by their inhibition of a current parse. These operations are 
straightforward and work in the same way as in programming languages like Pascal. 

f, examples 
See also chapter 8 for more elaborate examples. 
1. assignment to a variable from the text : 
S(O:A,O:B) :: [a .. g (A:= A II%} I h .. z (B := B II%}]*. 
After recognition of the input all characters in the range a .. g are appended in variable A and 
all characters in the range h .. z are appended in variable B. 
2. assignment and tests with variables and constants : 
S(NGETAL):: NP(NGETAL), VP(VGETAL) (NGETAL=VGETAL}. 
NP(O:Ngetal):: [LIDW], [BINNW]*, NAAMW(Ngetal). 
VP(O:Vgetal):: FINWW(Vgetal), [INFINWW]*. 
LIDW:: 'de' I 'het' I 'een'. 
BINNW:: 'groen',[e]. 
NAAMW(O:N):: 'mannetje' (N:='E'}, [s (N:='M'}]. 
FINWW(O:N):: 'wa', [s {N:='E'} I 'ren' {N:='M'}]l. 
INFINWW:: 'gevonden'. 
After recognition the name of the variable NGET AL with its value will be brought to the 
output. 
3. assignment from a lexicon: 
NP:: $det(gender), $adj(singplul), $noun(singplu2) {singplul = singplu2 }. We assume 
that the lexicon contains the value for the gender of a "det" and the multiplicity of an "adj" 
and of a "noun". 
4. Call of an external procedure : 
S :: -, NP(singplul, timel, head) { Sem(O:continue, I:timel, l:head, 10:expect) }, 

VP(singplu2, time2, expect) { singplul = singplu2; timel = time2 }. 
After the recognition of an NP the routine "Sem" is called with as input parameters "timel" 
and "head" and as output parameters "continue" and "expect". If the value of "continue" 
upon return of Semis "false" then further recognition of this path is inhibited (there may be 
more paths active because this is a pattern grammar). Else recognition continues with the 
nonterminal VP which gets the variable "expect". 

2.2.6 Booleans 

2.2.6.1 Boolean "and" between rules 

a. application 
Especially in the case of pattern grammars it is desirable to intersect grammar rules. In the 
application of Corpus Linguistics, which we discussed in chapter 1 and for which a number 



35 

of examples are presented in chapter 8, sentences and parse trees in corpora are queried with 
Boolean combinations of patterns. These patterns have, in general, the form of a rhs in the 
unifying formalism. In order to accommodate for Boolean combinations of patterns we 
introduce the concept of the intersection of rules. 
Suppose we want to match the patterns Pl and P2, which are written in the formalism of a 
rhs, with a sentence. For the matching of the Boolean "or" of Pl and P2 we write in the uni
fying formalism grammar Gl: S :: -, Pl, - I-, P2, - . For the Boolean "and" we introduce the 
reserved symbol"&" and write the grammar G2: S :: -, Pl, - & -, P2, -. (The Boolean "not" 
will be introduced in the following subsection.) 
The treatment of the intersection of rhs's can be generalized further along the following lines. 
Grammar G2 differs from grammar G 1 in that respect that for G2 a check has to be made 
whether both Pl and P2 match. We introduce an alternative notation with which we express 
that requirement in Gl, which then becomes grammar G3 : S :: -, Pl, - {C:abc} I-, P2, -
{ C:abc}, with "abc" as a cooperation symbol (which name may be arbitrary chosen), written 
between the braces of an action. Semantically the two grammars G2 and G3 are equivalent. 
But we allow also that the cooperation symbols may be written at arbitrary places in a rhs, 
as an action. For instance, consider the grammar G4 : S :: -, Pl, - { C:A}, P3, - { C:B} I -, 
P2, - {C:A}, P4, - {C:B}. Here we express that S generates strings w = u v such that u is 
generated by -, Pl, - as well as by-, P2, - and that vis generated by-, P3,- as well as by-, 
P4,- . From the recognition point of view we may say that the recognition of P3 and P4 has 
to wait for the recognition of Pl and P2, and that at least at the end of the input both alterna
tives of the rhs have to be recognized. 
This resembles the cooperation of parallel processes. In G4 the 2 rhs's may be waiting for 
each other at the rendez-vous A, consuming input (which is possible because of the appear
ance of lines, which may recognize an indefinite number of input symbols). 
In general, when all rhs's which contain the same cooperation name are recognized up to the 
location where the name is denoted as a cooperation symbol then all these rhs's may con
tinue, otherwise they all fail. 
The device of cooperating rules is especially useful in the specification of complex conditions 
in trees. Several tree-walking languages do exist in which it is ;iossible to state in a dynamic 
way how to arrive from one node in a tree to another node, and to specify conditions on the 
labels at these nodes. With the device of cooperation symbols it is possible to translate dy
namic tree-walking rules into static ones. 
If instructions for tree-walking take the following form: 

"If at a position A condition Cl obtains, then move through the tree following path P 
to position B. There, condition C2 should obtain". 

then these instructions can be stated in a static form as (De Jong and Masereeuw, 1987): 
"If in the tree there is a position A where condition Cl obtains, then there should also 
be a position B where condition C2 obtains, and moreover there should be a posi
tional relation between A and B that can be expressed as P". 

The specification of a path P between A and B can be the same as for a path P' between po
sitions A' and B'. If this happens frequently it may be appropriate to abbreviate this, in a 
tree-walking language, by a procedure. The corresponding method in the unifying formalism 
is to use a nonterminal as an abbreviation, supplied with two cooperation points as parame
ters. We refer further to section 2.3.1.1 for an appropriate example. 

b. functioning within formalism 
The name of a cooperation appears within the braces as an action. The place among other ac
tions written between the same braces is not relevant. An indefinite number of cooperation 
symbols may be written between the same braces. The name of a cooperation has to appear 



36 

in two or more rhs's in order to become meaningful. These rhs's do not necessarily need to 
have the same lhs : a lhs may be a nonterminal which is used for abbreviation purposes. 

c. lexical considerations 
A cooperation symbol is written in the action-part and consists of a string of alphanumeric 
characters. When a cooperation appears only at the end of alternatives within one and the 
same regular expression then it can be replaced by an '&' instead of the alternative sign 'I' 
between the alternatives. 

d. syntax 
ALTERNATIVES:: 
PARAMETER_DEQ:: 
COOP _DEQARATION:: 

dl. restrictions in Parspat 

ALTERNATIVE, [ '&', ALTERNATIVE]*. 
COOP _DEQARATION. 
C, ':', ALFANUMS . 

The use of the intersection of grammar rules originated from the application of fast pattern 
matching in large text corpora . Up till now we implemented in the Parspat system the 
cooperations in combination with those sub-formalisms for which a FSA can be constructed. 
This will be dealt with further in the chapters 5 and 6. 

e, semantics 
The informal semantics have already been expressed in a. The formal semantics are simply 
expressed with the aid of the construction of itemsets, which happens in the chapters 5 and 
6. 

f. examples (from De Jong and Masereeuw, 1987) 
S :: -, Subject, - {C: SVO}. 
S :: -, Verb, - {C: SVO}. 
S :: -, Object, - {C: SVO}. 

This is equivalent to: 
S :: -, Subject, - & -, Verb, - & -, Object,-. 

Equivalent grammar without cooperation: 
S :: -, Subject,-, Verb,-, Object,-. 
S :: -, Subject,-, Object,-, Verb, -. 
(etcetera for all 6 permutations). 

An elaborate example of the use of cooperation points as parameters will be given in section · 
2.3.1.1. 

2.2.6.2 Boolean negation within a rule 

a. application 
The Boolean negation (complementation) is desirable with "rewriting in context" 
(phonological rewriting) and in query-languages for free-text database systems. In (Aho, 
Hopcroft and Ullman, 1974, p. 419) it is argued that Boolean operators in regular expres
sions may shorten their length, and therefore may provide for a more compact notation. 

b, functionin~ within fonnalism 
Boolean negation functions throughout the unifying formalism. It is therefore appropriate to 
formulate its effect on the other sub-formalisms. This will happen in subsection e. 



c. lexical considerations 
reserved symbols : 1. the backquote ' 

d. syntax: 
ENCLOSEDPART:: 

NOTION:: 

2. the nonterminal UNIVERSE. 

! on regular expressions: backquote before the open bracket ! 
"[' , ALTERNATIVES,']', 

[ ACTIONS], [ 'l' I '*'I'+'), [ ACTIONS] . 
! on notions: backquote behind the notion ! 
[ NONTERMINAL_SYMBOL I INTERMEDIATE_SYMBOL I 

TERMINAL_SYMBOL )1, "'. 

dl. restrictions in Parspat 

37 

1. Up till now we have implemented in the Parspat system the negation operator in 
combination with those sub-formalisms for which a FSA can be constructed. This will be 
dealt with further in chapter 5. 

2 We are not aware of the applicability of the negation-operator in a lhs and therefore 
have not implemented it for a lhs. 

e. semantics 
Boolean negation and symbols 
- terminal and intermediate symbols 
The negation of a terminal is defined as the complement of the set of which it is a member. 
This set can be defined with the aid of the reserved symbol "UNIVERSE". 
A universe can be defined by inclusion of the following rule in the grammar: 

UNIVERSE:: <definition of universe> . 
In the Parspat system, if no universe is defined, the rule "UNIVERSE:: <000> .. <377>" will 
automatically be added. If for the compiler of the Parspat system the switch 
SHARED_UNIVERSE is set to true then the set of intermediate terminals I will be added to 
the) universe. When this switch is false then there will be separate universes for input termi
nals and intermediate symbols. Negation in this case, won't cover intermediate symbols. 
With this definition the negation of a "don't care", an "arb" and a "line" does not exist. 
- strings of terminal and intermediate symbols 
The negation of a string x e (T +I)* is defined as the set of strings { w I w e (T +I)*, lwl = 
lxl, w ¢ x}. That is, x' generates all strings w with the length ofx, but not equal to x. 
- nonterminal symbols 
The negation of a nonterminal A is defined as the set of strings { w I we (T +I)*, lwl = lxl, w 
¢ x, A =*> x}. That is, A' generates all strings w with length between the length of the 
shortest and the largest string that can be generated by A, but not equal to any string that can 
be generated by A. 

Boolean negation and regular expressions 
We define the interpretation of '[a}, where } means ),)1, ]*or]+, as the same as of'[ [a} 
] 1. If we substitute the nonterminal A for [a} then this expression becomes A', which we 
discussed above. 

f. examples 
a' 
'[a,b,c]l 
A' 

an arbitrary character, but not an 'a' 
a sequence of 3 characters, which is not 'abc' 
where A is a nonterminal. A' 

matches any sequence of the same length as one of the 
sentences generated by A, which is not equal to such a sentence 



38 

'['ab'l'bc'] 1 
'[-,a .. c]l 
'[-,[AIB] l,C-] 1 

a sequence of 2 character, which is not 'ab' and not 'be' 
any sequence of characters which does not end in 'a', 'b' or 'c' 
any sequence of characters which does not contain a 

sentence which may be generated by AC or BC 
NP::-, [ Adj'], N, - a Noun Phrase with a Noun, but without 

an Adjective preceding that Noun. 

The following rules are part of a phonological grammar which is shown in chapter 8. 
c, K, NOTeORiORh :: c, NOTeORiORh. 
NOTeORiORh :: '[ e Ii I h ]. 
UNIVERSE :: a .. z. 

The 'K' in the first rule is an intermediate symbol (it appears without being present in the 
rhs). It is essential that SHARED_UNIVERSE = FALSE, because otherwise 'K' would fall 
under the definition of NOTeORiORh, and the first rule would be applicable to its own result 
indefinite. 

2.2.7 Input 

2.2.7.1 Tree symbols 

a. lll!Plication 
In a number of applications we met the datastructure of a tree: in the structure of texts, in 
parse trees, in the formalisms for machine-translation. It is such an evident datastructure that 
it has to be supported by the unifying formalism. 

b. functioning within formalism 
We distinguish labeled and unlabeled trees, both in patterns and in texts. The notion before 
the open parenthesis of a labeled tree functions as a label. A labeled tree in the input may be 
skipped when the tree is not specified in the grammar. An unlabeled tree may not be skipped. 

c. lexical considerations 
The distinction between labeled and unlabeled trees is made by a colon before the open 
parenthesis. To descend to an arbitrary level in a tree, one can use the reserved nonterminal 
'( .. ('. To climb up to the level of the corresponding '(..(' the reserved nonterminal ') .. )' can 
be used. 

d. syntax 
UNIT:: 
TREEUNIT:: 
TREESUNIT:: 

e. semantics 

TREEUNIT I TREESUNIT. 
['('I NOTION, ':(']1, ALTERNATIVES,')', [ACTIONS]. 
[ '( .. (' I NOTION, ':( .. (']1, ALTERNATIVES,') .. )', 

[ACTIONS]. 

The opening tree-bracket and the labeled opening tree-bracket do not match with each other. 
The label before a labeled opening tree-bracket has the form of a notion, with all possibilities 
for the expression of e.g. a Boolean negation or a range. In essence the two opening brack
ets differ in the following way : 
- a labeled opening tree-bracket requires a notion 
- a labeled opening tree-bracket in the input will be skipped up to its corresponding closing 
bracket when the opening tree-bracket in the input is not expected. 



39 

The process of skipping can be speeded up by placing a pointer in the text at a':(' which 
points to the corresponding ')'. This happens when files are created with the aid of the 
"build" operator. 

f. examples 
1. If the start of the input text is : 

BOEDEL :( KLASSE :( D) 
GEZIN :( G) 
ORG RN :( RUIS KAT :( YR :( VO :( RUIS ) 

PR:(WOON) 
) 

) 
LAND KAT:( YR:( VO:( TUIN) 

) 
) 

EFFECT KAT:( YR:( VO:( OBLIGATIE) 
BIJZ :( FRANKRIJK ) 
AA:( 1 GELD) 
HOEY :( GT :( 2 ) 

) 

) 
) 

TAX:(2) 
YR:( VO:( OBLIGATIE) 

BIJZ :( PLANTERS OP DE EILANDEN) 
RENTE :( 4) 

) 
TAX:( 1) 

and the grammar is 

S :: - , BOEDEL :(-, ORG, RN:( [A & B & C]l ), - ) . 
A:: - , RUIS, KAT, - . 
B :: - , LAND, KAT, - . 
C :: - , EFFECT, KAT:(-, TAX:(*), - ) , - . 

then the input will be recognized, and '1' will be matched by the'*'. 

2. The second example concerns the matching at arbitrary levels in a parse tree. 

If the tree is : 



40 

S:( NP, 
VP:(V, 

NP:(ADJ, 
N, 
REL:( ... 

... ) 

NP:(DET, 
ADJ, 
N) 

and the pattern grammar is : 
ADJ-NP:: S: ( .. (, -, NP:( -, ADJ, -, ), -, ) .. ). 

then the result will be two matches in the parse tree as shown below : 

2.2. 7 .2 The lexicon 

a. application 
As was already stated, terminals may be single ASCII characters or lexicon symbols, which 
are preceded by a'$'. The Parspat runsystem cooperates with a lexicon with the datastruc
ture of a trie. 

We will first give an example of a trie (supplied by J. Skolnik). A star denotes the end of an 
entry. 



Trie: 

m-e*-at* 

I* n 

I 
tal* 

ore* 

Contents of the trie : 

donkey 
dope 
dot 
me 
meat 
men 
metal 
more 

41 

There are a number of properties of tries which make them useful for the automatic process
ing of text. They are : 

- the alphabetical order of entries is preserved 
- common prefixes of entries are stored only once 
- the lookup of an entry is an on-line process : during the reading of an entry from the input 

one may walk in parallel through the trie, getting an indication of whether further progress is 
possible 
- because of this on-line property it is a good companion for on-line syntactic analysis 
- multi-words may be stored and processed in a simple way 
- entries may have any length; no fixed storage has to be reserved. 

Kunst and Blank (1982) discuss the merits of the trie-datastructure for morphological analy
sis. 
In his survey on access methods for text, Faloutsos (1985) categorizes the trie as the only 
<latastructure which enables access to a list of keywords in a time which is proportional to the 
length of the keyword searched for. However, if the trie has to be made external on disc, a 
more than trivial implementation is necessary in order to let it compete with the widely 
known family of B-trees and with hash-coding methods. Because of the absence of such a 
non-trivial implementation Faloutsos further ignores tries on external memory. 
The Parspat runsystem makes use of an efficient implementation of such an external trie 
(Skolnik, 1982). In particular the number of disc-accesses which are needed for the lookup 
of an entry is optimized. Each position in the trie may be characterized by a set of internal 
pointers. Functions exist to ask for the current position, to store a position and to locate on a 
position. By storing positions in the trie itself the external trie may be transformed into an 
external dag or an external network. 

The "insert" and "delete" operations on a lexicon may be performed as an action. The 
"lookup" operation is performed on-line and will be initiated when a lexicon terminal in the 
grammar has to be matched. After the reading of the next character three messages may be 
reported by the lexicon function: failure (no such entry), success (entry found) and proceed 
(continuation possible). The last two messages may be combined when an entry is found 
which is the prefix of another entry. In the case of failure the current derivation will stop. 
Entries in the lexicon are strings of arbitrary length and may be followed by one or more 
lexical notions, separated by a delimiter. The categories will be successively assigned to the 



42 

variables which are denoted as parameters with the lexicon terminal. The first parameter will 
always return the matched entry. 

b, functionin~ within formalism 
The incremental lookup operation will operate on the lexicon which was named in the call to 
the grammar. The "insert" and "delete" operations may specify, optionally, the name of an
other lexicon. 

c, lexical considerations 
Entries in the lexicon may contain any printable character except '#', which acts as a 
delimiter. The lexical notions should have exactly the same spelling as in the grammar, in
cluding the '$'. Lexical notions that do not occur in the grammar are ignored. 

d. syntax 
concerning the construction of the lexicon : 
LEXICON_S1RING:: ENTRY, ['#',CATEGORY]*. 
ENTRY:: [ ALFANUM I SPACE]+. 
CATEGORY:: [ '$', ALFANUM]+. 
concerning the grammar: 
TERMINAL_SYMBOL:: 
action:: 

LEXICON_S1RING:: 

dl. restrictions in Parspat 

"$", ALFANUMS. 
'update(', LEXICON_STRING, [ LEXICON_NAME ], ')' I 

'delete(', LEXICON_STRING, [ LEXICON_NAME ], ')' . 
V ARIABLE_EXPR, [ '#', V ARIABLE_EXPR]* . 

Entries are case-insensitive, i.e. they are converted to lowercase. 

e. semantics 
When during generation a lexicon symbol is encountered (eventually with parameters) then 
one of the ENTRY's in the lexicon is selected with as its first CATEGORY the lexicon sym
bol. Its other CATEGORY's have to correspond with the parameters. 
The semantics for on-line recognition according to a grammar can be extended to the on-line 
processing of a lexicon which has the trie-datastructure. By combining these semantics the 
external lexicon can be treated as an integral part of the grammar. 

f. example 
After execution of the actions 

{... update('work#' II vl) ... } and { ... update('work#' II v2) ... } 
with variables vl = '$V' and v2 = '$N 
and a lexicon which contains only 

working*#$Adj 
the lexicon will contain : 

worlc"'ing"'#$Adj 

I 
#$N 

I 
V 

(because of the trie-structure). 
If during parsing of a rhs the notion '$V' is encountered and the input contains 'work' then 
the derivation will be continued. 



2.2.8 Output 

2.2.8.1 Reports 

a, iwplication 

43 

"Reports" are used in order to trigger other processes during recognition. They enable a 
"syntax-driven" approach with a strict separation between syntax and semantics. The fol
lowing remarks concern on-line recognition. The reports will be brought to the output string 
as soon as possible. If there is only one derivation this means : immediately. When there ex
ist two or more derivations the reports are stored within the parse. At the moment that some 
derivation stops and only one derivation exists then the stored reports are brought to the out
put string: in that respect the outside environment is not aware of temporary ambiguities, but 
responses may be delayed. 

b. functioning within formalism 
There are two report functions. The "$"-function (for "signal") brings to the output-string 
the number which follows the S. The "R"-function (from "report") does the same, but ap
pends to it the last terminal or intermediate nonterminal symbol(s) which is (are) read in. 
There may be more symbols in case the notion before the action where the report-function is 
denoted is an arb ('=') or a line('-'). In that case all the symbols which are covered by that 
notion are concatenated and reported (note that this string may also be empty). Consecutive 
reports with the same number are merged into one report with all symbols concatenated. 

d. syntax 
REPORT_DECLARATION:: 

e. examples 

[RI S]l, ':', [ DEC_DIGIT ] +. 

1. pattern matching with 4 keywords, signaling a match at the end of a keyword. 
A:: -,'he' {S:l},- I -,'she' {S:2},- I -,'his' {S:3},- I -,'!lers' {S:4},.:. 

The same result is obtained by writing : 
A:: -,'he' {S:l},'rs' {S:4},- I -,'she' {S:2},- I -,'his' {S:3},-. 

If the input is 'ushers' then the output report string will be 'l<NL>2<NL>4<NL>', where 
<NL> is the symbol for a carriage return/new line. 
2. B :: C {R:l}, = {R:2}, [d, * {R:3} ]+, e. 

C ::elf. 
If the input is 'cabcdededee' then the output report string will be 
'lc<NL>2abc<NL>3eee<NL>'. ! 

2.2.8.2 Structural description 

a, iwpiication 
We already discussed the representation of a parse as a structural description. In the case of 
parsing an ambiguous grammar all parses have to be brought to the output parse string. 

b. functioning within formalism 
The parse(s) is (are) created during recognition. Each nonterminal will cover a sub-parse 
tree. This sub-parse tree can be assigned to a variable within an actionpart by simply writing 
the nonterminal. On the other hand a variable, containing a (possibly modified) (sub-)parse 
tree, can also be assigned to a nonterminal. 



44 

c. lexical considerations 
Parses are created when in the call to the grammar the actual value for the parse parameter is 
not the empty string. 

dl. implementation in Panpat 
Parses are constructed on-line and bottom-up. Ambiguous parses are shared as much as 
possible. Parses can be inspected at any moment. 

e. Semantics 
Reconstruction of all possible derivations. 

f. examples 
see section 2.2.1. 

2.2.8.3 Output-variables 

a. application and semantics 
With variables all kind of structures can be built. They can be brought to the output string. If 
during recognition, parsing or transduction no rhs is applicable for a character it is brought to 
the output string. This happens as soon as possible; In the case of a phrase-structure gram
mar the output string will contain (after successful recognition) the start symbol, accompa
nied by its variables. These variables are also brought to the output string, in the form of 
pairs (variable, value). In the case of ambiguities all sets of pairs will be written. With trans
duction the same thing happens, but then more symbols can appear in the output, together 
with their associated variables. Cascaded grammars are treated as a whole : an output string 
will become visible when it is not denoted as an input string for some other grammar. 

f. example 
S(O:result) :: NP(voud,time) {result:= 'NP:' II time II voud }, [VP(voud,time)]. 
! in the output string the variable result will appear together with its value, which consists of 
the concatenation of the string 'NP:' with the values of the parameters time and voud, which 
are returned by the nonterminal NP.! 

2.2.8.4 External tree building 

a, application 
Intermediate texts, like structured text-corpora , often have the form of a labeled tree. As we 
explained with tree-matching, it is possible that during a match a skip has to be performed to 
the end of the current level in the tree. This can be optimized by placing a pointer at the start 
of the level. The construction of such intermediate tree-structured texts can be performed by 
the use of the "build" -operator. As regards on-line behaviour the same remarks are valid as 
stated under reports. 

b. functioning within formalism 
As an action. 

c. lexical considerations 
The '(' and ')' are the reserved tree symbols. 

d. syntax 
BU1LD_DECT,ARATION:: B , ': ', [ '(' I ')' I '%' I VARIABLE_EXPR ]+ . 



45 

f. example 
A :: * {B: (% }, b. 

The "build"-operator B will start to construct a new substructure (denoted by the'(') with as 
the first character the last read terminal. 

2.2.8.5 Transduction 

a,iwplication 
Transduction by general rewriting was mentioned in phonological rewriting and machine 
translation. 

b. functioning within formalism 
All transduction rewrite rules will operate in parallel. Transduction stops when no more rules 
are applicable. This process may give rise to a number of ambiguous transductions. In this 
section we provide for a number of shorthands and extensions which proved to be useful in 
a number of applications and which adhered to the formalism the grammar writer had in 
mind. It is possible that in the course of evolution more shorthands will be developed. 

c. lexical considerations 
Cover symbols. 
Nonterminals may be suffixed by the "cover symbol"""· During parsing a covered nonter
minal will be replaced by the terminals which are at the leaves of its associated parse tree(s). 
The current scope for covering at the lhs is the governing cs rule. The current scope for cov
ering at the rhs is the current regular expression. If the notion is not known then the scope is 
widened to the surrounding regular expression, etcetera. 
A further suffixing is allowed in order to reference not the leaves of the parse tree but some 
symbol within the parse tree, eventually suffixed again by the cover symbol. 
Shorthands. 
Shorthand! : suffixed notions. 
Nonterminals may be suffixed by an integer. If Tis a nonterminal then the use of "Tl" im
plies the existence of the rule "Tl :: T". 
Shorthand 2 : reference of notions. 
Sequences of symbols can be denoted by a nonterminal with a cover symbol. With regular 
expressions this is not possible. We therefore introduce the assignment operator'$' (like in 
Snobol) which assigns the value of the last regular expression (in the most simple case : a 
notion) to a variable, which may be an alphanumeric name. This is essentially the same as 
rewriting this variable to that regular expression in a separate rule. For instance, the rule 

a, $1, b :: b, [a,=, b]*$1 
is equivalent with the two rules a, Vl ", b :: b, Vl . Vl :: [a, =, b]* . 

In essence a nonterminal functions as a description of a sequence of terminals. After trans
duction it disappears. The coverage of a nonterminal may be partially rewritten. In that case 
we may reference it by the same name, but it has to be followed, between labeled brackets, 
by the rewritten coverage. "Arbs" and "lines" are allowed. Examples: 

ex, Al:($1,Bl",$2,Cl",$3), ~ :: ~. Al:(-$1,Cl,-$2,Bl,-$3), ex. 
Within the labeled bracket of Al a reordering is indicated. 
For simple applications a shorthand is allowed : when the sequence of arbs and/or lines in 
the lhs is the same as at the rhs, and there are the same number of arbs, then assignment to 
variables is not necessary. The above example can then be transformed into the following, 
simplified, one: 



46 

ex, Al:(-,Bl·'\-,Cl•\-), 13 :: 13, Al:(-,Cl,-,B1,-), ex. 

If a symbol in the lhs is not a cover symbol then it may be rewritten. When during rewriting 
a cover symbol is used then its value is taken from the rhs. The above example could also 
have been written as : 

ex, A2, 13 :: 13, Al, ex. 
Al :: (-,Cl,-,B1,-). 
A2 :: Al:(-,Bl",-,Cl",-). 

(The repetition of Al as a label is only necessary to get a reference for the arbs). 

Shorthand 3 : Referencing of the choice between alternatives. 

The choice of an alternative in the rhs may be referred to in the lhs by an alphanumeric label. 
Example: 
exl[ 1: l32 I 2: )'2] 61 :: exl [ 1: l31 I 2: yt] 61. 

d. syntax 
NOTION :: USER_NOTION, "" . 

dl. Restrictions in Parspat 
Cover symbols are implemented at the moment of writing, but not the other shorthands. We 
therefore leave out the syntax for these shorthands. 

e. semantics 
Heuristics, stemming from the practice of phonological rewriting, may be activated to reduce 
the number of ambiguities: 
- if 2 rhs's are applicable, the longest one is chosen 
- rewriting according to a rule is performed as soon as possible; the piece of text which was 
matched by the rhs of the rule is no longer subject to other transformations. 

f. examples 
1 A", B :: B, A 

A::a,C 
B ::b 
C::c 

! The input 'bac' will be rewritten as 'acB'. ! 
2 E,SG" :: e,SG. 

SG :: CONS, CONS & '[k,1]. 
CONS::'[ a I e Ii Io I u ]1. 

An 'e' followed by a string of 2 consonants which is not 'kl' will be rewritten to 'E'. ! 
3 A"[2,1], b :: A . 

A :: B, C I C, B . 
B :: P, q Ip, s . 
p :: p, t. 
C :: q Ir, s. 

! With the input 'rsptq' the nonterminal A in the first rule will get a parse tree C: ( r, s ) B: ( 
P: ( p , t ) , q ). The notion A"[2, 1] means : get the 2nd symbol on the level 1 below A, 
which is B; get from that B the 1st symbol on the level below B, which is 'P'. The output of 
this transduction grammar will therefore be : 'Pb'. If we had written A"[2,1]" then this 



47 

would have been evaluated to P", which denotes the terminal symbols below P. The output 
of the grammar would have been : 'ptb' . ! 
4 A" < A , A" . 

A:: a .. z. 
With this transduction grammar all double lower case characters will be singled. 
5 $3, $1, $4, $2 :: [a]1$1, [b]*$2, A$3, [g]+$4. 
Three regular expressions and a nonterminal are rewritten. Note that in the lhs '[$3]' could 
have been written also as 'A"'. 

2.3 Relation to other formalisms 

In this section we will relate the main existing methods for the formulation of syntactic pat
terns to the unifying formalism. A broad division is made between procedural and non-pro
cedural interpretations. 

2.3.1 Non-procedural recognition and parsing 

2.3.1.1 String- and tree-matching 

There are a large number of applications which make use of string- and tree-matching. In 
Corpus Linguistics corpora are available with texts which are organized as strings or as la
beled trees of potentially unlimited size. The tree-structure concerns for instance the structure 
volume-chapter-paragraph-sentence, with appropriate labels, or a parse tree (see also the ex
amples in chapter 8). 
In chapter 1 we discussed the on-line aspects of the matching process. There we mentioned 
the "Linguistic String Parser" (Sager, 1981) which makes use of restriction rules which op
erate on a parse tree. The restriction rules, which can become very elaborate, are written in a 
separate language. It is possible to rewrite these rules in the unifying formalism, as is 
demonstrated in (De Jong and Masereeuw, 1987). 
The restriction rules are formulated in terms of routines for navigating in the parse tree. 
Some routines are predefined. Other routines can be defined using these basic routines. 
There is for instance a routine for going from a node to a parent node, or for descending or 
ascending until the test for a node with some property fails or succeeds. 
We show a fragment of a much simplified version of the LSP grammar. 

Context-free Component: 
<ASSERTION> 
<SUBJECT> 
<OBJECT> 
<NSTG> 
<RN> 
<WHSTG> 

Routines: 

::= <SUBJECT> <VERB> <OBJECT>. 
::= <NSTG> / $NULL WR. 
::= <NSTG> / $NULLOBJ. 
::= <LN> $N <RN>. 
::= <WHSTG> / (alternatives) . 
::= $WR <ASSERTION>. 

IMMEDIATE (X) = ASCEND TO X. 

Restrictions: 
DZERONl = IN SUBJECT RE $NULLWH: IMMEDIATE WHSTG 

OF IMMEDIATE ASSERTION EXISTS. 
DZERON2 = IN SUBJECT RE NSTG: IT IS NOT THE CASE 



48 

1HAT IMMEDIAIB WHSTG OF IMMEDIAIB 
ASSERTION EXISTS. 

Test sentences ( only the Subject phrases shown): 
(a) Fish which eat their young ... 
(b) *Fish which fish eat their young ... 

The first sentence is grammatical, the second is an ungrammatical one. A parser for the 
Context-free Component will produce the following parses. 

SUBJECT SUBJECT 

INSTG I INSTG I 

1$N RN I 1$N RN I 
I WHSTG I I WHSTG I 

1$WH ASSERTION I l$WH ASSERTION I 

I SUBJECT VERB OBJECT I I SUBJECT VERB OBJECT I 
I $NULLWH 

II I 
INSTG i 

I I l i"iNl 
I 

fish which 0 eat their young fish which fish eat their young 

That a parse is also obtained for the ungrammatical b-sentence is due to the Subject which 
may be rewritten as either zero or a full NP. There is nothing in the CF rules that prevents a 
full NP in that position. Instead, that is the job of the restrictions, in particular restriction 
DZERON2. 
Both of the restrictions shown above use a routine IMMEDIAIB which says "go up one 
level to a node specified through parameter X". Restriction DZERONl states that a parse 
such as for sentence (a) may pass: a Subject dominating a node $NULLWH must have a 
node ASSERTION above itself and above that there should be a node WHSTG. This re
striction actually serves to rule out zero-Subjects in other environments than these. Restric
tion DZERON2 is the one that actually rules out the parse in the right figure: it says that if 
you have a subject NSTG, it should not have nodes ASSERTION and WHSTG above it, as 
it has in the parse in the right figure. 

In the unifying formalism the grammar can be written as follows. 

Context-free Component: 
ASSERTION :: SUBJECT, VERB, OBJECT. 
SUBJECT :: NSTG I $NULLWH. 
OBJECT :: NSTG I $NULLOBJ. 
NSTG :: LN, $N, RN. 
RN :: WHSTG I (alternatives) . 
WHSTG :: $WR, ASSERTION. 

Routine: 
IMMEDIAIB(C:y,C:x} :: ( .. ( {C:y}, *, :( {C:x}. 
! Routine IMMED IA IB accepts two cooperation parameters x and y, and states that y 
should be exactly one level above position x. ! 



Restrictions: 
DZERONl :: 

( .. (, SUBJECT{c:a}:($NULLWH), ) .. ) 
! Somewhere in the tree there is a Subject with a $NULL WH node under it. ! 
& 

( .. (, ASSERTION{c:b}, ) .. ) 
! and somewhere else there is a node ASSERTION ! 
& 
IMMEDIATE(C:a, C:b) 

! and a relation IMMEDIATE exists between them. ! 
& 
( .. (, WHSTG{C:c}, ) .. ) 

& 
IMMEDIATE(C:a, C:c} 

I 
( .. (,'[SUBJECT:( $NULLWH) ]. 

( Restriction DZERON2 can be translated along the same lines.) 

The restriction DZERONl should then be read as follows: 

49 

- you have to have a SUBJECT node dominating a $NULL WH node; its position is passed 
on through cooperation a. 
- you have to have an ASSERTION node at position b. 
- there should be a relation IMMEDIATE between a and b (Note that) .. ) is the converse of 
( .. ( and makes these coordinated rules return to the same level). 
- moreover, there should be a node WHSTG at position c, such that there is a relation IM
MEDIA TE between b and c. 
- the last line says that if these conditions are not met, there should not be a SUBJECT 
dominating $NULL WH at all. 

2.3.1.2 Attribute, affix and augmented phrase structure grammars 

An attribute grammar associates a set of attributes with each symbol Xe N. Each attribute 
represents a specific (context-sensitive) property of the symbol X and can take on a specified 
set of values. The mechanism is the same as in programming languages with procedures 
provided with formal parameters. These parameters may be assigned values and may be 
compared with each other. 
The formalism of affix-grammars (Koster, 1970) originated at the same time as attribute
grammars. They do not differ in an essential way. 
The same formalism is known in computational linguistics as augmented phrase structure 
grammar. Winograd(1983) : "Each system based on augmented phrase structure grammar 
provides a parsing strategy and a particular set of augmenting mechanisms that are compati
ble with that strategy. Therefore, although they are all based on the same principles, they 
differ in the detailed nature of conditions and actions and in their efficiency and conve
nience". A linguistic application is for instance the coordination of number and time between 
noun-phrase and verb-phrase (Oostdijk, 1984). 
An example of an attribute grammar, written as a U-grammar, has already been given in sec
tion 2.2.5. 



50 

2.3.1.3 Transformational grammars 

Tree grammars operate on the tree-datastructure. In transformational grammar this tree is im
plicitly formed by a rewriting with context-free rules. The nodes in the tree are labeled by 
symbols of the vocabulary of the grammar and are provided with "distinctive features" which 
originate from the lexicon. 
Transformations are expressed in one of the following operations on the parse tree : 
- insertion of branches and/or features, 
- deletion of branches, 
- movement, seen as a combination of insertions and deletion, 
- change of features. 
In linguistic theory (Chomsky, 1965) transformations may be optional or obligatory. The 
current trend is to make all transformations optional and to reduce them to only one trans
formation, "move alpha", which is a variable over all syntactic categories. Usually an order
ing is assumed about the applicability. 
After the initial formulation of the theory it gradually changed its appearance. In the so-called 
"trace-theory" markers are assigned to places where categories disappeared because of a 
"move alpha" application. The trace is a relation between the old and the new position in or
der to make the move recoverable. A number of restriction rules have to restrict the resulting 
overgeneration. 
We are not concerned with the ongoing efforts in this respect but only with the effects they 
have on the formalisms in which (pieces of) transformational grammars are written. 
We present as an example a piece of a transformational grammar according to some EST 
principles, written in the unifying formalism. It was provided by J. van den Hoek. The 
drawing of one of the parses is based upon the output of the Parspat system. 

Grammar: 
2 Sbar .. Type, $comp, V3. 
3 Type .. One I Two. 
4 One .. Indir . 
5 Two ·· Dir I Qu. 
6 V3 .. Np, Tense, Mods, V2 . 
7 Tense .. Finiet I Infiniet . 
8 V2 ·· Mods, Vl. 
9 Vl ·· Objs, VO . 
10 Mods ·· [ Pp I Sbar ]* . 
11 Objs .. [NplPplSbar]*. 
12 Np ·· [$det], [$adj]*, $n . 
13 Pp .. $p, Np . 
14 One, $comp, Np, Finiet, Mods, Mods, Objs, VO 

.. $dat, Np, Mods, Mods, Objs, [$part], $vf. 
15 One, $comp, Np, Infiniet, Mods, Mods, Objs, VO 

.. [$om], Mods, Mods, Objs, [$part], $te, $vi. 
16 Two, $comp, Np, Finiet, Mods, Mods, Objs, VO 

·· Two, Np, $vf, Mods, Mods, Objs, [$part] . 
17 Dir, Np, $vf ·· Np, $vf. 
18 Qu, Np, $vf .. $vf, Np . 

Sentence: 
"de man belt om de vrouw te zien op" 



Np oCJTwo 

Np 'i 

12 
$vf 

3 

om $0 m anurype-

de $d 

~"!] Objs 
11 vrouw $n 

te $te 

zien $v 

$comp 

Np 
Infiniet !Tense 

Mods 7 
12 

~ Or=Jv1 V1... i VO 6 

15 9 8 
art op $p 

2.3.1.4 Augmented Transition Networks 

V3 -
2 

Sbar lobjs 

11 

Tw~Type 

$comp 

Np 

Fini~Tense 

Mods 

41~, 
vJ s 

16 9 

V3 
2 

Sbar 

51 

Augmented Transition Networks are at present the most widely used method for analyzing 
natural languages. They are derived from finite state automata. An ATN consists of a collec
tion of labeled states and arcs. States are connected with each other by arcs creating a di
rected graph. For each nonterminal symbol there is a separate graph. Jumps to and returns 
from graphs are performed by the instructions PUSH and POP. To make the model more 
powerful each arc is equipped with a test and a sequence of actions. The test is an arbitrary 
condition which must be satisfied before the arc can be traversed. Actions are executed dur
ing the transition through the arc. Tests may examine the contents of registers and actions 
may assign arbitrary values to them. 
ATN's can be written in the unifying formalism in a straightforward manner by using the cf 
sub-formalism with regular expressions and variables within actions. We illustrate this by a 
simple example given by (Winograd, 1983, page 215). It concerns the phenomenon of 
number agreement in a NP Network. 

Example written in original formalism: 

6:Proper 

5:Pronoun 

NP: 

3:Adjective 7:PP 

Conditions and Actions on the arcs(* denotes the entry on the arc) : 
1: Action: set Number to the Number of* 
4: Condition: Number is empty or Number is the Number of* 



52 

Action: set Number to the Number of* 
5: Action: set Number to the Number of* 
6: Action: set Number to the Number of* 

Example rewritten in unifying formalism : 

NP :: [ [ Det (Number)] , 
[ Adjective ]* , 

Noun (Numberl) { Number=" I Numberl & Number := Numberl } , 
I Pronoun (Number) 
I Proper (Number) 
] 1 , 

[pp]*. 

2.3.2 Non-procedural Transduction 

2.3.2.1 Syntax-directed Translation Schemata 

In syntax-directed translation schemata (Aho and Ullman, 1972) the rules of a cfg are en
riched by a transduction-component. I.e. 

if the grammar contains the rules: 
S :: NP V, (transduction:) V NP 
NP:: DET ADJ N, (transduction:) N ADJ 

and the lexicon contains: (VP : works; N : man ; Det : the ; ADJ : old) 
and the input is : 'the old man works' 
then after recognition of the second rule NP will be associated with 'man old' 
and after recognition of the first rule S will be associated with 'works man old' 
which transduction will be the output . 

Input and output are strictly separated; an intermediary associated string will never be subject 
to a new analysis or a new transduction. 
We are not aware of any substantial use of this formalism. However, it combines transduc
tion and recognition according to a grammar, a feature which is absent from most other for-
malisms. · 

Example rewritten in the unifying formalism : 
S:(V, NP(-)):: NP(-), $V. 
NP:(N,Adj) :: $det, $adj, $N. 

2.3.2.2 Web-, Graph- and Tree Grammars 

In section 2.3.1.1 we discussed the matching of tree-structured files. Pattern matching in 
trees also occurs frequently in the context of tree replacement systems and has applications in 
different areas of Computer Science, including automatic implementation of abstract data 
types, code optimization, automatic proof systems, syntax-directed compilation and evalua
tors for programming languages such as LISP. 
Strings can be generalized to trees by allowing the concatenation operator to be multidimen
sional. Tree grammars specify how to replace subtrees by other subtrees. If trees are ex
tended to graphs we may imagine graph-grammars which direct the replacement of sub
graphs by other sub-graphs. In the general case extra directions are needed to guide the at
tachment of a sub-graph because the edges of the replacing sub-graph may be different. 



53 

Conditions on the replacement may introduce context-sensitivity. The reader is referred to 
(Ehrig e.a., 1983) for an overview and a bibliography. 
For applications in SPR which follow the linguistic approach the formalism may usually be 
simplified. The structures one deals with are usually trees. Subtrees which have to be re
placed contain the end-leaves so that no problems arise with the redirection of the connection 
of edges. 
We take an example from (Schimpf and Gallier, 1985, page 29). They give a context-free 
tree grammar (CFTG) with production rules : 

S -> F F -> F F -> f 

I I I I /\ 
a X g X X X 

I 
X 

Here 'a' and 'g' are terminals, 'x' stands for any node with underlying tree. A sample 
derivation is as follows : 

S => F => F => F => f 

I I /\ 
a g g g g 

I I I I 
a g g g 

I I I 
a a a 

The example can be rewritten in the unifying formalism as: 
S :: F , '(' , a , ')' . 
F , '(' , X" , ')' :: F , '(' , g , '(' , X , ')' , ')' . 
F , '(' , X" , ')' :: f , '(' , X , X", ')' . 
X :: a .. z , [ '(' , Y, ')' ] . ! these two rules describe a node with ! 
Y :: Y, YI X. ! any underlying tree 

2.3.2.3 Formula Manipulation Systems 

Formula manipulation systems have a long tradition. Knuth (1968, vol. 1, page 337) gives 
examples on the computational treatment of symbolic differentiation. Dershowitz (1985) re
defines the rules for symbolic differentiation as general rewrite rules and studies the formal 
properties of general rewrite systems. We repeat some of the grammar rules for symbolic 
differentiation : 

DX x: 1. 
Dxa:O. 
Dx ( a + p ) : Dx a + Dx p . 
Dx ( -a) : - Dx a . 
Dx ( a p ) : p Dx a + a Dx p . 

where Dx is the differentiation operator and 'a' stands for any constant symbol other than x. 
a and p are variables of the rewrite system and match any term, while x is a constant of the 
system and matches only itself. 
The rules can be rewritten in the unifying formalism as follows : 



54 

! differentation ! 
l<D,Var. 
0 < D, Constant . 
D", Exprl", [1:'+' I 2:'-']l, D", Expr2" :: D, '(', Exprl, [1:'+' I 2:'-']1, Expr2, ')'. 
'-', D", Expr" : D, '(', '-', Expr, ')' . 

! distribution ! 
Expr2", D", Exprl", '+', Exprl", D", Expr2" :: D, '(', Exprl, '*', Expr2, ')' . 

! simplifications ! 
0 < Expr, '*', 0. 
0 < 0, '*', Expr. 
Expr" < 0, ['+'I'-' ]1, Expr. 
Expr" < Expr, ['+'I'-' ]1, 0. 

! arithmetic expression ! 
Expr :: E. 
E :: ['-'], T, [ ['+' I '-' ]1, T] . 
T :: F, [ ['*'I'/ ]l, F]l. 
F :: Varconst I [D], '(', E, ')' . 

! lexical symbols ! 
Varconst :: Var I Constant. 
Var:: x. 
Constant :: a .. g I 1..9 . 

On the basis of these rules the Parspat system performs symbolic differentiation. More rules 
can be added for division etc. and for more simplification. 

2.3.3 Comparison with special programming languages for pattern recognition 

2.3.3.1 Comit and Meteor 

In the programming languages Comit and Meteor statements are roughly in the form of 
general rewriting-rules. The lhs consists of a pattern with one or more variables. In case of a 
match of the lhs with the input to this rule (generally a string) the rhs indicates the value 
which has to be assigned to the variables in the lhs. A variable may have an attribute attached 
to it. This attribute may be assigned a value too like, for instance, the predicate "noun". The 
attributes may be used in the formulation of the patterns. 
The programmer has to specify the order of execution of the rules. 

Example written in original formalism: 
( $1N $ to $1/P) ( 1 4 2) ! a string, consisting of a verb (1 word: "$1 ", with cat

egory V), which is implicitly assigned number 1, followed by an arbitrary number of words 
("$"), implicitly assigned number 2, followed by "to", implicitly assigned number 3, fol
lowed by a Personal Noun, implicitly assigned number 4, is rewritten as a string consisting 
of the 1st, the 4th and the 2nd word. For instance, the string "handed the bottle to Andy" is 
transformed into "handed Andy the bottle". We left out the control part. ! 

Example rewritten in unifying formalism : 
varl, var4, var2 :: $V(varl), - {var2 := var211%}, 'to', $P(var4). 



55 

2.3.3.2 Snobol 

Snobol looks like Meteor. The control structure is of the same primitive kind: as in pro
grammed grammars each program-rule has a success- and a failure-field. 
Because of the large number of pattern matching facilities it is a popular language among lin
guists. In the patterns one may use nonterminals which may be defined in further rules (even 
recursively). It is therefore straightforward to write a cfg in Snobol. Problems arise with 
ambiguities: the system can only handle backtracking within one program-rule. 
Pattern-variables are evaluated in run-time. This contributes to the power of the language 
but, at the same time, slows down the runtime-system. 
Recognizers for (non left-recursive) context-free grammars may be written in a recursive de
scent fashion, using these pattern-variables. 
We give some examples of the pattern matching functions of Snobol because of the attraction 
they have for linguistic users and present their counterpart in the unifying formalism. 

Snobol Unifying formalism 

ARB 
not provided in Snobol: to match everything, 
even the remainder of the pattern, up till the 
end of the current tree-level (enables 
the recognition of all occurrences of 
the remaining pattern) 

ARBNO(S) 
LEN(5) 
BAL 
SPAN('pq') 
BREAK('pq') 
ANY('pq') 
NOTANY('pq') 
QABORTIP 

2.3.3.3 Icon and Summer 

[S]+ 
[*]5 
(-) 
[ p I q ]* 
'[plq]* 
[ p I q ]1 
'[p I q]l 
P&Q' 

The control structure of Snobol is a primitive one. Its designer, Griswold, therefore devel
oped a successor to Snobol, called Icon (Griswold and Griswold, 1983). This language has 
the normal control sequences and procedure mechanism of higher level languages like 
Pascal. A novel concept is the "generator": an expression which may yield more than one re
sult (for instance, all the matching points of a substring in a string). Generators may be used 
as parameters for other generators. The results may be handled in an iterative way (using all 
possible results) or in a goal-directive way: the evaluation mechanism then attempts to pro
duce at least one result for all the expressions involved in the evaluation. 
The implicit backtracking process may be influenced by intermediate statements. Icon has no 
implicit facility for backtracking of data. 
The pattern matching facilities are more or less the same as in Snobol. 

At the same time Klint (1985) developed the language "Summer". He made backtracking ex
plicit by the concept of "recovery blocks" which may be "tried", like the alternatives in a 
grammar, but in some sequence. Such a block is syntactically structured like a block in an 
algol-like language. The data-objects may each maintain their own "cursor", influenced by 
current pattern matching, and the programmer may make use of these cursors. 



56 

The string pattern matching functions are about the same as in Snobol. The recognition
strategy makes use of backtracking, which may be influenced by the programmer. Klint 
(1982, p. 17) writes: "In general, it might be a better idea to make the recognition strategy 
invisible at the programming language level and to let the implementation choose the best 
strategy for a given problem. This line of development is interesting but falls outside the 
scope of the current work". 
The recognition strategy of the Parspat system is completely hidden to the user. 

2.3.3.4 Prolog 

Like Icon, Prolog (Clocksin and Mellish,1981) is a goal-oriented language, but oriented 
more towards the retrieval of relations. Like Snobol, it is a simple thing to write cfg's in 
Prolog in a recursive descent fashion (e.g. Dahl, 1985). The nonterminals, in the form of 
relations, may be attributed by parameters. In such a way it is possible to write attribute 
grammars with the facility of unification of variables. The facility of automatic backtracking 
provides for the handling of ambiguities. The price is that recognition may cost exponential 
time. Evaluation is "depth first". The programmer has to realize this manner of evaluation 
and may influence the process of backtracking. The ordering of the rules is important. 

In comparing the syntax of Prolog with the unifying formalism the former seems al
most to be a subset of the latter. In the unifying formalism more facilities are available for the 
matching and assignment to variables, as well as for the handling of Boolean negations. 

A grammar in the unifying formalism is a set of rules in which the ordering is not im
portant. There is nothing like a control structure, a procedure or a function. Only rewritings 
of rhs's are given. All conditions that are to be fulfilled in order to select the rewriting are 
present in the rhs. Each rule stands on its own and will be applied each time when its rhs is 
matched. Repetitions will therefore be performed automatically. Constructions like "while A 
do B" and "do for all a in A" are obsolete. 

The "if-then-else" and "case" construction are handled by the alternative-notation. Two 
sequence constructs exist: one within an alternative and one within an action-part. No side
effects are possible, because each rule stands on its own and has no interaction with other 
rules. Each variable is local to a rule. Failure of a derivation implies the deletion of every
thing that belongs to that derivation. 

2.4 Useful effects of combination of formalisms 

In the former section we related the unifying formalism to other, already existing formalisms 
by making combinations of some sub-formalisms. It seems possible also to identify new ap
plications by making other combinations. 
The combination of tree pattern matching and grammatical description gives rise to the appli
cation of information retrieval in free text database systems. 

Unifi.cation of Grammars and Description- and Query-La.nguages for Textual Data bases. 

Testing of hypotheses on linguistic data bases may give rise to the formulation of compli
cated queries. It is often difficult to foresee beforehand what kind of queries will be put to 
such a data base system. One does not know beforehand the relations that will be needed. In 
these cases a relational data base system cannot be used, simply because we don't know 
which relations to store. The other choice is to use a hierarchical data base system. 

The advantage of a relational model may be the simple use of such operators as 
"selection", "projection" and "join", well-known from relational algebra. The last-mentioned 



57 

operator introduces some kind of intelligent combination of stored relations that is absent 
from hierarchical models. 

The question arises how to put more intelligent queries to a hierarchically conceived 
data base which contains free text (where "free" means that for every record there exists, in 
principle, no upper bound on its length). 

There is a simple link between syntactic recognition and retrieval in a hierarchically 
structured data base. In the latter case we formulate queries in which the sequence of vertical 
components in the tree is important. These vertical sequences are mostly of a simple nature 
and are formulated by procedural query-languages in which one navigates in a horizontal and 
vertical direction through the tree-structure. However, the expressive power of the queries 
can be increased considerably when we allow for the full power of grammatical notation on 
the vertical lines. 

Moreover, we will have the advantage of a concise, elegant notation and the simple 
semantics of the description of formal languages where a grammar describes a set of sen
tences. 
By allowing grammar-notations on the horizontal lines we introduce the possibility of lin
guistic descriptions on free formatted text. 

The Parspat system may act, on one extreme, as a hierarchical free-text data base sys
tem and, on the other extreme, as a grammatical parser. In between it is a general tool in 
which we may organize and query information written in natural language and structured ac
cording to the users' wishes. This structure takes the form of a labeled tree where each sub
tree may differ in structure from another sub-tree. 

A formal grammar describes a language. This language consists of a finite or infinite number 
of sentences. An existing data base may be regarded as such a sentence. The description of 
the form of that data base, normally written in what is called the "Data Description 
Language" (DDL), may be given by a formal grammar. 

We may look at queries as the description of a language, formed by all the possible 
answers. Formulated as pattern grammars they describe a (possibly infinite) set of sentences, 
as does the language generated by that grammar. The answering of a query may then be 
looked upon as the recognition of the data base which acts as the input-sentence to the pattern 
grammar. Ambiguity during recognition accounts for the possibility of two or more answers. 

We will clarify our approach with a simple example, taken from a standard textbook on data 
base systems (Date, 1981), which demonstrates the standard operations: union, intersect, 
minus, select, project and join for a hierarchical data base system. In each case we will show 
the corresponding grammar-notation. 

Date uses one example consistently throughout his text-book. It concerns an education 
database of a commercial firm in which both teachers and students are employees. The 
courses are defined by course#, title and description. Each course has, possibly, prerequisite 
courses and is offered on a number of dates and locations. It has a teacher and students, pre
sented with their names; in addition, students have grades (for figures see Date pp. 280, 
281). 

The structure of this data base may be described by a formal grammar as a Data 
Description Language. We choose for it an ecfg with tree symbols, as a subset of the unify
ing formalism. 

The grammar for the education database is divided into two parts. These parts resemble the 
distinction which is made in existing data base systems between different levels of DDL's. 
The first part describes the logical structure, the second part the physical structure of the data 
base (the two parts are not treated in a different way: they are mixed during compilation). 



58 

The grammar becomes: 

Data_Base 
Course 
Prereq 
Offering 
Teacher 
Student 

Course# 
Title 
Description 
Date 
Location 
Format 
Emp# 
Name 
Grade 
number 
string 

:: ['Course':(Course)]+. 
:: Course#, Title, Description, ['Prereq':(Prereq)]*, ['Offering':(Offering)]+. 
:: Course#, Title. 
:: Date, Location, Format, 'Teacher':(Teacher), ['Student':(Student)]+. 
:: Emp#, Name. 
:: Emp#, Name, Grade. 

:: number. 
:: string. 
:: string. 
:: date. 
:: string. 
:: string. 
:: number. 
:: string. 
:: number. 
:: [1..9]*, [0 .. 9]. 
:: [a .. z I A . .Z]+. 

The labels between quotes are not strictly necessary. They act as markers in a variable length 
environment and label sub-trees. 
As the Data Manipulation Language we use pattern grammars. For them we choose the sub
formalisms of Ecfg's (but not recursive), tree symbols, don't cares, lines, booleans, reports 
and variables. The variables make possible, in a data base environment, the operation "join". 

We now present the basic retrieving functions in terms of our formalism: 

UNION : retrieve "all Course#'s for courses which either have as a prerequisite 
Course#=lO or which are located in Stockholm": 

S :: -, Course:(* {R:1}, -, [Prereq:(*, 10, -) I Offering:(*, Stockholm,-)],-). 

INTERSECT : retrieve "all Course#'s for courses which have as a prerequisite 
Course#=lO and which are located in Stockholm"(straightforward 
syntactic variation of UNION) : 

S :: -, Course:(* {R:1},-, Prereq:(*, 10, -), -, Offering:(*, Stockholm,-),-). 

MINUS : retrieve "all Course#'s for courses which have as a prerequisite 
Course#=lO and which are not located in Stockholm" (straightforward 
syntactic variation of INTERSECT) : 

S :: -, Course:(* {R:1}, -, Prereq:(*, 10, -), -, Offering:(*, Stockholm',-),-). 

SELECT : retrieve "all Course#'s for courses in Amsterdam" : 

S :: -, Course:(* {R:1},-, Offering:(*, Amsterdam,-),-). 



59 

PROJECT: retrieve "all Emp# of all students" : 

S :: -, Course:(-, Offering:(-, Student:(* {R:1}, -), -), -). 

JOIN (with PROJECT) : retrieve "all Course#'s for courses where the student is the teacher 
of one of the prerequisite courses" : 

S :: -, Course:(Sl(cl,tl) & S2(c2,t2) { tl=t2 & cl=c2}). 
Sl(cl,tl) :: * {R:1},-, Prereq:(* {cl:=%},-),-, Offering:(-, Student:(* {tl := %}, -), -). 
S2(c2,t2) :: * {c2 := %}, -, Offering:(-, Teacher:(* {t2 := %}, -), -). 

In the last query the variables cl, c2, tl and t2 are used. 

2.5 Syntax of the formalism 

All rules from the preceding sections are collected below. 

2.2.1 Basic formalism 
GRAMMAR:: 
RULE:: 
ALTERNATIVES:: 
ALTERNATIVE:: 
UNIT:: 
NOTION:: 

[RULE]+. 
ALTERNATIVES,['::' I< ]1, [ALTERNATIVES],'.'. 
ALTERNATIVE, ['I', ALTERNATIVE]*. 
UNIT, [ ',' , UNIT]* . 
NOTION. 
NONTERMINAL_SYMBOL I INTERMEDIATE_SYMBOL I 
TERMINAL_SYMBOL. 

NONTERMINAL_SYMBOL:: ALFANUMS. 
INTERMEDIA TE_SYMBOL:: ALFANUM. 
TERMINAL_SYMBOL:: BASIC_SYMBOL. 
BASIC_SYMBOL:: ALFANUM I '<' , [ OCT_DIGIT ]+ , '>' . 
----- end 2.2.1 

2.2.2 Regular expressions. 
UNIT:: ENCLOSEDPART. 
ENCLOSEDPART:: 
---- end 2.2.2 

'[' , ALTERNATIVES , ']', [ '1' I '*' I '+']. 

2.2.3.1+2+3 Don't care, arb, line 
TERMINAL_SYMBOL:: '*' I '=' I '-' . 
--- end 2.2.3.1+2+3 

2.2.3.4 Actions 
NOTION:: 
USER_NOTION:: 
---- end 2.2.3.4 

2.2.4 
ENCLOSED PART:: 

ALTERNATIVE:: 
ACTIONS:: 
ACTION:: 

USER_NOTION . 
RANGE_SYMBOL, ' . .', RANGE_SYMBOL. 

'[' , ALTERNATIVES,']', 
[ ACTIONS], [ DEC_DIGIT I '*' I '+'], [ ACTIONS ] . 
UNIT, [ACTIONS], [',',UNIT, [ACTIONS] ]* . 
'{',action, ['&', ACTION]*,'}'. 
REPORT_J)ECLARATION I COOP_DECLARATION I 



60 

ASSIGNMENT I TEST I BUILD_DECLARATION I 
GRAMMAR_CALLIPROCEDURE_CALL. 

--- end 2.2.4 

2.2.5 Variables 
NONTERMINAL_SYMBOL:: ALFANUMS, PARAMETERLIST. 
PARAMETERLIST:: '({', F_OR_A_PARAMETERS , '})' I 

'({' , ACTUAL_PARAMETERS , '})' . 
F _OR_AYARAMETERS:: PARAMETER_DECL, [',', PARAMETER_DECL]* . 
ACTUAL_PARAMETERS::ACTUAL_NAME , [',', ACTUAL_NAME ]*. 
PARAMETER_DECL:: [II O I I, 0] 1, ':' , ALFANUMS . 
ACTUAL_NAME:: ALFANUMS . 
ASSIGNMENT:: ALFANUMS, ':=', VARIABLE_EXPR . 
TEST:: V ARIABLE_EXPR , [ '=' I '/= '] 1 , V ARIABLE_EXPR . 
VARIABLE_EXPR:: V ARLIT, [ 'II' , V ARLIT]*. 
VARLIT:: ALFANUMS I LITERAL I'%' . 
GRAMMAR_CALL:: ALFANUMS, '(', [ ALFANUMS, ',']6, ALFANUMS , ')' . 
PROCEDURE_CALL:: ALFANUMS, [ '(', ALFANUMS, [ ',', 

LITERAL:: 
--- end 2.2.5 

2.2.6.1 Cooperation 
ALTERNATIVES:: 
PARAMETER_DECL:: 
COOP _DECLARATION:: 
--- end 2.2.6.1 

2.2.6.2 Boolean negation 

ALFANUMS]* , ')' }. 
1ft ltt 

ALTERNATIVE, [ '&', ALTERNATIVE]*. 
COOP _DECLARATION. 
C, ':', ALFANUMS . 

ENCLOSEDPART:: ''[' , ALTERNATIVES,']', 
[ ACTIONS], [ '1' I '*' I '+'], [ ACTIONS ] . 

NOTION:: [ NONTERMINAL_SYMBOL I INTERMEDIATE_SYMBOL I 
TERMINAL_SYMBOL ]1, '". 

--- end 2.2.6.2 

2.2.7.1 Tree symbols 
UNIT:: TREEUNIT I TREESUNIT. 
TREEUNIT:: ['('I NOTION, ':(']1, ALTERNATIVES,')', [ACTIONS]. 
TREESUNIT:: [ '( .. (' I NOTION, ':( .. (']1, ALTERNATIVES, ') .. )', 

[ACTIONS]. 
--- end 2.2.7.1 

2.2.7.2 Lexicons 
TERMINAL_SYMBOL:: "$", ALFANUMS. 
action:: 'update(', LEXICON_STRING, [ LEXICON_NAME ], ')' I 

'delete(', LEXICON_STRING, [ LEXICON_NAME ], ')' . 
LEXICON_STRING:: VARIABLE_EXPR, [ '#', VARIABLE_EXPR]* . 
--- end 2.2.7.2 



2.2.8.1 Reports 
REPORT_DEUARATION:: 
--- end 2.2.8.1 

2.2.8.4 Builds 

[RI S]l, ':', [ DEC_DIGIT ] +. 

BUILD_DECLARATION:: B, ': ', [ '(' I')' I'%' I VARIABLE_EXPR ]+. 
--- end 2.2.8.4 

2.2.8.5 Transduction 
NOTION:: NONTERMINAL_SYMBOL, w . 
--- end 2.2.8.5 

2.2 
ALFANUM:: 
ALFANUMS:: 
DEC_DIGIT:: 
OCT_DIGIT:: 
CHAR:: 
--- end 2.2 

DEC_DIGIT I CHAR I"', <000> ... <377>, '". 
[ ALFANUM ]+. 
0 .. 9. 
0 .. 7. 
A..Z I I a .. z. 

2.6 Program-generation for the sub-fonnalisms 

61 

Our goal is to develop a program generator for the unifying formalism. In the schema below 
we indicate the complexity of recognition, parsing and transduction for the different sub
formalisms. We will start with the simplest formalism and will enrich it, step by step, with 
more evolved ones. In our classification we use a label for each sub-formalism, with a num
ber of possible values. Because of its importance we will indicate separate! y 1. the handling 
of ambiguity and 2. forced sequencing of rules. Some combinations are not possible. We 
will then leave out a label, which is identical with <label>="no". 

The simplest grammar-form which will be our starting point is formed by the start 
symbol in the lhs and a concatenation of one or more terminal symbols in the rhs (sometimes 
called a Chomsky type-4 grammar). This rhs then forms the language. 

The labels are : 
- Type (for Chomsky-type grammar). Possibilities: 
- - type 4, 3, 2, 1 or 0 
- Meta (for notation). Possibilities: 
- - no, BNF, Regexpr, Automaton. 
- Amb (for ambiguity). Possibilities during recognition: 
- - no, back (for backtracking), par (for parallel parsing). 
- Seq (yes for forced sequencing, no for otherwise) 
- Arb (for one or more arbitrary endsymbols). Possibilities: 
- - no, don't care, arb (the special case of one leading and one trailing arb we will indicate by 
"pattern"), line, range 
- Var (for variables). Possibilities (combinations are possible) : 
- - no, G (for global), L (for local), P (as parameter), A (for assignment from the text). 
- Bool (for "Boolean" operators). Possibilities: 
- - no, 0 (or), A (and), N (not). 
- - combinations are OA, ON and OAN 
- Tree (for treestructures in grammar and text). Possibilities: 
- - no, implicit, explicit 



62 

With this classification we can reformulate our goal as the development of a program gener
ator for the parameters Type=0, Meta=regexpr, Amb=par, Seq=no, Arb= don't care+ arb + 
line+ range, Var=LPA, Bool=OAN, Tree=explicit. 

Type=4 

This is the simplest form, as indicated above. The text is the same as the grammar. Recogni
tion with the same complexity as Type=4, Arb=pattern. 

Type=4, meta=regexpr 

This is the recognition of regular expressions, consisting only of terminal symbols. Recog
nition in O(n) given in the textbooks, i.e. (Hopcroft and Ullman, 1979, pp.29-35). 

Type=4, Arb=pattern, Seq=no 

If the first and last symbol are arbs then this part of our schema concerns pattern matching. 
Without preprocessing recognition is done in time O(n*m), where m is the length of the 
keyword and m is the length of the input. Recognition strategies with pre-processing for 
pattern matching in O(n) or less are given by : 
- (Knuth, Morris and Pratt, 1977) for one keyword in O(n); preprocessing creates tables 
- (Boyer and Moore, 1977) for one keyword in less then O(n); preprocessing creates tables 
- (Aho, Hopcroft and Ullman, 1974, ch. 9) and (Aho and Corasick, 1975) for a set of 
keywords in O(n) (as indicated: no implied sequencing); preprocessing implies construction 
of a FSA with output. 

Type=4, Arb=pattern and don't care, Seq=no 

Recognition by (Fischer and Paterson, 1974) in time O(m.(log n)2.log log n) for one 
keyword. 

Type=4, Tree=explicit, Seq=yes. 

Here we are dealing with the recognition of tree-structures. Strategies are given by: 
(Kron, 1975), (Overmars and Van Leeuwen, 1979), (Hardgrave, 1980), (Hoffmann and 
O'Donnell, 1982). 

Type=2, Meta=BNF, Amb=no, Seq=no 

These are the non-ambiguous context-free grammars. 
There exists a large literature on subdivisions and on the recognition of this class of gram
mars. Construction in a systematic way of hand-coded recognizers may be done by the 
"recursive-descent" method. 
Preprocessing may involve the automatic construction of automata, top-down (i.e. LL(k) 
grammars) or bottom-up (i.e. LR(k) grammars). The largest class of non-ambiguous cf
grammars which are automatically transformable into deterministic PDA's is formed by the 
LR(k) grammars. The literature may be found in the text-books. Bibliographies are contained 
in e.g. (Nijholt, 1983), (Burgess and Laurence, continually updated) and (Tokuda, 1981). 
Because we will borrow a number of techniques of LR(k) parsing we mention here some 
important topics which play a role in the literature: 



63 

- the elimination of unit reductions , 
- the treatment of empty rules, 
- generation of stack-instructions only if necessary, 
- no transformations of the input-grammar, 
- the handling of shift/reduce-reduce conflicts, 
- the generation of shared code, 
- the minimization of the number of generated states, 
- error detection as soon as possible, 
- some error correction, 
- the number of necessary look-ahead symbols generated from the LR(0) machine 
(Kristensen and Madsen, 1981). 

Type=2, Meta=Regexpr, Amb=no, Seq=no 

These are the non-ambiguous cfg's with regular expressions, called "extended context-free 
grammars" (ecfg's). Madsen and Kristensen (1976) described transformations to transform 
ELR(k) grammars into normal LR(k) grammars. Heilbrunner (1979), Lalonde (1979 and 
1981) and Purdom and Brown (1981) improved this method by directly generating PDA's 
from these grammars. 

Type=2, Meta=BNF, Amb=par, Seq=no 

These are the ambiguous cfg's. The literature on recognition is found in the textbooks. The 
most general method of Earley (1970) realizes an upper bound of time O(n3). 
This upper-bound is theoretically improved by Valiant (1975), Graham and Harrison (1976) 
and Bouckaert, Pirotte and Snelling (1975) by making use of general methods for matrix
multiplication. 
The method was rediscovered by Kay as "chart parsing" and is described extensively in 
(Winograd, 1983). Tomita (1986) describes a parser generator for fast execution with a dag
structured stack. 

Type=2, Meta=BNF, Amb=par, Bool=ON, Var=A, Seq=no 

Ken-Chih Liu (1981) describes an extension of cf-grammars with Boolean negations and 
variables which may get an assignment from the input-string. 
He uses an extension of Barleys algorithm and suggests extensions of the LR-parsing tech
nique in the deterministic case. 

Type=2, Meta=Autom, Amb=back, Var=G, Seq=no 

These are the ATN-grammars. Textbook: (Winograd,1983). 
Most of the recognizers are written in LISP. Surrounding routines (e.g. semantic) must then 
also be written in LISP. The handling of ambiguity is generally done by back-tracking. In
terpreters and compilers for ATN-grammars are described in (Bole, 1983). 

Type=2, Meta=BNF, Var=P, Seq=no 

These are the attribute- and affix-grammars. Katayama (1984) described a recursive-descent 
method to translate attribute grammars into procedures. Recognition procedures may be 
found in (Courcelle and Franchi, 1982), Pohlmann (1983), (Jourdan, 1984), (Katayama, 
1984), (Lorho, 1984), (Waite and Goos, 1984), (Meijer, 1986) and their references. Nor-



64 

mally a sentence in the language described by the cfg is parsed. The nodes of the resulting 
parse tree are "decorated" with appropriate formulas expressing the attribute relationships, 
and then the attributes are evaluated. Problems arising here concern the possibility of circular 
evaluations. 

Type=l and 0, Meta=BNF, Amb=no, Seq=no 

Deterministic type-1 grammars may be parsed by methods presented by Walters (1970) and 
deterministic type-1 grammars by Turnbull ( 197 5). They make use of 2 stacks. 

Type=0, Meta=BNF, Amb=back, Tree=implicit, Seq=yes 

These are the transformational grammars. In general a transformational grammar consists of 
a cf-component, a general rewrite component and transformations on the parse tree. The 
construction of the parse tree is implicitly assumed. The transformations are usually ordered. 
A single program is written (Friedman, 1971) to generate sentences according to a 
transformational grammar. Some recognizing programs are known which attempt to parse by 
evaluating all possible continuations after each input symbol. The resulting complexity is of 
an exponential nature. 

Type=0, Meta=BNF, Amb=back, Tree=explicit, Seq=yes 

In order to overcome the computational difficulties of transformational grammars attempts 
have been made to write the transformations in an inverse way as tree-transduction rules with 
implied sequencing. 
Chauche (1974) developed a system to perform these transductions in, it seems, polynomial 
time. It makes use of a combination of a regular and a context-free tree-transducer. Trans
duction occurs in 3 phases. The outcome of each phase has to be deterministic. 



65 

3. The rationale of the PT A 

3.1 Introduction 

In chapter 2 we gave an overview of the methods which are in use for the creation of pro
grams for some of the sub-formalisms of the unifying formalism. The question is how to 
extend and to combine these methods in order to create a program generator for the whole 
formalism. In order to answer that question we will follow in this chapter an evolutionary 
trail through the different solutions which are given for the recognition and parsing of 
Chomsky type-2, -1 and -0 grammars. The natural continuation of this trail will lead us to 
the concept of the PT A, which will be defined formally in chapter 4. We will also explain the 
means by which the formal definition will be presented. 

3.2 The evolution of automata and program generators for the grammars in the Chomsky
hierarchy 

The usual goal for program generators for Chomsky type grammars is to generate a parser. 
They are therefore called "parser generators". 
There is a close correspondence between the hierarchy of Chomsky grammars and the fol
lowing formal automata: 

sentences generated by a can be recognized by a 
Chomsky grammar of type 

4 FSA (Finite State Automaton) 
3 FSA 
2 PDA (Push Down Automaton) 
1 LBA (Linear Bounded Automaton) 
0 2SM (Two Stack Machine) 

The trail which reaches a sub-class of type-0 grammars makes use of LR parser-generation 
techniques. This technique was initially developed by Knuth (1965) for a sub-class of the 
nonambiguous cf grammars. It can also be used for parser-generation for type-3 and -4 
grammars (as we will show). 
We will follow this LR-trail and will start with a short review of the methods of Knuth, 

· Walters and Turnbull. They all worked with nonambiguous grammars. Then we will review 
the escapes that were made by Earley and Tomita in order to treat ambiguous cf grammars. 
Our own extensions will lead us to parser-generation for all type-0 grammars. 
The discussion will be interspersed with the necessary definitions. 

The machine models 

The formal machines which we listed above form a hierarchy, in the same way as the corre
sponding types of grammars. It will be slightly easier to start the explanation with a 2SM 
rather than with a FSA. The use of a 2SM for parsing can be depicted as follows (from 
Turnbull (1975) ): 



66 

L-stack R-stack 

... ◄----►~ ..,__ input ._________ read ------
1 I I 
reduce look-ahead 

A 2SM is composed of an L-stack (a stack), an R-stack (really an output restricted deque 
(Knuth 1968) ), and a finite control. Initially the input resides in the R-stack, beginning at 
the left end. The control is designed so that it either shifts a symbol from the left end of the 
R-stack and pushes it into the L-stack, or applies a rewriting rule to the top of the L-stack. 
The latter operation is known as a reduction. It entails removal of symbols from the top of 
the L-stack and insertion of some related symbols (related by the productions) into the left 
end of the R-stack. 
Shift reduce parsers (Aho and Ullman, 1972) operate like this model. Because they are based 
on cfg's they may only push a single symbol into the R-stack during a reduction operation. 
Instead of using the R-stack the symbol can be pushed on the L-stack. In that case we are left 
withaPDA: 

L-stack 

◄ input 

1-----1 read 

Various parsing techniques differ only in how the control operates and how it is constructed. 
Research into parsing based on formal grammars has been directed at increasing the power 
of the control and, consequently, enlarging the class of languages that can be parsed. LR(k) 
grammars correspond to the largest set of cf languages that can be deterministically parsed 
from left to right in this model, looking ahead a bounded number of symbols ( =k) in the in
put. LR(k) grammars correspond to the class of cf languages recognizable by a deterministic 
PDA. 
Still lower in the hierarchy are the type-3 and -4 grammars. For recognition they do not need 
a stack and we are left with : 



67 

◄ input 

real 

In the parsing methods which we shall review the finite control consists of a number of 
states. In this case the last machine model consists of a FSA. 

3.3 Informal introduction to LR(O) parser generation and parsing by an example 

The essence of the LR-method is that we associate with a state in the finite control a set of 
grammar rules. Each rule is marked by a position (the "dot"). The combination of a rule with 
a position is called an item. The presence of an item indicates that a possible derivation may 
include the grammar rule of the item, based upon the information up to the dot. The compiler 
calculates possible sets of items ("itemsets"), which are associated afterwards with the states 
of the finite control. 
The items in an itemset determine which symbols in the input may be expected. For each 
itemset possible actions on these symbols are calculated. An action can be a shift, a reduce, 
an accept or an error. The actions for an itemset are sampled into a so-called "LR-table". In 
this LR-table the individual items of the itemset are no longer present. In an LR table only 
one action may be specified for an input symbol. This condition accounts for a deterministic 
control. If more then one action is specified for a symbol in an itemset then that itemset is 
called inadequate. In that case an attempt can be made to resolve the inadequacy by the cal
culation of lookahead. If k symbols are sufficient to resolve the inadequacy for all itemsets 
then the grammar is called LR(k). If no such k can be found the grammar is called non-LR, 
and other approaches have to be followed. 
The control is guided by the LR-table. This can be implemented by an interpreter. However, 
an LR(k) table can be translated into code for a PDA. In that case the control is that of a 
PDA. 
In order to illustrate the calculation of the actions we present a simple example. 

Suppose we want to construct an LR-table for the following cfg (for reference we number 
the rules): 
1 S :: NP, VP. 
2 NP :: Art, N. 
3 VP:: V ,NP. 
4 VP::V. 

According to the convention which we adopted in chapter 2 the nonterminals are 
{S,NP,VP}, the start-symbol is Sand the terminals are {V,N,Art}. 
We augment the grammar by the rule 

0 S' : : (, S, ). 

The"(" and")" are the reserved symbols for a tree. We introduce them as the natural begin
and endmarkers for the highest level in a, in principle, tree-structured input. We suppose that 



68 

the start and the end of the input will be signaled by these symbols. The construction of the 
itemsets starts with the augmented rule with the dot in the first position. In order to avoid 
confusion we leave out the dot at the end of a rhs. For referencing we number the items as 
follows (superscripted numbers): 

0 S' :: 1(, 2S, 3) 4. 
1 S :: 5NP, 6VP 7. 
2 NP :: 8Art , 9N 10. 
3 VP:: 11V, 12NP 13. 
4 VP :: 14V 15. 

Itemset 1 
1: S" :: . (, S,) 

Comment: in the first state only one terminal may be expected, the"(". There is only one 
item that shifts over that symbol. The resulting item has the dot moved over the symbol, 
signaling that an "S" may be expected. The resulting item forms the "core" of a new itemset, 
number 2. (The items which belong to the core are denoted above a dotted line.) We there
fore create in the LR-table for itemset 1 and the symbol"(" the entry "shift 2". 

shift 2 

Itemset 2 
2: S" :: (, .S,) 

5: S :: . NP, VP 
8: NP :: . Art, N 

Comment : item 2 forms the core of itemset 2. An S may be expected now. Because the S is 
a nonterminal we add all the items with the S at the lhs and the dot at the leftmost position 
(we call this a "starting item"). It is item 5. In the items which are added (only 5) the dot may 
again stand for a nonterminal, here NP. Therefore we add all the starting items with NP at 
the lhs (in this case only item number 8). We repeat this process (adding items if they are not 
already present in the itemset) until no more starting items are added with the dot before a 
nonterminal. The set of all starting items which are added because of the presence of "S" is 
called the "closure" of S. (In general the closure of each nonterminal can be calculated before 
the process of generating itemsets starts.) 
For each symbol after a dot we calculate the corresponding entry in the LR-table. On the 
symbols S, NP and Art we construct 3 new initial itemsets.We compare each of these initial 
itemsets with the core of already existing itemsets. If the test fails for an initial itemset it is 
placed into a queue of itemsets which have to be treated. 
For itemset 2 we can now create the following entries in the LR-table: 

S shift 3 
NP shift 4 
Art shift 5 

Itemset 3 
3: S" :: (, S, .) 



Comment: the dot stands before the endmarker. We generate on this symbol the entry 
"accept". 

accept 

ltemset 4 
6 : S :: NP, . VP 

11 : VP:: . V, NP 
14: VP:: . V 

Comment : the core of itemset 4 is formed by item 6. Closure items are 11 and 14. On the 
symbol V item 14 will reduce and item 11 will shift. Because two actions are possible the 
itemset is called "inadequate". In this situation lookahead calculations may become useful. 

V 
VP 
V 

shift 6 
reduce 1 ( =rule 1) 
reduce 4 

69 

The rule "VP:: V" contains one symbol at the rhs. We call this a "unit rule" and the reduction 
according to this rule a "unit reduction". We know beforehand that after reduction of this rule 
we will be back in this same itemset 4 and that we have to perform the reduction according to 
the rule "S :: NP, VP". It is therefore possible to combine the two reductions into one. In 
general there can be a chain of unit reductions within one itemset, ending with a reduce or 
shift for a rule with lrhsl > 1. In our case the LR table for itemset 4 would have three entries 
for symbol V : 

V 
V 

Itemset 5 

shift 6 
reduce 4,1 

9: NP:: Art, . N 

N reduce 2 

Itemset 6 
12: VP:: V, . NP 

8: NP :: . Art, N 

Comment : a shift on Art generates an initial itemset with a core identical to that of itemset 5. 

Art shift 6 
NP reduce 3 

The queue of initial itemsets is now empty. 

The resulting LR-table is (entries for symbols which are not mentioned are implicitly "halt"): 



70 

Statenr symbol shij I reduce accept 

to state rule nr. 

1 ( 2 

s 3 
2 NP 4 

Art 5 

3 ) X 

4 V 6 4 

VP 1 

5 N 2 

6 Art 5 
NP 3 

Example of parsing with the LR-table. 

With the aid of the LR-table we will parse the sentence " ( Art N V Art N ) ". 
Because the table contains inadequate states we have to rely on some technique to resolve the 
inadequacies. One alternative is to calculate how many lookahead symbols are necessary. 
Another one is to use a parallel parsing technique. Because the PT A is based upon the last 
approach we continue with our example in that fashion. 

We start in state 1. 

read ( and shift 

read $Art and shift 
( 

read $N and reduce NP: $Art :$N 
( 

C),----,(:) 

( $Art $N $V $Art $N ) 

$Art $N $V $Art $N ) 

$N $V $Art $N ) 

$V $Art $N) 



shift on the lefthand symbol NP 
( NP 

$V $Art $N) 

read $V and 1. shift 
2. reduce S::NP VP 

shift on the lefthand symbol S 

NP $V 
$Art $N ) 

s 
-----13 

read $Art and shift (in 6); (3) has no continuation and disappears 

$N ) 

read $N and reduce NP :: $Art $N (return in 6) 
on the lefthand symbol NP reduce VP : $V NP (return in 4) 
on the lefthand symbol VP reduce S :NP VP (return in 2) 

on the lefthand symbol S shift 

0------0 s 0 
read ) and accept 

3.4 Considerations about lookahead calculations 

71 

The construction of an LR(0) table is the basis for the construction of an LR(k) table. It is 
also the basis of the algorithm of Earley (1970) for general cf parsing in cubic time and of the 
construction of the automata of Walters and Turnbull, who generalized the LR(k) approach 
for deterministic type-1 and -0 grammars which we will review in the next subsections. It 
seems therefore appropriate to formalize the informal discussion in the previous example by 
a recapitulation of the basic algorithm, as it is given in (Aho and Ullman, 1977). 
In this book we are concerned with the parsing of generalized, ambiguous type-0 grammars. 
We are therefore not interested in classes of grammars which can be parsed deterministically 
by using k symbols lookahead. In our PT A lookahead will be profitable only for optimiza
tion purposes. 
In that respect it is useful to observe the relation between LR(0) and LR(k) table construc
tion. In the original paper of Knuth (1965) each LR(k) item contains a lookahead string 
which is used in every algorithm related to the construction of an LR(k) table. In the subse
quent literature on LR parsing this approach was more or less maintained. However, this is 
not necessary. The calculation of lookahead can be performed after the construction of an 
LR(0) table. The resulting simplification in the explanation of the construction of LR(k)-ta
bles is worded by Heilbrunner (1981): "It is not a simple task to give a convincing explana
tion of the commonly used LR(k) definition. There are detailed tutorials on LR parsing 
which do not even state it (Aho and Johnson, 1974), (Houwink ten Cate 1974). The techni
cal apparatus for a presentation of LR theory along the now traditional lines of (Aho and 
Ullman, 1972) involves a lot of tedious details which may prove the results but certainly ob
scures the ideas. A comprehensive and formal treatment using these methods is contained in 
(Geller and Harrison, 1977). We claim that basically simple ideas and a few clever tricks are 
sufficient to explain and prove correct in an intuitively clear and still formal way Knuth's 



72 

original LR algorithm (Knuth, 1965) and DeRemers's (1969,1971) and Pager's (1977) 
variants. We shall see that a grammar is an LR(k) grammar if and only if the straightforward 
nondeterministic bottom-up parsing algorithm for this grammar can be made deterministic by 
eliminating superfluous moves". 
Superfluous moves are caused by inadequate states. Our LR treatment of ambiguous gram
mars in the Chomsky hierarchy will concentrate on the treatment of inadequate states in the 
generated LR(0) tables. Because the inadequacies can not all be resolved by lookahead cal
culations we will resolve them by efficient parallel parsing. Some lookahead calculations 
could be useful in order to improve efficiency, but they are not necessary.I 
In the papers of Walters (1970) and Turnbull (1975) the original algorithm of Knuth (1965) 
for the construction of parsing tables is followed, with lookahead strings contained within 
items. Their algorithms for the construction of parsing tables collapse to the algorithm for the 
construction of LR(0) tables when lookahead calculations are not taken into account. Again, 
we are interested in the parsing of ambiguous type-0 grammars. It seems therefore appropri
ate to adopt the algorithm for the construction of LR(0) tables as our basic algorithm for the 
construction of the control of the PTA and to develop techniques for the calculation of 
lookahead for some of the inadequate states later on. In chapter 5 we will recapitulate the 
LR(0) parser-generation algorithm. We will not recapitulate the algorithms of Walters and 
Turnbull for the construction of LR(k) tables but will mention only the working of the con
trol on the L- and R-stack that operates according to these tables. 

3.5 The relation between the finite control and the LR(O) table according to Knuth, Walters 
andTumbull 

Knuth, Walters and Turnbull present the working of the finite control as a sequence of con
figurations. 
A configuration of an LR processor is a pair whose first component is the stack contents and 
whose second component is the unexpended input. Walters extends this towards a configu
ration for a CS processor : a configuration has two stacks, L and R. The content of the L
stack is SoSJ ... Sn (So ... Sn are states) and the content of the R-stack is X~. Turnbull adds 
the current state as a separate third component The others denote the current state as the top 
of the L-stack, and we will follow that convention. X is the top symbol on R. For cf gram
mars Xe Tu{)} and ~ e T*), for cs- and type-0 grammars X e Vu{)} and ~ e V*). 
As for the LR case, the CS processor starts in the configuration (So,co)), where co in T* is 
the input string. If the automaton reaches the configuration (SoS 1 ... Sn,X~)) then it has re-
constructed a rightmost derivation of co from XJ ... xnX~, where XJ ... xn in V* is the recon-
structed rightmost derivation up till now. 

We will explain how the four instructions shift, reduce, accept and error in the LR-table di
rect the control for a CS processor. Again we do this in a manner which is adjusted to our 
examples and to our algorithms in the subsequent chapters. 
A next move of the configuration is determined by the symbol at the top of the L-stack Sn 
(the current state), the symbol at the top of the R-stack X and the consultation of 
ACTION[Sn.xJ in the LR-table. According to the result of the consultation the next move is 

1 With the extension to type-I and type-0 grammars new ways for the treatment of lookahead become 
possible. For instance, Turnbull (1975) shows that in the extension to non-ambiguous type-I and -0 
grammars lookahead can be eliminated by adding more context to grammar rules. This can be done in an 
automatic way, based upon lookahead calculations for the LR(O) table. 



73 

a. shift S: (SoS1 ... Sn,XP) ⇒ (SoS1 ... SnS,P) 
b. reduce Y1 .. Ym :: y: (SoS1 ... Sn,XP) ⇒ (SoS1•••Sn-r,Y1 .. YmP), 

where l'yl = r. For cfg's m=l. 
Remarks: 1. In the standard LR-algorithm for cfg's with lookahead calculations 
chains of reduces always lead to a shift; moreover, Sn will contain the reducing item 
with the dot at the end, which is the reason that the X will only be inspected as a part 
of the lookahead; in that case the next move is defined as 

(SoS1 ... Sn,XP) ⇒ (SoSi. .. Sn-rS,XP), 
where ACTION[Sn-r,Ytl is shift S. 

2. In the algorithms of Walters and Turnbull for type-1 and -0 gram
mars it is guarantied, by the calculation of lookahead, that ACTION[S,X] will be a 
shift. 

c. accept : the control stops. Sn has to be an accepting state. 
d. error: the control calls some error reporting-, and eventually, an error-recovery routine. 

The algorithm for the control itself is very simple : it starts in the configuration (So, a1 .. an)) 
and performs next moves as long as no accept or error shows up. 

Walters proves the equivalence of CS(k) grammars and DLBA's: a set of strings is accepted 
by some DLBA iff it is generated by some CS(k) grammar. In his case the 2SM is reduced to 
a DLBA. He also proves that the sentences of a CS(k) grammar can be parsed in a time pro
portional to the length of their derivations. 
The control which he constructs for CS(k) grammars need not halt for every input. 
Turnbull (1975) studies type-0 grammars for which parsers can be constructed which will 
detect any errors as soon as possible. These parsers are guaranteed to halt. We quote from 
(Turnbull, 1975, p. 3-1) : "In general terms, our goal is to define and examine the class of 
languages that can be parsed deterministically in a single left to right scan without 
backtracking. Since backtracking and multiple passes are inherently inefficient operations, 
this class is the largest set of languages that are practical to use as programming languages." 
Both Walters and Turnbull observe that the steps from one configuration to another can be 
thought of as grammatical productions, in reverse, operating on the configurations. If no in
struction can be applied to a configuration, then an error has been found. Based upon this 
idea Walters reconstructs from a DLBA a CS(l) grammar, and proves the equivalence. 

3.6 Earley parsing 

We will now leave the deterministic trail and will give a short recapitulation of the algorithm 
of Earley for the parsing of arbitrary cf g's. It contains the same ingredients as the algorithm 
for the creation of LR-tables. The main difference is that itemsets are created in runtime in 
response to the input, and that, in LR terms, itemsets may be inadequate. In our description 
we will use some of the terminology of Tomita (1986). The original algorithm of Earley 
looks ahead k input symbols, just like the LR(k) algorithm. We fix k to be 0, for the same 
reasons as we summed up in the previous subsection on LR table construction. 

An Earley-item is of the form 
<A::a.p, f>, 

where A :: ap is a production, f is an integer, 0<=f<=n. 
Alternatively, we sometimes denote it as 

<p, j, f>, 



74 

where p is the production A : : ap, and j is an integer representing the position of the dot (j = 
lal). Note that an Earley-item has one more element, f, than an LR(0) item [A :: a.p]. 

Barley's algorithm proceeds as follows (we assume that the input is a1 .. an) : 
- Io := <S' :: .(S), 0> 
- for i := 0 to n do 
- for each item in Ii do 

- if the item is of the form <A : : a.B p, f> then do PREDICTOR. 
- if the item is of the form <A :: a., f> then do COMPLETER. 
- if the item is of the form <A :: a.dp, f> then do scanner. 

- if <S' :: (S)., 0> is in In then accept else reject. 

PREDICTOR (runs analogous to the LR procedure closure) 
- for each production B : : y do 

- add <B :: .y, i> to Ii. 

COMPLETER (runs analogous to the LR procedure REDUCE) 
- if a= ai+l then 

- for each item <B :: a.AP, h> in Ir do add <B :: aA.p, h> to lj. 

scanner (runs analogous to the LR procedure SHIFf) 
- if d = ai+l then add <A :: ad.p, f> to Ii+l• 

The runtime efficiency of Barley's algorithm is O(n3), but compared to LR-parsers (in the 
deterministic case) the constant factor is large, because every itemset is constructed in run
time. A second drawback of the algorithm is that the reconstruction of parses has to be done 
afterwards, while the parsing algorithm itself has the on-line property. 

3.7 Tomita parsing 

After completion of the development of our PTA we learned about the work of Tomita 
(1986), who describes an algorithm for the parsing of general cfg's with a "graph-structured 
stack", as a combination ofLR(l) and Earley parsing. 
The idea of this combination was already described by Lang (1974) for the case of recogni
tion. Tomita describes also the maintenance of a "parse forest", as an efficient representation 
of a number of parse trees. We identified his algorithms as a part of our algorithm, treating 
the case "Type=2, Meta=BNF, Amb=par, Seq=no". At the end of his dissertation Tomita 
expresses the wish to extend his algorithm to be able to handle more formalisms. 
His treatment of the stack and of parse trees during the parsing of ambiguous grammars went 
through the same evolutionary process as in our case. 
LR parsing is totally deterministic. Therefore, a linear stack is sufficient and the parse tree 
(there can be only one) can be created on-line. 
"Earley" parsing is deterministic, too. It handles all ambiguous parses in parallel. But parse 
trees are reconstructed only afterwards. Another drawback is the wasting of space for the on
line storage of all created itemsets and the administrative overhead. This drawback can be 
avoided by making use of a combination of LR and Earley parsing. 
We will describe the evolution process which we indicated above by some quotations from 
Tomita. 
LR table construction can be seen as a kind of preprocessing for Barley's algorithm. When a 
created "parsing table has multiple entries deterministic parsing is no longer possible and 



75 

some kind of non-detenninism is necessary". "The simplest idea is to handle multiple entries 
non-detenninistically. We adopt pseudo-parallelism (breath-first search), maintaining a list of 
stacks called a Stack List. The pseudo-parallelism works as follows. A number of processes 
are operated in parallel. Each process has a stack and behaves basically the same as in stan
dard LR parsing. When a process encounters a multiple entry, the process is split into sev
eral processes (one for each entry), by replicating its stack. When a process encounters an 
error entry, the process is killed, by removing the stack from the stack list. All processes are 
synchronized: they shift a word at the same time so that they always look at the same word." 
Earlier we employed this method in the same way in a parsing system called "LALRPAT" 
(briefly described in Van der Steen, 1981) that was in use a number of years in the comput
ing department of the Faculty of Arts of the University of Amsterdam (Van der Steen, 1982, 
1985). 
"A disadvantage of the stack list method is that there are no interconnections between stacks 
(processes) and there is no way in which a process can utilize what other processes have 
done already. The number of stacks in the stack list grows exponentially as ambiguities are 
encountered ... This can be avoided by using a tree-structured stack ... Whenever two or more 
processes have a common state number on the top of their stacks, the top vertices are uni
fied, and these stacks are represented as a tree, where the top vertex corresponds to the root 
of the tree. We call this a tree-structured stack. When the top vertex is popped, the tree
structured stack is split into the original number of stacks. In general, the system maintains a 
number of tree-structured stacks in parallel, so stacks are represented as a forest. .. So far, 
when a stack is split, a copy of the whole stack is made. However, we do not necessarily 
have to copy the whole stack: even after different parallel operations on the tree-structured 
stack, the bottom portion of the stack may remain the same. Only the necessary portion of 
the stack should be split. When a stack is split, the stack is thus represented as a tree, where 
the bottom of the stack corresponds to the root of the tree. With the stack combination tech
nique described in the previous subsection, stacks are represented as a directed acyclic 
graph .. .lt is easy to show that the algorithm with the graph-structured stack does not parse 
any part of an input sentence more than once in the same way. This is because if two pro
cesses had parsed a part of a sentence in the same way, they would have been in the same 
state, and they would have been combined as one process." "The graph-structured stack 
looks very similar to a chart in chart parsing. In fact, we can view our algorithm as an ex
tended chart parsing algorithm which is guided by LR parsing tables." 
About the efficient representation of a parse forest Tomita writes : "it is desirable for practical 
natural language parsers to produce all possible parses and store them somewhere for later 
disambiguation, in case an input sentence is ambiguous. The ambiguity (the number of 
parses) of a sentence grows exponentially as the length of a sentence grows. Thus, one 
might notice that, even with an efficient parsing algorithm such as the one we described, the 
parser would take exponential time because exponential time would be required merely to 
print out all parse trees (parse forest). We must therefore provide an efficient representation 
so that the size of the parse forest does not grow exponentially." 
Then he describes two techniques for providing an efficient representation: sub-tree sharing 
and local ambiguity packing. Tomita claims that no existing system has adopted both tech
niques at the same time. With sub-tree sharing is meant : "If two or more trees have a com
mon sub-tree, the sub-tree should be represented only once." This is performed by making 
comparisons in runtime. 
With "local ambiguity packing" is meant : "two or more subtrees represent local ambiguity if 
they have common leaf nodes and their top nodes are labeled with the same nonterminal 
symbol. That is to say, a fragment of a sentence is locally ambiguous if the fragment can be 
reduced to a certain nonterminal symbol in two or more ways ... The top nodes of subtrees 



76 

that represent local ambiguity are merged and treated by higher-level structures as if they 
were only one node." Again, this is handled by comparison in runtime. 

So far Tomita. His ideas about the <lag-structure of a stack and the sharing of parse trees 
were independently developed by us. "Sub-tree sharing" is performed automatically in our 
PTA. This will be shown in the next example of the working of a PTA where a highly 
ambiguous cfg with regular expressions is treated. The example also serves to demonstrate 
how the enrichment of the formalism with reports is treated, in combination with regular ex
pressions. We do not perform "local ambiguity packing" because, for linguistic reasons, we 
want to keep intact the representation of all possible parses. Tomita motivated the "local 
ambiguity packing" for reasons of efficiency : in worst case situations the representation of 
parse trees would otherwise grow exponentially. In chapter 7 we will show for the PTA that 
the complexity of recognition is the same as the complexity of parsing, which is therefore not 
influenced by the building of parse trees. 
With the aid of the PTA all sub-formalisms of chapter 2 can be treated, in combination with 
the compiler which we describe in the chapters 5 and 6. This extends by far the formalism of 
a cfg which Tomita is able to treat. 

3.8 The extension of a 2SM to a Pr A 

In order to be more precise we first give a number of relevant definitions and notations. 

Definitions. 
An unordered directed graph G is a pair (A,R), where A is a set of elements called nodes (or 
vertices) and Risa relation on A. 
Unless stated otherwise, the term graph will mean directed graph. 
A pair (a,b)e R is called an edge or arc of G. This edge is said to leave node a and enter 
node b. If (a,b) is an edge, we say that a is a predecessor of b and b is a successor of a. 
A labeling of the graph (A,R) is a pair of functions f and g, where f, the node labeling, maps 
A to some set, and g, the edge labeling, maps R to some (possibly distinct) set. In many 
cases, only the nodes or only the edges are labeled. These situations correspond, respec
tively, to for g having a single element as its range. 
A sequence of nodes (ao,a1, .. ,,an), n>=l, is a path of length n from node ao to node an if 
there is an edge which leaves node ai-1 and enters node ai for 1 <=i <=n. If there is a path 
from node ao to node an, we say that an is accessible from ao. 
A cycle (or circuit) is a path (ao,a1, ... ,an) in which ao=an (with n>=l). 
The in-degree of a node a is the number of edges entering a and the out-degree of a is the 
number of edges leaving a. 
A dag (short for directed acyclic graph) is a directed graph that has no cycles. A node having 
in-degree O will be called a base node. One having out-degree O is called a leaf. 
~ 

Notations. 
The nodes in a dag may be topologically sorted into a linear order (Aho&Ullman, 1972, 
p.45). 
We will represent a dag by an ordered set of tuples (a,b), where a is a node and bis a set of 
tuples of nodes and symbols. If a dag D = ( (a1, ( (b1,1, s1,1), (b1,2, s1,2), ... , (b1,nl, s1,n1) 
) ), ( (a2, ( (b2,l, s2,1), (b2,2, s2,2), ... , (b2,n2, s2,n2) ) ), ... , ( (ai, ( (bi,l, Si,1), (bi,2, Si,2), 
... , (bi,Ilj, Si,nj))) , ... , ( (am, ( (bm,l, sm,I), (bm,2, sm,2), ... , (bm,nm, sm,nm))) ), then 
1. ai <> aj for i <> j 



77 

2. m is the number of nodes in D, ni <= m for all i 
3. if in (a,b) the bis E, then a is a leave node 
4. bij is an ak for some k > i 
5. if ai is no element of an (a,b) then ai is a base node 

Example : the dag 

is represented by D = ( (1, ((2,a), (3,b), (4,c)) ), (2, ((6,d)) ), (3,((5,e)) ), (4, ((5,f)) ), (5, 
((6,g),(7,h)) ), (6, E), (7, E) ); 
1 is a base-node, 6 and 7 are leave-nodes. 

The adjective "parallel" in "Parallel Transduction Automaton" has two meanings : 
1. the execution of code which was produced automatically for a formalism in which, con
ceptually, each rule operates in parallel with other rules 
2. the execution of this code on a parallel machine. 
Meaning 1 has nothing to do with meaning 2. As we will see shortly the execution of the 
code can be done wholly on a sequential machine. But the machine can be organized in such 
a way that as much as possible can be done in parallel. The organization of the parallel pro
ces.ses does not stem from the inherent parallelism of the formalism but from the formal de
scription of the instructions of the machine. In such a way an important gain in efficiency is 
achieved. 

A PTA consists of 2 stacks in the form of a dag-structure (directed acyclic graph), a set of 
connectors and a parse forest. 



78 

connectors 

R-dag stack 

parse forest 

Each connector connects nodes in the L-stack with nodes in the R-stack. In principle a 
connector is a 4-tuple (active nodesL, projective nodesL, active nodesR, projective nodesR) 1. 
(The indexes Land R refer to the L- and R-stack respectively). Active nodes project them
selves, on the reading of an input symbol, to projective nodes. The number of possible 
projective nodes is limited and is calculated by the compiler. The operations on both stacks 
are in essence the same. The usual instructions for a stack, like pop, push, inspect top and 
change top are maintained. If an active nodeL is connected to an active nodeR then the inter
section is taken of the two sets of possible continuation symbols. These symbols are found 
in the LR-tables for the compiled states which are attached to these nodes. For the symbols 
which are in common the corresponding actions in the LR-table are executed for the two 
nodes. After zero or more reduces a shift will follow, resulting in a push on the stack. This 
is performed by the creation of a new leaf in the dag and the creation of an edge from the last 
active node to that leaf node. All leaf nodes which result from actions taken for nodes in one 
active set (in the same dag) form a projective set. Before a new leaf node is created it is 
checked whether there already exists a leaf node in the projective set with the same number 

1 We will see later that connectors also have references for variables and the lexicon. 



79 

of a compiled state. In that case no new leaf node is created but an edge is formed from the 
last active node (the last one in a possible chain of reduces) to that already existing leaf node 
in the set of projective nodes. (This corresponds with "Earley parsing".) A reference to the 
resulting set is stored in a new connector. 

A third dag is automatically maintained (if necessary) : the parse forest. This parse forest will 
be built on-line and reflects the current status of all valid parse trees. In the case of TDG's 
(transduction grammars) it will be used also as an association list for the nonterminals which 
appear in a lhs. Evaluation of these nonterminals will only happen when necessary ("lazy 
evaluation"). 
In the parse forest the report- and build-output find their natural, but temporarily, place. If 
the parse forest has become one single parse tree then this output will be brought automati
cally to the outside world and released from the parse tree. 
The way of storing of the report- and build-output may be called: "deep binding". It is not 
necessary to reference these values until they have to be brought to the outside world. This in 
contrast with the variables. They are stored with "shallow binding", with a copying of the 
reference to their values from stacknode to stacknode. 
Garbage collection is done entirely "on the fly" by keeping reference counts for each dagn
ode and its associated substructures. When the PT A has treated the endmarker in the input no 
datastructures are left. 
The reference counts play a special role during transduction : when the reference count of a 
stacknode in L becomes O this is an indication that at that point no more transductions can be 
performed : the associated symbol will then be brought to the output file, together with the 
coordinates of its neighbours. In the case of ambiguous TDG's a dag with symbols from 
translations is in that manner brought to the outside world. 
The translation is then produced with a finite delay (see also section 2.2.1). With finite delay 
we mean that output of the transducer becomes available after the reading of a finite number 
of input symbols, while the total number of characters in the input can be indefinite. 

It is now possible to relate to the PTA the machine models whk:h we described above and the 
parsing methods which make use of them. 
The PTA can be seen as a general machine model which can be reduced to the former ma
chine models. The 2SM consists of linear L- and R-stacks and of the finite control. ALBA, 
a PDA and a FSA are simplified models of a 2SM. The PTA extends the 2SM in the follow
ing ways: 
- the L- and R-stack both become a dag 
- a third dag is added for the storage of a parse forest 
- connectors are added which connect sets of active and projective nodes in the L-and R-dag 
with each other 
- storage is added for reports, builds and variables. 
The purpose of the sets of active and projective nodes is that they serve to maintain a poly
nomial runtime complexity for each connector. If there is only one stack (the L-stack) only 
one connector is functioning. In that case we get back Tornita's parsing method. The dag
structure was chosen because of its efficiency in processing. The runtime behaviour for cf 
recognition with one stack is O(n3). General rewriting makes use of both stacks. 
The Parspat compiler only generates code for the smallest machine model that is possible. 
For the runtime behaviour the lowest bounds are valid which are achieved at this moment in 
theoretical research for the different sub-formalisms (as far as constructive methods are con
cerned). Furthermore, the PTA can be influenced by user-heuristics in order to decrease the 
number of ambiguous transductions. 



80 

These heuristics concern the treatment of inadequate states. In the LR-table of an inadequate 
state there may be denoted for a symbol one shift and a multiple number of reduces, to be 
subdivided in reduces for cf-rules and type- I or -0 rules. The user of the PT A may indicate 
with global switches if a choice has to be made, and which kind of choice. 

Code will be generated for the following (possibly combination) of sub-formalisms 
- for a FSA: Chomsky-type= 3 or 4 with regular expressions, Arb= don't care and arb and 
line, Trees, Booleans; 
- for a PDA : Chomsky-type= 2 with regular expressions, no ambiguity, don't care and arb 
and line, Trees; 
- for a PT A with 1 dag-stack: Chomsky-type=2 with regular expressions, all ambiguities, 
don't care and arb and line, Trees, Booleans, variables; 
- for a PTA with 2 dag-stacks: Chomsky-type=0 or 1 or transduction with regular expres
sions, all ambiguities, don't care and arb and line, Trees, Booleans, variables. 

In the next subsection we will illustrate in an informal way the working of the PT A by a few 
examples. In these examples we will depict the different parts of the dags. In order to make 
the figures understandable the following explanations are given. 

First we introduce for a dag the concept of a condensed notation. The notation of a path 
through such a condensed <lag is called a condensed path. 
In a condensed notation we leave out the symbols and denote for a node zero or one succes
sor. For instance, the <lag in the example above can be represented as 
CD= ( (1,2), (2,6), (3,5), (4,5), (5,6), (6,e), (7,e) ). 
The base-nodes are now 1, 3, 4 and 7 and the leave-nodes are 6 and 7. 
A condensed path contains a pair with the begin- and end-node and it contains zero or more 
pairs of exceptions : if the successor of a node in the path is different from the successor 
which is named in the condensed notation of the <lag then the node and its successor in the 
path have to be denoted as an exception. 
Thus the path (1,3,5,6) is represented as a condensed path by ( (1,6),((1,3)) ). The begin 
and the end of the condensed path are 1 and 6; at 1 has to be chosen as its successor 3 and 
not 2, which was specified in the condensed notation of the dag. 
The use of a condensed notation is motivated by reasons of economy: long paths in a <lag 
with nodes with low degrees are referenced substantially shorter. 

In the PTA the L- and R-stack and the parse forest have the structure of a dag. The nodes of 
the <lags contain information, which will be described precisely in the next chapter. We now 
give a short overview together with a pictorial representation in order to understand the ex
amples. 

For the dags of the L- andR-stack we use the following pictures. 

a node with label r ; it contains the number c of a compiled state; 
the numbers c and rare positive for the L-stack and negative for the 
R-stack; sometimes we call a node in the L- or R-stack a "runstate" 



1-----1 A B::C.D 

path3 
path4 

E::F,.g H 

a node contains the numbers of the items 
of the compiled state (but not the 
starting items); in order to be clear 
we write out the text of an item; 
connected to an item are references 
(cl and c2) to the runstates which have 
to become visible ("active") after a reduce 
(or "return") of that item; 
if necessary there are attached to each 
reference to a returnstate one or more 
descriptions of paths through the 
parse-forest 

indicates a description of a path in the condensed 
form; if the path consists of a single node in the 
parse forest then the label of that node ("S3") is 
denoted; arrows are "coloured" by some pattern 
which corresponds to the pattern of a path which 
is depicted in the parse forest 

For the dag of the parse forest we use the following pictures. 

nu] 

r.'\l 
~ 

~ 
R:2,3 

A node in the parse forest which contains a nonterminal. In the dag of 
the parse forest the edges are not labelled, but only the nodes. The label 
consists of the nonterminal concatenated with the position of the input 
pointer. If there are more nodes with this label a negative number is 
attached to the node which, together with the label, makes the labeling 
unique. The rim of the rectangle has the same pattern as the path which 
spells out the parse tree in the parse forest associated with the 
nonterminal. 

A node in the parse forest which contains a terminal. The same 
conventions hold as for a nonterminal. The negative number is, for 
reasons of space, written outside. 

A node in a parse forest may contain information. In one example the 
information about reports is shown in this way 

The parse forest is internally represented in a condensed notation. We do not 
show the edges, which are more or less chosen arbitrarily (depending on the 
input). Paths are indicated by arrows, pictured with some pattern. For instance : 

2) 

path3 
path4 

to the nonterminal S, recognised after the reading of the 
2nd character in the input, belongs a (sub )tree 
consisting of the nodes al and a2. 

S::a S.S 
S::aa 

in an L-stack a partial parse tree, 
belonging to item S::a S.S , is indicated 
by an arrow. 
After a reduction a return will be made to 
nodes cl and c2. 

81 



82 

3.9 Example of the working of a Pf A for ambiguous cf g's with regular expressions and re
ports 

This example will demonstrate the working of the instructions on the <lag-structured L-stack, 
the on-line construction of the parse forest and the "deep binding" of report-output. 
It concerns parsing according to the grammar : 

0: S'::S{R:4},). 
1: S :: a, [S {R:1}]* {R:2}, a {R:3}. 

(Remark: in order to save space we leave out the beginmarker "(".) 
The compiled LR(O) table for this grammar is, per state (the superscript digit marks an item) : 

State 1 : 
items: S' :: 1 S {R:4},). 

S :: 4 a, [S {R:l}]* {R:2}, a {R:3}. 
table-entries: 
a 

s 

State 2: 

shift 2 
report 2 for the itempair (from-item, shifted-item)= (4,6) 
shift 3 
report 4 for the itempair (l ,2) 

items: S :: 4 a, [S {R:1}]* {R:2}, a {R:3}. 
S :: a, 5 [S {R:1}]* {R:2}, a {R:3}. 
S:: a,[S{R:l}]*{R:2},6a(R:3}. 

table-entries : 
a 

s 

a 

State 3: 

shift 2 
report 2 for the itempair (4 ,6) 
shift 2 
report 1 for the itempair (5 ,5) 
report 1 and 2 for the itempair (5,6) 
reduce rule 1 (in runtime: "go back to the node on the stack where 

this item originated and perform a shift on a S ") 
report 3 for the itempair (6,7) 

items: S' :: S {R:4}, 3). 
table-entry : 
) accept 

We assume that the input is "aaaaaa)". The L-stack is depicted in 6 situations, after reading 
"aa" until "aaaaaa)". 



83 

-1 

® 



84 

situation after reading 'aaaa' 
S4 

S3 

S4 

a 
a 

,._. a4 

V . ~ - i 
R:1,2 

IE] 
R:4 

B 

-1 

® 

R:3 



85 

situation after reading 'aaaaa' 



86 

Situation afterreadin~ 'emwH' 

S3 

~:.s-1 

S4 

> 
> 

•1nr 

S6 

S5 

S6 

R:12 @; "''''~ ~S6-4 ~ 
~'}''~ 
/, R:4 
/ ><st6">< 
/ vvv< 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

/ 

/ 
/ 



Sitµat:ion after reading 'ee,aeal' 

G) S6 

l 1------------~-:l~S'::. )~ 

-1 -2 

~ 
And thus are represented the two plliliCS 

S6-5 and 

~ 
al S3-1 S5-2 a6-2 

~~ 
a2-1 a3-2 a4-1 aS-2 

S6-5 
S6-6 

S6-6 

S6-5 
S6-6 

~ 
al S5-4 a6-2 

~ 
a2-1 S4-2 aS-2 

/'-.. 
a3-1 a4-2 

which are communicated as S ( a S ( a a) S ( a a ) a) and S ( a S ( a S ( a a) a ) a ) . 

R:4 

~ 

The corresponding reports are communicated in postfix sequence as 3,1,2,3,1,2,3 and 3, 1,3, 1,2,3 . 

3.10 Transduction with a YfA; example 

We will now discuss informally how transductions are performed with the PTA. 

87 

R:4 

~ 

On-line recognition with a 2SM can be extended towards transduction with finite delay. We 
compute LR-tables for the lhs's and the rhs's of the rules. We choose an example for which 
the generated states are adequate. In that case the dag-structured L- and R-stacks of the PTA 
remain flat. For the case of ambiguous type-0 grammars the reader may imagine, for the 2 
stacks, the dag-structures as they were shown in the former example. 

Our grammar is : 
b, a:: a, b. 



88 

The compiled LR(O) table for the left hand sides of the grammar is : 

State -I : 
items: -1 b, a:: a, b. 
table entry for shifts: generate "b" and goto state -2 (in runtime : "push state -2 on the R
stack") 

State -2: 
items : b , -2 a:: a, b. 
table entry for reduces: generate "a" and reduce (in runtime : "go back to the state where this 
item originated") 

The compiled LR(O) table for the rig ht hand sides of the grammar is, per state : 

State 1 : 
items : b , a :: 1 a , b . 
table entries : 
a shift 2 (in runtime: "push state 2 on the L-stack") 
. (every other character) shift 1 

State 2: 
items : b, a:: 1 a, b. (all transduction rules may start in each state) 

b, a:: a, 2 b. 
table entries : 
a 
b 

shift 2 
reduce and put state -1 on the R-stack 
shift 1 

The entries on a stack have a reference count. If a reference count becomes O the entry is 
deallocated. If an entry at the bottom of the L-stack is deallocated, then its associated symbol 
is emitted. By assigning unique labels to the emitted symbols (e.g. increasing integers) a dag 
may be outputted (in the case of an ambiguous grammar). 
In our example only the essential entries are shown. Not shown are the items in each entry 
which reference the entry where they originated, like in the previous example. If there are no 
more items which reference an entry than that entry will be deallocated. 

We show the on-line operation of the generated parser for the input "aab .. " 

~ 

1~ 
~ 
Read 1st symbol 'a' : shift to state 3(2) 

1~ 
&-~ 
Read 2nd symbol 'a' : shift to state 4(2) 



Read 3rd symbol 'b': reduce and put state -2(-1) on the R-stack 

1 2 3 

~ 
Generate from state -2(-1) symbol 'b' as input for state 3(2) 
This causes a shift in state -2(-1) to state -3(-2) and a reduce in state 3(2) 
Therefore put state -4(-1) on the R-stack 

-2 -1 

~ 

-4 0~~ -l ~ 0- b 0- ~ 

Generate from state -4(-1) symbol 'b' as input for state 2(1) 
This causes a shift in state -4(-1) to state -5(-2) and a shift from state 2(1) to state 5(1) 

1~ 
~ 

-5~~~ 
0~~~~ 

State 2( I) is not longer referenced. The symbol 'b' will be emitted. 
Generate from state -5(-2) symbol 'a' as input for state 5(1) 
This causes a reduce in state -5(-2) and a shift from state 5(1) to state 6(2) 

1-5 6 0 1 2 
a 

-3~2 ~1 -2 -1 0 
b 

Generate from state -3(-2) symbol 'a' as input for state 6(2) 
This causes a reduce in state-3(-2) and a shift from state 6(2) to state 7(2) 

1 -1 

® 
The 2nd stack is empty. We resume reading from the input. 

Up till now the emitted output is : 

lb5 

89 

where the superscripted digits denote the unique labels of the entries which were deallocated. 
Two a's are waiting on the stack for a possible transduction. 

Note that the entries on the R-stack act as generators of symbols. That is the reason why 
regular expressions, arbs, lines, ranges and Boolean negations at the lefthand side of type-0 
rules cause no problems 1. 

1 However, up till now we did not meet an application for them. 



90 

4. The definition of a Parallel Transduction Automaton 

In this chapter we will formally define the PT A. First we will explain the means by which 
the definition will be given. The definition itself starts with an enumeration of the essential 
parts of the PT A. These parts may be grouped within three main categories. The first 
category concerns the structure of the elements of a configuration. The second category 
describes the processing within the PT A. In the third category output with finite delay and 
general pruning ("on the fly garbage collection") will be defined. 
After that we will discuss a number of related topics: the use of the PT A for the generation of 
sentences, the problem of undecidability and the suitability of the PT A for implementation on 
parallel hardware. 

4.1 Introduction to the formal description of the Pf A 

As our formalism for definition we choose the unifying formalism of chapter 2. 
The working of the PTA will be described by transitions of configurations. With the help of 
cf grammar rules the structure of elements of configurations can be described concisely. 
With the notations for patterns and trees and with the possibility of general rewriting it pro
vides for a short, but precise formulation of the working of instructions and of the process of 
pruning. A rigorous proof of the correct working of the PT A falls outside the scope of this 
study. However, with the non-procedural description of the rewriting of configurations such 
a proof will become less complicated. 
For each possible instruction we will describe the corresponding transition, in the same way 
as Walters and Turnbull did. However, with the dag-structure for the two stacks and the 
parse forest this is more complicated. In order to be formal and at the same time understand
able the description will consist of four components: 
- an informal description 
- a graphic representation 
- a formal, non-procedural, rewriting of configurations; for the rewriting we will use a slight 
extension of the unifying formalism 
- the procedural description which was programmed in the system Parspat, here given in 
pseudo-code. 
The names of symbols will be uniform for all four components. 
The definitions will be interspersed by comments within comment-brackets. 

About the informal description 

The informal description serves as a functional description of the purpose of the instruction 
and its relation to other instructions. We will abbreviate 
- "a reduction of a rule with I lhs I = l" by "a cf reduction", 
- "a reduction of a rule with I lhs I > 1" by "a cs reduction". 



91 

About the graphical description 

We will accompany a non-procedural description by a pictorial representation in a one-to-one 
correspondence I. This correspondence is obtained by the following conventions. 
- Correspondence with regular expressions : 
- in general a dotted line means : possibly present 
- if a member of a list is not necessarily the only one this is indicated by dotted fragments of 

lines to its left and right 
- if a member of a list is definitely not the only one the fragments of lines are solid 

- Correspondence with don't cares and arbs : 
- if the value of a field of a record is not referenced (in the picture) it is not mentioned 
- only the elements which are necessary are drawn 

- The 'next' of a list-element is, in general, not shown as a separate field 
- A nil-pointer is indicated by a "/" . 

Examples: 

~ 
maybe one record maybe a list of records a list of 1 or more records 

The correspondence with the informal description can be derived from comments in the pic
ture. They are placed between curly brackets. In that way values may be denoted which are 
of no use for the formal description but which may clarify the notion of the reader. 

About the non-procedural description 

The rewriting of configurations will be formally described with the aid of the unifying for
malism. It provides for a concise, but exact, description of the changes in a configuration. 2 

The applicability of a rewriting depends solely on the matching of the rhs of a rule. For the 
purpose of the rewriting of configurations we extend the unifying formalism with the 
"reference" which has a direct correspondence with the "pointer" in Pascal: ""Tl" means : a 
reference to the notion Tl. 
To be short, we will abbreviate 

[(a)]* by (a)* and [(a)]* by (a)* . 
N means "integer". When the name of a variable V is prefixed by the name of a variable W 

which has been "declared" by a cf rewriting rule, then V has the same type as Wand needs 
no further declaration. 

1 These pictures have been created by a picture-editor (MacDraw). In principle a formal description can be 

derived from the pictures. This scheme of thought suggests the realization of automatic programming by 
drawing pictures. Work along this line of thought is done also by e.g. Lewerentz and Nag! (1984). They 

suggest the use of "programmed sequential graph grammars". Here, sequential means that rewriting steps are 

applied one after the other. In our approach no sequencing is needed, provided that enough context is given for 

disambiguation. 
2 One more reason was to explore the possibility of writing programs solely in the formalism of general 

rewriting rules and to discover which transduction formalism and shorthands are desirable in that respect. We 

hope to be able in the future to compile all the rules together and to produce in that way an implementation 

of the PT A with the same behaviour as the one that is implemented according to the procedural descriptions. 

At this moment this is inhibited by some sequential processing that is assumed within the processors PL and 

PR. 



92 

The notation A:(cx)* in a new configuration, where A is a nonterminal, means that the refer
ences within ex have to be taken within the scope of the rewriting of an A in the old configu
ration; this notation effectively denotes the rewriting of a list. 

About the procedural description 

In the procedural description we assume sequential processing. This will have some conse
quences for the correspondence with the non-procedural description. 
We prefer to write algorithms as short as possible. The following conventions are adopted: 
- "begin"'s and "end"'s are not explicitly denoted but are implied by indentations 
- each statement is preceded by a"-" 
- comments are written between"{" and"}" 
- if "stj" denotes a statement then the following list shows our notation for the usual con-
structs: 

(a) (type) procedure P(p1, P2, ... , Pi) b) - if exprl (c) - case varl of 

- Stm 
{endofP} 

- Stm 
- else 

- stk 

- al: - st0 

- a2: 

(d) - for i := 1 ton do 
- St0 

(e) - for all a in A do (t) - while exprl do 

4.2 Formal definition of a Pf A 

A PTA consists of a 11-tuple PTA= (L, Lo, R, F, C, PT, PC, PL, PR, PF, PP) where: 

- L is a dag with nodes of the type NODE; the type NODE is described hereafter by a de
scription grammar ; an alias for NODE is : RUNST A TE; Lo is the base node of L 
- R is a dag with nodes of the type NODE 
- F is a dag which forms the parse forest 
- C is a finite set of connectors between L and R; the type connector is described hereafter by 
a description grammar 
- PT is a processor for the PTA which activates PC 
- PC is a processor for connectors in C which activates PL and PR 
- PL is a processor which activates instructions in QL (to be defined hereafter) 
- PR is a processor which activates instructions in QR (to be defined hereafter) and which 
activates also PF 
- PF is a processor which activates instructions which operate on F 
- PP is a processor for the pruning of datastructures. 



93 

A PTA is driven by a 8-tuple P = (QL, QLo, QR, QRo, I, NI, T, ZCR) where : 

- QL is a finite set of states QLo, QL1, ... , QLn; QLo is the initial state; with each state is as
sociated a scanner-table; with each entry in the scanner-table is associated a program with in
structions from I; the structure of a program is described by a grammar 
- QR is a finite set of states QRo, QR1, ... , QRm; QRo as the initial state; QL and QR are 
disjunct; with each state is associated a scanner-table; with each entry in the scanner-table is 
associated a program with instructions from I; the structure of a program is described by a 
grammar 
- I is a set of instructions, used in the programs; they are written as rewritings of configura
tions of a PT A; we will define the instructions which are necessary for the interpretation of a 
U-grammar 
- NI is a finite set of nonterminal symbols and intermediate symbols 
- Tis a set of terminal symbols (not necessarily finite) 
- ZCR is a set of variable, cooperation and report symbols. 

The elements of P may be compiled from a U-grammar. Symbols are represented as inte
gers. The representation of symbols in NI and ZCR may not overlap with the integer repre
sentation of symbols in T. This has to be guaranteed by the compiler for a U-grammar. 

4.2.1 The structure of elements of configurations 

A configuration of the PT A will consist of the dags L and R, the connectors C and some 
pointers within these elements. In the following subsections we will define the structure of 
L, R and C. L and R will contain references to the parse forest F; F is therefore implicitly 
part of a configuration. We will discuss the structure ofF separately. 

4.2.1.1 Nodes of L and R 

Informal description of a node 

In the following figure we repeat from chapter 3 a part of the pictorial representation of a 
piece of a node with references to the parse forest. We add to it the name of the notions by 
which we will describe the different parts in the description grammar for a node. 

nodes 

'toos': 3 successor 
odes 

'poplist' with 2 items 

'infolist' with path ........-.nni 

in parse forest 

'actionlist' with 
kind_of_action=report, 
action_parts=3 

'action_header' with symbol "a" 



94 

Formal description of a node 

L :: (Lo, NODE_L*). 
R :: (Ro, NODE_R*). 
Lo I Ro I NODE_L I NODE_R :: NODE. 

NODE:: (refcount, ATOOS, statenr, output-number, APOPLIST, A ASSOC) . 
refcount I statenr I output-number:: N. 

{ in "toos" a list is maintained to all successors of this node, together with the symbol on 
which the shift to the successor occurred; the symbol is, in case of a nonterminal, accompa
nied by its parse(s), stored in infolist_symbol } 

TOOS :: (ANODE, symbol, Ainfolist_symbol) * . 
symbol:: N. 

POPLIST :: (refcount, item, Ainfolist) * . 
item:: N. 

{ in "poplist" all shifted items find their place, together with the partial parse(s) which they, 
up till now, covered } 

INFOLIST :: (refcount, returnstate, nonterminal, PATH, AVARIABLE_LIST, 
LEX_INFO)* . 

returnstate :: ANODE. 
nonterminal :: N . 

{ Retumstate is used during the parsing of a rhs; after recognition of the rhs retumstate is 
cleared; nonterminal is then filled by the nonterminal at the lhs (in case of a cf rule) or by the 
statenr (of QL) associated with the start of the lhs (in case of a cs rule). 
If the gramrnarrule was cf then this infolist will serve as the parse of the reduced nontermi
nal. It is then called "infolist_symbol". If the grammarrule was cs this infolist will serve as 
an association list for the processing of cover symbols at the lhs and will be attached to a 
node in QR. Path is a (partial) parse. In variable_list the values of variables are represented. 
Lex_info is used during the processing of a lexicon symbol. } 

LEX_INFO :: (place, is_an_entry). 
place :: a pointer in a trie-structured lexicon. 
is_an_entry :: lB\. 

{ We described the structure of a trie-structured lexicon on external memory in chapter 2. 
The structure of a pointer in such a lexicon ("place") is described in (Skolnik, 1982). The 
positions between characters in such a lexicon can be viewed as states and a "place" in a 
lexicon as a pointer to such a state. A "place" may be marked if from the start of the lexicon 
up to the place an entry can be spelled out. If that is the case the boolean "is_an_entry" will 
be set to true and the eventual information which is denoted with the entry in the lexicon is 
transferred to the variables in the infolist where lex_info is included. } 

VARIABLE_LIST :: (refcount, set_of_variables)*. 
set_of_variables :: ASET_OF _ VARIABLES. 

{ The set of variables may have multiple sets of values.} 

SET_OF _VARIABLES:: (refcount, variable_value)*. 
variable_ value :: AV ARIABLE_ VALUE. 



95 

{ A set_of_ variables contains a list of values of variables. The variables are identified by the 
sequence in which they are denoted in a rule for the first rime: during code generation this 
static sequence is known. } 

VARIABLE_ VALUE :: var_symbol. 
var_symbol :: (N)*. 

( A value of a variable consists of a string of O or more characters, represented as integers. } 

Graphical description of a node 

( • means : a list of these elements ) 

node 
ref count 
toos 
state 
output-number IN1 
poplist 
assoc 

toos 
dagnode_next 
symbol 
infolist s mbol 

node 

infolist 

lnfollst refcount IN1 
ref count item IN1 

infolist returnstate 
Ll!l!..Q.!Jlfil.__::t---7 nonterminal 

assoc path 
variable 
lexicon 

varlable_ll~t set of variables - - . 

IN1 

IN1 

path 

refcount IN1 variable val~e 

variable_valu ~var symbol Nl variables 

lex_lnfo 

pace 
is_an_entry 1B 

4.2.1.2 Parse forests and association lists 

Informal description 

pointer in a 
Irie-structured lexicon 

node 

In chapter 3 we introduced a condensed path within a condensed parse forest. A path may 
also be used for the evaluation of cover symbols. This will be exemplified in an example of 
the positioning within a parse on the next leaf symbol. 

Formal description 

F :: (ACTION_HEADER)* . 

ACTION_HEADER :: (refcount, chain, action_set, symbol, Ainfolist_symbol, Aactionlist). 
chain:: AACTION_HEADER. 
action_set :: N*. 
symbol:: N. 

{ An "action_header" is a node of a parse forest. In "acrion_header_chain" the default pointer 
to the next action_header is stored; alternatives to "action_header_chain" are stored in the al-



96 

temate_chain lists which belong to an infolist. In "actionlist" a deep-binding is possible for 
the reports and builds. In action_set the union is stored of all the kind_of_action's which are 
present in the actionlist (for the purpose of speeding up the retrieval of certain actions). } 

ACTIONLIST :: (refcount, kind_of_action, action_parts)* . 
kind_of_action :: N. 
action_parts : : N*. 

{ An actionlist contains the binding of actions; the art of the binding is given in 
"kind_of_action" } 

PATH:: (Aaction_header_start, Aaction_header_tail, chain_decision ). 
chain_decision :: AALTERNATE_CHAIN. 

{ Action_header_start and _tail point to the head and the tail of a condensed path in the for
est, which represents the current parse; alternate_chain specifies the exceptions to the path 
from action_header_start to action_header_tail. } 

ALTERNATE_CHAIN :: (refcount, Aaction_header, Aaction_header_altemate)*. 
{ Altemate_chain serves to specify the exceptions within a condensed path. If in a path 
"Aaction_header" is reached then "Aaction_header_altemate" has to be chosen as its succes
sor, rather then the "chain" which is noted with the "Aaction_header". See also the example. 
} 

ASSOC:: (refcount, Ainfolist_assoc, assoc_eat, assoc_eat_lh, assoc_eat_pdlist) * . 
assoc_eat I assoc_eat_lh :: AACTION_HEADER . 
assoc_eat_pdlist :: AACTION_PDLIST. 

{The datastructure ASSOC provides for the binding of a nonterminal with its covered parse 
tree. Assoc will be nil for L-nodes; for R-nodes it contains in "infolist_assoc" the parse for 
the rhs of the rule belonging to them; in this parse nonterminals may be found "associated" 
with their covered parse tree. A pushdown list is maintained in order to read in sequentially 
for a cover symbol at a lhs of a rule its covered terminals. The positions in 
"assoc_eat_pdlist" are related to the position of the lookahead symbol. The current symbol is 
pointed to by "assoc_eat", the next symbol (necessary for look-ahead calculations) by 
"assoc_eat_lh". In the general case nonterminals may cover more parse trees. In that case in
folist_assoc consists of more elements. "Assoc" in node_r_current will then contain more 
elements. See also the example.} 

ACTION_FDLIST :: (refcount, Aaction_header_dominator, current_tail, 
Aalternate_chain_current)* . 

current_tail :: AACTION_HEADER. 
{ An "action_pdlist" is a pushdown list for the remembrance of the position in a parse. It is 
used in a node of the R-dag when input is taken, during "lazy evaluation", of the associated 
parse tree of a cover symbol. In "current_tail" is stored the tail belonging to the nonterminal 
dominating this level. In "alternate_chain_current" is stored the altemate_chain which be
longs to the nonterminal dominating the current level. See also the example.} 



Graphical description. 
path alternate_chaln 
action_header_sta action_header refcount !iii 
action_header_tail action_header action_header 

._c_h_ai_n_=d_e_c_is_io_n __ j!--------1 action header alternate 

assoc 
act on p I st 

refcount !iii 
infolist_assoc - - info list refcount 

action_header_dominator assoc_eat - action_header 
current tail assoc_eat_lh - action_header 

assoc eat_pdlist alternate chain current 

di 

actlon_header 

refcount N 
chain - -action_header 
action_set NJ• 
symbol N 
infolist_symbol - -infolist 
actionlist -L actlonllst 

. 
ref count NI 
kind_of_action N 
action parts lili 

Example 

* 

NI 

action_header 
action_header 

-
----
----

action_header 
action_header 
alternate_chain 

97 

In chapter 3 we gave an example of the creation of a parse forest during the reading of the 
input. We repeat the last figure, which represents the parse forest for two parses, together 
with one of the reconstructed parse trees. 
Written in set-notation, the condensed parse forest is : 
((al, S3-1), (S3-l, SS-2), (SS-2, a6-2), (SS-4, a6-2), (a2-1, a3-2), (a3-l, a4-2), (a4-1, aS-
2), (aS-1, a6-2), (S6-5, £), (S6-6, £), (S4-2, aS-2)). Of interest for our example are the fol
lowing condensed paths: for S6-6: ((al, a6-2), (al, SS-4)), for SS-4: ((a2-l, aS-2), (a2-l, 
S4-2)) and for S4-2: ((a3-l, a4-2), e). 



98 

Situation after reading 'aaaaaal' 
Grammar: S'::S{R:4},). 

S::a,[S{R:1 }l*{R:2},a{R:3}. 

~-2 

~ 
R:3 

R:4 

~ 

-1 - 2 

~ 
- 1 , - 2 

~ 
R:3 R:3 

The parse for S6-6 was : S6-6 

~ 
ai S5-4 a6-2 

~ 
a2-1 S4-2 a5-2 

/'-... 
a3-1a4-2 

Consider the transduction grammar 
a, SA:: S {R:4},). 
S :: a, [S {R:1}]* {R:2}, a{R:3}. 

which contains the same rhs's as the grammar of the example. We suppose also 
- that 'aaaaaa)' is read from the input 
- that we are transducing according to the code for the lhs of the first rule 
- that we are treating the cover symbol SA 
- that we are generating symbols for SA according to the parse of S6-6 (in parallel symbols 
can be generated from the parse of S6-5, but we disregard this for the sake of this example) 
- that we generated already 2 ai's. 
In that case the following relevant datastructures are instantiated : 

R:4 
~ 
~Sx6x~ 



Representation of the assoc for S6-6 
after generating 'aa' and positioning 
on the lh symbol a3-1. 

infolist_symbol of S6 

action_header _start 

S3-1 a 

a3-

header start: 

taos 
statenr 
output-number 
poplist 
assoc 

infolist_assoc 
assoc_eat 
assoc_eat_lh 
assoc_eat_pdlist 

action_header_dominator 
current_tail 
cu rrent_alternate _chain 

99 

actionlist 

action list 



100 

4.2.1.3 Structure of connectors 

Informal description 

In chapter 3 we already introduced the role of a connector. The configuration of a connector 
indicates which nodes in L and R cooperate and where the next input symbol has to come 
from. 

In principle a connector is a 4-tuple (active nodes on L, projective nodes on L, active 
nodes on R, projective nodes on R). The names which are used in the description are re
spectively : "active_l", "local_projective_l", "active_r" and "projective_r". These names 
stem from their use in the shift instructions. active nodes project themselves, on the reading 
of an input symbol, to projective nodes. The number of possible projective nodes is limited 
by the number of compiled states in QL and QR. 

For the purpose of the treatment of reduce instructions a few more elements are 
added. Because of the different treatment of cf and cs reduce instructions a subdivision is 
made. After a cf reduce a connector is made with "leftsymbol_cf' filled with the reduced 
symbol at the lhs. The infolist which belonged to the reducing item at the rhs is then trans
ferred to "reduce_infolist" in the new connector. From the current connector are copied the 
local_projective_l, the active_r and the projective_r. This will be dealt with further in the 
discussion of the processing of connectors. 

Formal description of a connector : 

C :: (Co, CONNECTOR*). 
Co:: CONNECTOR. 

CONNECTOR ::(refcount, active_l, local_projective_l, leftsymbol_cf, reduce_infolist_l, ac
tive_r, projective_r). 

active_l I local_projective_l :: ANODESET. 
reduce_infolist_l I active_r :: AJNFOLIST. 
projective_r :: (leftsymbol_cs, local_projective_r*)*. 
local_projective_r :: AJNFOLIST. 
leftsymbol_cf I leftsymbol_cs:: N. 

NODESET :: (refcount, [ANODE]O . .IQLI ). 

Graphical description of a connector. 

connector 

ref count IN 
active_l 
local_projective_l 
leftsymbol_cf IN 
red uce_info I ist_l 
active_r 
projective_r 

nodeset 

info list 
info list 

projectlve_r 
leftsymbol_cs IN 
local_projective_r infolist 



101 

4.2.2 Processors and programs 

The processor PT for the PTA reacts on the input. The processor PC for connectors is acti
vated by PP and reacts on the configurationconfiguration of a connector of a connector. The 
processors PL and PR for programs which are associated with states in QL and QR are in 
their turn activated by PC. The individual instructions in I are activated by PL and PR and 
react on parts of a configuration of the PT A. The resulting operation does not interfere with 
other operations which may be initiated in parallel. 

4.2.2.1 Pf : processor for the Pf A 

Informal description of PT. 

PT operates in the environment in which the PTA is used. We may identify it with the pro
cess Gp into which a U-grarnrnar G will be transformed by the compiler. In section 2.2 we 
specified the input and output of this process as 

inllli1 QfilpY1 
the input string (tree) the lexicon 
the lexicon the result of the recognition : true or false 

the resulting parse 
the resulting output 
the resulting reports 
the resulting builds. 

The PTA generates output by the pruning of internal datastructures (to be discussed in sec
tion 4.2.2.6). There are no instructions for the explicit creation of output. Therefore the out
put-parameters will not be passed further to the other processes. 

Graphical description of PT. 

Nothing can be shown: before and after the process the PTA consists solely of the base 
node Lo. 

Procedural description of PT. 

Program Pf { processor for PT A } 
- initialise input and output 
- Lo := (1, 0, 1, 0, (0, 1, 0), 0) 
- active_l := {Lo} 
- proceeding_possible := true; accepted := false 
- while not end-of-file and proceeding_possible do 

- read syrnbol_of_text 
- global_projective_l := 0 
{ a queue of connectors is maintained } 
- queue_of_connectors := 0 
- for all L-nodes in active_! do 

- PL (node_lsymbol_of_text, global_projective_l, accepted) { configuration A } 
- while queue_of_connectors <> 0 

- take next connector 
- PC (active, global_projective_l, symbol_of_text, accepted) 
- transform connector 

- if global_projective_l = 0 



102 

- if transduction grammar 
- global_projective := {Lo} 

- else proceeding_possible := false 
- dispose active 
- active := global_projective 

- result_of_recognition := accepted 
{ end of PT} 

4.2.2.2 PC : processor for connectors 

Informal description of PC. 

Some configurations of a connector give rise to the activation of processors PL and PR. Af
ter these processors have finished the configuration changes. It is possible that the connector 
reaches a configuration which is not in a form that allows immediate further action of a 
processor. We call this an instable configuration. In that case the connector brings itself into 
an allowed configuration or it disappears. An allowed configuration may again give rise to 
the activation of processors, etcetera. 

Grlll?hical description of PC. 

General configuration of a connector 
on which processing Is based : 

nil 

ref_count 
<> = 

active_l 7 8 
local_projective_l 11 12 

leftsymbol_cf 9 1 O 
reduce_infolist_l 8 7 

·~··-· ,, 16 d•{Jl~rc, pr0Ject1ve_r 13 14 

local_projective_r: 



Transitions of Instable configurations of connectors 

nil 
<> = 

ref_count 
active_! 

local_projective_l 11 12 
leftsymbol_cf 

reduce _i nfol ist_l 
active_r 

projective_r 13 14 

A 

B 

ref count 
active_! 

local_projective_l 
leftsymbol_cf 

reduce_infolist_l 
active_r 

projective_r 

=> 

12 and no transduction: 0; 1 
11:A; nil 
12 and 13 and 

transduction : (1 }; nil 

13:B; nil 

( a refcount of 0 implies pruning) 
12 and 14 and transduction : global_projective_l := (1} 

Non-procedural description of PC. 

103 

The possible configurations of a connector, together with the source of the next input symbol 
and the resulting activation of the processors PL and PR are shown in the following table: 

left reduce 
sym info acti projec 
bol ;f list I ve r tive r action : 

symbol proces works on 
from sor nodes in 

A 0 nil nil nil input PL active - I 
B1 0 nil <>nil nil - - PR active r -
B2 0 nil nil <>nil projective r PL active I 

C 0 <>nil nil impossible: with a reduce_infolist_l a leftsymbol or 
a leftitemlist or both have to be oresent 

D1 0 <>nil <>nil nil - - PR active r -
D2 0 <>nil nil <>nil proiective r PL reduce infolist I 
E <>0 nil nil impossible : a leftsymbol_cf needs a reduce_infolist_l 
F <>0 nil <>nil imoossible: see E 
G,H <>0 <>nil . nil leftsymbol cf PL reduce infolist I 

After the processing of a set of nodes its reference in the current connector is cleared. 

During the processing of a connector new connectors may be created by instructions which 
operate on the L-dag. As a reference we indicate in a finite-state diagram the configuration of 
a connector which results from the execution of an instruction in the context of a connector. 
This reference can be reconstructed from the formal definition of the instructions. 
For each configurationconfiguration of a connector A, B, D, G, H of a connector we give, 
for each instruction LSTK (shift on the L-dag), LRDCF (cf reduce on the L-dag), LRDCS 
(cs reduce on the L-dag) the resulting connector. 



104 

LSTK 

A: 
leftsymbol_cf = O 
reduce_infolist_l = nil 
active_r = nil 

LRDCS 

G: 
leftsymbol_cf <> O 
reduce infolist I <> nil 
active_r = nil -

LSTK 

active_r <> nil 

LRDCF 

Procedural description of PC. 

Procedure PC (nodeset_active, nodeset_projective, symbol_of_text, accepted) 
- if leftsymbol_cf <> 0 { connector constructed because of reduction of a cf rule } 

- leftsymbol_cf_infolist := copy of reduce_infolist_l with returnstate cleared 
- for all L-nodes in reduce_infolist of connector do 

- if active_r = nil 
- PL (node_l, leftsymbol_cf, leftsymbol_cf_infolist, 

global_projective_l, accepted ) { configuration G } 
- else { active_r <> nil } 

- else 

- local_projective_l := 0 
- PL (node_l, leftsymbol_cf, leftsymbol_cf_infolist, 

local_projective_l, accepted ) { configuration H } 
- add to queue_of_connectors a new connector with 

- active_! := local_projective_l 
- active_r := active_r of current connector 

- for all node_rs in active_r { of connector} do 
- PR (node_r, projective_r) { execute program instructions for node_r.state 

and construct a projective_r, which contains all acting 
leftsymbol_cs's and their local_projective_r } 

- for all leftsymbol_cs in projective_r do 
- for all R-nodes in the local_projective_r of leftsymbol_cs do 

- if reduce_infolist_l { of connector} <> nil 
{ connector constructed because of reduction of a cf rule } 
- local_projective_l := 0 
- for all L-nodes in reduce_infolist_l { of connector} do 

- PL (node_l, leftsymbol_cs from projective_r, local_projective_l, accepted ) 
{ configuration D } 

- if no inhibition by a Boolean expression of variables 



105 

- add to queue_of_connectors a new connector with 
- active_l := local_projective_l 
- active_r := local_projective_r of projective_r 

- else {reduce_infolist_l = nil, the connector was created by a push instruction} 
- if local_projective_r <> nil {R stack still busy} 

- create local_projective_l 
- for all L-nodes in active_l do 

- PL (node_l, leftsymbol_cs from projective_r, local_projective_l, 
accepted) 

{ configuration B } 
- if no inhibition by a Boolean expression of variables 

- add a connector to queue_of_connectors with 
- active_l := local_projective_l 
- active_r := local_projective_r of projective_r 

- else {local_projective_r = nil, R stack empty, connect now to 
global_projective_l} 

- for all L-nodes in active_l do 
- PL (node_l, leftsymbol_cs from projective_r, global_projective_l, 

accepted ) { towards configuration A } 
{ end of PC} 

4.2.2.3 PL and PR : processors for nodes in L and R 

Informal description. 
The processors PL and PR are activated from a connector. PL will operate on the program 
code for a state in QL. The program code for all states in QL is described by "code_rhs". PR 
will operate on the program code for a state in QR. The program code for all states in QR is 
described by "code_lhs". 
The program code in total is described by "code". In the subroutines the code is sampled for 
the sub-formalisms which are denoted between the action-brackets and which are treated by 
the compiler. 

Non-procedural description. 

code :: [ reporting_subroutine ]* , [ variable_subroutine ]* , 
[ receive_subroutine I send_subroutine, [ closure_subroutine] ]* , 
[ code_lhs ] , code_rhs . 

4.2.2.3.1 PL : processor for nodes in L 

Informal description of PL. 
PL processes a program which is associated with a compile-state for the L-dag and a 
symbol. The allowed sequence of instructions is described by a cfg. 
"Right_code" describes for each compile-state the code ("rightstate_code"). This code is 
pointed to by two tables, one for terminals and one for nonterminals and intermediate sym
bols which constitute the "scanner-table". The first table consists of triplets (lrange, hrange, 
jump_address). If lrange <= symbol <= hrange then the code_per_symbol is selected which 
is addressed by jump_address. The second table consists of duplets (nonterminal_nr, 
jump_address). This table will be selected when the input-symbol is not a terminal. 



106 

During the processing of code_per_symbol the instructions have access to the parameters 
which are supplied in the configuration ("PARAMS"). These parameters may be altered by 
the instructions. The instructions themselves may have parameters which are provided within 
the code. In the following table we mention the PARAMS- and instruction-parameters. 

instruction with 
paramater(s) 

TOP item_cur,ltem_proj 
LSTI< statenrj 
PLRDC leftsymboLd 
LRDCF leftsymboLci 
LRDCS statenr_r 
SRL reportnr 

'h' PARAMS narameters w~ 1n : 
"node_! "infolist_ 

curren ltemE symbc symbol 

in out in in 
n in in 

i,, out n in 
in 
in 

in, out 

'infolist_former node_! 
_and_current projective 

out 
in out 
in, out 

The instructions within l_state_code start with an optional instruction LSTK and an obliged 
instruction TOP. The last one has as a parameter the current item. With this item is stored an 
infolist with references to a condensed path in the forest and references to variables and the 
lexicon. The results of succeeding operations on the forest, the variables and the lexicon are 
stored according to these references. After these operations the shift and reduce instructions 
are executed on the L- and R-dag. 

Graphical description of PL. 
It is not appropriate to show the sequential organization of PL in a graphical form. But we 
will show the organization of the scanner table by means of an example. 



points to start of scanner table for terminals 
points to start of scanner table for nonterminals 

'-H---t I range 

107 

123 
123 

12 

28 

code 

code 

code 

code 

hrange 

jump-address 

rest-class 

nonterminal 

nonterminal 

Non-procedural description of PL. 

! subroutines for reporting ! 
reporting_subroutine:: [ report_code ]+, RTN. 
report_code :: SRL, reportnr. 

! subroutines for operations on variables ! 

scanner table 
for terminals 

scanner table 
for nonterminals 

code for range of terminals 101-107 

code for terminal 123 and for 
the rest-class 

code for nonterminal 12 

code for nonterminal 28 

variable_subroutine :: [assignment; equal_test; inequal_test ]+, RTN. 
assignment :: expression, ASS, variable_name. 
equal_test :: left_expression, right_expression , TEQ . 
inequal_test :: left_expression, right_expression , TNE . 
left_expression :: expression. 
right_expression :: expression . 
expression :: PSH , varorlit_name , [ CAT , varorlit_name ]* . 

! subroutines for transport of variables! 
send_subroutine :: ALL, n_variables, [ SND, variable_name ]*, RTN. 
closure_subroutine :: [ CLI , closure_item , send_call ]+ , RTN . 

107 



108 

! subroutines for lexicon interface ! 
lexl_subroutine :: [ LEXST I LEXINC ]1, RTN. 
lex2_subroutine :: LEXINC, LEXRDC, RTN. 
receive_subroutine :: [ RCV , variable_name ]+ , RTN . 

! ccxie for L ! 
code_rhs :: [ l_state_code ]+. 
l_state_code :: [ leftsymbol_subroutine I list_subroutine ]* , 

[ code_per_symbol ]+ , jump_list , 0 . 
jump_list :: terminaljump_list, [ nonterminaljump_list] I 

nonterminaljumplist . 
terminaljump_list :: [ lrange, hrange, jump_address ]+. 
nonterminaljump_list :: [ jump_address , [ nonterminal_nr ]+ ]+. 

ccxie_per_symbol :: [ LSTK, statenr_l] , [ list_of_instructions ]* , EXT I 
NSTK , statenr_l, EXT . 

list_of_instructions :: TOP , from_goto_action , [ closure_call] , [ instruction] , 
[ list_of_instructions ]* I 

TOP , from_goto_action , leftsymbol_call, I 
leftsymbol_call I list_call. 

from_goto_action :: from_goto_pair, [ reporting__call ]* 
closure_item_current, item_projective, lexl_call I 
item_current, item_projective , lex2_call . 

from_goto_pair :: closure_item_current, item_projective, [ALL, n_variables], 
[ [variable_call ]*, receive_call] I 

item_current, item_projective , [ receive_call] . 
instruction :: PLRDC, leftsymbol_cf I LRDCF, leftsymbol_cf I LRDCS , 

statenr_r I ACC . 
list_subroutine :: [ list_of_instructions ]+ , RTN. 
leftsymbol_subroutine :: PLRDC, leftsymbol_cf, [ list_of_instructions ]+, RTN. 

leftsymbol_call I list_call I action_call I closure_call I variable_call I reporting__call I 
send_call I receive_call I lexl_call I lex2_call :: CAL ,jump_address. 

jump_address I item_current I item_projective I reportnr I statenr_r I statenr I 
leftsymbol_cf I nonterminal_nr I variable_name I n_ variables :: pos_integer. 

closure_item_current :: neg_integer. 
lrange I hrange :: 0 .. 255. 
varorlit_name :: variable_name IO! if symbol last-read! I 

neg__integer ! if literal ! . 

Procedural description of PL. 

The procedural description of the processor PL follows the grammar for l_state_code in a 
straightforward manner. A program for PL can be derived also in an automatic way by gen
erating a recognizer for this grammar. 

Procedure PL (ncxie_l_current, symbol, infolist_symbol, projective_!, accepted) 
- program_counter := scanner(ncxie_l_current.statenr, symbol) 
- command := program_ccxie(program_counter) 



109 

- if command= LSTK 
then - projstatenr_l := program_code(program_counter+ 1) 

- push(node_l_current, node_l_projective, statenr_l_projective, projective_}, symbol, 
infolist_symbol ) 

- program_counter := program_counter+2 
- exit := false 
- while not exit do 

- command := program_code(program_counter) 
- case command of 

- CTOP : TOP : - LIST_OF _INSTRUCTIONS(node_l_current, node_l_projective, 

-CAL: 

-RTN: 
-EXT: 

{ end of PL} 

symbol, infolist_symbol, accepted) 
- push_address(program_counter+ 1) 

- program_counter := program_code(program_counter+2) 
- program_counter := pop_address 
- exit := true 

Procedure LIST _OF _INSTRUCTIONS(node_l_current, node_l_projective, symbol, in
folist_symbol, accepted) 
{ the program_counter is positioned at the instruction (C)TOP } 
- item_current_is_a_closure_item := program_code(program_counter) = CTOP 
- item_current := program_code(program_counter+ 1) 
- item_projective := program_code(program_counter+2) 
- infolist_former_and_current := PF(node_l_current, item_current, program_counter) 
- command:= program_code(program_counter+2) 
- while command = CAL 

- push_address(program_counter+2) 
- program_counter := program_code(program_counter+ 1) 
- command := program_code(program_counter) 

- case command of 
-PLRDC: - leftsymbol_cf := program_code(program_counter+ 1) 

- PSEUDO_CF _REDUCE(leftsymbol_cf, 
infolist_former_and_current); 

- program_counter := program_counter+2 
-LRDCF: - leftsymbol_cf := program_code(program_counter+ 1) 

- CF _REDUCE(leftsymbol_cf, infolist_former_and_current, 
connector.projective_}, local_projective_r) 

- program_counter := program_counter+2 
-LRDCS: - statenr_r := program_code(program_counter+ 1) 

- CS_REDUCE(statenr_r, infolist_former_and_current, 
connector.projective_}, local_projective_r) 

- program_counter := program_counter+2 
-LEXST: - initialise the lexiconpointer of infolist_former_and_current on the 

start of the lexicon 
-LEXINC: - increment the lexiconpointer of infolist_former_and_current 
-LEXRDC: - create a connector with an infolist which contains in the variables 

categories from the lexicon 
-ACC: - ACCEPT(infolist_former_and_current) 

- accepted := true 
- program_counter := program_counter+ 1 

- otherwise: - PUSH_ITEM(node_l_current, node_l_projective, 



110 

item_current, item_projective, infolist_former_and_current) 
- while program_code(program_counter) = RTN 

- program_counter := pop_address 
- infolist_former_and_current.refcount := 0 
{ endofLIST_OF_INSTRUCTIONS} 

Procedure PSEUDO_CF _REDUCE (leftsymbol_cf, infolist_symbol) 
- denote leftsymbol_cf in all elements of infolist_symbol 

{ because all elements of infolist_symbol have to be treated with the same code we 
remember the program_counter } 

- program_counter_saved := program_counter 
- while infolist_symbol <> 0 do 

- node_l_current := infolist_symbol.returnstate { perform the remaining instructions 
as if we were in the returnstate } 

- infolist_symbol.returnstate := 0 { the returnstate is not longer needed } 
- program_counter := program_counter_saved 
- exit := false 
- while not exit do 

- command := program_code(program_counter) 
- case command of 

-CTOP:TOP: - LIST_OF _INSTRUCTIONS (node_l_current, 
node_l_projective, symbol, infolist_symbol, accepted) 

-CAL: - push_address(program_counter+ 1) 
- program_counter := program_code(program_counter+2) 

-RTN: - program_counter := pop_address 
- otherwise : - exit := true 

- save_next := infolist_symbol.next 
- infolist_symbol.refcount := 0 { this element of infolist_symbol may be pruned } 
- infolist_symbol := save_next 

{ end of PSEUDO_CF _REDUCE } 

4.2.2.3.2 PR : processor for nodes in R 

Informal description of PR. 

Analogous to PL, the processor PR processes instructions for the R-dag. In principle the 
two processors can be the same. However, because of the simpler formalism at the lhs of a 
rule in a CT-grammar PR can be simplified. 

PR processes a program which is associated with a compile-state for the R-dag and a sym
bol. The difference with PL is that the symbol is not read from input nor originates from a cf 
reduction (and is compared with the symbols in the code) but that the symbol will be pro
vided by the code (with the instruction RGTS, or, in the case of a cover symbol, by an assoc 
list). The allowed sequence of instructions is described by a cfg for "code_rhs". It contains 
the code ("r_state_code") for each compile-state. 

During the processing of r_state_code 3 global references to substructures are maintained. 
They may be altered by the instructions. The instructions themselves may have parameters 
which are provided within the code. In the following table the global- and parameter-vari
ables are mentioned. 



parameters wtthin Params : 

instruction with parameter(s): 

RGTS leftsymbol_cs 
RGTSC leftsymbol_cs 
RSTK statenr _r _projective 
RRDC 

Non-procedural description of PR. 

code_rhs :: [ r_state_code ]+ . 

node_r_ 
current 

in 
in 
in 

in 

r_state_code:: ROTSC, symbol I leftgotolist I leftreducelist. 
leftgotolist :: ROTS, leftsymbol_cs, RSTK, statenr_r . 
leftreducelist:: ROTS, leftsymbol_cs, RRDC . 
symbol :: ascii_value I nonterminal_nr. 

Procedural description of PR. 

Procedure PR (node_r, projective_r) 
- exit := false 
- if node_r.assoc.assoc_eat <> 0 

- leftsymbol_cs := next leave symbol of node_r.assoc 

projective _r _ 
elem 

out 
out 
in, out 
in.out 

- add to projective_r a projective_r_eleml with leftsymbol_cs 
and as local.,..projective_r an infolist with node_r 

- exit := true 
- while not exit 

- command := program_code(program_counter) 
- case command of 

- RGTS: - leftsymbol_cs :=program_code(program_counter+l) 

111 

- add to projective_r a projective_r_eleml with only leftsymbol_cs filled in 
- program_counter := program_counter + 2 

- RGTSC : - nonterminal := program_code(program_counter+ 1) 
- lookup nonterminal in assoc.infolist_assoc and return its infolist_symbol 
- position assoc_eat on the first leave in infolist_symbol 
- program_counter := program_counter + 2 

- RSTK : - projstate_r := program_code(program_counter+ 1) 
- create a new node_r 
- add an element to the local_projective_r of projective_r_eleml 

with node_r filled in 
- program_counter := program_counter + 2 

- RRDC : - add poplist of node_r to local_projective_r 
- program_counter := program_counter + 1 

- EXT : - exit := true 
{ end of PR} 



112 

4.2.2.4 PF : processor for the parse forest 

Informal description of PF. 
The processor PF processes instructions which have an effect on the construction of the 
parse forest. These instructions are usually generated when a parse tree has to be built, when 
an association list has to be kept for cover symbols or when static information has to be 
stored temporarily in the forest, waiting for the pruning processor PP to release them to an 
output stream. 

Procedural description of PF. 

Infolist function PF(node_l_current, item_current, program_counter) 
- if item_current present 

- infolist_former_and_current := the infolist of the poplist of item_current 
in node_l_current 

- else (no item_current, so a closure-item which was not already present) 
- infolist_former_and_current := a new infolist with node_l_current as returnstate, rest nil 

- program_counter := program_counter+ 3 
- new_actionheader := ACTIONS_FROM_PROGRAM(program_counter, 

symbol, infolist_symbol) 
- A TT ACH_ACTIONHEADER_ TO_INFOLIST (new _actionheader, 

infolist_former_and_current) 
{ end of PF} 

Actionheader function ACTIONS_FROM_PROGRAM(program_counter, 
new_action_header, symbol, infolist_symbol) 

- if action-instructions are present, or if transduce or if infolist_symbol <> nil 
or if build_parse tree 

- create new _action_header with symbol and infolist_symbol 
- while program_code[program_counter] = SRL 

- reportnurnber := program_code(program_counter+ 1) 
-ADD_ACTION(new_action_header, reportnumber) 
- put kind_of_action (= report, or other) in the set 

new _action_header" .kinds_of_actions 
- construct an actionlist-element, pointed to by new_actionlist, 

with the action-information 
- insert new_actionlist in new_action_header".actionlist 
- program_counter := program_counter+2 
- actions_from_program := new _action_header 

- else actions_from_program := nil 
{ end of actions_from_program } 

Infolist function A TT ACH_ACTIONHEADER_ TO_INFOLIST (new _actionheader, 
from_infolist) 

- make a copy of the infolist, pointed to by from_infolist, and call it 
infolist_former_and_current 
(the chain_decisionlist need not to be duplicated, only the pointer to it) 

- if new _actionheader <> NIL (new actions) 
- for all tail_action_headers in the elements of infolist_former_and_current do 

- iftail_action_header".chain = nil 
- tail_action_header".chain := new _actionheader 



- else 
- construct an alternate_chain with action_header := tail_action_header 

and alternate_chain := new _action_header 
- make a copy of the list pointed to by element".chain_decision and 

call it copy _chain_decision 
- element".chain_decision := copy_chain_decision II alternate_chain 

- tail_action_header := new _actionheader 
- (if no new action there is nothing to change in infolist_former_and_current) 

attach_actionheader_to_infolist := infolist_former_and_current 
{ end of attach_actionheader_to_infolist } 

4.2.2.5 Proc~ors for individual instructions in PL, PR and PF 

Informal i:eneral description. 

113 

The instructions in set I operate in an environment provided by the nodes which are refer
enced by a connector. 
The working of an instruction is described by the rewriting of a configuration: 

CONFIGURATION2 :: CONFIGURATIONl. 

The description-grammar for a configuration is : 
CONFIGURATION:: (connector*, L, R, PARAMS). 
PARAMS :: "NODE, item_current, item_projective, symbol, "infolist_symbol, 

current parse. 
item_current I item_projective I symbol:: N. 
current_parse :: "INFOLIST. 

The whole context for the applicability of an instruction is part of a configuration. The rele
vant parts of the context are specified by writing patterns. 

Instructions are grouped within a program.The allowed sequences of instructions within a 
program are described by the grammars which are denoted with the processors PL and PR. 
Instructions will usually operate in the context of other instructions, as described in the 
grammar. The context is then passed over by the parameters in PARAMS. 

In chapter 3 we recapitulated the 4 instructions which may be contained in a LR-table: shift, 
reduce, accept and error. In chapter 5 and 6 we will show how the LR-table construction al
gorithm can be extended for the unifying formalism in order to generate the following in
structions. 

There are 3 instructions which only effect the execution order of the code : 
CAL , jump_address call a subroutine at jump_address; a subroutine contains 

RTN 
EXT 

code which, because of space-efficiency, is shared 
return from a subroutine 
exit the code for a compiled state 

There are 3 instructions which only effect the (concurrent) building of parse trees and the 
storage of information in it : 
(C)TOP, item_current, item_projective proceed with alternative paths of code: 

get current parse for item_current; 
CTOP indicates that item_current 
is a starting item 



114 

PLRDC, leftsymbol_cf "pseudo-reduce of a symbol at a lhs" : put leftsymbol_cf 
on top of the current parses 

SRL , reportnr "supply a report to an actionlist" : add reportnr to parse. 
Similar instructions like SRL may be supported, like the build instruction or other output in
structions which store their result temporarily in the parse forest, where they wait for their 
final release to their associated output-stream by the pruning processor PP. 

There is 1 instruction which signals the acceptance of a sentence : 
ACC accept 

There are 2 instructions which provide a symbol from a lhs : 
RGTS, leftsymbol_cs get a symbol from the R-dag 
RGTSC, leftsymbol_cs get a symbol from the R-dag, this symbol is a cover symbol 

There are 6 instructions which react on a symbol originating from the input-structure : 
LSTK, statenr_l shift on the L-dag 
RSTK, statenr_r shift on the R-dag 
LRDCF, leftsymbol_cf cf-reduce on the L-dag 
RRDC reduce on the R-dag 
LRDCS, statenr_r cs-reduce on the L-dag 
NSTK, statenr_l shift, but without the creation of a new node 

( with this instruction it is possible to simulate a FSA) 

There are 5 instructions with which operations on variables are executed : 
PSH variable_name push variable or literal onto the stack 
CAT variable_name concatenate a variable with topmost element; replace top by 

ASS variable_name 
nQ 
1NE 

resulting element 
assign topmost element to variable 
test equality of 2 topmost elements 
test inequality of 2 topmost elements 

There are 4 instructions with which the transport of variables to closure items and from re
duce items are executed : 
ALL nr_of_ variables reserve room for (integer) number of variables 
RCV variable_name receive the value of a variable from an infolist_symbol in the PTA 
SND variable_name send the value of a variable to the formal parameter of a closure item 
CLI integer create a starting item with this number 

There are 3 instructions for the handling of a trie-structured lexicon : 
LEXSf initialise the search for an entry in the lexicon at the start 

of the lexicon 
LEXINC 
LEXRDC 

increment the pointer in the lexicon 
perform a reduce after an entry is found in the lexicon 

There are 2 instructions for skipping in the input : 
SKPTR, item_current, item_projective skip in the input up to the ")" of the 

current tree-level 
SKP integer skip forward (integer> 0) or backward (integer < 0) 

in the input 
These skip-instructions will not be discussed further. 



Miscellaneous instructions CAL , RTN, EXT and ACC 

Informal description. 

115 

The program code for a symbol in a compiled state is ended by the instruction EXT. The 
program code may contain subroutines which are called by the instruction CAL and which 
are ended with the instruction RTN. The instruction CAL has as its argument an address in 
the code. The instruction ACC signals the acceptance of an input. It is up to the implementer 
which action has to be taken on this instruction : to continue with alternative recogni
tion/parse paths or to stop processing. In the case of transduction grammars no ACC in
struction is present in the code. 

Non-procedural description. 
It is impractical to describe the instructions CAL, RTN, EXT in a non-procedural way. On 
this low level of processing we assume sequential processing. The instruction ACC signals a 
possible end of all processing within the PT A. 

Procedural description. 
The procedural description of these instructions is contained in the procedural description of 
PL. 

Instruction (C)TOP 

Informal description. 

The instruction TOP precedes other instructions in order to provide for a reference to a partial 
parse. Is has 2 arguments : item_current and item_projective. 
From the current runstate it takes (all) the infolist(s) which belong(s) to item_current and 
adds to it (them) an actionheader with the current symbol and its associated infolist_symbol 
in order to extend the parse forest. If there is more than one infolist then the actionheader will 
be connected to the tails of all the infolists. After the instructions TOP and CTOP instructions 
for actions may follow which have to be attached to the created actionheader. If a non-null 
item_projective is provided then a instruction LSTK has to follow. (There may follow many 
reduce instructions but only one instruction LSTK.) 
The instruction CTOP operates like TOP, but item_current is a closure-item and will not be 
present in the poplist of node_l_current. 



116 

Graphical description. 

Before instruction : TOP item_current1 item_projective1 
Params : in: node_l_current1, symbol1, Ainfolist_symbol1; 

out: item_current1, item__projective1, Ajnfolist_former_and current1. 
configuration1 :: (connectors1 ,L 1,R1 ). 

node_l_current1: 

refcount 
toos1 
statenr 
output-number1 
poplist1 
assoc 

returnstate1 

After instruction 

actionlist2 
...._ ___ infolist_symbol2 

------- chain1 

configuration2 : (connectors1 ,L2,R1 ). 

node_l_current: 
refcount 
toos1 
statenr 
output-number1 
poplist2 
assoc 

Itemcu 
L..::::t--------1 rent1 

V 1 11 

action_header _start1 action_header_tail 1 

actionlist2 
.... --- infolist_symbol1 

infolist_symbol2 ..._ ______ chain1 

chain_decision 



Non-procedural description. 

Before instruction: TOP item_currentl item_projectivel 
Paramsl : in: Anode_l_currentl, symboll, Ainfolist_symboll; 

out: item_currentl, item_projectivel, Ainfolist_former_and_currentl. 

configuration! :: (connectors 1, Ll, Rl). 
L1 :: (-, node_l_currentl, -). 
node_l_currentl :: ( -, Apoplistl, -). 
poplistl :: (-, (item_currentl, I), -). 
I :: [Ainfolistl]+. 
infolistl :: (-, Aaction_header_taill, -) . 
action_header_taill :: ( [ 5: 016: chainl]l, -) . 

configuration2 :: (connectors 1, L2, Rl). 
L2 :: (-, node_l_current2, -). 
node_l_current2 :: ( -, Apoplistl, -). 
poplistl :: (-, (item_currentl, I:[infolist2]+), -) . 
infolist2 :: (-, Aaction_header_tail2, -) . 
action_header_tai12 :: ( [5: action_header_tail2 I 6: chainl]l, -) . 
infolist_former_and_currentl :: 1:(-, Aaction_header_tail2, -)+ . 
chain_decision2 :: chain_decisionl, [ 6: (Aaction_header_taill, 

Aaction_header_tail3)] 1 . 
action_header_tail3 :: (0, 0, symboll, Ainfolist_symboll, 0). 

Procedural description. 

The procedural description is contained within the processor PF. 

Instruction LSTK 

Informal description. 

117 

The instruction LSTK, with parameter 'statenr', performs a push on the L-dag from a run
state in an active nodeset to a runstate in a projective nodeset with compile-number 'statenr'. 
If such a runstate is not present then it has to be created. 



118 

Graphical description. 

Before instruction : LSTK statenr_l_projective (=p1) 
Params : in: Anode_l_current, symbol1, Ainfolist_symbol1, 

Ainfolist_former_and_current1; out: Anode_l_projective 
configuration1 :: (connectors1 ,L 1,R1 ). 

node_l_current: 

ref count 
toos1 
staten r 
output-number1 
poplist1 
assoc 

1 :node_l_projective 
refcount 
toes 
statenr 
output-number2 
poplist4 
assoc 

L1 

'item 
projective1 

projective_! 

8: 

7:active_I1 I 8:nil 

11 :local_projective_l 
112:global_projective_l 

7:nilI8:reduce_infolist_l1 

connectors 1 : 

ro · active 1 

infolist +1 
0 



After instruction: 
configuration2 : (connectors1 ,L2,R1 ). 

L2: 

node_l_current: 
refcount conne tors1 

toos1 
statenr 
output-number 
poplist1 
assoc 

1: node_l_projective2: 
2: node_l_projective3: 
refcount 
toos 
statenr 
output-number 
poplist4 
assoc 

symbol1 

infolist_symbol1 

1: node_l_projective2 
2: node_l_projective3 

'item_ item_ 
projec 
tive1 

'item_ 
projec 
tive1 

i nfol ist_forme r _and_current1 

Non-procedural description. 

Before instruction: LSTK statenr_l_projective (=pl) 
Paramsl : in: "node_l_current, symboll, "infolist_symboll, 

"infolist_former_and_currentl; out: "node_l_projectivel. 

configuration! :: (connectors 1, Ll, Rl). 
L1 :: (-, node_l_current, -, [node_l_projectivel], -). 
connectors::(-, connector_current, -). 
connector_current :: (-, local_projective_l, -). 

119 

local_projective_l :: ( [ 1: -, "node_l_projectivel, - I 2: [(O, pl', output-numberl, 
"poplist, 0)]*$1 ] 1 ). 



120 

node_l_currentl :: ( toosl, -). 
node_l_projectivel :: (-, "poplist4, -). 
poplist4 :: [ 3: popelementsl, (item_projectivel, ["infolist]+$2), popelements2 I 

4: popelements 1] 1. 
popelements :: [(pl', "infolist)]*. 

configuration2 :: (connectors 1, L2, Rl). 
L2 :: (-, node_l_currentl, -, [ 1: node_l_projective2 I 2: node_l_projective3]1, -) . 
node_l_currentl :: ( toos2, -). 
toos2 :: toosl, ([ 1: "node_l_projectivel 12: "node_l_projective3]1, 

symboll, "infolist_symboll) . 
node_l_projective2 :: (-, "poplist5, -) . 
poplist5 :: popelementsl, (item_projectivel, [3: $2, 

"infolist_former_and_currentl), [3:popelements2] 1 . 
node_l_projective3 : (0, pl, 0, "poplist3, 0). 
poplist3 :: (item_projectivel, "infolist_former_and_currentl). 
local_projective_l :: ( [l: -, "node_l_projectivel, - I 2: $1, "node_l_projective3 ]1 ). 

Procedural description. 

Procedure PUSH(node_l_current, node_l_projective, statenr_l_projective, projective_!, 
symbol, infolist_symbol ) 

- if node_l_projective not already present in projective_! : create one 
- if link not already present: create link between node_l_current and node_l_projective 
{ end of push } 

The execution of the following procedure is implied by the processor PL when the instruc
tion LSTK is executed : 

Procedure PUSH_ITEM(node_l_projective, item_current, item_projective, 
infolist_former_and_current) 

- if item_projective present in node_l_projective 
- get from node_l_projective the reference to the infolist of the poplist of item_projective; 

call it popinfo 
- else (no item_projective) 

- construct a poplist-element for item_projective in node_l_projective; its infolist (reference 
popinfo) is nil 

- merge infolist_former_and_current into popinfo 
{ end of push_item } 

Instruction PLRDC 

Informal description. 

"Pseudo left symbol" : complete a partial sub-parse tree by filling in the reducing leftsym
bol_cf and removing runstate. Replace in Params the current runstate by the returnstate. This 
instruction is used during the building of a parse tree when a unit reduction is performed. 

Graphical description. 

Not necessary. 



121 

Non-procedural description. 

PLRDC leftsymbol_cfl. 
Params: in: Anode_l_current, symboll, Ainfolist_symboll, Ainfolist_former_and_currentl. 

out: returnstatel, leftsymbol_cfl, Ainfolist_former_and_currentl. 

Before instruction: 
infolist_former_and_currentl : : (retumstate 1, 0, 0, -). 

After instruction: 
infolist_former_and_currentl :: (0, leftsymbol_cfl, Ainfolist_symboll, -). 

Procedural description. 

The procedural description is contained within the processor PL. 

Instruction LRDCF 

Infonnal description. 

This instruction performs a cf reduce on the L-dag. It creates a new connector with in
folist_former_and_current which provides for the retumstates and the associated parse trees. 

Graphical description. 

Before instruction : LRDCF leftsymbol_cf1 
Params : in: "infolist_former_and_current1 
configuration1 :: (connectors1 ,L 1,R1 ). 

connector_current: 

projective_r1 

infolist_former_and_current1: 



122 

After instruction : 
configuration2 : (connectors2,L 1,R1 ). 

conne tor_current: 

reduce_infolist_I2 

{copy of} 
infolist_former_and_current1: 

leftsym 
a1 bol_cf1 a2 a3 a4 a5 as -

Non-procedural description. 

Before instruction : LRDCF leftsymbol_cfl 
Params : in: "infolist_former_and_currentl 

configuration! :: (connectors 1, LI, RI) . 
. connectors!::(-, connector_current, -). 
infolist_former_and_currentl :: (*, 0, -)+. 
connector_current :: (-, local_projective_ll, -, active_rl, projective_rl). 

After the instruction : 
configuration2 :: (connectors2, LI, RI). 
connectors2 :: connectors I II connector_new. 
connector_new :: (0, local_projective_ll, leftsymbol_cfl, "infolist_former_and_current2, 

0, projective_rl). 
infoli~t_former_and_current2 :: infolist_former_and_currentl :(*, leftsymbol_cfl, -)+. 

Procedural description. 

Procedure CF _REDUCE(leftsymbol_cf, infolist_former_and_current, 
connector_current) 

- denote leftsymbol_cf in all elements of infolist_former_and_current 
- create a new connector with leftsymbol_cf, infolist_former_and_current and projective 

of connector_current 
- insert connector in connector queue 
{ end of cf_reduce } 



123 

Instruction LRDCS 

Informal description. 

This instruction performs a cs reduce on the L-dag. It creates a new connector with in
folist_former_and_current which provides for the returnstates and the associated parse trees. 
Moreover it contains a pointer to a new active_r which contains a newly created node in the 
R-dag which is connected as a gotostate to all the R-nodes in the current active_r. 

Graphical description. 

Before instruction : LRDCS statenr_r 
Params1 : Ainfolist_former_and_current1 
configuration1 ·· (connectors1 ,L 1,R1 ). 

connectors 1 : 
R1 

conne tor_current: 

local_projective_l 1 

active_r 
node_r _current 

node_r_current: 

refcount r 
toos1 
statenr 
output-number1 
poplist1 
assoc 



124 

After instruction : 
configuration2 : (connectors2,L 1,R2). 

connectors2 : 

conn ctor_curren.,.1 ... : ___ .....;.Raa2;...;..: ---------, 

local_projective_l 

local_projective_l 

reduce _info I ist_l 1 

node_r_projective 

ref count 
toos1 
statenr 
output-number1 
poplist1 
assoc 

node_r_current: 

refcount 

infonst former and current1 

0 a1 

nr - r a1 

0 

toos1 
statenr 
output-number1 
poplist1 
assoc 

~ tj ~-;~deJ_p,oJ,otl,o 

Non-procedural description, 

Before instruction : LRDCS statenr_r 
Paramsl : "infolist_former_and_currentl 

configuration! :: (connectors 1, Ll, Rl). 
connectors!::(-, connector_current, -). 
infolist_former_and_currentl :: ("D1, 0, -)+. 
connector_current ::(*, local_projective_l, *, reduce_infolist_ll, -). 

a2 a3 a4 

a2 a3 a4 a5 



node_r_currentl :: (n, toosl, -). 

after the instruction : 

configuration2 :: (connectors2, Ll, R2, Paramsl). 
connectors2 :: connectors 1, connector_new. 
R2 :: Rl, R_project. 
connector_new:: (0, local_projective_l, 0, Ainfolist_former_and_current2, active_r2, 0). 
active_r2 :: AR_project. 
R_project :: (0, 0, statenr_r, 0, Apoplistl, Ainfolist_former_and_currentl). 
poplistl :: (0, Ainfolistl). 
infolistl :: (Anode_r_current, 0, 0, 0, 0, 0, 0 ). 
infolist_former_and_current2 :: infolist_former_and_currentl:(ADl, statenr_r, -)+. 
infolist_former_and_current3 :: infolist_former_and_currentl:(0, 0, -)+. 
node_r_currentl :: (n+l, toos2, - ). 
toos2 :: toosl, ( 0, 0, R_project). 

Procedural description. 

Procedure CS_REDUCE (statenrJ, infolist_former_and_current, 
connector_current ) 

- notestatenr_r in all elements of infolist_former_and_current 
- create a new node_r and link it to all the node's of the active_r of connector_current 
- create a new connector with active_r of connector_current and the rest as above 
- insert connector in connector-chain 
{ end of cs_reduce } 

Instruction RGTS 

Informal description. 

125 

The instruction RGTS ("get a symbol from the R-dag") has as its argument the symbol on 
which an action can occur in the current R-node. That node is contained in the set active_r, 
which itself is contained in the current connector. 
RGTS (or RGTSC) is the first instruction which is activated by the processor PR. It pre
pares an element of the projective_r of the current node_r by filling in the leftsymbol_cs 
which is provided as an argument of RGTS. The next instructions RSTK and/or RRDC will 
add to this element a (list of) projective and/or return-nodes which may serve as a new ac
tive_r. 
We present the working of the instruction for the general case that more then one symbol can 
be generated for a R_state. 



126 

Graphical description. 

Before instruction : RGTS leftsymbol_cs1 
configuration1 : (connectors1 ,L 1,R1 ,Params). 

Params : out: projective_r_elem1 

connectors 1 
R1 : 

conne tor_current: 

active_r1 

projective_r1 

local_projective_r: 
info I ist_pro j ective_r: 



After instruction RGTS : 
configuration2 : (connectors1 ,L 1,R1 ,Params). 

connectors1 : 
R1: 

conne tor_current: 

active_r1 

projective_r1 projective_r_elem1 

---:::;:a::::.J,/~'.1' ...::::1 ....-....-..--, 

leftsymbol_cs1 leftsymbol_cs2 

local_projective_r: 

,., 
~~-i' 

,<' ' 

infolist_projective_r: 

Procedural description. 

The procedural description of ROTS is contained within the processor PR. 

Instruction RGTSC 

Informal description. 

127 

ROTSC (or ROTS) is the first instruction which is activated by the processor PR. It pre
pares an element of the projective_r of the current node_r by filling in the first leave of the 
cover_symbol leftsymbol_cs which is provided as an argument of ROTSC. The associated 
leaves are found in the association list of the R-node (an association list is a completed parse 
tree). If the statenr of node_r is O then it contains a non-nil pointer in an association list 
("assoc-eat"). Input is then taken from that list. After all symbols are taken from the assoc 
then the normal processing of the code is resumed. 
When the next symbol of an association list is taken a repositioning of the reading pointers 
assoc_eat and assoc_eat_lh is necessary. These pointers are moving up and down in the dag
structrlred parse forest. This repositioning is governed by the rules for pushing, shifting and 
popping in the forest. 



128 

Graphical description. 

Before instruction : RGTSC leftsymbol_cs1 
configuration1 : (connectors1 ,L 1,R1 ,Params). 

Params : out: projective_r_elem1 

connectors1 
R1 

conne tor_current: 

active_r1 

projective_r1 

leftsy mbo l_cs2 ,...........,-.,,,...--,..--=i...-,,.........,,,.,.........., 
local_pro jective_r: '--.....J~_.i,,i:;.....i.,:;....,.i..:;.....1..::;......i..:;.....J. 

info I ist_proj ective_r: 



After instruction RGTSC leftsymbol_cs1 
configuration2 : (connectors1, L 1, R1) 

connectors1 : 

conne tor_current: 

active_r1 

projective_r1 

R1 

local_projective_r: 

node_r_current: 

assoc 

assoc_eat 
assoc_eat_lh c 
assoc_eat_pdlist 

next 
action_header_dominator 
current_tail 
alternate_chain_current 

a 

info I ist_p ro jective_r: 

d 

chain decision 

action eader_start1: action header start2: 

c :l __ l ... s"'y"-n\.._ ..... l _ _.l action_header_tail1 
. bol I . . d:i I ~~j ] ] 

129 

action_header_tail2 



130 

Push on nonterminal io assoc 

R_current: 

assoc_eat 
assoc_eat_lh 
assoc_eat_pdlist 

next 
action_header 
current_tail 
alternate_chain_current 

b: 

ath: 

action_header_start: 

=> 

R_current: 

assoc 

assoc_eat 
assoc_eat_lh 
assoc_eat_pdlist 

next 
action_header_dominator 
current_tail 
alternate_chain_current 

~.....,_c;;ch.;,;a;;;;in_ decision 

c · I I sym! I I action_header_tail d: 
. boLJ ...__.,_.,. ___ .,_,,___. ...... ..., 



Position on next terminal in assoc 

R_current: 

=> 

R_current: 

assoc 

infolist_assoc 
assoc_eat 

assoc 

infolist_assoc 
assoc_eat 
assoc_eat_lh 
assoc_eat_pdlist 

b------------, assoc_eat_lh :h 

next 
action_header_dominator 
current_tail 
alternate_chain_current 

b 
chain 

Pop from end of current level in assoc 

R_current: 

assoc 

infolist_assoc 
assoc_eat 
assoc_eat_lh b -i----, 
assoc_eat_pdlist 

next 
aep1 

action_header_dominator 
clurrent_tail 
alternate_chain_current 

Procedural description. 

h 

=> 

assoc_eat_pdlist 

next 
action_header_dominator 
current_tail 
alternate_chai n_current 

1 : 

R_current: 

assoc 

infolist_assoc 
assoc_eat 
assoc_eat_lh b -1----
assoc_eat_pdlist 

next 
action_header_dominator 
current_tail 
alternate_chain_current 

131 

The procedural description of RGTSC is contained within the processor PR. The procedural 
descriptions for the climbing within the parse forest are straightforward. They are omitted. 



132 

Instruction RSTK 

Informal description. 

The instruction RSTK projects a node on the R-dag. An active_r and a local_projective_r 
both have the form of a reduce infolist. This in contrast with the L-dag, where the pointer to 
a projected L-node is stored in the projective nodelist, which contains only a fixed number of 
elements. With the instruction RSTK an otherwise empty infolist with a pointer to the pro
jected R-node is added to the current projective_r_elem. 

Gr;whical description, 
Before instruction : RSTK statenr_r_proj 
Params : in: "node_r_current1, leftsymbol_cs1, "projective_r_elem1. 
configuration1 :: (connectors1 ,L 1,R1 ). 

node_r_current: 

ref count 

connectors 1: ,__R_1_: --------------. 

toos1 
statenr 
output-number1 
poplist1 
assoc 

n 

assoc1 

conne tor_current: 

active_r1 
projective_r1 

)[:] ........... . 
node_r_current 

i nfol ist_pro jective_r: 



After instruction : RSTK 
configuration2 : (connectors2,L 1,R2). 

node_r_current: 

ref count n+ 1 
toos1 

leftsym 
bol cs1 

133 

node_r_project: 

toos 
statenr 
output-number1 
popllst 

node r ojective5tatenr sta enr_r_projective 

ref_count l 
output-number2 o 

assoc 

connectors1 

connector current: 

active_r1 

projective_r1 

poplist1 
assoc1 

R2: 

poplist poplist1 
assoc assoc1 

de_r_current 

/4]( 

infolist_projective_r: 

Non-procedural description, 

Before instruction : RSTK statenr_r_proj 
Params: in: "node_r_currentl, leftsymbol_csl, "projective_r_eleml. 

configuration! :: (connectors 1, Ll, Rl). 
connectors I::(-, connector_current, -). 
connector_current :: (-, "projective_rl). 
projective_rl :: ( -, projective_r_eleml, - ). 
projective_r_eleml :: (leftsymbol_csl, local_projective_rl). 
node_r_currentl :: ( n, toosl, -, "assoclistl). 

After instruction: 
configuration2 :: (connectors 1, Ll, R2). 
R2 :: Rl, R_project. 



134 

R_project :: (0, 0, statenr_r_proj, 0, "poplistl, "assoclistl). 
poplistl :: (0, "infolistl). 
infolistl :: ("returnstatel, 0, 0, 0, 0, 0, 0 ). 
projective_r_eleml :: (leftsymbol_cs 1, local_projective_r2). 
local_projective_r2 :: local_projective_rl, ("R_project, 0, 0, 0, 0, 0, 0). 
node_r_currentl :: (n+ 1, toos2, - , "assoclistl). 
toos2 :: toosl, ("R_project, 0, 0). 

Procedural description. 

The procedural description of RSTK is contained within the processor PR. 

Instruction RRDC 

Informal description. 

This instruction performs a reduce on the R-dag. The infolist of the reducing item (because 
of the current formalism there is only one item, indicated by a "*") is attached to the current 
projective_r_elem. 

Graphical description. 

After instruction : RRDC 
configuration2 : (connectors2,L 1,R1 ). 

node_r_current: 

ref count 
toos1 
statenr 
output-number 
poplist 
assoc 

poplist1 
connectors1 : 

con ector_current: 

active_r1 
projective_r1 

R1 

~r~ 
rfMe _r _return 1 

1 :O I 2:node_r_return1 



Non-procedural description. 

Before instruction : RRDC 
Params: in: "node_r_currentl, "projective_r_eleml. 

configuration! :: (connectors 1, Ll, Rl). 
projective_r_eleml :: (leftsymbol_csl, "local_projective_rl). 
node_r_currentl :: (n, -, "poplistl, -). 
poplistl :: (*, "infolistl). 
infolistl :: ("returnstatel, -) . 

after the instruction:: 

configuration2 :: (connectors 1, Ll, Rl). 
node_r_currentl :: (n-1, - , "poplistl, -). 
projective_r_eleml :: (leftsymbol_csl, local_projective_r2). 
local_projective_r2 :: local_projective_rl, (returnstatel, 0, 0, 0, 0, 0, 0). 

Instruction SRL 

Informal description. 

135 

This instruction adds to the actionlist of the current actionheader of an infolist a reportnumber 
with an indicator of the kind of action, in this case a "report". 

Graphical description. 

Before instruction : SAL reportnr. 
Params1 : in, out: Ainfolist_former_and_current1. 

i nfol ist_f orme r _and_cu rrent 1 
0 

action_header _start1 

chain infolist_symbol1 

actionlist1 



136 

After instruction SRL reportnr 

infolist_former_and_current1 

action_header_start1 

chain 

Non-procedural description. 

Before instruction : SRL reportnr. 

action 

Paramsl : in: Ainfolist_former_and_currentl. 
infolist_former_and_currentl :: (*, *, *, action_header_taill, -). 
action_header_taill :: (*, *, *, actionlistl). 

After instruction. 

action_header_taill :: (*, *, *, actionlist2). 
actionlist2 :: ('r', reportnr), actionlistl. 

Procedural description. 

actionlist1 

The procedural description of SRL is contained within the processor PF. 

Instruction ALL 

Informal description. 

The instruction ALL creates room for the values of variables in the infolist of the current 
item. 



Graphical description. 
Before instruction: ALL n_variables 
Params : in, out: "infolist_former_and_current1. 
configuration1 :: (connectors1 ,L 1,R1 ). 

infolist_former_and_current1 

variable 
_list 

variable 

After instruction ALL : 

i nfolist_forme r _and_ current 1 

variable 
_list 

variable 

cp-
variable 
_value 

set_of_ 
variables 

~ 

Non-procedural description. 

Before instruction : ALL n_ variables 

variable 
_value 

Params: in, out : "infolist_former_and_currentl 

infolist_former_and_currentl :: (-, variablel, -). 
variablel :: [variable_listl]*. 

after the instruction : 

variable2 :: [variable_list2]*. 
variable_list2 :: variablel:(variable_listl, [(0)]n_variables). 

set_of_ 
variables 

137 



138 

Instruction CLI 

Informal description. 
Normally, a starting item is not represented in a runstate. With the instruction CLI it is cre
ated. It has to be present in order to receive the actual values of variables which are denoted 
as formal parameters with the calling nonterminal. 

Gnwhical description. 
Before instruction: CLI item 
Params : in, out: Anode_l_current 

node_l_current: 

poplist1 

poplist 

After instruction :CLI item 

node_l_current: 

Non-procedural description. 

Before instruction : CLI item 
Params: in, out: "node_l_current 

node_l_current :: (~, poplistl, -). 

after the instruction : 

node_l_current :: (-, poplist2, -). 
poplist2 :: (item, 0 ), poplistl. 

Instruction RCV 

Informal description. 
The instruction RCV is generated when a nonterminal symbol for which formal parameters 
were denoted acts as an input symbol. The nonterminal symbol stems from a connector 
which contains also a reference to its related infolist_symbol. Within that infolist_symbol are 
stored the variables of the reduced nonterminal, together with their values. These values have 



139 

to be transported to the infolist_former_and_current of the current item. Within in
folist_symbol the values of the variables are read sequentially. 

Graphical description. 
Before instruction: RCVn v1 ... vn 
Params : in: 11symbol_infolist, 11infolist_former_and_current1 

out: 11infolist_former_and_current1 
configuration1 :: (connectors1 ,L 1,R1 ). 

infolist_former_and_current1 

variable1 

variable 
_list1 

connectors 1 

variable2 

l. 
connector _current: 

variable 
_list2 

v 1 vn set of 

~abi;,s1 

n consecutive variables 
~ of I riables4 

value2_ 1 value2_n 

n consecutive variables 

value1 1value1_n 



140 

After instruction :RCV n v1 ... vn 
configuration1 :: (connectors1 ,L 1,R1 ). 

infolist_former_and_current1 

variable1 

v 1 vn 

copy of value2_n 

connectors1 

v 1 vn set of 

~ies1 

copy of value1_1 copy of value1_n 

reduce 
variable 

_list2 
n consecutive variables 

infolist_l 

variable2 
Fa0

~1es4 

value2_ 1 value2_n 
connector_cu rrent: 

n consecutive variables 
~of T -.-,iables3 

value1_ 1 value1 _n 

Non-procedural description. 

Before instruction: RCV n v1 ... vn 
Params: in: "symbol_infolist 

in, out: "infolist_former_and_currentl 

configurationl : (connectors 1, Ll, Rl). 
connectorsl :: (-, connector_current, -). 
connector_current :: (-, reduce_infolist_l, -). 
reduce_infolist_l : : (-, variable2, -). 
variable2 :: [variable_list2]+. 
variable_list2 :: parameter_variables, local_variablesl. 
parameter_ variables :: [ value_i]n 
local_variablesl :: [variables]*. 
infolist_former_and_currentl :: ( -, variablel, -). 
variablel :: [variable_listl]*. 
variable_listl :: [variables]*. 



after the instruction : 
configuration2: (connectors 1, Ll, Rl). 
for i=l..n: variable_listlv(i)·variable_value = parameter_variablesn.variable_value.3 

Procedural description. 

The procedural description of RCV is straightforward and is not presented here. 

Instruction SND 

Informal description. 

141 

The instruction SND is the counterpart of the instruction RCV. It copies values of variables 
from the current infolist_former_and_current to the infolist of a closure item in 
node_l_projective. That closure item was just before created by the instruction CLI. The 
process of copying is the same as described with RCV and will not be duplicated here. 
For a better understanding of the connection of the different instructions we refer to the sec
tion on variables in chapter 6 where code generation is discussed. 

The instructions PSH, CAT, ASS, TEQ, TNE 

Informal description. 
For a description of the instructions PSH, CAT, ASS, TEQ and TNE we refer to the 
overview in section 4.2.2.5. They operate on a separate linear stack which serves solely for 
the evaluation of an expression with variables. The variables themselves are found in the in
folist_former_and_current which is prepared by the preceding instruction TOP. Implementa
tion of the instructions is straightforward and is not further discussed here. 

Instruction LEXST 

Informal description. 
The instruction LEXST initialises the lexicon_pointer "place" which is located in the field 
"lexicon" of infolist_former_and_current. Its accompanying field, "is_an_entry" will get the 
value "false". The initial pointer is set on the start of a trie structured lexicon, as described in 
chapter 2. The handling of the pointer is done by external procedures which are described in 
(Skolnik, 1982). 

Instruction LEXINC 

Informal description. 
The instruction LEXINC increments the pointer "place" in the lexicon along the current input 
symbol. Before the execution of the instruction the field "is_an_entry" will be initialised on 
"false". It will get the value "true" when the pointer will be positioned on the end of a lexi
con_entry. 

3 This is one of the places where the unifying formalism falls short in expressing power for a typical 
programming purpose : the indexing in an array or list. 



142 

Instruction LEXRDC 

Informal description. 
The instruction LEXRDC performs a reduction just like the instruction for a cf reduction 
(LRDCF) when the field "is_an_entry" within infolist_former_and_current is "true". The re
duction is made by the creation of a connector which contains infolist_former_and_current. 
After the entry in the lexicon one or more categories may be present. The first category is 
placed in infolist_former_and_current.nonterminal. The other categories are transferred as 
values of variables, in the sequence in which they are present, into in
folist_former_and_current.variable. Multiple values of a category will be stored as multiple 
values of a variable. 
We refer to chapter 6 for a description of the way in which code is generated in order to con
tinue in the lexicon after the current entry. When no continuation is possibly the in
folist_former_and_current will be pruned automatically. 

4.2.2.6 PP : processor for pruning 

4.2.2.6.1 Pruning of connectors 

If a connector becomes instable because no further processing is possible then its reference 
count becomes 0. The general pruning mechanism will then be put into operation. 

4.2.2.6.2 Pruning in general 

If the reference count of a record becomes 0, then the reference count of all records which 
were referenced by this record will be decreased by 1. 

4.2.2.6.3 Transduction 

The mechanism of the reference count is also used for the creation of output with finite delay 
(see chapter 2). The following condition is checked permanently. 



Online transduction. 

SO: 
refcount 0 

toos1 
statenr 
output-number1 
poplist1 
assoc 

S1: 
refcount 

toos1 
statenr 
output-number1 
poplist1 
assoc 

transductionfile T 

L1 

symbol 
infolist_symbol 
gotostate 

symbol s2 
infolist_symbol 
gotostate 

S2: 

refcount ~2 toos1 
statenr a2 
output-number1 3:0 4:o 
poplist1 
assoc 

S3: 
refcount 
toos1 
statenr 
output-number1 
poplist1 
assoc 

r3 

a3 
5:016:o, 

~ 

143 

N.B.: "g" is abbreviation of "genint" : a unique generated integer 



144 

~ 

SO: 

refcount o 
toos1 •-----1 
statenr 
output-number1 
poplist1 ------1 
assoc 

L1 

symbol 
lnfolist_symbol 

otostate 

transductionfile T = T, ((1:g112:01 ], (3:g2I4:o2],s2), 
((1:g112:01], [5:g3I6:o3],s3). 

n.b.: if s is nonterminal : the leaves of its infolist_symbol 
are brought to the transducefile instead of s itself. 

4.2.2.6.4 Reporting and structure building 

S2: 
refcount 
toos1 
statenr 
output-number1 
poplist1 
assoc 

S3: 
refcount 
toos1 
statenr 
output-number1 
poplist1 
assoc 

r2 

a2 
3:g2I4:o2 

.---

r3 

a3 
5:g3I6:o:: 

.--

The same mechanism that handles output functions also for reporting and structure building. 



Online reporting and structure building 

.Bfil2m._; 

an arbitrary l_state 

ref count 
toos1 
statenr 
output-number1 
poplist1 
assoc 

(only one element) 

._ac_1_io_n ___ h_e_a_d_e_r __ s1_a_r_11 __ .. _____ -.., _..l_~~-~-1 .... l_...._+J ..... a action_header_tail1 

returnstate L rep 11 r • 

ref_count 
toos1 
statenr 
output-number1 
poplist1 
assoc 

ref count 
toos1 
statenr 
output-number1 
poplist1 
assoc 

bu .ild ac 10n 

action_header_start1! t. _ _.. _ _...l_-ll.....,J_, a action_header_tail1 

L[~~;~:~I~ 

action_header_start1 .__ ....... _ .... l_ .. 1-+r--' action_header_tail1 

action• 
reportfile I buildfile 
r symbol1 

145 



146 

4.3 Generation with a PT A 

The PT A can be extended by a minor addition in order to produce sentences instead of read
ing them. The processor PT reads the input which is then treated by the L-nodes in the active 
nodeset. For each of these L-nodes the expected terminal symbols may be sampled. If these 
expected symbols are merged for the whole active nodeset a message can be generated, be
fore the reading of a symbol, which symbols are admissible. Instead of reading a character 
one character of this set may be selected as the next input character. 

4.4 Undecidability 

It can not be guaranteed that the processors will terminate. The recognition of type-0 lan
guages is in principle undecidable. The processors PL and PR will always terminate (as does 
LR-, Earley- and Tomita-parsing), but during processing they may create new connectors 
which will activate PL and PR again. For instance, in the case of a type-0 grammar with only 
lengthening rules the recognition will not terminate. Another reason for non-termination is 
caused by a circularity between lhs's and rhs's of grammar rules. 
However, some detection of potential non-termination can be build in. A connector contains 
all information which is necessary to activate the PL and PR processors. After the creation of 
a new connector it can be determined if there is another connector C with the same informa
tion. It is not important whether the processing of C may have been in the past, may occur in 
the present or will happen in the future. It is only important that a piece of unique work will 
be done only once. If a new connector already exists there is no need to keep the new 
connector. 

4.5 Parallel processing 

In chapter 7 we will consider the complexity of the PT A. In chapter 2 we suggested that 
further improvements in speed of processing can be obtained by making use of special 
hardware. In this section we will investigate how the PTA can be optimized by making use 
of parallel processing. 
In the literature only a few papers appeared on parallel parsing and compiling. Cohen and 
Kolodner (1985) presented a short overview from which we borrow some descriptions. 
Fischer (1975) divides the input strings into segments, one for each processor. Several 
stacks may have to be kept by each processor because a processor does not know the state in 
which its left neighbour will be when that neighbour finishes scanning its segment. The 
grammar of the language being parsed, however, is deterministic. Fischer's algorithm is 
synchronous. This means that at each point in the computation, each processor tries to per
form the same operation. Only after all processors have finished this operation they proceed 
to the next one. The results of simulating the model on a computer indicate that substantial 
gains in speed are possible when using several processors. 
Mickunas and Schell (1978) show how to design scanners (including table lookup) which 
operate in parallel. Further they extend the LR parsing technique to the case of multiple pro
cessors which can start parsing at an arbitrary place in the input string. 
Lipkie (1979) considers the compilation of Algol-like programs using multiple independent 
processors. He deals with two kinds of concurrency: one in which processors perform si
multaneous separate compilations of procedures of comparable size, the other in which sev
eral processors simultaneously execute the various multiple passes of a compilation (e.g. 
scanning, parsing, code generation, etc.) The results of his simulations indicate that the 
speedup of compilation varies linearly with the number of available processors. 



147 

Schell (1979) proposes a parallel variant of LR parsers having two additional operations 
cancel and continue besides the usual shift and reduce. These operations are needed for per
forming the merging operation of different stacks. 
Cohen and Kolodner (1985) themselves describe research done in the line of Fischer. 
Fisher (1985) describes an implementation of an LL(l) based algorithm for the parsing of 
Van Wijngaarden Grammars. Each hyperrule in the grammar is delegated to a separate 
processor. He makes use of the concurrent programming language Occam. 
Rytter (1987) describes an algorithm for the recognition of unambiguous cf languages in 
O(ln(n)) time on a polynomial number of parallel processors. 

Summarizing we may conclude that all this research is based on deterministic parsing, at
tempting to accelerate by 
- sending pieces of the input text to different processors 
- pipelining the different phases of syntactic processing 
- trying different alternatives in a grammar by separate processors. 

Acceleration ofEarley's algorithm by parallel hardware is reported by Chang and Fu (1984). 
They use a triangular shaped VLSI array. This array system has an efficient way of moving 
data to the right place in the right time. Simulation results show that this system can recog-
nize a string with length n in 2n+ 1 system time. · 

We are concerned with the parsing of ambiguous and enriched type-0 grammars. The recog
nition/parsing/transducing is performed by our PTA. Together with the compilation process 
(which is able to translate conceptually parallel transduction rules into a sequential 
transducer) in a number of cases a polynomial runtime performance is guaranteed. Our ap
proach will be to improve the runtime by exploiting the possibilities within the PT A for 
parallel processing. In the cases that the PTA behaves like a PDA or a FSA the above men
tioned accelerations may also be considered. 
The "P" in "PTA" now gets a double meaning: Parallel for parallel rules in the formalism 
and Parallel for parallel processing. But there is not necessarily a direct relation between the 
two. 

Proposal/or the implementation of the PTA on parallel hardware based on transputers. 

In general, when a number of hardware processors are operating in parallel, one processor 
may communicate with a number of other processors. Some or all processors may share a 
piece of common memory, and some of them will have access to local memory. Therefore, a 
number of different formal machines could be devised to cope with different possible hard
ware configurations. 
We will consider here a hardware configuration which recently attracted much attention be
cause of its reasonable price and high speed of processing : the transputer. The Occam lan
guage mentioned above is able to govern a number of these transputers. In a multiprocessor 
system based upon transputers a number of processors (with a small number of simple in
structions), each with their own local memory, interact with other processors. The configu
ration is either fixed or can be reorganised by a special processor which creates the links 
between some processors. There is no common memory . 
From a software point of view each processor may be seen as an actor on a piece of mem
ory. To map the PT A on a system of transputers we could assign to each processor the task 
of managing the operations for a specific datastructure. As such we may speak of "object
oriented processing". In case of frequent access the "intelligent memory" for one datastruc
ture may be "divided" into several "pieces": more processors which perform the same kind 



148 

of tasks, but each with their own piece of memory. In that case one processor may act as a 
supervisor for the management of a specific datastructure. 
Because there is no common memory no conflicts will arise during the updating of a datas
tructure: they are resolved automatically by the hardware of the connection between the pro
cessors. 

In the PT A inherent parallelism is indicated by the appearance of regular expressions in the 
grammar descriptions. As such they are found in : 
- the set of all connectors (to be found in "configuration") 
- within a connector: the set of all active nodesets (to be found in "nodeset") 
- for each runstate : the set of all applicable input-symbols (to be found in the connected 
nodesets of R and in parallel input) 
- for each runstate : the set of all applicable instructions TOP (to be found in processor PL : 
[list]* ) 
- for each runstate : the set of all applicable instructions SRL (to be found in processor PL : 
[action]* ). 

Instructions are pointed to by a program counter. Each parallel process will have its own 
program counter and stack of program counters (for nested subroutines of instructions). We 
assume the availability of a translation table for compile-statenumbers (in QL or QR) into a 
starting program counter. 

Following this schema of thought little has to be changed in the definition of the PT A. The 
potential applications are numerous : if a problem can be specified with the aid of the uni
fying formalism of chapter 2 it will be possible to process it on a parallel computer without 
any reformulation of the problem. 



149 

5. Extension of the LR-table construction method for the 

unifying formalism 

In this chapter we will show how the algorithms for the construction of LR(O) itemsets can 
be extended for the treatment of the various extensions of the unifying formalism. 

In section 2.6 we formulated as our goal the development of a program generator for 
- type·O and transduction grammars 
- grammars with regular expressions 
- parallel parsing 
- grammars which contain don't cares, arb's, line's, ranges of symbols and tree symbols 
- grammars which contain variables 
- grammars which contain boolean expressions 
- grammars which contain report- and build-functions. 

In the chapters 3 and 4 we discussed how to handle type-0 and transduction grammars with 
the PTA, assuming that code can be generated for lhs's and rhs's separately. The PTA han
dles also the parallel parsing. The remaining extensions are handled by the compiler. 
In this chapter we will discuss the essential ideas for the extension of the LR(O) algorithm in 
order to handle the other sub-formalisms. The ideas will be expressed within the original 
formalism of a U-grammar. In the next chapter the implementation of the whole algorithm is 
discussed, together with a number of preprocessing algorithms. 

In this chapter we will discuss the extension of the algorithm for the creation of LR-tables for 
the following sub-formalisms: 
- regular expressions 
- concerning symbols : 

- ranges of terminal symbols 
- tree symbols 
- "don't cares" 
- "arb's" and "lines" 

- concerning Boolean expressions : 
- cooperation of grammar rules and the Boolean "and" 
- negations 

5.0 Recapitulation of the LR(O) parser-generation algorithm 

We will recapitulate the construction of LR-tables according to (Aho, Sethi and Ullman, 
1986 pp. 222-232) in a slightly different way in order to adjust to the algorithms which will 
be presented in subsequent chapters. The differences are : 
1. in an LR-table no distinction is made between terminals and nonterminals (there is only an 
"action"-part); 



150 

2. no itemset will contain items of the form "A::a. "; on the appearance of an item of the form 
"A::P.X" a reduce instruction will be generated on an X; 
3. an LR-table may contain multiple entries. 

Definition. 
An LR(O) item is of the form 

[A::a.p], 
where A::ap is a production. Alternatively, we sometimes denote it as a 2-tuple 

[p, j], 
where pis a production A::ap and j is an integer representing the position of the dot G=lal). 
Li 

Definition. 
CLOSURE(s) is a function that takes a set of items s as its argument and returns another set 
of items. Calculation of CLOSURE(s): 

- repeat 
- for each item [A::a.BP] ins and each production B :: y such that [B::.y] 

is not ins do 
- add [B::.y] to s 

- until no more items can be added to s 
- returns. 

Li 
We will call the item [A::a.Bp] the "father item" of the "closure item" [B::.y]. 

Definition. 
GOTO-ITEMSET(I, X) is a function that takes an itemset I and a grammar symbol X as its 
arguments, and returns another itemset. 
Calculation of GOTO-ITEMSET(I, X) : 

- Let I' be the set of items [A::aX.p], such that [A::a.XP] is in I. 
- return CLOSURE(!'). 

Definition . 
CONSTRUCT-ITEMSETS is a function that constructs a set of itemsets, C. A special 
production, S' :: (, S, ). , is introduced. 
Calculation of CONSTRUCT-ITEMSETS: 

- let C be {([S' :: .(, S, )]} } 
- repeat 

- for each itemset I in C and each grammar symbol X such that GOTO(!, X) is 
not empty and is not already in C do 

- add GOTO(!, X) to C 
- until no more sets of items can be added to C. 

Definition. 
LR-TABLE(G) is a function that takes a grammar G augmented by the production 
S' :: (, S, ). as its argument, and constructs an ACTION table. 



CalculationofLR-TABLE(G): 
- Construct C = {Jo .. .ln} by CONSTRUCT-ITEMSETS 
- for i := 0 to n do 

- if [A :: a..X~] is in Ii and GOTO(Ii, X) = Ij 
- add 'shift j' to ACTION(i, X) 

- if [A :: a.. X] is in Ii 
- add 'reduce p' to ACTION(i, a), where pis a production A:: a. 

- if [S' :: (, S, .)] is in Ii 
- add 'accept' to ACTION(i, ")"). 

The initial state of the parser is the one constructed from the set containing 
item [S' :: .(, S, )]. 
~ 

151 

We will discuss in the following subsections for each of the sub-formalisms separately how 
they can be handled by a modification of the function GOTO-ITEMS ET and, eventually, the 
function CLOSURE. Thereafter we will treat the general case of the combination of all the 
extensions. The extension of the procedures CONSTRUCT-ITEMSETS and LR-TABLE are 
dealt with in the next chapter. 

In the definition of GOTO-ITEMSET we will call I' the "core" of the created itemset. The 
returned itemset is a "successor itemset" of I. The definition of I' can be reformulated as : 

if [A::a..X~] is in I and Xis the grammar symbol appearing in the call to GOTO
ITEMSET then [A::<XX.~] is in I'. 
In the sequel we will abbreviate this definition by the following notation : 
(a) .x~ --X---> x.~ 
In this notation the contribution of an individual item is highlighted. We will say that an item 
"travels" along a symbol (in this case X). The traveling will result in the LR-table in a shift
action on X if l~I > 0 and in a reduce-action on X if l~I = 0. 
The extensions to the function GOTO-ITEMSET will be formulated in this notation. 
In our notation we will allow strings a., ~ •.. (in V*) to contain regular expressions, a,s we 
defined them in the unifying formalism. Symbols X (in V) and the opening square bracket of 
a regular expression may bear the negation marker. 
In the notation (a) we assume that the dot in the left side is placed before an X. In the right 
side the dot is placed before the ~ which may start with a square bracket of a regular expres
sion. We will consider the position of the dot before an X or an X' as being stable, else the 
position is considered to be unstable. An item which contains a dot in an unstable position 
will be called an unstable item. In order to reach in an automatic way a stable position we in
troduce transformation rules for unstable items. They are of the form 
(b) .[a.]+~ => [.a.]+~ 
It is possible that an unstable item goes through a series of transformations before it becomes 
a stable item. During the transformation(s) it may create other items, which may be either 
unstable or stable. 
The right side of a transformation may be empty, for instance in : 
(c) a..']' => £ 

( the notation.' will be introduced later on). In that case there is no continuation for the un
stable item. 



152 

The transformations of an item belong to its traveling. The resulting stable item(s) will 
determine if the traveling results in a shift- and/or one or more reduce-actions in the LR
table. 
We will use the notation A :: .a I .13 as a shorthand for the writing of the 2 items A :: .a I 13 
and A :: a I .13 . 

5.1 Regular expressions 

Informal. 
Regular expressions were defined in section 2.2.2 . It is straightforward to write down for 
each of these definitions the necessary transformations. 

Formal . 
. [a I 13 I .. ] 'Y => [.a I .l3 I .. ] .y 
.[al l3l .. ]l y => [.a I .l3 I .. ] 1 y 
.[a I 13 I .. ]* 'Y => [.a I .l3 I .. ]* .y 
.[a I 13 I .. ]+ 'Y => [.a I .l3 I .. ]+ y 

[a I l3. I .. ] 'Y => [ a I 13 I .. ] .y 
[a I l3. I .. ]1 'Y => [ a I 13 I .. ]1 .y 
[a I l3. I .. ]* 'Y => [.a I .l3 I .. ]* .y 
[a I l3. I .. ]+ 'Y => [.a I .l3 I .. ]+ .y 

5.2 Symbols 

In the definition ofGOTO-ITEMSET the symbol X may be a nonterminal, an intermediate 
symbol or a terminal. In chapter 2 we defined for a U-grammar that the set of terminals T 
need not be finite. We allowed a terminal to be a range of characters. We therefore introduce 
for an itemset I the symbol "." as the "rest symbol". It is defined as the set T- { a I a E T and I 
contains an LR-action on a}. It will always be denoted in the context of the itemset for which 
it is defined. 
In chapter 4 we defined for a PTA also that the set of terminals T need not be finite.We 
therefore introduce for an itemset I the symbol "#" as the "don't care input symbol". It 
represents the set T itself. 

5.2.1 "Don't cares" 

Informal. 
Suppose we are in the position to construct the successors of the itemset Ii which contains, 
among others, the 2 items : 
(1) A:: a. a 13 
(2) B :: 13. * y , where a, 13, y E V*. On the shift on an "a" we construct a new 
itemset Ij which contains, at least, the item 

A:: a a .13 
What about item (2)? The "don't care"* represents any symbol E T, inclusive the "a". The 
conclusion is that this item may also travel along the symbol "a" to Ij where it becomes 

B :: 13 * . 'Y 



153 

It is clear that item (2) may travel along any symbol e T, inclusive the rest symbol".". On 
the"." we therefore create a successor itemset with the shifted second item (together with all 
the items where the dot was present before a "don't care"). 
The same technique may be followed for "don't cares" in the text During construction of the 
successor itemset for "#" all items may "travel" along this character. 

Formal . 
. * f3 --a---> * . f3 for all a e (T +I) 

5.2.2 "Arb's" 

Informal. 
Suppose we are in the position to construct the successors of the itemset Ii which contains, 
among others, the item : 

A:: a.= a f3 
The"=" means in this case: the longest sequence of symbols which are not "a". Alterna
tively, we may write it as [a']*. Literally speaking, the 'a' forces the item to shift over the 
'a'. All other characters will leave the item intact. 

Formal. 
. = a f3 --a---> 

--a'---> 

5.2.3 "Lines" 

Informal. 
Suppose we are in the position to construct the successors of the itemset Ii which contains, 
among others, the item : 

A:: a. - a f3 
The"-" means: any sequence of symbols. Alternatively, we may write it as[*]*. Literally 
speaking, the 'a' splits the item: one shifts over the 'a', the other one keeps itself intact. All 
other characters will leave the item intact. 

Formal. 
=> for all dot types 
--.---> for all dot types 

{These two rules imply the following rules: 
. - a f3 --a---> . - a . f3 
. - a f3 --a'---> . - a f3 

Example in combination with don't cares : 

Suppose we have the pattern grammar 
S :: - a a 
S :: - * b 

The starting itemset contains the two items : 
S :: . - a a 



154 

S :: . - * b 
We then construct, as the successor itemset for "a" : 

S :: - a. a 
S :: - *. b 
S :: . - a a 
S :: . - * b 

and as the successor itemset for the rest symbol "." : 
S :: - *. b 
S :: . - a a 
S :: . - * b 

5.2.4 Ranges of terminal-symbols 

Informal. 
During the construction of an itemset it is possible that a number of items contain a dot be
fore a range of terminal symbols. For instance the itemset contains : 

S :: . a .. g 131 
S :: . c .. p 132 
S :: . e l33 

In that case we determine non-overlapping sub-ranges, in this case : 
a .. b, c .. d, e .. e, f..g, h .. p and the rest symbol "." 

The sub-ranges can be determined before the construction of successor itemsets. They are 
then treated as normal symbols. For each of them the itemsets have to be constructed. 

Formal. 
Not necessary. In the implementation a new set of action symbols must be calculated for 
each itemset. 

Example. 
In the example above the successor itemset on "c .. d" will contain: 

S :: a .. g . 131 
S :: c .. p . 132 

The successor itemset on "e .. e" will contain: 
S :: a .. g . 131 
S :: c .. p . 132 
S :: e. l33 

5.2.5 Tree symbols 

Informal. 
The tree symbols ':(', '(' and ')' are treated as normal terminals, with two exceptions. The 
first one concerns the applicability of a 'line'. We defined in chapter 2 that a line matches 0 
or more arbitrary characters, except the')'. With other words : the line operates only on the 
current level in the input-tree. We will therefore make a restriction on the rules which were 
defined in section 5.2.3 . The second exception concerns the skipping in the input of a la
beled sub-tree. 
'( .. (' and ' ) .. )' have to be written as pairs. 



155 

'( .. (' can be rewritten as [* :( - t, ') .. )' as [- ))0 , with n >= 0. When '( .. (' and' ) .. )' are 
treated as nontenninals then the treatment of the n can be written in the unifying formalism as 

( .. ((n) :: {n:=0}, [* :({n:=n+l}, - ]*. 
) .. )(n, m) :: {m:=0}, [-, {m:=m-1} ))* {n=m}. 

With this reformulation the treatment of'( .. (' and') .. )' becomes part of the general treatment 
of the formalism. 

Formal. 
. - a f3 -- ) ---> 

. - a f3 -- a'---> 

( f3 -- ( ---> 
:( f3 -- :( ---> 
a f3 -- :(-)---> 

5.3 Boolean constructs 

-a.f3 
and.-af3 

. - a f3 
, with a <> ")" 
, with a' <> ")" 

(transition on the sequence of symbols ":(", 
0 or more characters and a")" ) 

5.3.1 Boolean "and" between rules: cooperation 

Informal. 
We will discuss the method only for the case that no recursion in cf rules occurs. In that case 
it suffices to treat cooperation and Boolean "and" in compile-time. All possible paths are then 
represented by the items which are present in the itemset. Otherwise an equivalent treatment 
has to be added to the PT A, because different paths may be represented by items in different 
active L-nodes. 

Suppose the grammar contains appearances of the cooperation symbol C (which may occur 
only in a rhs). The general form of a rhs with such an appearance is 

a:X{C} f3. 
Let Ac be the set of all items of the form a: X { C}. f3 . 
In section 2.2.6.1 we defined the following semantics of a cooperation: if in a created itemset 
I' an item of the form 

a: X{C} . f3 
is present then all items in Ac have to be present. 
The algorithmic treatment is simple : after the construction of a new itemset all items with the 
dot behind the cooperation C have to be identified. These items have to be removed from the 
itemset when ( I'n Ac)<> Ac. 

Formal. 
. X{C} f3 --X---> X{C}. f3 if ( I'n Ac) = Ac 



156 

5.3.2 Boolean negation within a rule 

Within a grammar rule a Boolean complementation can be expressed for a single symbol or 
for a regular expression. The symbol can be a terminal symbol, an intermediate symbol or a 
nonterminal. The discussion on the treatment of the complementation of a nonterminal and of 
a regular expression are related because, in general, a regular expression may be replaced by 
a nonterminal. Nonterminals and regular expressions generate, in general, strings of termi
nals. We are therefore confronted with the complementation of strings and with the problem 
how to treat it in the algorithm for the construction of LR-tables. We will develop a 
decomposition method for Boolean complementation together with the introduction of two 
new types of dots. The problem will be transformed into a problem where we treat individual 
characters and transitions of types of dots. In that context we will use the term "negation" 
instead of "Boolean complementation". 

5.3.2.1 Negation of a single terminal 

Informal. 
In section 2.2.6.2 we defined the negation of a terminal as the complement of the set of 
which it is a member. The complement was taken with the aid of the set "UNIVERSE". For 
instance, 

a'= UNIVERSE - {a}. 
The set a' can further be treated as a set of range symbols. The negation X' of a nonterminal 
X will be treated in a subsequent section, as far as the closure of X is concerned. After the 
reduction of such a closure item X or X' will be returned. The father item has to react on 
these symbols. The rules are the same as for terminal symbols with no universe defined. 

Formal . 
. a' ~ --a---> 

--b---> 
. X' ~ --X---> e 

--X'--> X' . ~ 

for all b e UNIVERSE - {a} 

5.3.2.2 Negation of a string : 3 types of item dots 

Informal. 
In section 2.2.6.2 we defined the negation of a string x e {T +I)* as the set of strings { w I w 
e (T+I)*, lwl = lxl, w ¢ x}. 
That is, x generates all strings w with the length of x, but unequal to x. 
The function GOTO-ITEMSETS has as its second argument one symbol. Ifwe want to ex
tend the LR-table construction algorithm then we have to devise a method in which the string 
x' can be broken up into individual characters. 
In our explanation we will use the unifying formalism. For example the string x = "ab" (the 
concatenation of the characters "a" and "b") is written as: 

x :: a, b. 
The negation of x is then written as '[a, b] 1. If we use a separate "]" which belongs to a '" [" 
then we will write 'T ". If we write items then we will, as usual, leave out the ", ". 
We observe that 



157 

'[a, b]l =a',* I a, b'. 
Other possible decompositions are : 

'[a, b]l =a',* I*, b'. 
and '[a, b]l = a', b I*, b'. 
The decompositions are easily verified by writing truth-tables. We choose the first manner of 
decomposition because of the disjunction of a and a'. For each symbol only one item will 
travel, .a' * or .a, b' (the dot will be refined later). In the other decompositions one or two 
items will travel. This will increase the number of itemsets that will be created. 

The decomposition of the negation of a string of 3 characters is : 
'[a, b, c]l =a',*,* I a, '[b, c]l . 

In general, if 
P1 :: '[a, b, c, .. , z]l . 

then we may write : 
P1 :: a', *(n-l) I a, P2. 
P2 :: b', *(n-Z) I b, P3. 
P3 :: c', *(n-3) I c, P4. 

Pn-1 :: y', * I y, z' . 
This schema may be read as : 
situation P1 : if an a' is read then treat the remaining characters as don't cares else (an "a" is 
read) go to situation P2; 
situation P2 : if ab' is read then treat the remaining characters as don't cares else (a "b" is 
read) go to situation P3; etcetera. 
We will simulate this interpretation of the schema by the introduction of two new types of 
dots, the ".-" ("negdot") and the " . .," ("don't care dot"). The role of the .- is to follow all 
possible derivations of a Boolean complementation. Such a derivation is found when the.
strikes against the 'T" which corresponds with the'"[" where the".·" originated. The role 
of a ... is to follow all strings with the same length as the derivations of a Boolean comple
mentation, but which are unequal to such a derivation. This shadowing of the strings of 
equal length becomes effective when the last.- disappears. At that moment it is clear that no 
derivation will be found. 
When a normal "." passes through a "' [" it changes to a ".- ". The ".-" changes to a "·*" as 
soon as an input symbol does not match the item (this will be defined more precisely). When 
a".'" strikes against the 'T" which corresponds with the'"[" where the":" originated then 
the item has to disappear. A "·*" will consume input symbols up to the 'T ". Thereafter it will 
change to a normal "." . 
Literally speaking, the dot types .- and·* are traveling towards the]' which belongs to the'[ 
where they originated. 

Formal. 
Is part of the formal treatment of the combination of Boolean negation and regular expres
sions and symbols. 



158 

5.4 Boolean negation and regular expressions 

Informal. 
For the treatment of the combination of Boolean negation and regular expressions it will be 
necessary to extend the concept of a dot. We define it as a triplet with a graphic representa
tion. 
A dot is a triplet (type, marker, brackets), where 
- the type can be: normal dot("."), neg dot(".,") and don't care dot(",*"), 
- the marker is a label which is used in order to remember which items originated together 
from the passing of a normal dot through a negation bracket (for a normal dot there is no 
marker), 
- brackets is the number of open negation brackets; for a normal dot this number is always O; 
for a neg dot it is a single number, for a don't care dot it is a duplet (open active negation 
brackets, open passive negation brackets). The terminology will be clarified later on. 
Example of a graphical representation: "•'mb" means a neg dot with marker m and b open 
negation brackets, "•*mb, c" means a don't care dot with marker m, b open active negation 
brackets and c open passive negation brackets. 

Within a regular expression it is possible that after a '" [" a number of alternatives are present. 
According to De Morgan's law the negation of a number of alternatives has to be interpreted 
as the Boolean "and" of the negation of each of the alternatives. If any of the alternatives is 
matched then the whole expression between the negation-brackets is matched and recognition 
may not continue. 
The foregoing is denoted in the following transformation : 

.'[a I !3 I .. ]l 'Y => '[.'mla I ,-m1J3 I .. ]1 y 
The normal dot changes into a neg dot before each of the alternatives. The unique marker m 
is used in order to remember which items originated from the transformation. If one of the 
". 'm 1" will strike against a 'T" then all items with dots which bear the same marker m have 
to disappear. 
Negation brackets may be nested. A ",,mb" will change into a ".-mb+l" when it passes 
through a'"[". 
A ",,mb" may, in the goto-function, change into a "•*mb". A "•*ml, O" will change into a 
",m" when it passes through a"]'". The marker m has to disappear as soon as the last ",,mb" 
changes into a "·*mb, o". 
In order to deal rigorously with the combination of Boolean negations and regular 
expressions we have to treat all combinations of the 3 types of dots with the 4 brackets [, '[, 
] and]'. Moreover, the closing bracket"]" may appear in 4 appearances:], ]1, ]*and]+. 
However, it is possible to restrict the discussion by making use of the following observa
tion. In section 2.2.6.2 we defined that the interpretation of'[a}, where } means], ]1, ]* or 
]+, is the same as of' [ [a} ] 1. For the treatment of a ' [ we therefore don't have to distin
guish between the corresponding closing brackets. 

We treated already the normal dot in combination with the [ and the]. The other possible 
combinations are:[,.*[,.'[,:'[,.*'[,:],.*], .r, :]'and.*]' . 



Opening brackets 

Transformation of'[a}. 
Formal: 
'[ex } => 

The case.[ 
Already treated. 

The case.-[ 

159 

'[[ex}]l for } =] , ]1, ]* or]+ 

The function of the neg dot is to follow all possible derivations. If it succeeds then all items 
with the marker m have to be removed. A normal open bracket indicates that a regular ex
pression will start. The neg dot has to follow all possible paths within the regular expres
sion. This is the same task as a normal dot has. We define therefore the same transformation 
rules as for the combination of a normal dot and a regular expression. The marker m will 
distribute itself over the items behind the [. 
Formal: 
.-mb[ex I p I .. ] y 
.-mb[ex Ip I .. ]1 y 
•'mb[ex l p I .. ]* y 
•'mb[ex Ip I .. ]+ y 

The case .*[ 

=> 
=> 
=> 
=> 

[.-mb ex I •'mbP I .. ] .'mb y 
[.-mb ex I •'mbP I .. ]l y 
[.'mb ex I •'mbP I .. ]* •'mb y 
[.-mb ex I •'mbP I .. ]+ y 

The function of the don't care dot is to follow all possible input strings with the same length 
as a derivation, but not equal to a derivation. Therefore the don't care dot has to follow all 
possible paths within the regular expression. This is the same task as a normal dot has. We 
define therefore the same transformation rules as for the combination of a normal dot and a 
regular expression. The marker m will distribute itself over the items behind the[. 
Formal: 
•*mb,c [ex Ip I .. ] y 
•*mb, c [ ex I P I .. ] 1 y 
•*mb, c [ex I p I .. ]* y 
•*mb, c [ex I p I .. ]+ y 

The case.'[ 

=> 
=> 
=> 
=> 

[.*mb, c ex I •*mb, c p I .. ] •*mb, c y 
[ ... mb, c ex I •*mb, c p I .. ]1 y 
[.*mb, c ex I ,*mb, c p I .. ]* •*mb, c y 
[.*mb, c ex I •*mb, c p I .. ]+ y 

This case concerns the creation of a negdot. Because of the transformation of '[a} the 
negdot will further be distributed over the regular expression behind the'[. 
Formal: 
. '[ => '[.'ml 

The case .' '[ 
The negation bracket passes through a'[. The bracket counter is incremented. 
Formal: 
,'mb '[ => '[,'mb+l 



160 

The case .*'[ 
The don't care dot passes through a'[. Its task is simply to follow all strings with the same 
length as the strings which may be derived from the regular expression. If the don't care dot 
originated after the last ' [ the passive bracket counter c will be 0. When the don't care dot 
will encounter the]' on the current bracket level it will change into a negdot ("active") when 
b > 1. The counter c therefore acts as a guard to keep the don't care dot intact ("passive") as 
long as it travels through intermediate negation brackets. 
Formal: 

=> 

Closure brackets 

The case .'] 
A neg dot encounters a normal closing bracket. The same transformation rules are followed 
as with a normal dot. 
Formal: 
[a I P-'mb I .. ] y 
[a I P-'mb I .. ]l y 
[a I P-'mb I .. ]* y 
[a I P-mb I .. ]+ y 

The case .*] 

=> 
=> 
=> 
=> 

[ a I p I .. ] .·mb y 
[al Pl .. ]l •·mb'Y 
[.·mba I -·mbP I .. ]* •·mb "{ 
[.·mba I :mbP I .. ]+ •'mb "{ 

A neg dot encounters a normal closing bracket. The same transformation rules are followed 
as with a normal dot. 
Formal: 
[a I P-*mb, c I .. ] y => 
[a I P-*mb, c I .. ]1 y => 
[a I P-*mb, c I .. ]* y => 
[a I P-*mb, c I .. ]+ y => 

The case .]' 
cannot exist 

The case .-]'. 

[ a I P I .. ] •*mb, c y 
[ a I p I .. ] 1 •*mb, c y 
[-*mb, ca I ·*mb, c p I .. ]* •*mb, c y 
[-*mb, ca I •*mb, c p I .. ]+ •*mb, c y 

A neg dot encounters a closing negation bracket. If it is the bracket on the level where it 
originated the b=l and the negation has become effective. All items which are still traveling 
with the same marker have to disappear. Ifb > 1 then the negation was embedded within an
other negation. In that case the same strategy is followed as with the negation of a single 
character : the negdot changes into a don't care dot. 
Formal: 

The case ·* r . 

=> 
=> 

]' •*mb, 0 
e, together with all items which bear the marker m 

A don't care dot encounters a closing negation bracket. If c>0 then the dot traveled through 
passive negation brackets. If c=0 then the dot acts on the level where it originated and it has 
to change in a neg dot. 



Formal: 
,*mb, c+l ]' => 
•*mb+l, 0 ]' => 
•*ml,O]' => 

]' •*mb, c 
]' ,•mb,O 

J',m 

5.5 Boolean negation and symbols 

The following rules are straightforward extensions of the discussions above. 

5.5.1 Boolean negation and terminals 

Formal: 
:mb a 13 -- a --> 

-- b--> 
.•mb, c a 13 -- . --> 
:mb a' 13 -- a--> 

-- b--> 
••mb, c a' 13 -- . --> 

a ,-mb 13 
a ••mb, O 13 with be UNIVERSE-fa} 
a .•mb, c 13 
a •*mb, 013 

a :mb l3 with be UNIVERSE-{a} 
a' ,•mb, c 13 

5.5.1.1 Boolean negation and don't cares 

Formal: 
. * 13 

••mb * 13 
••mb, c * 13 

--a---> * . 13 
--a---> * .'mb 13 
--a---> * •*mb, c 13 

5.5.1.2 Boolean negation and arb's 

for all a e (T+I) 
for all a e (T +I) 
for all a e (T+I) 

161 

We defined the"=" in "=a" to generate the same strings as [a']*. From this equivalence we 
may derive the following rules. 

Formal: 
:mb = a 13 --a---> 

--a'---> 
••mb, 0 = a .'mb 13 
:mb = a 13 
•*mb, c = a ,*mb, c 13 for all b e (T +I) 

5.5.1.3 Boolean negation and lines 

We defined the"-" in "-a" to generate the same strings as (*]*. From this equivalence we 
may derive the following rules. 

Formal: 
=> . - . for all dot types 
--.---> for all dot types 

{These two rules imply the following rules: 
. - a 13 --a---> . - a . 13 

--a'--> . - a 13 



162 

,'mb - a f3 --a---> ,'mb - a ,·mb f3 
--a'--> 

•*mb, c - a f3 --b---> 
,'mb - a •*mb, c f3 
,*mb, c - a •*mb, c f3 for all b E (T +I) 

5.5.1.4 Boolean negation and ranges of terminal symbols 

Informal: 
In section 5.2.4 we discussed that ranges of terminal symbols are treated by the creation of a 
new set of range terminals which are not overlapping. On these new terminals all the formal 
rules are applicable. 

5.5.1.5 Boolean negation and tree symbols 

Formal: 
,•mb - a f3 

•*mb, c - a f3 

•*mb, c - a f3 

•*mb, c a f3 

--)---> 
and 

--a'---> 

-- :(-) ---> 

--)---> 
and 

--a'---> 

-- :(-) ---> 

- a ,•mb f3 
,'mb-af3 
,'mb-af3 

- a •*mb, c f3 
•*mb, c - a f3 
•*mb, c - a f3 

•*mb, ca f3 

5.5.2 Boolean negation and nonterminals 

lnfonnal. 

this rule restricts the rule for lines 
, when a<>")" 
, when a' <> ")" 

(transition on the sequence of 
symbols ":(", 
0 or more characters and a ")" ) 

, when a<>")" 
, when a' <> ")" 

(transition on the sequence of 
symbols":(", 
0 or more characters and a ")" 

In section 2.2.6.2 we defined that the negation of a nonterminal generates all strings w with 
length up to the length of the largest string that can be generated by B, but with x '# w, where 
B =*> x. The strings that can be generated by B are the strings which can be generated by 
the closure items of B. 
In the function CLOSURE for each item A:: a.Bf3 and each production B :: ythe item B :: .y 
is added (ifnot already present). 
This rule has to be extended for the item A:: a.B'f3 and for the dot-types".•" and".*"· We 
will treat therefore the combinations .B', :B, .*B, .'B' and .*B'. The treatment concerns 
the adding of a closure item and the reduction of an item. 

We already formulated that the shifting of nonterminals obeys the same rules as the shifting 
of terminals: 

a.B'f3 --B'--> a.B'f3 
--B --> € 



163 

The symbols Band B' have to be delivered by the reduction of a closure item ofB. If such a 
closure item is B :: y then we will add as a closure of B' the item B :: : "(. If a derivation of B 
will be found then a reduce item B :: y: will be constructed and we will return a B. If a 
derivation is not found then a reduce item B :: y ·* will be constructed and we will return a 
B'. 
The function of the negdot includes the function of a normal dot : it follows all possible 
derivations. But it will also signal a failure when it changes into a don't care dot. The func
tion of a don't care dot is the most limited one : it only follows strings with the correct 
length. We will follow the strategy to use in a closure item the type of dot that has a function 
that is just "strong enough" to supply, after a reduction, to the father item all possible 
continuations. 
From that strategy the following table originates. 

on father item I add closure I after reduction I reduce I shift on father 
I item(s) I of the item I symbol I item will be 

A-> a.. B 13 B ->. 'Y B-> y. B A-> a. B .l3 
A->o..B'l3 B -> ,'nl y B -> "{,'nl B e 

B -> 'Y•*nl, 0 B' A-> a. B' . l3 
A-> a. ,'mb B l3 B -> :nl y B -> "{:nl B A -> a. B :mb 13 

B -> 'Y•*nl, 0 B' A-> a. B ·*mb, 0 l3 
A-> a. :mb B' 13 B -> :nl y B -> "{:nl B A-> a. B' •*mb, 0 l3 

B -> 'Y•*nl, 0 B' A-> a. B' :mb 13 
A-> a. ·*mb, c B l3 B -> ·*nl, Oy B -> 'Y•*nl, 0 B' A-> a. B ·*mb, c l3 
A-> a. •*mb, c B' 13 B -> ,*nl, Oy B -> 'Y•*nl, 0 B' A-> a. B' •*mb, c 13 

The writing of A:: a.B'B is equivalent to the writing of A:: a.'[B]l B. Ifwe imagine that 
we replace B by all its possible rhs's (written as alternatives of each other, i.e. x I 6 I .. ) then 
we can relate the treatment of .B' to the treatment of the negation of regular expressions, and 
vice versa. 
The relation concerns the transformation of a dot when it passes through an opening and a 
closing bracket in a regular expression and the addition of a closure item respectively the re
duction of an item for a nonterminal. The reader may verify that the rules are in correspon
dence with each other. 

5.6 Boolean negation and Boolean "and" between rules 

After a new itemset is created two checks have to be performed which stem from the treat
ment of the Boolean operators within and between rules: 
- the removal of items with markers which are not longer allowed (a "type-M item") 
- the removal of items which reached their cooperation symbol and which did not meet all the 
other items with the same cooperation symbol (in accordance with section 5.3.1). These 
items are not longer valid. (A "type-C item"). 
It is possible that a type-M item is also a type-C item. When this item is removed the cooper
ation is not longer valid, and its associated type-C items have to be removed also. This pro
cess is iterative but will, of cause, terminate. The new itemset will eventually become empty. 



164 

This finishes the extensions to the algorithms for the construction of an LR-table for all the 
sub-formalisms within the unifying formalism. In the next chapter we will concern ourselves 
with an efficient implementation of the extended algorithms within a compiler. 



165 

6. A compiler 

6.1 Overview 

The task of the compiler is to transform a grammar, which is written in the unifying formal
ism, into a program for the PT A. In this chapter we will discuss the different stages of the 
transformation. Before we do so we will extend the algorithm still further with a new method 
for the creation of a FSA for left- and/or right recursive cf g's. 
In chapter 5 we discussed the extensions for a number of the sub-formalisms. The exten
sions for the remaining sub-formalisms are treated in this chapter. They concern : the treat
ment of variables, reports and builds, the adjustment for the closure algorithm in the case of 
transduction rules and cascaded grammars. 
During the development of a grammar the grammar writer will often make use of the com
piler. The complexity of the runtime of the compiler is therefore important. In order to im
prove it we calculate a number of sets and relations. With the aid of these sets and relations 
the extended algorithm for the creation of LR-tables may be rephrased into a more efficient 
one. 
Some of the constructed datastructures are transported to the runtime system in order to en
able a conversation with the user in terms of the original grammar. 

The compiler consists of the following modules : 
- "Readgrammar" reading in the grammar and storing it in a datastructure 
- "Preparesets" calculating from this datastructure a number of sets and 

relations 
- "GenLRsets" construct itemsets 
- "Supscanner" construct a scanner-table for an itemset 
- "SupLRcode" construct code for a generated itemset of a lhs or a rhs. 

The compiler is complemented by a linking loader for cascaded grammars and a disassembler 
for the generated code. 

In chapter 2 we mentioned some important topics which play a role in the literature on LR
parsing. They will be dealt with in the following modules : 
Readgrammar : 
- no transformations of the input-grammar 
GenLRsets: 
- the elimination of unit reductions 
- the treatment of empty rules 
- the handling of shift/reduce-reduce conflicts 
- the minimization of the number of generated states 
SupLRcode: 
- generation of stack instructions ( only if necessary) 
- the generation of shared code. 

The user may influence the behaviour of the compiler by the setting of switches. We list 
them together with their function : 

- switches for the restriction of the type of automaton for which code has to be generated : 



166 

- - "multi", iffalse : if no cf-rules exist with recursion then do not generate the 
instruction LSTK which is responsible for the creation of nodes in the L-dag but 
generate instead the instruction NLSTK; in that way code is generated for a FSA 

- - "test_comp_sets", if true: when multi= false then if cf-rules exist with only left- orright
recursion then optimize in such a way that still a FSA will be produced (to be described 
later) 

- switches for the disambiguation for ambiguous type-0 or transduction grammars; a number 
of options may be selected to resolve conflicts in inadequate states for rules with llhsl> 1: 

- - "shift_no_reduce" : in case of a shift/reduce conflict in the LR-table: precedence of shift 
- - "reduce_no_shift" : in case of a shift/reduce conflict in the LR-table: precedence of 

reduce(s) 
- - "one_cs_reduce" : in case of a reduce/reduce conflict between two or more rules : 

precedence of a rule with a longer rhs; if the length is the same : the rule which was 
placed first in the grammar 

- switch for transduction purposes : 
- - "add_cs_rules" : add to each generated itemset all type-I and -0 items with the dot in the 

first position of the rhs (if not already present) 

- switch for optimization purposes : 
- - "intermediate_unit_reduction" : (don't) generate code (the instruction PLRDC) to store in 

a parse a nonterminal which originates from a unit reduction 

- switch for Boolean constructs : 
- - "shared_universe" : add the set of intermediate symbols I to the universe 

- switch for impatient writers of type-2 grammars : 
- - "interactive" : use the compiler as an Earley-parser 

- switch for monitoring purposes : 
- - a number of switches which effect the printing of the datastructures which are created in 

the different modules. 

It is not possible to discuss each module in full detail. In their implemented form they consist 
together of about 13.000 lines of Pascal code (including comments). The optimization of the 
treatment of empty rhs's and unit rules complicates the treatment of the extensions of the LR
algorithm. This will be dealt with in forthcoming publications of M. Elstrodt and the author. 
However, it is possible to discuss the main algorithms in a more simplified form and to indi
cate how they are extended towards their completed form. 

6.2 Reading the grammar: module "Readgrammar" 

In the module "Readgrammar" a grammar which is written in the unifying formalism is read 
in and is stored in a datastructure from which the module "Preparesets" will calculate all nec
essary sets and relations. 
We adhere to the principle that in the communication between the grammar writer and the 
compiler and the runtime system the original rules have to be used. This is the reason why 
we, for instance, do not transform regular expressions into sets of recursive cf rules which 
describe the same (sub)language ("weakly equivalent grammars"). In the communication 



167 

with the user it is in principle possible to translate such a transformed grammar rule back into 
its original form, but in practice this is a complicated affair. 
In chapter 2 we gave the definition of a U-grammar. It concerned a number of sets of sym
bols and a set of rewriting rules. The metagrammar describes the syntax of the rewriting 
rules. With the aid of the metagrammar a U-grammar can be parsed and transformed into a 
datastructure. This is the task of the module "Readgrammar". Together with the construction 
of the datastructure some useful indexes in the datastructure are built. 
Thompson (1968) described an algorithm for the transformation of a grammar which con
tains regular expressions into a datastructure. We will first present the principle of a modifi
cation of Thompson's algorithm. Then we will discuss the actual analysis of the grammar. 
Lastly we will present the datastructures which are in use in the module "Readgrammar". 

6.2.1 From grammar rules with regular expr~ions to a datastructure 

As we mentioned in chapter 2, regular expressions in cfg's are treated by Madsen and 
Kristensen (1976), Purdom and Brown (1981), Heilbrunner (1979), Lalonde (1979 and 
1981 ). All these authors are concerned with the maintenance of the LR(k) property. Some of 
them transform an ecfg into a cfg (like we did in an earlier version of our parser), others 
generate stack instructions in order to be able to inspect the stack. With normal cf g's the size 
of a rhs determines how many symbols have to be popped off the stack in order to make the 
returnstate visible. With ecfg's this is not possible : one does not know beforehand how 
many symbols will be covered by a rhs. The approach of some authors is that the number of 
symbols can be recovered during runtime with the aid of extra bookkeeping instructions. 
In our approach we will rely on the PTA which keeps with each item its returnstate(s). When 
an item reduces it will simply return to that (those) retumstate(s). 
Therefore we concentrated in chapter 5 on the extension of the LR-table construction tech
nique for regular expressions in a lhs or a rhs of a grammar rule. We introduced there the 
idea of the transformation of instable items. The algorithm for the construction of a datas
tructure out of a regular expression will take care of this transformation. It can also be seen 
as a translation of a grammar written in the unifying formalism into a syntax-diagram or into 
an ATN-network (when also actions are used which contain operations on variables). 
There have been several approaches to the problem of the practical construction of a FSA for 
a regular expression. In (Aho, Sethi, Ullman, 1986) a number of them are recapitulated. One 
approach is to construct a NFA, transform it into a DFA and then minimize the DFA. An
other approach constructs a DFA directly out of the syntax tree of the syntactically analyzed 
regular expression. This is done by calculating a number of functions from the syntax-tree. 
One of these functions gives e.g. the positions in the regular expression which may follow 
after a transition on the current position. With the aid of a state-construction method which 
makes use of the calculated functions the NFA is build. This method is akin to the LR con
struction method if one relates positions in a regular expression to items in grammar rules. 
A grammar in the unifying formalism consists of a number of rules which contain regular 
expressions. We use the method of state construction for the construction of the parser as a 
whole. For each side of a grammar rule we construct a NFA. From these NFA's we calcu
late a number of useful functions and relations. 
In (Aho, Sethi, Ullman, 1986, p. 122) Thompson's method for the construction of a NFA 
out of a regular expression is discussed. The principal idea is to use a building block for each 
pair of brackets and to build larger blocks from smaller ones. Entries and exits of blocks may 
be connected to each other. We use the same approach (which is also used in the Unix utility 
Lex), but with the following differences : 

(a) we have to take into account the expressions for the other sub-formalisms, 



168 

(b) we do not construct the blocks off-line from the information in a parse tree but we 
build the blocks on-line, in parallel with the on-line recognition of the grammar itself 
(which is performed by the PTA); the on-line construction is motivated by the possi
ble speedup of the compiler when executing on parallel hardware. 

In the unifying formalism a number of sub-formalisms may be written within the action
brackets. We called them "actions". The actions may be placed virtually everywhere within a 
regular expression and our algorithm has to take this placement into account. Most of the ac
tions themselves will be translated directly into code for the PTA and will be stored as a sub
routine. Only the sub-formalism of cooperations will influence the behaviour of the 
algorithm Construct-itemsets. In the datastructure for the storage of grammar rules a 
reference to a subroutine has to be stored in the proper place. In our examples we will 
indicate that place. To concentrate the discussion on this aspect we will assume that only one 
kind of action may be present : the "report". This action will be representative for all other 
possible actions. 

6.2.1.1 The principle of the datastructure for the storage of grammar rules 

The datastructure for the storage of a rule with regular expressions and actions is built with 
four kinds of records: a "dope-record", a "notion-record", a "goto-record" and an "action
record". In the first one the two references to the datastructures for a lhs and a rhs are kept. 
In the second one a reference to a notion may be stored, in the third one two pointers are 
present which pave the road to successor notion-records, and in the fourth one all necessary 
information concerning actions is stored. We will leave out the fourth one in our discussion. 
For the purpose of illustration in examples we write, if appropriate, a reportnumber instead 
of a pointer to a full action-record by way of abbreviation. Items are identified as positions 
immediately before a notion-record and are stored as an integer in that record. Successor 
items will be found when all possible roads are followed through connected goto-records. A 
road ends on a notion-record. All actions which are found on the road are associated with 
this shift from an item to a successor item (including the starting notion-record, excluding the 
successor notion-record). 
The two most important records in a picture : 

notion-record = (notion, exit, action, itemnr) 
goto-record= (exitl, exit2, action) 

notion-record : 

notion: ref to a symbol t 
exit: pointer to a notion- or goto-record 

action: ref to an action-record 5 
itemnr 11 

goto-record: 

exitl: pointer to a remote notion- or goto-record ~ 
exit2: pointer to the next notion- or goto-record 

action: ref to an action-record 3 

We concentrated more on the on-line construction of the resulting datastructure than on a full 
optimization of it. It is possible to replace some combinations of resulting notion- and goto
records by a combination with fewer records. This is exemplified in the figure of the first 
example. Two goto-records 01 = (0, 1102, 0) and 02 = (Pl, P2, 0) can there be merged 
into one goto-record (Pl, P2, 0). In our case little will be gained by such an optimization. 



169 

The end of a side of a grammar rule is represented by a notion-record which contains no 
pointer to a notionname. In the case of a rhs the exit of this notion-record points to the entry 
of the corresponding lhs, in order to have a reference to the start of the corresponding first 
item of the lhs when a rhs reduces. In the case of a lhs this pointer is nil. 

The essential idea is the identification of blocks in a grammar rule which correspond with a 
regular expression. 
A block may contain other blocks. A block has one entrance and may have multiple exits. 
During the construction of a block its entrance is known, but not its exits. Therefore a list is 
maintained with pointers to all places where the pointer to the next block has to be filled in 
(the standard technique for handling forward references). Because regular expressions may 
be nested we keep a stack for all the information which concerns the construction of the 
blocks. 

We have to construct the essential blocks for 
1. notions 
2. alternatives 
3. blocks between brackets. 

Ad. 1 Notions. 
A notion will be represented by a single notion-record. 

Ad. 2 Alternatives. 
Each alternative is preceded by a goto-record. One pointer of the goto-record points to the 
first record of this alternative, another one will point to the goto-record of the following ac
companying alternative. 
In order to be consistent a whole side which has no alternative will be preceded also by a 
goto-record. 
The exits of blocks which represent mutual alternatives will point to the same record, 
whether it is a notion- or a goto-record. 

Ad. 3 Blocks between brackets. 
A block between square brackets is treated as a set of alternatives. If the alternatives are 
placed within brackets followed by a "*" (zero or more occurrences) or a e (zero or one oc
currence) then the alternative-pointer of the last goto-record before the block of the last alter
native will point to the next block. 

Examples. 

The examples concern combinations of actions with 
- ad. 2. alternatives : 
- -ex. 1: a complete grammar rule S :: A{R:10} I B{R:11} I [C{R:12}]. 
- ad. 3. the 4 basic constructions of regular expressions, written as an infix of a side of a 

rule: 
- - ex. 2:, [A{R:l}]{R:2}*{R:3}, and, [A{R:l}]{R:2}*, 
- - ex. 3:, [A{R:l}]{R:2}+{R:3}, and, [A{R:l}]{R:2}+, 
- - ex. 4:, [A{R:l}]l{R:2}, and, [A{R:1}]1, 
- - ex. 5:, [A{R:1 }]{R:2}, and, [A{R:1 }], 



170 

Example 1: S::A(R:lO}IB(R:ll}l[C{R:12}]. 
If S is the startsymbol then the itemnumbers 1, 2, 3 and 4 are associated. 

0 12 

3 

Example 2: , [A(R:l}](R:2}*(R:3}, and, [A(R:l}](R:2}*, (suppose itemnr. 11 is asso
ciated with notion A) 

0 2 3 

11 

If (R:2} is absent the structure is the same, but the second goto-block will not contain a 
pointer to an action-record. 

Example 3: , [A(R:l}](R:2}+(R:3}, and, [A(R:l}](R:2}+, (suppose itemnr. 11 is as
sociated with notion A) 

0 2 3 0 2 

11 11 

If (R:2} is absent the structure is the same, but the second goto-block will not contain a 
pointer to an action-record. 



171 

Example 4: , [A{R:l}]l{R:2}, and, [A{R:l}]l, (suppose itemnr. 11 is associated with 
notion A) 

0 

11 

Example 5: , [A{R:l}]{R:2}, and, [A{R:l}], (suppose itemnr. 11 is associated with no
tion A) 

0 2 0 

11 11 

6.2.1.2 The on-line algorithm 

The algorithm for the construction of the datastructure for a grammar rule which contains 
regular expressions reacts on the occurrence of the following symbols: 

- start of a grammar rule 
- end_of_rule_sign (the end of a grammar rule, by default denoted by a'.') 
- rewrite_sign (the separation of a lhs and a rhs, default'::') 
- notion 
- action (between action_brackets, default ' {' and '}' ) 
- continuation_sign (between two consecutive notions, default ', ' ) 
- alternative_sign (indication of an alternative, default 'I' ) 
- open_regexpr (the opening square bracket of a regular expression, default'[' ) 
- close_regexpr (the closing square bracket of a regular expression, default ']' ) 
- zeromore, onemore and one (behind a close_regexpr, default'*','+', 'l'), sometimes 

called "indicators". 
The lhs and the rhs of a grammar rule are treated in the same way. 

The algorithm is constructed along the following main lines. 
During the on-line construction the integrity of the current block has to be kept. The nesting 
of blocks will be reflected by the use of a stack. The current block is referenced by the top
most stack-record. A stack-record consists of the 4 fields : 
- TO: the indication of the reason why this record is on the stack : 

- '#': start of a lhs or a rhs 
- 'I': new alternative 
- '[': nesting of a new block, 

(A property of the algorithm is that, within one block, only one TO with a 'I' will be on the 
stack.) 
- Tl: a pointer to the first and only entry to the block, which is a goto-record (it has to be 
kept because in the case that the block is ended with a zeromore or a onemore a pointer has to 
be placed from the last goto-record to the first one), 
- T2: a local help which remembers the address of the exit2-field in a goto-record at the start 
of a block where a pointer to the next alternative of the current block has to be filled in, 



172 

- T3: a list of elements in which the exits of the current block are sampled (these are ad
dresses of exit-fields within a notion- or a goto-record). 

We assume that the input is written correctly (as described by a U-grammar). After the read
ing of each character an action is performed with no backtracking. 
After the treatment of a character the integrity of the current block has to be intact. The treat
ment of each character consists therefore of two parts: 
- extend the current datastructure in a minimal way in order to reflect the structure of the 
grammar rule up till now 
- keep the integrity of the block in order to be prepared for further processing. 

A block starts with the start of a lhs or rhs, with an alternative_sign or with an 
open_regexpr. This usually implies a push of the stack, unless the current stack-record can 
be used again. 
The current block will be ended by the characters : alternative_sign, close_regexpr, 
rewrite_sign and end_of_rule_sign. This ending is handled by the procedure CLOSE and 
usually implies the popping of the stack, with a transport of TI. When actions occur directly 
after a close_regexpr this is registered by the switch actions_after_bracket with the value 
true. In that case the popping is postponed because it is not known whether a zeromore or 
onemore will follow. This postponement of the closing of a block is indicated by the switch 
"close" with the value false. Upon the reading of the other closing characters and the contin
uation sign the postponed pop is executed. 
The reading of the remaining characters implies a continuation within a block. Special care is 
needed for the characters zeromore and onemore in combination with actions : the datastruc
ture has to be built according to the semantics which were discussed in chapter 2. The ab
sence of zeromore, onemore and one implies "zero or one" which is indicated by the switch 
"zero_one" with the value true. 
The setting of the switches is recapitulated in the following syntax-diagram which depicts the 
possible situation after a close_regexpr. To be short the default symbols are used. 

action_after_bracket := true zero_one := false action_after_bracket := false 

{ - actions} .....+-----+-+--.-....+-rn-
- .= false call pr 

action_after_bracket := false close; closed := true 
closed := false 
zero_one := true 

if not closed : 
call procedure 
close; close := true 

The data elements are specified within the unifying formalism. The algorithm is presented in 
a pseudo Pascal, where we assume that we can manipulate with the addresses of individual 
fields of records. If P is such an address then we denote by PD its content. 

notion_record :: (notion, exit, action, itemnr). { see before } 
goto_record :: (exitl, exit2, action). { see before } 
stack_record :: (TO, Tl, T2, TI). { see before} 



173 

TO :: '#' I 'I' I '[' . 
Tl I T2 :: Agoto_record. 
T3 :: [Agoto_record.exitl I Agoto_record.exit2 I Anotion_record.exit]+ . 
dope_record :: (lhs, rhs). 
lhs I rhs :: Agoto_record. notion:: Asymbol. exit:: Ang_record. action:: Aaction_record. 
ng_record :: notion_record I goto_record. 
exitl I exit2 :: Ang_record. 
action_record :: (-). { not further specified; contains everything that can be denoted as a 

reporting action } 
NR :: notion_record. AR:: action_record. GR:: goto_record. 
dope:: dope_record. stack:: [ stack_record ]*. 
symbol_before I symbol:: C. stackpointer I nitem I itemnr :: N. 
zero_one :: lB. 
leftside:: lB. { if true : we are reading in a lhs } 
closed :: lB. { if true : a block is constructed and is referenced by the topmost record of the 

stack} 

Program REX 
- stackpointer := O; nitem := 0; closed := zero_one := true; action_after_bracket := false 
- put an empty record on the stack 
-START_OF_A_GRAMMAR_RULE 
- while not end-of-file do 

- read symbol 
- case symbol of 

-NOTION: 
- allocate notion-record (NR) 
- ifleftside: NRA.itemnr := (nitem := nitem + 1) 
- lookup notion in symboltree, place reference in NRA.notion 
- for all P in T3 do 

- P[] := NR 
- T3 := address(NRA.exit) 

- CONTINUATION_SIGN: 
- if not closed: CLOSE(postponed) 

-ALTERNATIVE_SIGN: 
- if not closed: CLOSE(postponed) 
- if TO = 'I' then POP { merge 2 alternative blocks into one } 
- allocate goto-record (GR) { as start of a new alternative block } 
- T2[] := GR { link from starting goto-record of current block } 
- T2 := address(GRA.exitl) { overwrite starting goto with new one l 
- PUSH('I', 0, 0, address(GRA.exit2) ) { only'#' and'[' indicate a (nested) 

sequence of alternatives; with 'I' the start and finish of such a 
sequence do not have to be remembered in Tl and T2 } 

- OPEN_REGEXPR : 
- allocate goto-record (GR) { as start of a new block } 
- for all P in T3 do 

- P[] := GR 
-TI:= 0 
- PUSH('[', GR, address(GRA.exitl, address(GRA.exit2)) 

- CLOSE_REGEXPR : 
- if not closed: CLOSE(postponed) { close the last alternative, if not done } 
- if TO = 'I' then POP { if alternative, merge with former one } 



174 

- action_after_bracket := closed := false; zero_one := true { initialise } 
-ZEROMORE: 

- zero_one := false 
- CLOSE(zeromore) { close current alternative and make pointers for zeromore } 

-ONEMORE: 
- zero_one := false 
- CLOSE(onemore) { close current alternative and make pointers for onemore} 

-ONE: 
- zero_one := false 
- CLOSE(one) { close current alternative } 

- OPEN_ACTION_BRACKET : 
- allocate action-record (AR) 
- if closed 

- if symbol_before = notion 
- NR'\action := AR 

- else 
- allocate gotorecord(GR) 
- GR'\action := AR 
- for all P in T3 do 

-P[] := GR 
- T3 := address(GR".exit2) 

- else 
- if symbol_before = close_regexpr : 

- action_after_bracket := true 
- fill in actions in AR and read until close_action_bracket 

- REWRITE_SIGN : 
{ closing a lhs } 
- if not closed: CLOSE(postponed) 
- if TO = 'I' then POP 
- allocate notion-record(NR) { for the marking of the end of the lhs } 
- for all P in T3 do 

- P[] := NR 
{ starting a rhs } 
- leftside := false 
- allocate gotorecord (GR) 
- DOPE.rhs := GR 
- TO := '#'; Tl := GR; T2 := address(GR".exitl); T3 := address(GR".exit2) 
- closed := true 

- END_OF _RULE_SIGN: 
- if not closed: CLOSE(postponed) 
- if TO = 'I' then POP 
- allocate notion-record (NR) { for the marking of the end of the rhs } 
- NR".exit := pointer to start of lhs 
- NR".itemnr := (nitem := nitem + 1) 
- for all P in T3 do 

- P".exit2 := NR 
- if not end_of_file 

- START_OF_A_GRAMMAR_RULE 
{ end ofrex} 



procedure PUSH(T0, Tl, T2, T3) 
- stackpointer := stackpointer + 1 
- stack[stackpointer] := (TO, Tl, T2, T3) 

( end of push } 

procedure POP 
- stack[stackpointer-1].TI := stack[stackpointer-1].TI II stack[stackpointer].T3 

{ 'II' : append the two lists } 
- stackpointer := stackpointer - 1 

( end of pop} 

procedure CLOSE(indicator) { this procedure completes a block } 
{ a goto-record is needed when 

- actions have to be stored 
- and/or a pointer for repetition has to be stored 
because of the 'and' we serve with this procedure two purposes } 

- if action_after_bracket or (indicator e {zeromore, onemore} ) 
- allocate goto-record (GR) 
- if action_after_bracket 

- GR".action := AR 
- action_after_bracket := false 

- for all P in T3 do 
-P[] := GB 

- T3 := address(GR".exit2) 
- if indicator e { zeromore, onemore} 

- GR".exitl := Tl 
- if (indicator= zeromore) or zero_one 

- T3 := T3 ! ! T2 { save the continuation-pointer T2 of the last alternative 
as an exit} 

-POP 
- closed := true 
{ end of close ) 

procedure START_OF _A_GRAMMAR_RULE 
- leftside := true 

175 

- allocate DOPE : a dope-record for a field, which has 2 fields, pointing to the lbs and rhs 
- allocate goto-record (GR) 
- DOPE".lhs := GR 
- TO:='#'; Tl := GR; T2 := address(GR".exitl); T3 := address(GR".exit2) 
- closed := true 
{ end of start_of_a_grammauule ) 

6.2.2 Parsing of grammar rules according to the metagrammar 

We use the compiled metagrammar in order to parse a user grammar. (The inherent boot
strapping problem did not manifest itself because of the evolution process of the Parspat 
compiler and runsystem). In the former section the algorithm reacted on the occurrence of a 
number of symbols. This can be achieved by denoting reports in the metagrammar at the ap
propriate places. As we have seen with the PT A, the reports are brought to the outside world 
as soon as possible (after the resolution of temporal ambiguities). 



176 

6.2.3 Implementation : Datastructures to be built 

6.2.3.1 Symbol Trees 

The names of symbols are stored in symbol trees. The symbols get an identification number. 
For each tree an index is built: given an identification number a pointer is returned to the cor
responding name. This is done by making use of standard techniques for the maintenance of 
symbol tables. 

According to the definitions of chapter 2 the notions in a U-grammar can be divided in the 
following categories. We list them in the order in which they get their identification number: 
- the set of reserved symbols 
- the set of nonterminals N (which were defined as the symbols that are rewritten, as only 
symbol, at a lhs), subdivided in 
- - the startsymbol (in the case of a PSG) 
- - the remaining nonterminals 
- the set of intermediate symbols I 
- the set of terminal symbols T, subdivided in 
- - lexicon notions : these are prefixed by a"$" 
- - notions which generate an element of a set denoted by a range of characters 
- - notions with the length of 1 character which generate that character. 

6.2.3.2 The other datastructures 

In the implementation of the compiler the goto-, notion- and action-records, of course, con
tain more fields than shown in the algorithm because of the presence of the other sub-for
malisms, like: negation, cover symbols and formal parameters (variables and cooperations). 

6.3 Preparing useful sets and relations : module "Preparesets" 

In chapter 5 we extended the functions "Goto-itemset" and "Closure". This resulted in 
- the definition of traveling rules for items with 3 types of dots 
- the transformation of items 
- the removal of items from itemsets in the case of the use of cooperations and/or negations 
- the addition of rules for the adding of closure items in the case of negations. 
In the module Preparesets we will prepare a number of useful sets in order to construct the 
itemsets in a more efficient way than is indicated in the 4 functions for LR table construction. 

The shift rules for items can be expressed as triples (item, symbol, item), the reduce rules as 
pairs (item, symbol). We defined an item itself in section 5.4 as a triplet (type, marker, 
brackets), where 
- the type can be: normal dot("."), neg dot("/') and don't care dot(".*"), 
- the marker is a label which is used in order to remember which items originated together 
from the passing of a normal dot through a negation bracket (for a normal dot there is no 
marker), 
- brackets is the number of open negation brackets; for a normal dot this number is always O; 
for a neg dot it is a single number, for a don't care dot it is a pair (open active negation 
brackets, open passive negation brackets). 
Each item has a unique label. In our implementation it is an integer which counts for each 
notion in a grammar rule three times (normal dot, neg dot and don't care dot), ordered from 
the first rule to the last rule. This ordering is arbitrary. The values within the triplet of an item 



177 

are related to the position of the itemdot in the grarnmarrule, and therefore to the itemnr. For 
a unique characterization of the item they can be left out. The marker, however, can take a 
number of values which will depend upon the path that is followed up to the current itemset. 
The conclusion is that an item can be uniquely characterized by a pair of integers 
(itemnumber, marker). Therefore, within one itemset there may be present a number of 
items with the same itemnumber, but with different markers. The traveling rules for the item 
itself will not depend upon the marker. The marker plays only a role when related items have 
to be removed. It is therefore possible to express the traveling rules as triples (itemnumber, 
symbol, itemnumber) and to keep for each itemset a bookkeeping for the markers which are 
associated with the items. We will therefore keep the handling of the markers out of our dis
cussion. 

In the algorithm GenLRsets of section 6.4.5 for the construction of itemsets the following 
datastructures are used: 

datatype: 

array of set of items 

array of set of items 
array of integers 

set of items 

set of items 

set of items 

set of items 
set of items 

name: function: 

items_before_notion[notion] gives for each notion the items where 
the itemdot precedes that notion 

follow _items_of_item[itemnr]gives for each item its item_projectives 
notion_behind_item[itemnr] gives for each item the notion 

start_items_before_ 
nonterminals 

start_cs_items 

nonterminals_after_start_ 
or_middle_items 

all_cf_reduce_items 
all_cs_reduce_items 

behind its itemdot 
gives all starting items with the 
dot before a nonterminal 

gives all starting items of 
type-1 and -0 rules 

gives all non-reducing 
items with the dot before a 
nonterminal 

gives all cf reducing items at a rhs 
gives all type- I and -0 reducing items 

at a rhs 
array of set of items closure_items_of_ 

notion[notion] 
gives for a notion the numbers 
of the start-items at the rhs with that 
notion as the first symbol of the lhs 

These sets are derived in a straightforward manner by a depth-first walk through the 
datastructure for grammar rules which was created in the module Readgrammar. 
Closure_items_of_notion is constructed with the aid of an adapted version of the closure
algorithm of Warshall (1962). The adaptation concerns negated nonterminals and type-1 and 
-0 rules. 

6.4 Construct ltemsets : module "GenLRsets" 

After the construction of the sets in the module "Preparesets" it is now possible to specify the 
algorithm for the construction of itemsets. It works in principle for a rhs as well as for a lhs. 

6.4.1 Generating a FSA for left- and right-recursive cfg's 

In every shift/reduce parsing automaton the reduction of a rhs of a rule takes more elemen
tary operations than a shift operation. It seems therefore appropriate to avoid as much as 



178 

possible the generation of reduce instructions. A reduce instruction may be expected to be 
generated for each alternative of the rewriting of a nonterminal. 
In general, nonterminals are used by a grammar writer for 
(a) the abbreviation of common substrings in rhs's 
(b) the expression of recursion. 
We will discuss how the algorithm for the construction of itemsets can be extended in order 
to generate only shift entries in the LR-table for cfg's which do not contain infix recursion. 

(a). Conceptually, a nonterminal which is used for the abbreviation of common substrings in 
a rhs may be replaced by its rhs's. We will simulate this replacement by a combination of 
Barley's parsing algorithm with the LR parser-generation algorithm. Barley's algorithm was 
recapitulated in section 3.6. We defined an Earley-item as a tuple <A::a.p, f> where A::ap 
is a production and f is an integer, representing the number of the itemset where the closure 
item A:: .ap originated (itemsets are numbered in the sequence in which they are created). In 
the sequel we will call itemset f the "father itemset" of item A::a.p . Moreover, we will de
note the set of Earley-items { <A::a.p, f1>, <A::a.p, f2>, ... , <A::a.p, f0 >} by <A::a.p, 
{f1, f2, ... , f0 }>. The set F={f1, f2, ... , f0 } will be called the "set of fathers" of item 
A::a.p. 
Earley's algorithm differs from the LR parser-generation algorithm in two respects : 
- it constructs a new itemset on the reading of a new terminal 
- on the reduction of an item it does not place a reduce entry in a table but it calls the routine 
COMPLETER. 
We combine Earley's technique with the LR parser-generation algorithm by treating every 
LR shift symbol as an Earley input symbol. If the shift symbol is a nonterminal then only the 
core of the new itemset will be created. We call such an itemset a "bookkeeping itemset" and 
it will not be treated further. It functions only as a set of all the items which will originate 
from the shifting or reducing on the nonterminal. This set will be used by the routine COM
PLETER. The activation of the routine COMPLETER in Earley's algorithm reads as follows: 
- ifli is the current itemset 

- if <A :: a., f> is the item under observation 
then do 

- ( COMPLETER: ) 
if a = input symbol 
then for each item <B::a.Ap, h> in lf do add <B::aA.p, h> to lj. 

We use this part of the procedure in the function LR-TABLE. Line 2b of it reads as follows : 
- if [A::a.X] is in Ii, then add 'reduce p' to ACTION(i, X), where pis production 

A::a. 
It has to become : 

- if <A::a.B, f> is in Ii, then add the core of GOTO(If, A) to GOTO(li, B). 
In the enhanced LR parser-generation algorithm a father itemset number has to be added to 
all LR-items in order to get Earley-items. In the algorithm of Earley it is possible that by the 
addition of <B::aA.p, h> to Ii a new reduction has to be performed because P can be empty. 
A natural property of the enhanced LR parser-generation algorithm is that GOTO(If, A) can 
not contain completed items. 
However, when the sub-formalisms of negation and cooperation are used in the grammar the 
schema for the creation of GOTO(lf, A) can not longer be followed because of the interaction 
with other rules. The sequence of reductions then becomes important. In that case the origi
nal Earley strategy has to be followed. 
This enhanced LR parser generation algorithm for the creation of a FSA will also automati
cally handle grammars with left recursion. 



179 

If the grammar is middle or right recursive the algorithm will not terminate. This situation 
will be discussed in (b). 

Example for (a). 
Suppose we want to construct a FSA for the grammar 

A :: A, a I B, b I c. 
B :: A, b I B, a I d. 

As usual, we add the rule S' :: (A). 

I1 contains the item: 
core: <S' :: .(A), 1> On a shift on'(' we construct 12. 
I2 contains the items : 
core: <S' :: ( .A ), 1> 
closure: <A :: .A a, 2>, <A :: .B b, 2>, <A :: .c, 2>, 

<B :: .A b, 2>, <B :: .B a, 2>, <B :: .d, 2>. 
On a shift on B we construct 13. On a shift on 'c' we construct 15. 
On a shift on A we construct 4. On a shift on 'd' we construct ¼;. 

l3 contains the items : 
core: <A :: B .b, 2>, <B :: B .a, 2> 
No closure has to be added. This is a bookkeeping itemset and will not be processed fur
ther. 

4 contains the items : 
core: <S' :: ( A .), 1>, <A :: A .a, 2>, <B :: A .b, 2> 
No closure has to be added. This is a bookkeeping itemset and will not be processed fur
ther. 

Is contains the items : 
core: instead of <A:: c., 2> we add GOTO(2, A), which is 4: 

<S' :: ( A .), l>, <A :: A .a, 2>, <B :: A .b, 2>. 
No closure has to be added. 

On a shift on 'a' we construct the following itemset Ji. 
J 1 contains the items : 
core: instead of <A:: A a., 2> we add GOTO(2, A), which is 4: 

<S' :: (A.), 1>, <A:: A .a, 2>, <B :: A .b, 2>. 
The core of this itemset J 1 is equal to the core of 15. Therefore, on a shift on 'a' we 
shift to 15. 

On a shift on 'b' we construct ¼;. 
On a shift on ')' we accept. 

16 contains the items : 
core: instead of <B :: d., 2> we add GOTO(2, B), which is 13: 

<A :: B .b, 2>, <B :: B .a, 2> 
No closure has to be added. 

On a shift on 'a' we construct the following itemset h 
h contains the items : 
core: instead of <B :: B a., 2> we add GOTO(2, B), which is l3: 

<A :: B .b, 2>, <B :: B .a, 2> 
The core of this itemset Ji is equal to the core of 16. Therefore, on a shift on 'a' we 
shift to 16. 



180 

On a shift on 'b' we construct the following itemset h 
J3 contains the items : 
core: instead of <A :: B b., 2> we add GOTO(2, A), which is 4: 

<S' :: ( A .), 1>, <A :: A .a, 2>, <B :: A .b, 2>. 
The core of this itemset J3 is equal to the core of l5. Therefore, on a shift on 'b' we 
shift to l5. 

This ends the construction of the itemsets. We only created shift entries in the LR-table 
which can therefore straightforward be converted into the following FSA (where we identify 
an LR-itemset which shifts on the endmarker ")" with an accepting state of the FSA): 

The FSA recognizes the language which is generated by the grammar 
A :: A, a I B, b I c . 
B :: A, b I B, a Id. 

This can be verified by rewriting the grammar into a regular expression. We do this by first 
eliminating B. The second rule can be rewritten as 

B :: B, a I [A, b I d] 1. 
Therefore B => [A, b Id] 1, [a]*. Substitution in the first rule gives : 

A:: A, a I c I A, b, [a]*, b Id, [a]*, b. which is equal to 
A:: A, [a I b, [a]*, b]l I [ c Id, [a]*, b]l. Therefore 
A=> [c Id, [a]*, b]l, [a I b, [a]*, b]*, which is expressed by the FSA above. 

(b). It is well known that for regular expressions and for regular (type-3) grammars a 
deterministic FSA can be constructed. A regular expression may also be written as a cfg with 
left or right recursion. It may therefore be expected that for cf g's with only left and/or right 
recursion a FSA might be constructed. In fact, this is suggested by the transformation of tail 
recursion into iteration, but we are not aware of an algorithm for the direct generation of a 
FSA for such a cfg. In the compiler we provide for the construction of a FSA for cf g's with 
left and/or right recursion by an extension of the technique which we explained in (a). The 
extension is motivated by the following observations. 
If in itemset Ii the two Earley-items <A::al-[3, f1> and <B::a2.l3, f2> are present, then we 
know that both items will travel along any sequence of terminals which can be generated by 
!3. We call such items "compatible". If we are not interested in the parsing of the grammar 
but only in its recognition then it seems unnecessary to let both items travel. We can choose 
one of them as a representative, until we reach the itemset where the item will reduce. At that 
point we have to perform the action of the COMPLETER which says that the core's of the 
itemsets GOTO(In, A) and GOTO(lt2, B) have to be added to the itemset which is to be 
constructed. Suppose that these core's contain mutually compatible Earley-items. Then again 
it is only necessary to add one of these core's. In such a way, by comparing items for the 
languages that they are able to generate, it becomes possible to discard items which will be
have in the future always in the same way as other items. 



181 

We generalize this idea in the following definition and extensions to the LR parser-generation 
algorithm. 

Definitions. 
We call the two items <A1::a1.P1, F1> and <A2::a2.P2, F2> compatible if 
- P1 and P2 generate the same language and 
- the sets of fathers F 1 and F2 are compatible. 
We call two sets of fathers F 1 and F2 compatible if 
- F1 = F2 or 
- for each f1 e F1 there exists a f2 e F2 and for each f2 e F2 there exists a f1 e F1 such that 
the core's of the itemsets GOTO(f1, A1) and GOTO(f2, A2) are compatible. 
We call the core's of two itemsets Ii and Ij compatible if 
- core of Ii = core of Ij or 
- for each item in e Ii there exists an item im e Ij and for each item im e Ij there exists an 
item in e Ii such that in and im are compatible . 
.1. 

Extension to the LR parser-generation algorithm. 
An Earley-item will not be added to an itemset if this itemset contains already a compatible 
Earley-item. 
A newly created itemset will not be added to the set of constructed itemsets if it is compatible 
with an already existing itemset. 

Implementation in the compiler. 
For practical reasons we compare in the compiler only items of the form <A::a.p, f1> and 
<A::a.p, fp, that is, these items differ only in the father itemsetnumber. 
Compatibility between items and itemsets will only be calculated if necessary. The outcome 
of the calculation is stored in a datastructure. 
The definition of compatibility is recursive. It is possible that during the calculation of the 
compatibility of two items that same compatibility is called for. We resolve the circularity by 
the observation that, if the outcome of a compatibility calculation depends solely on the out
come of the calculation itself, we are free to choose true or false for the outcome. In that case 
we will choose the value true. We will clarify this by an example. 

Example for (b ). 
Our example concerns a grammar which is believed by Earley (1970) to be one of the few 
grammars for which his parsing algorithm takes cubic time (see also the discussion on 
worst-case languages and grammars in chapter 7). During parsing an exponential number of 
parse trees will be created. The grammar, which is called in the literature "UBDA", is: 

S :: S, S; a. 
We will show how the enhanced LR construction algorithm (according to a. and b.) creates 
for this grammar a FSA with 2 states. 
As usual, we add the rule S' :: ( S). 

I1 contains the item: 
core: <S' :: .( S ), 1> 

On a shift on'(' we construct I2. 

I2 contains the items : 
core: <S' :: ( .S ), 1> 
closure: <S :: .S S, 2>, <S :: .a, 2>. 



182 

On a shift on S we construct l3. On a shift on 'a' we construct 4. 

l3 contains the items : 
core: <S' :: ( S .), l>, <S :: S .S, 2> 
No closure has to be added. This is a bookkeeping itemset and will not be processed fur
ther. 

4 contains the items : 
core: instead of <S :: a., 2> we add GOTO(2, S), which is l3: 

<S' :: ( S .), 1>, <S :: S .S, 2> 
closure:<S :: .S S, 4>, <S :: .a, 4> 

On a shift on S we construct l5. On a shift on 'a' we construct It,. 

l5 contains the items : 
core: 3 items will shift or reduce on S: 

1. instead of <S :: S S., 2> we add GOTO(2, S), which is l3: 
<S' :: ( S .), 1>, <S :: S .S, 2> 
2. normal shift of <S :: S .S, 4> 
3. instead of <S :: a., 4> we add GOTO(4, S), which is l5. This is a tautology. 

Now the extension of the algorithm according to b. comes into action. l5 contains 
<S :: S .S, {2 }> and <S :: S .S, { 4 }>. We have to question if these two items are compati
ble. That will be so ifGOTO(2, S), which is l3, is compatible with GOTO(4, S), which is 
l5. Therefore the question is : are l3 and l5 compatible ? 
Both contain the item <S' :: ( S .), 1>. The remaining item in l3 is <S :: S .S, 2> and in l5 
the remaining items are <S :: S .S, {2, 4 }>. The question therefore is if the items <S :: S .S, 
2> and <S :: S .S, 4> are compatible. But that is the question which we started with. This is 
again a tautology : the answer will solely depend on the answer. We choose therefore "true" 
and store this decision in a table. In itemset l5 we will now leave out item <S :: S .S, 2> be
cause its future will be included in the future of the item <S :: S .S, 4>. We recapitulate : 

l5 contains the items : 
core: <S' :: ( S .), l>, <S :: S .S, 4> 
No closure has to be added. This is a bookkeeping itemset and will not be processed further. 
After the creation of an itemset we have to compare it with already existing itemsets. l5 is 
compatible with l3, as we saw already. Instead of l5 we will therefore take l3. 

16 contains the items : 
core: instead of <S :: a., 4> we add GOTO(4, S), which is l5: 

<S' :: ( S .), 1>, <S :: S .S, 4> 
The core of this itemset is compatible with the core of 4- Instead of 16 we will therefore take 
l4. 

We are now finished with the creation of itemsets. The constructed FSA is: 



183 

6.4.2 Optimization of the treatment of empty- and unit -rhs's 

The usual approach for the treatment of empty rules is to introduce the empty symbol E and 
to perform for each created itemset A an E-move. The resulting itemset B has to be merged 
with A and the empty items have to be removed. This process may be repeated until no more 
empty items in A are present. A more efficient approach is to make shortcuts in the datas
tructure for grammar rules over nonterminals which have an empty rhs. But then care has to 
be taken of the correct representation of £-reduces in the parse, as well as of the intermediate 
actions. 
The usual approach to the treatment of unit rules is to simulate the runtime treatment of these 
unit reduces in compile-time. Then the intermediate actions have to be sampled into the ex
tended LR-table (we give an example in the next section). 
The treatment of both kinds of rules is more complicated when the sub-formalisms of coop
eration and negation are used. The treatment of cooperation asks for the removal of items for 
which the cooperation with other items in the itemset is not fulfilled. Markers of negation 
dots may fire other items with dots with that marker, which then have to be removed. Special 
care has to be given to the removal of starting items with a cooperation : it is possible that 
their fatheritems in the same itemset also have to be removed. 
The optimization for left- and/or right recursive markers, together with the compatibility 
checking of items and itemsets, still further complicates the treatment. However, when the 
usual approach is followed which we sketched above, and when the normal treatment during 
runtime is simulated properly in compile time, the implementation is not complicated. How
ever, the speed of compilation decreases. In our implementation we tried to improve the 
speed by doing more preprocessing in the module "Preparesets". The results will be pub
lished elsewhere by M. Elstrodt and the author. 

6.4.3 Disambiguation of shift-reduce/reduce conflicts 

Normally, the PTA takes care of all indeterminism which is caused by ambiguities in a 
grammar. However, the user of the grammar may restrict the number of parses for an 
ambiguous grammar by asking for a global arbitration in the case of conflicts in the LR-table 
for an itemset. This arbitration is straightforward to implement because LR-parsing tries to 
follow all derivations in parallel. In the current implementation we provide for the following 
3 possibilities, which are indicated by the setting of switches: 
- - "shift_no_reduce" : in case of a shift/reduce conflict in the LR-table: precedence of shift 
- - "reduce_no_shift" : in case of a shift/reduce conflict in the LR-table: precedence of (all) 

reduce(s) 
- - "one_cs_reduce" : in case of a reduce/reduce conflict between two or more rules : 

precedence of a rule with a longer rhs; if the length is the same : the rule which was 
placed first in the grammar. 

6.4.4 The principle of the datastructure for the extended LR-table 

Output of the module GenLRsets will be an extended LR-table from which the code for the 
PTA can be generated. The LR-table will be constructed in a datastructure which will allow 
for the generation of code for the PTA in a straightforward manner. 
In section 4.2.2 we specified the syntax of the programs which have to be generated. This 
syntax specifies a sequence of operations. The sequence of operations within actions which 
is specified within a grammar rule has to be found back in the sequence of generated instruc
tions. However, the sequence of grammar rules within a grammar is not important and does 



184 

not have to be reflected in the generated code. As we discussed in section 4.5 this allows for 
the processing on parallel hardware. 
The parallelism is caused by the non-determinism which is found in the constructed LR-table 
when multiple entries are allowed for the action on a symbol. In fact, for the action on a 
symbol zero or one shift may be present, zero or one accept and zero or more reduces may 
be present. The entries become more complicated when the optimization for empty and unit 
reduces is taken into account or when code has to be generated for nonterminals which are 
rewritten with cf rules which do not contain infix recursion (the switch multi=false, which 
optimization was discussed in section 6.4.1). Then it is possible that, before the execution of 
the instruction LSTK for a shift or the instruction RDCF for a reduce, a chain of intermediate 
reductions has to be performed by the instruction PLRDC. For instance, consider the fol
lowing grammar in which we abbreviate actions by roman numbers. 

(1) a, B :: B, a . 
(2) B :: C {I}. 
(3) B :: D. 
(4) C :: e {II}, [f] . 
(5) D :: [e] {III}, [g]. 

Suppose the first itemset 

(1) a, B :: 1B 2a 
(2) B :: 4C {I} 
(3) B :: <,I) 
(4) C :: 8e {II} [f] 
(5) D :: [11e] {III} [i2g] 

is constructed from which we want to create action entries on the symbol "e". Initially, we 
create a shift entry to the successor state for item pairs (8, 9) and (11, 12) and a reduce entry 
for the items 8 and 11. However, if we optimize for unit reductions further reductions may 
be indicated for the items 4 and 6. In their turn, both unit reductions give rise to a shift for 
item pair (1, 2). Therefore, the action on symbol "e" results in a shift-entry in the LR-table, 
with a number of intermediate reduces. These reduces we called in section 4.2.2 "pseudo
reduces" and are performed by the instruction PLRDC. If the switch intermedi
ate_unit_reduction is false then the user is not interested in the representation of the unit re
ductions. In that case we can leave them out. (If the switch build_parse is false the user is 
not interested at all in the representation of reduces.) 
The order in which the pseudo-reduces have to be performed has to be represented in the 
datastructure for the LR-table, but also the parallelism of the reductions from the items 4 and 
6. Furthermore, the references to the actions I, II and III have to be kept. 

From section 4.2.2.3.1 we repeat the essential syntax rules for the piece of a program which 
corresponds with an entry in a LR-table. The datastructure for the LR-table closely resembles 
this syntax. 

code_per_symbol 

list_of_instructions 
from_goto_action 
instruction 

:: [ LSTK, statenr_l], [ list_of_instructions ]*, EXT I 
NSTK , statenr_l , EXT. 

:: TOP , from_goto_action , [ instruction ] , [ list_of_instructions ]* . 
:: item_current, item_projective, [ action_call ]* . 
:: PLRDC , leftsymbol_cf I 

LRDCF , leftsymbol_cf I 



LRDCS , statenr_r I 
ACC. 

185 

We comment on each line for those aspects which concern the datastructure of the LR-table. 

- code_per_symbol: - there is a reserved position for the shift itemset number "statenr" 
which will be filled in as soon as that number is known 

- a parallel accept and/or zero or more parallel reductions are stored in 
a structure which corresponds with "list" 

- list_of_instructions: - in from_goto_action the itemnumbers and references to actions 
which are associated with a shift or a reduce are represented 

- instruction is one of the 3 instructions RDCF, PLRDC or LRDCS 
for a reduce or an accept (or no instruction when there is only a 
shift) 

- after the instruction other reduction instructions may follow, each 
represented by a "list" 

- from_goto_action : - item_current, item_projective, zero or more actions 

Therefore, the essential datastructure for the action on a symbol in the LR-table is of the form 
[shift_statenr], [item_current, item_projective, [ref_to action]*, 

[reduce instruction], [reduce_list]* ]* . 

For the itemset of our example the entry in the LR-table for symbol "e" will become (where 
open brackets on different lines in the same column indicate the start of parallel actions ) : 

- when no optimizations are involved (switch multi=true): 
successorstate, (8, 9, II) 

(8, 10, II, RDCF C) 
(11, 12, III) 
(11, 13, III, RDCF D) 

- when the optimization for as much FSA code (switch multi=false) and for unit reductions is 
performed: 

successorstate, (8, 9, II) 
(8, 10, II, PLRDC C, (4, 5, I, PLRDC B, (1, 2))) 

(6, 7, PLRDC B, (1, 2)) 
(11, 12, III) 

- when also the optimization for compatibility checking is performed (switch 
test_comp_sets=true): 

successorstate, (8, 9, II) 
(8, 10, II, PLRDC C, (4, 5, I, PLRDC B, (1, 2) ) ) 
(11, 12, III) 

- when also intermediate nonterminals in unit reductions have to be left out (switch interme
diate_unit_reduction=false) : 

successorstate, (8, 9, II) 
(8, 10, II, (4, 5, I, PLRDC B, (1, 2))) 
(11, 12, III) 



186 

- when also the user is only interested in recognition and not in parsing : 
successorstate, (8, 9, II, (4, 5, I, (1, 2))) ) 

(11, 12, III) 

- and also, finally, when the actions I, II and III were not present in the grammar: 
successorstate. 

6.4.5 The algorithm for the construction of itemsets 

The original algorithm of Construct-itemsets, as a combination and extension of the algo
rithms "Closure", "Goto-itemset" and "LR-table", was specified in section 5.0. 

The new algorithm, which we call GenLRsets, makes use of a queue of created itemsets for 
which an LR-table has to be created. It makes also use of the datastructures which were con
structed in the module "Preparesets" and which were listed in section 6.3. 
The algorithm may be invoked for all rhs's together or for each lhs separately. It reads as 
follows. 

Algorithm GenLRsets 

{initialize } 
- if algorithm is invoked for a lhs 

- Itemset[l] := first item of lhs 
- else 

- if switch transduction = true 
- Itemset[l] := start_cs_items 

- else 
- Itemset[l] := { [S' :: .(, S, )] } 

- #created_itemsets := 1 
- put a reference to Itemset[l] in the queue 

{ treat next itemset in the queue } 
- while the queue is not empty do 

- take the reference to the next itemset from the queue and call the itemset: Current_itemset 

{ prepare treatment of don't cares and s : because shifts on don't cares and lines are 
independent of the symbol they are treated separately; determine the goto-items on 
these symbols } 

- Temp:= Current_itemset n items_before_notion[dontcare_symbol] 
- Items_projective_of_dontcare_items := 0 
- for each item i in Temp do 

- Items_projective_of_dontcare_items := Items_projective_of_dontcare_items u 
follow _items_of_item[i] 

- Line_items := Current_itemset n items_before_notion[line_symbol] 
- Items_projective_of_line_items := 0 
- for each item i in Line_items do 

- Items_projective_of_line_items := Items_projective_of_line_items u 
follow _items_of_item[i] 

{ create new itemsets } 
- for each symbol X, except for the don't care symbol and the line symbol, do 



- New_itemset := 0 { in New_itemset the new itemset will be created} 
- Temp := Current_itemset Ii items_before_notion[X] 
- for each item i in Temp do 

- New_itemset := New_itemset u follow_items_of_item[i] 
{ add the line-items of Current_itemset } 

- New_itemset := New_itemset u Line_items 
{ add the goto-items of the dontcare-items } 

- if X is a terminal 
- New _itemset := New _itemset u Items_projective_of_dontcare_items 

{ add the goto-items of the line-items with X behind the line-symbol } 
- Temp := Items_projective_of_line_items Ii items_before_notion[X] 
- for each item i in Temp do 

- New_itemset := New_itemset u follow_items_of_item[i] 

- if user switches indicate : disambiguate in case of shift/reduce-reduce conflicts 

{ Place reduce-entries in LR-table for the current itemset} 
- Cf-reduce_items := New_itemset II all_cf_reduce_items 
- Cs-reduce_items := New_itemset II all_cs_reduce_items 
- if switch multi=false (the optimization for grammars without 

middle-recursion has to be performed) 
- call the enhanced COMPLETER routine of section 6.4.1 for 

Cf-reduce_items 
- else 

- remove items from Cf- and Cs-reduce_items with unfulfilled 
cooperations 

- for each item i in Cf-reduce_items do 
- create a cf-reduce-entry in the LR-table for (Current_itemset, X) 

together with triple (item_current, item_projective, actions) 
- for each item i in Cs-reduce_items do 

- create a cs.reduce-entry in the LR-table for (Current_itemset, X) 
together with triple (item_current, item_projective, actions) 

{ remove reduce-items from New_itemset} 
- New_itemset := New_itemset II not Cf-reduce_items II not Cs-reduce_items 

- remove items from New_itemset with unfulfilled cooperations 

{ determine if core of new itemset already exists; a hashcoding is used for 
the core of itemsets which is stored in the array 

Hashcode_core_of_itemsets[l..#itemsets] } 
- Hashcode_core_of_newset := a hashcoding of the datastructure for the core of 

New _itemset 
- New_itemset_exists := (there is aj such thatj e Hashcode_core_of_itemsets 

[Hashcode_core_of_newset]) and (New_itemset = Itemset[j]) 
- if New _itemset_exists = false 

{ if algorithm is invoked for rhs's: add closure items to new itemset} 
- if New _itemset <> 0 

- if switch transduction = true 
- New_itemset := New_itemset u start_cs_items 

- Items_in_newset_before_nonterminal := New_itemset 11 

nonterminals_after_start_or_rniddle_items 

187 



188 

- for each item i in Items_in_newset_before_nonterminal do 
- New_itemset := New_itemset u 

closure_items_of_item[notion_behind_item[i]] 
- #created itemsets := #created itemsets+ 1 
- Itemset[#created itemsets] := New_itemset 
- put a reference to New_itemset in the queue 
- shift_setnr := #created_itemsets 

- else 
- shift_setnr := j 

{ Place shift-entry in LR-table for current itemset} 
- if X = endmarker 

- create in the LR-table for (Current_itemset, X) an accept-entry 
- else 

- create in the LR-table for (Current item..et, X) a shift-entry to 
shift setnr -

{ end of GenLRsets } 

6.5 Generating code for a PT A : modules "Supscanner" and "SupLRcode" 

The modules "Supscanner" and "SupLRcode" take as input the datastructure for the LR-table 
which we discussed above. We already indicated that this datastructure resembles closely the 
sequence of the code which has to be generated. 
In the module "Supscanner" the scanner-table is constructed which we described in section 
4.2.2.3.1 . The module "SupLRcode" generates the code for L- and R-states. The syntax of 
the code for L-states was described in the same section. The syntax for R-states could have 
been the same, but because the formalism of a lhs is more restricted then the formalism of a 
rhs the syntax for the code of a R-state can be more limited. It was described in section 
4.2.2.3.2 . 
In chapter 4 we described the working of the different instructions. In section 6.5 we de
scribed the relation between the extended LR-table and the code which has to be generated. 
There remain a number of topics which may be of interest to be described here. 

6.5.1 Shared code 

Code is shared as much as possible. Candidates for sharing are : 
- code for actions; this code is generated already in the module "Readgrammar" and is written 
in a separate place 
- code for reductions. 
As an example we present the generated code for the entry in the LR-table which we dis
cussed in section 6.4.4. The itemset was 
(1) a, B :: 1B 2a 
(2) B :: 4C {I} 
(3) B :: 61) 
(4) C :: se {II} [f] 
(5) D :: [ue] {ID} [izg] 

The entry in the extended LR-table was, when the optimization for as much FSA code 
(multi=false) and for unit reductions is performed: 

successorstate, (8, 9, II) 
(8, 10, II, PLRDC C, (4, 5, I, PLRDC B, (1, 2) ) ) 



189 

(6, 7, PLRDC B, (1, 2)) 
(11, 12, III ). 

We display the generated code as it is created by our disassembler. Successorstate=3 and the 
start of the code for the entry is at program counter=67 : 

21 -16 -15 
23 -17 -1 2 
26 -18 
27 -20 

28 -16 -16 
30 -17 -4 5 
33 -21 1 
35 -19 21 
37 -18 
38 -20 

67 -2 3 
69 -17 -8 9 
72 -21 4 
74 -18 
75 -17 -8 10 
78 -21 4 
80 -19 28 
82 -18 
83 -17 -11 12 
86 -21 7 
88 -18 
89 -13 

PLRDC 
CTOP ( 
TCL ) 
RTN 

PLRDC 
CTOP ( 
ACAL 
CAL 
TCL ) 
RTN 

LSTK 
CTOP ( 
ACAL 
TCL ) 
CTOP ( 
ACAL 
CAL 
TCL ) 
CTOP ( 
ACAL 
TCL ) 
EXT 

Pseudo CF-reduce, reduced symbol: B 
item_current: -1, item_projective: 2 

Pseudo CF-reduce, reduced symbol: C 
item_current: -4, item_projective: 5 
Call action-subroutine 1 
Call subroutine 21 

Shift to state: 3 
item_current: -8, item_projective: 9 
Call action-subroutine 4 

item_current: -8, item_projective: 10 
Call action-subroutine 4 
Call subroutine 28 

item_current: -11, item_projective: 12 
Call action-subroutine 7 

Exit from the code for this symbol 

6.5.2 Skip instruction with trees 

If an itemset expects only the 2 symbols "a" and"." (the rest symbol), and on the "." it shifts 
to itself, then for recognition purposes all characters in the input may be skipped up to the 
"a". We use this observation for the generation of a skip instruction for closing tree-brackets. 
Especially in the case of large tree-structured textfiles this is a useful instruction. With each 
open tree-bracket a pointer may be maintained to the corresponding closing bracket. 

6.5.3 Variables 

The generation of code for expressions of variables is straightforward. In runtime a stack is 
maintained during evaluation, and all operations concern the 2 topmost elements of the stack 
or a variable and the topmost element. The instructions for operations are : 

PSH variable_name: 
CAT variable_name: 

ASS variable_name: 
IBQ: 
TNE: 

push variable or literal onto the stack 
concatenate a variable with topmost element; replace top by 

resulting element 
assign topmost element to variable 
test equality of 2 topmost elements 
test inequality of 2 topmost elements 



190 

The transport of variables to closure items and from reduce items is governed by the follow
ing instructions : 

ALL integer: # variables in the grammar_rules 
RCV #variables variables: receive the value of a variable from a symbol_infolist 

in the PTA 
SND #variables variables: send the value of a variable to the formal parameter of a 

closure item 
CLI integer: create a starting item with this number. 

Variables are declared as Input ("I") and/or Output ("O") parameters. We give the rules for 
the construction of code for the passing of variables. 
Variables are local to the grammar rule where they appear. We number them for each rule as 
an integer, starting with 1. 
- Suppose the rule A:: a 13B(x, y) 14b, where x and y are O-variables; the internal numbers 
of x and y are 3 and 4. On a shift on B from 13 to 14 the following code has to be generated: 

RCV2 
3 4. 

This says that the 2 variables which are present in the symbol-infolist (in runtime in the PTA) 
which belongs to the reduced symbol B have to be received by variables 3 and 4. 
- Suppose a grammar which contains, among others, the rules (in which we indicate some 
itemnrs): 

A :: <X 14a 15B(x, y) 13 
B1(1:n1, I:m1) :: -20 a1 21'Yl 
B2(I:n2, I:m2) :: -25 a2 'Y2 (starting items always have a negative number). 

Suppose the local numbers of x and y are resp. 3 and 4. 
Then the item 15: A :: <X a 15B(x, y) 13 
gives rise to the following closure-items : 

B1(1:n1, I:m1) :: -20 a1 'Yl 
B2(1:n2, I:m2) :: -25 a2 'Y2 

On the generatioa of code for an itemset with item 14 which will shift on an "a" to an itemset 
which contains item 15 we generate: 

TOP 14 15 action-subroutine A: 
CLI-20 
ACALA 
CLI-25 
ACALA 

TCL 

ALL2 
SND2 
3 4 
RTN 

Normally, a starting item is not represented in a runstate. With the instruction CLI it is cre
ated. The instruction ALL creates 2 variables in the infolist of the current item; these are filled 
in by the instruction SND which has 2 arguments : the variables 3 and 4 which belong to 
item 14. 
- Suppose in the example above the starting item -20 shifts to its goto-item(s), for instance 
21. Then the following code is generated: 

TOP-2021 
ALL N where N is the number of local variables in the 

rule B1(1:n1, I:m1) :: a1 'Yl. 



191 

6.5.4 Lexicon operations 

We summarize from chapter 4 the working of the instructions LEXST, LEXINC and 
LEXRDC. LEXST initialises the reading in the lexicon by putting the lexicon-pointer in an 
infolist at the start of the lexicon. After each character that is read from the input a transition 
is made in the lexicon by the instruction LEXINC and a check is made whether the end of an 
entry is reached. In that case the instruction LEXRDC creates a connector and returns in 
variables the categories which are present with the entry. The transition in the lexicon and the 
creation of a connector resemble the normal instructions LSTK and LRDCF which are gen
erated on the shift and the reduce of an item. This brings us to the formulation of a lexicon 
symbol as a regular expression which generates an indefinite number of terminal symbols : 

$LEX :: [*]+ . 
The following simple tricks allows us to profit from the existing algorithm GenLRsets : 
- add implicitly to a grammar the rule $LEX :: [*]+ and remember the item number of 

$LEX:: .[*]+ in i1 and that of $LEX:: [*]+. in i2 
- add to an item a. .$X, where $X is an arbitrary lexicon symbol, as a closure the 

item $LEX::.[*]+ 
- make some minor extensions to GenLRsets such that the following code will be created on 
the shift of i1 to i2: 

rl: 

r2: 

if i1 is a closure item if i1 is not a closure item ( this is detected by the 
bookkeeping for regular 
expressions) 

CTOP -il i1 TOP i1 il 
CAL rl CAL r2 
CTOP -il i2 TOP il i2 
CAL r1 CAL r2 
LEXRED LEXRED (lexicon reduce with nonterminal = first 

category behind the entry) 

LEXST (put lexicon pointer "place" at the start of the lexicon) 
RTN 

LEXINC (shift lexicon pointer) 
RTN 

The subroutines at rl and r2 are generated at the start of the compiler. 

6.6 Cascaded grammars : modules "Linking loader" and "Disassembler" 

By the implementers of the system Parspat a linking loader and a disassembler were devel
oped. The linking loader serves to synchronize the internal numbering of symbols within 
cascaded grammars. It accepts as input a number of individual grammars, the symbol-tables 
for these grammars and a file which describes the sequence in which they have to be placed. 
It outputs a program file in which the symbols are renumbered. 
The disassembler serves to make the generated code readable. 

6.7 Relevance of the compiler for other purposes 

The compiler can be used for a number of other purposes which are not directly related to the 
compilation of code. 



192 

The module Readgrammar can be used separately in order to create a datastructure for a 
grammar, together with a symbol table, for any purpose. It can also be used to build on-line 
a FSA for regular expressions. 
The module GenLRsets can directly be used as an Earley parser when the switch "multi" is 
set to false and the switch "interactive" to true. All sub-formalism of the unifying formalism 
can then be used, except type-1 and -0 rules. 
The optimizations which are built into the compiler allow for the creation of a FSA for sub
sets of cfg's together with lines, arbs, don't cares and negations. The generated code can be 
transformed into code for other systems which simulate the behaviour of a FSA. 

6.8 Possible improvements of the compiler 

There are a number of possibilities for the improvement of the compiler. Among them we 
name: 
- to let the modules work not sequentially in time, but as cooperating processes 
- to compile "lazy", that is to create only an itemset when the runsystem asks for it. 

6.9 The choice of the programming language 

For the implementation of the system Parspat we chose the programming language Pascal 
because of its widespread availability, its readability and its possibility to generate efficient 
programs on small and large machines. 
Within a Dutch working group on the use of Pascal in the Humanities a string- and set-pack
age was developed, written in standard Pascal (Elstrodt, Honig, Masereeuw, Portier, 
Schwartzenberg, Skolnik, Van der Steen and Van Halteren, 1984). The characteristics are: 
- efficient storage of variable length strings and sets 
- efficient implementation of a large number of string and set operations 
- standard calls for direct access i/o 
- in benchmarks proven to be portable over a range of different machines. 
The implementation of Parspat makes extensive use of this package. 



193 

7. Complexity 

In this chapter we want to investigate the complexity of the compiler and the runtime system, 
as designed in chapters 4, 5, and 6. We will determine the complexity for each of the 
subformalisms and will relate it to the complexity of already existing strategies for these 
subformalisms which are known from the literature and which were listed in section 2.6. 
The discussion will be structured as follows. 
For each of the subformalisms we will determine the time and space complexity, for the 
algorithms within the compiler as well as within the runtime system. In the comparison with 
other strategies a number of possibilities arise : (a) the complexity of our algorithms may be 
better, (b) equal or (c) worse than the other ones. In the latter case we will include a better 
algorithm for the subformalism in question, stated as an extension to the algorithms which 
we already developed. For instance, we will show how the compiler can be improved in 
order to obtain a sub-linear time-complexity for cfg's which describe regular languages. In 
order to explore the extensibility of the algorithms within the system Parspat we will indicate 
also, if possible, how in our opinion further improvements in complexity can be made. 
Sometimes we will discuss briefly other applications of our algorithms. 
The discussion concerns formal languages, grammars and automata which are related to each 
other by the process of parser generation. We will smooth out some of the inconsistencies in 
the complexity of recognizers which are automatically constructed for a grammar and those 
which are constructed for the language which is described by that grammar. 
The power of the PTA is that it works online and that the exponential character of 
backtracking is avoided. Because of the richness of the unifying formalism this may have an 
implication for other formalisms which still suffer from implementations with an exponential 
behaviour, like Prolog and knowledge-based systems. Our approach is to store only once a 
data-element which will, by its interpretation, give rise to subsequent processing. This 
principle is found in the compiler, where identical items and itemsets are identified, and in 
the PT A where identical dagnodes and data-elements to which they refer, like variables, are 
identified. By avoiding the exponential character of backtracking other exponential traits 
become more visible which are of interest when one tries to get a deeper insight in the 
problem of NP-completeness. We will investigate the NP-problem of the parsing of linear 
context sensitive grammars and will suggest an improvement of the PTA in order to remove 
another origin of exponential behaviour. 

7.1 The complexity of compilation 

In chapter 6 we discussed the different modules of the compiler. The complexity of the 
compiler as a whole is determined by the complexity of each of these modules. We will 
investigate them separately. 

Readgrammar. 
The algorithm of Readgrammar constructs a NFA on line for each side of a grammar-rule. On 
the appearance of any symbol in the input a number of elementary operations is executed 



194 

which is bounded by the number of alternatives in a lhs or rhs. We conclude that the time 
and space complexity are proportional to the size of the grammar. 

Preparesets. 
In the module Preparesets a number of sets is created. Some of them need a depth-first walk 
through the datastructure for the grammar rules. The walk always starts on a notion-record 
and ends on a notion-record, with a visit to each intermediate goto-record. With a notion
record an item is related. With a goto-record is related the start of an alternative or the start of 
a regular expression. Therefore, the calculation of a relation between two items costs a 
number of elementary operations which depends on the number of brackets in the regular 
expressions in a side of a rule. If the total number of lhs's and rhs's in the grammar is s, the 
longest side has length 1 and the maximum number of brackets in a side is b then the 
construction of the array follow _items_of_item will cost at most (s.1)2.(b+ 1) time . The 
construction of all other sets will cost less. 

GenLRsets. 

The algorithm GenLRsets constructs from a Current_itemset for each expected symbol a 
New_itemset. We will discuss the complexity of this process for a number of 
subformalisms. The complexity of compilation is especially important in the case of pattern 
matching. In other subsections of this chapter we will compare our runtime behaviour with 
other existing pattern matching methods. All these methods have a linear preprocessing time. 
We choose therefore as subformalisms: 
I. grammars which contain regular expressions 
II. type-4 grammars with lines, arbs and don't cares 
III. type-4 grammars with negations and don't cares. 

I. grammars which contain regular expressions 
A bound for the complexity of the subformalism of regular expressions may be found by the 
observation of the worstcase grammar 

S :: [a I b].>i<, a, [a I bt-1 

which generates any string of a's and b's in which the n'th character from the right is an "a". 
Aho, Sethi and Ullman (1986, p. 128) observe that for this grammar no DFA may be 
constructed with fewer than 2" states because at least 2" states are required to keep track of 
all possible sequences of n a's and b's. The algorithm GenLRsets (together with the 
construction of sets in the module Preparesets) transforms the NFA which is constructed by 
Readgrammar into a DFA. We may therefore conclude that the worstcase behaviour of 
GenLRsets is exponential, in time and in space, and that no improvement may be expected. 
The calculation of compatibility is, in the worstcase, quadratic in the number of itemsets 
which are generated. This is caused by the fact that in the recursive definition of 
compatibility the mutual compatibility of 2 itemsets is asked for. In the worstcase this 
compatibility has to be calculated for all pairs of itemsets. 

II. type-4 pattern-grammars 
Little can be found in the literature concerning the complexity of state-generation for a FSA. 
There seems to be some reservation about the use of finite-state techniques for the creation of 
pattern matching machines because of the general exponential upper bound on the numbers 



195 

of states required for regular expressions. Apostolico and Giancarlo (1986) write about the 
considerations in the design of new pattern matching algorithms: "As pointed out in (Knuth, 
Morris and Pratt, 1977), the analysis of the Boyer&Moore (BM) procedure is not simple. 
This is due to the fact that, when the BM algorithm shifts the pattern to the right, it does not 
retain any information about characters already matched. Based on this observation, Knuth, 
Morris and Pratt suggested that the algorithm be made less oblivious by arranging the 
various situations that could arise in the course of the pattern matching process into a suitable 
table of "states". Problem is that the number of "states" in such a generalization of the BM 
strategy can be quite large (the obvious upper bound is 2m, but it is not known how tight a 
bound this is). Thus the work involved in preparing that table is prohibitive in practice. 
There is room to suspect that a good portion of the tables is not needed in general. (end 
quote)". 
It seems therefore appropriate to perform some measurements on the time and space which is 
necessary in the algorithm GenLRsets for the ordinary problem of matching a number of 
keywords which do not contain regular expressions. 
At our disposal are 
- the compiler of the system Parspat with which we register: 

- the number of created itemsets 
- the total CPU-time used by the compiler on a MV/4000 computer (0.6 Mips) 

- a program which generates a grammar according to the following parameters 
- p = 0 no pattern matching but only recognition of a type-4 grammar 

=1 
- t = 2 .. 9 

- k = 2 .. 5 

(in order to investigate the difference with p = 1) 
each rule starts with a line("-") which effects the pattern matching 
the size of the alphabet for the terminals of the grammar 
(there are only terminals); the program selects at random a terminal 
when a notion has to be written; a check is made such that each 
generated rule has no duplicate 
the number of keywords (each keyword is written as a separate 
grammar rule) 

- 1 = 2 .. 5 the length of a keyword (all keywords have the same length). 
Two examples : 1. the parameters p=0, t=3, k=2, 1=3 give rise to a grammar 

S :: a, c, b. 
S :: b, a, a. 

2. the parameters p=l, t=2, k=3, 1=4 give rise to a grammar 
S :: -, a, b, a, a. 
S :: -, b, a, b, b. 
S :: -, b, a, a, a. 

We measure the influence of the variation of each of the parameters p, t, k, and 1 while 
keeping the other parameters constant and repeat that measurement a number of times in 
order to get an impression of the variation of the results. The results are displayed as pairs 
(number of itemsets, cpu-time in seconds). 

Patterngrammar: p. 
p= 0 1 
t = 3, k = 3, I = 3 8 4.0 8 6.0 

9 4.0 10 6.8 
8 4.0 10 6.8 



196 

t = 3, k = 3, 1 = 4 11 4.2 13 7.9 
12 4.3 12 7.3 
12 4.3 12 7.3 

t = 3, k = 3, 1 = 5 15 4.6 15 8.4 
11 4.3 16 9.0 
15 4.6 16 9.0 

Conclusion: the difference between p=O and p=l has almost no influence on the number of 
generated itemsets, but the cpu-time increases due to the fact that more attempts are made to 
create itemsets which are equal to existing ones; the numbers increase more or less linear 
with the length of the keywords. 

Variation of the size of the alphabet: t. 
t= 2 3 4 5 
p = 1, k = 3, 1 = 3 8 5.9 9 6.2 10 6.8 10 6.8 

10 6.8 8 5.6 8 5.9 10 6.8 
9 6.3 9 6.2 9 6.2 9 6.3 

p = 1, k = 4, 1 = 3 11 8.5 11 8.3 11 8.4 12 9.3 
11 8.5 11 8.4 10 8.0 11 8.3 
10 7.6 9 7.2 8 6.9 9 7.3 

t= 2 3 4 5 
p = 1, k = 3, 1 = 3 8 9.8 10 11.3 10 11.5 10 11.6 

8 9.8 9 10.4 9 10.5 8 10.2 
9 10.2 9 10.4 10 11.5 8 10.1 

p = 1, k = 3, 1 = 4 10 11.0 11 8.3 12 12.2 12 12.4 
10 11.l 10 12.6 12 12.3 10 11.2 
12 11.8 10 13.2 10 11.3 13 13.5 

p = 1, k = 3, 1 = 5 15 13.5 xx xx 15 13.8 16 15.4 
15 13.4 xx xx 15 14.0 16 15.5 
14 13.0 xx xx 14 13.5 16 15.4 

t= 6 7 8 9 
p = 1, k = 3, 1 = 3 9 10.5 10 11.6 10 11.9 9 10.8 

9 10.7 9 10.7 10 11.7 9 10.6 
10 11.6 10 11.4 9 10.7 10 11.5 

p = 1, k = 3, 1 = 4 13 13.7 13 13.4 13 14.0 13 13.9 
13 13.7 13 13.5 13 13.8 13 13.8 
13 13.7 13 13.7 12 12.4 13 13.8 

p = 1, k = 3, 1 = 5 16 15.2 15 14.3 15 14.1 16 15.9 
15 14.3 16 15.6 15 14.3 16 15.8 
16 15.3 16 15.5 16 15.8 16 15.9 

Conclusion : there is almost no influence of the size of the alphabet. 



197 

Variation of the number of keywords : k . 
k= 2 3 4 5 
p = 1, t = 3, 1 = 3 8 5.0 9 6.3 10 7.9 11 9.7 

8 5.1 7 5.5 10 7.7 13 11.1 
6 4.4 10 6.8 10 7.6 13 11.0 

p = 1, t = 3, 1 = 4 10 5.5 12 7.1 13 8.9 18 13.9 
10 5.5 12 7.3 13 8.9 17 12.6 
10 5.5 10 6.5 15 10.2 16 12.0 

Conclusion : the numbers increase slightly more than linearly with the number of the 
keywords. 

Variation of the length of the keywords: l. 
l= 2 3 4 5 
p = 1, t = 3, k = 3 7 5.7 9 6.3 12 7.2 16 8.9 

6 5.3 10 6.8 13 7.9 15 8.3 
6 5.2 9 6.2 11 6.3 16 8.9 
5 4.8 9 6.2 12 7.2 15 8.3 
6 5.3 10 6.8 12 7.3 15 8.3 

p = 1, t = 3, k = 4 6 6.1 11 8.4 15 10.1 18 10.7 
7 6.5 9 7.3 16 11.1 19 11.9 
6 6.0 11 8.5 16 11.0 18 10.9 
7 6.7 11 8.4 13 8.7 17 10.4 
6 6.1 11 8.4 15 10.1 19 11.9 

Conclusion : exponential behaviour should have become visible especially with regard to the 
length of the keywords; we can only conclude a behaviour between linear and quadratic. 

Ill. type-4 grammars with negations and don't cares. 
Above we have seen that the difference in complexity between type-4 grammars with and 
without pattern matching is small. In this subsection we will therefore omit the 
subformalisms for patterns and will concentrate on negations and don't cares. We will show 
how to write the classical NP-problem of satisfiability into a grammar which is written in the 
unifying formalism, using terminals, don't cares and negations. 
We recapitulate the following definitions (Hopcroft and Ullman, 1979, p. 324 and 328). 
A Boolean formula is in conjunctive normal form (CNF) if it is the logical AND of clauses, 
which are the logical OR of literals. We say the formula is ink-CNF if each clause has 
exactly k literals. For example, (x v y) A (x'v z) A (y v z') is in 2-CNF. An expression is 
satisfiable if there is some assignment of O's and l's to the variables that gives the 
expression the value 1. The satisfiability problem is to determine, given a Boolean 
expression, whether it is satisfiable. 
It has been proven that L3sat, the satisfiability problem for 3-CNF expressions, is NP
complete, just like the general satisfiability problem. The length of the problem is the length 
of the Boolean expression. 
We take as an example a formula in 3-CNF : 

(av c'v d) A (av b'v c) A (a' vb v d) and rewrite it as 
( (a' Ac A d') v (a' A b A c') v (a Ab' A d') )'. 



198 

The encoding in the unifying formalism of the satisfiability of this expression is made as 
follows. We create for the rewritten Boolean expression a FSA which will read 
(conceptually) the four values for a, b, c and d, in that sequence. If the FSA will reach an 
accepting state than the expression is satisfied, otherwise it is not. But for the encoding of 
the satisfiability problem we do not have to read the 4 values : if an FSA can be constructed 
with one or more accepting states then the Boolean expression for which it is constructed is 
satisfiable (these states are always reachable, by construction). 
In order to write the Boolean expression as a grammar in the unifying formalism we write 
each sub-expression as a string with alphabetical ordering of the symbols. Characters which 
are not present in a sub-expression are denoted by a don't care. The expression in our 
example becomes the grammar: 

S :: '[a'*cd' I a'bc'* I ab'*d' ] 1. 
For this grammar we construct a set of itemsets which may be transformed into a FSA. 
Our main conclusion can be that the complexity of GenLRsets for the subformalisms with 
don't cares and negations is in NP. 
It is tempting to investigate the reason of the potential exponentiality of the rewritten 
problem. In the process of itemset generation a newly created set is compared with already 
existing sets for equality. This is the same technique as was used by Earley who brought 
down the recognition time for cf g's from exponential to polynomial (which technique is also 
used in the PTA). We will therefore perform a short analysis with the same parameters as 
were used in our former analysis in subsection II. Therefore, we are confronted with a 
grammar of the form 

S :: '[E1 I E2 I .. I Ek] 1. 
Each E has the length 1. In essence the size t of the alphabet is 3 : the position of a character 
in a keyword determines which character it is; it is present in its positive form or in its 
negated form or it is absent, in which case it is coded as a don't care. For our analysis we 
assume that there is an equal probability for these 3 possibilities. 
The algorithm GenLRsets starts with an itemset which contains the items .-E1 , .•E2 .. .'Ek. 
The two possible shift symbols are a and a'. All items will travel over each symbol. For 1/3 
of them the negdot will change in a don't care dot. The last kind of items can be furher 
ignored because their failure will only depend on other negdot items. Therefore 2/3 of the 
items will travel along a shift symbol. For the 2nd position 2 itemsets will be created with 
each 2/3.k items. For the 3rd position 22 itemsets will be cre;ited with each (2/3)2.k items. 
Therefore in the j'th position 2J-l itemsets with each Pj = (2/3}1°1 .k items. However, 
- before the l'th position there can be only 3 different items with a negdot which will behave 
different with respect to the last character; on the (l-l)'th position there are 32 possible items 
with a different future; on the j'th position therefore 31-j+l possible items 
- after the j'th position there can only be (kp) different itemsets. The total number of work 
that has to be done for the j'th position depends solely on the total number of items on that 
position. This is therefore 

Pj. min( (kpj), 2j-1), with Pj = min( (2/3~-1.k, 3l-j+l ). 
This may be summed for j = 1 . .1 to get the total amount of work. The appearance of the 
minimum function accounts for the untransparancy of this expression and gives an 
explanation for the fact that some instances of this NP-problem do not show an exponential 
character. 



199 

Supscanner. 

The module Supscanner creates for each itemset from the LR-table a jump-table. The work to 
be done is proportional to the number of symbols which may be expected for the itemset, 
which is a subset of the total number of symbols in the grammar. (The jump-table for 
terminals consists of ranges of characters. It could be replaced by, for instance, by an array 
of size 256 or by more refined sets of tables, like proposed in (Aho, Sethi, Ullman, 1986). ) 

SupLRcode. 

The module SupLRcode transforms for each itemset the entries for a symbol in the LR-table 
into instructions and places a pointer to the set of instructions in the scanner. This operation 
takes time proportional to the number of reductions, for which the maximum is the number 
of rhs's in the grammar. 
The generation of code for variables takes time proportional to the length of the expressions 
in which they appear. 
The possibility of the sharing of code is investigated with the aid of hashcoding. 

All modules together. 

The complexity of the compiler as a whole is obviously determined by the complexity of the 
algorithm GenLRsets, which is exponential. 
When itemsets are constructed only when the PTA needs the code for it ("lazy compilation") 
then the complexity of the algorithm GenLRsets becomes linear with the input to the runtime 
system plus the symbols which are reduced at a lhs. 

7.2 Other applications of the algorithms within the compiler 

7.2.1 Constructing position-trees 

Up till now we treated the unifying formalism with the (enhanced) LR parser construction 
method. But it is also possible to exercise the same treatment on a text instead of on a 
grammar. In that way we may construct "Position trees" in order to locate all appearances of 
a pattern in a time proportional to the length of the pattern. Nodes in the tree will be identified 
by constructed itemsets. 
The advantage is that all formalisms for a side of a rule are allowed for a text. The 
disadvantage is that the construction time may be, in worstcase, exponential. 
We present the idea by an example. 
Suppose the text is "ab[cblb*][c]+a" (the"*" denotes a don't care). The starting itemset 
contains all possible items. 



200 

2 

. a.b[.c.bl .b. *].c+.a 
a 

a.b[cblb*].c+a . 
6 1 0 

b 
ab[cblb.*]c+a 5 

7 4 
C 

ab[cblb*].c+.a 
3 

b ab[.cbj.b.*].c+a c 4 7 

b 8 

7 

4 5 
5 

C a 
ab[c.bjb*] .c+.a 

b 
5 

C 
7 

5 

ab[cbjb*] .c+a 
C 

7 

The length of the written text is 12 characters. Only 11 itemsets had to be constructed. 12 
initially constructed itemsets did already exist. 

7.2.2 Pattern matching of ill-formed input 

In chapter 1 we indicated the problem of the treatment of ill-formed input. Depending on the 
parsing strategy a number of solutions have been proposed. However, these solutions suffer 
from an overhead in runtime. In order to start an investigation on the efficient treatment of ill
formed input in the system Parspat we tried a number of alternative approaches by an 
extension of the LR parser generation algorithm or of the PT A. One of the approaches 
concentrates on the problem of string matching with k mismatches, i.e. with at most k 
locations in which the pattern and the text have different symbols. Galil and Giancarlo 
(1986) published an algorithm (as an improvement of earlier algorithms which they 
reference) for the case of the matching of one keyword with length min a text of length n 
with at most k mismatches. They achieve a time performance of O(m.logm+k.n) for general 
alphabets and of O(m+k.n) for alphabets whose size is fixed. The algorithm uses O(m) 
space. 
We will now show how the runtime bound can be improved by making use of our technique 
for the handling of don't cares. We don't have to extend the algorithm GenLRsets or the 
PTA. The advantage of our approach is that the solution immediately works for all 



201 

subformalisms of the unifying formalism for which a FSA can be constructed (like in section 
7.2.1) We conjecture that it can be extended to the whole unifying formalism. 
The idea is that recognizers for ill-formed input may be constructed by systematically 
replacing terminals in a grammar by don't cares. As an example we demonstrate how to 
construct a pattern matcher for ill-formed input for a number of keywords. 
For the case of one mismatch we add each keyword a number of times, each with a "don't 
care" in another position. If we are interested in 2 mismatches we add the keywords in 
versions where 2 characters are replaced by "don't cares", and so on. In general, for each 
allowed mismatch-construction we add the keyword a number of times with "don't cares" in 
appropriate positions. After compilation the runtime behaviour will still be linear. 
We illustrate the principle of this method by the following example. Suppose we want to 
match the keywords "abc" and "bed" with 0 or 1 mismatch. Then we construct a FSA for the 
grammar 

S :: -, T. 
T :: a, b, c I*, b, c I a,*, c I a, b, * I b, c, d I*, c, d I b, *, d I b, c, *. 

Obviously, the generated FSA will have more states than the FSA for the grammar without 
don't cares. In order to get an impression of the multitude of generated states we perform an 
experiment analogous to the experiment in subsection 7.1.11. We add to the parameters 
already mentioned the parameter i with the following possible values 

i = 0 no effect 
i = 1 one mismatch allowed 
i = 2 two mismatches allowed 

and measure again the number of generated itemsets and the cpu-time for some values of the 
parameters t, k, 1 and p. 

Variation of the allowed nwnber of mismatches: i. 
i= 
p = 1, t = 3, k=3, 1 = 3 

p = 1, t = 3, k=3, 1 = 4 

p = 1, t = 3, k=3, 1 = 5 

p = 1, t = 9, k=2, 1 = 3 
p = 1, t = 9, k=2, 1 = 4 
p = 1, t = 9, k=2, 1 = 5 
p = 1, t = 9, k=2, 1 = 6 
p = 1, t = 9, k=2, 1 = 7 

0 
10 
9 
9 
11 
13 
10 
16 
15 
13 
7 
10 
12 
14 
16 

1 
17 
21 
12 
21 
30 
45 
73 
77 
38 
17 
39 
55 
53 
89 

2 

14 
100 
204 

Conclusion : if we compare the number of itemsets for i=0 and i=l we expect at most a 
multiplication with the length of the keywords 1 (because the original keyword is duplicated 1 
times and because we saw earlier that the increase in keywords only influences the number 
of itemsets more or less linearly). For i = 2 we expect the factor 12. This is an upper bound 
because newly created itemsets may have a duplicate. The results conform to the expectation. 



202 

7.3 The complexity of on-line recognition for type-4 and type-3 grammars 

In chapter 6 we showed how to generate a FSM for type-4 and -3 grammars, which 
obviously runs in linear time. In chapter 5 we explored the travelling rules for items in order 
to extend the algorithm for the creation of LR-tables for the following sub-formalisms: 
- regular expressions 
- concerning symbols : 

- ranges of terminal-symbols 
- tree-symbols 
- "don't cares" 
- "arb's" and "lines" 

- concerning Boolean expressions : 
- coordination of grammar-rules and the Boolean "and" 
- negations. 

For these extensions we obtained automatically a linear runtime behaviour. We compare this 
behaviour with the behaviour of algorithms from the literature, which were listed in section 
2.6 and which were developed each for only some of our subformalisms: 
- regular expressions : same runtime 
- ranges of terminal-symbols : same runtime 
- tree-symbols : sublinear runtime of our algorithms when in the input a pointer is maintained 
at an opening bracket to its corresponding closing bracket, else a linear runtime; the sublinear 
behaviour is an improvement over existing algorithms 
- "don't cares" : linear runtime of our algorithms. The fastest algorithm for the recognition of 
one keyword with a "don't care" character was given by Fischer and Paterson (1974) with a 
time function of O(m.(log n)2. log log n), with m as the length of the keyword and n the 
length of the input. Up till now no linear time algorithm was known. The recognition in 
linear time of keywords in a textstring, where both keywords and text may contain "don't 
cares" is, theoretically, related to "and-or multiplication" (Aho, Hopcroft, Ullman, 1974, p. 
358). 
- "arb's" and "lines" : "arb's" are not identified in the literature other than in the 
programming language Snobol. The linear treatment of the "line" is suggested by Aho and 
Corasick (1975) as a cascade ofFSA's. We unified the treatment of the "line" at the start of a 
grammar-rule with the treatment of pattern matching. Only the algorithm of Boyer and Moore 
(1977) for the pattern matching of one keyword runs in sublinear time. We will discuss the 
relation of the algorithm of Aho and Corasick with our algorithms. After that we will discuss 
an extension of the algorithm GenLRsets in order to obtain the same sublinear runtime 
behaviour as the algorithm of Boyer and Moore, but then with an indefinite number of 
keywords, don't care symbols and ranges of symbols. 
- cooperation of grammar-rules and the Boolean "and" : these operators are not treated in the 
literature in the context of pattern matching. 
- negations : we are only aware of the algorithms of Ken-Chih Liu (1981) who treated 
Boolean negation of strings as an extension to the formalism of cfg's; in any case the runtime 
behaviour of his algorithms is more than linear. 



203 

7.3.1 Relation to the algorithm of Aho and Corasick 

Two groups of authors which treated the problem of pattern matching, (Knuth, Morris and 
Pratt, 1977) and (Aho and Corasick, 1975), suggested that their method was akin to the 
construction of itemsets in the LR-parsing technique (originally developed by Knuth). 

Aho and Corasick (1975) ("A&C" for short) described a method to transform a set of 
keywords into a FSA with an output function, operating in linear time. At the end of their 
paper they mention the problem of the treatment of "don't cares" in linear time. They also 
related the problem of pattern matching to LR parsing. 
A&C make use of a "failure function" in order to compute points in the FSA where 
recognition can be resumed after the mismatch of all keywords up to a specific point. In our 
approach we avoid the use of a failure function. Our treatment of "don't care" characters is 
not limited to keywords with terminals (which we called type-4 grammars), but works 
together with all the subformalisms in the unifying formalism. Nevertheless, our research 
started with the elegant paper of A&C and we want to indicate how their algorithm could 
have been extended for the treatment of "don't care" characters in linear time. One more 
reason is the complexity of the creation of itemsets. The upper bound of A&C for space is 
lower than our upper bound (which is in principle exponential). A comparison of the two 
methods may, perhaps, shed more light on the complexity ofitemset creation. 

The algorithm of A&C consists of 3 parts : 
1. the construction of a goto-function, 
2. the construction of a failure-function, 
3. the construction of a FSA. 
In order to extend the algorithm for the treatment of don't cares only the construction of the 
goto-function has to be adapted. 
The goto-function is realized by the construction of a trie for all the keywords. Nodes in the 
trie are identified as the states for the FSA that has to be constructed. In the algorithm of 
A&C keywords are added one after the other to the trie. If the trie should have been 
constructed by treating all keywords in parallel, like it is done in the LR-approach, then A&C 
could have proceeded in the following way. 
In our terminology a keyword travels along a path in the trie. The paths are projected by the 
keywords themselves. If a keyword cannot longer share a path with another keyword it 
projects a continuation of the path at the current node and continues travelling along that 
path. If a keyword ceases it is added to the output function of the current state. 
What happens when we want to spell out a keyword containing "don't cares" ? Suppose we 
are on its path in state s, where a number of continuation paths are possible, for a number of 
symbols. With the "don't care" character it is possible to follow each of these paths. We 
therefore put the current keyword on each available goto path and create an additional goto 
path for all the symbols for which no other keyword has a continuation. The trick is 
therefore to let keywords travel along more than one path. This is akin to the LR itemset 
construction method where we formulated this schema in the travelling rules for items. 
With the LR method it is not necessary to construct failure-states, like in the A&C algorithm. 
In the case of pattern matching it produces directly a FSA. The algorithm of A&C constructs 
the same FSA with output as does our algorithm GenLRsets does. The algorithm of A&C 



204 

does this in linear time. It seems obvious that our algorithm performs in the same manner, 
which is supported by the measurements we did in the subsection on pattern matching. 

7.3.2 Relation to the algorithm of Knuth, Morris and Pratt 

Knuth, Morris and Pratt (1977) described another algorithm for matching single keywords in 
linear time (which was corrected by Rytter (1980) ). They construct, like A&C did, a failure 
function, but without constructing a FSA. Their method is difficult to extend to, for instance, 
the matching of more keywords and the treatment of don't cares. 

7.3.3 Relation to the algorithm of Boyer and Moore 

Boyer and Moore (1977) ("B&M" for short) described how to preprocess one keyword in 
order to get, on the average, a less than linear runtime behaviour. This behaviour is possible 
by not inspecting every character in the input. The preprocessing takes time linear to the 
length of the keyword. The question arises whether their method can be generalized in order 
to 
- improve our algorithms to get a sublinear runtime in the case of pattern matching, 
- extend the improvement towards the treatment of (a) more than one keyword, (b) arb's, (c) 
negations of symbols and (d) subclasses of type-2, -1, -0 and transduction-grammars. 
We will show how to answer that question in the affirmative for (a) and (b). It can simply be 
extended to incorporate case (c).We conjecture that the improvement can also be extended to 
(d). 

The method of Boyer and Moore has been improved a number of times, especially for the 
worstcase behaviour of O(n2). The latest result which came to our attention was mentioned 
by Apostolico and Giancarlo (1986). They were able to derive an upper bound of 2n for the 
number of character comparisons in runtime while maintaining a linear preprocessing time. 
Our new upper bound is n comparisons in runtime, for more than one keywords written with 
don't cares. We discuss our method globally as an extension of the algorithm GenLRsets 
and then in detail by an algorithm which stands on its own. 

Principle of the extension of the algorithm GenLRsets. 

In order to obtain a better performance than Apostolico and Giancarlo did (and for all 
subformalisms which we mentioned above) we extend the algorithm GenLRsets as follows: 
- with regard to the datastructures : 

- construct separate itemsets which indicate the effect of the skipping of characters in 
the input; such an itemset is called a "Skip_itemset" 
- add to each itemset a "mask" which describes, relative to the current position in the 
input, which characters have been skipped and which characters already have been 
read; this mask will become an integral part of the itemset to which it belongs and 
will be taken into account when two itemsets are tested for equality; in the algorithm 
the mask will have two functions: 

- it determines which items of the set of all possible items may be present in 
the itemset 
- it gives the necessary information to create Skip_itemset 



205 

- add to a FSA (with the usual reporting function) a skip instruction for the skipping 
of characters in the input 

- with regard to the algorithm GenLRsets: 
- widen the concept of shift: if possible create from an itemset a Skip_itemset with the 
dot in the mask shifted to the right as far as possible (a "positive skip") or shifted to 
the left as short as possible (a "negative skip") 
- widen the concept of reduction : remove an item from a created itemset when it is 
fully matched by the mask; report it together with the calculated position in the input 
- widen the concept of the addition of closure items : add items to an itemset which 
are permitted by the mask, which are not already present and which are not fully 
matched by the mask (otherwise they should already have been reported) 

- with regard to the algorithm SupLRcode: 
- in addition to the creation of code for a FSA generate skip instructions from the set 
of generated itemsets (which includes Skip_itemset's) 

The algorithm BM. 

Notations. 
We will use the following notations: 
- for a mask: u . v , where u and v are strings of (possibly complemented) sets of terminals 
or of the reserved symbol 0; substrings of u and v are sometimes written as m1 .. mp. 
Patterns within a mask are denoted with O's and 1 's, where a 1 stands for any non-0 
element of a mask 
- for an item: ex .(3 ; substrings of ex and (3 are sometimes written as a1 .. aq 
- the symbol'*' is reserved for the don't care symbol, the symbol'.' for the rest symbol (the 
rest symbol denotes in an itemset the set of terminals for which no shift is possible) 
- a set with the elements a and bis denoted by [a, b] 

Principles of operation. 
A mask u . v determines which items are permitted in the itemset I to which it belongs. 
This leads to the following principles according to which the algorithm is structured : 
- shift the mask always as far as possible to the right, that is as far as is allowed for the 
shortest right part of the items; therefore 

lvl = min( 1(31 ) for all (3 of the items in I 
- shift the mask back as short as possible to reach the next unmatched character in the ex part 
of the mask 
- u need not be longer than the number of characters at the left side of the dot in any item 
(there is no remembrance of history when it is no longer necessary); therefore 

lul s; max(lexl ) for all cc of the items in I 

The extensions to the algorithm GenLRsets follow from these principles. The algorithm 
GenLRsets makes use of optimizations which are prepared in the module Preparesets. Some 
of them have to be extended because of the introduction of the mask. On the other hand some 
parts of it are not needed because of the more simple formalism with which we are dealing. 
We therefore prefer to present the algorithm on its own. 



206 

Datastructures. 
The types of datastructures are listed below. As usual we give no declarations for individual 
variables : their type is included in their name. 
lBI denotes boolean, N denotes integer and C denotes a terminal symbol (in principle the 
number of terminals does not need to be finite). 
A list of elements may also be indexed like an array. 

Itemsets :: (ltemset)*. 
Itemset :: (mask, items, items_reported, is_a_skipstate, [nr_of_skips_to_skipstate, 

skip_state I entries ] 1 ). 
is_a_skipstate : : lBI . 
mask : : ( msymbols, dotposition). { a dotposition counts from the left } 
msymbols :: ( mset )*. 
mset :: (complement, symbolset). { if complement= true then the Boolean 

complement of symbolset is denoted } 
symbolset :: ( C)*. { an empty symbolset corresponds with the symbolic 0 } 
items:: (item)*. 
item:: ( (C)+, dotposition). 
nr_of_skips_to_skipstate I skipstate I dotposition :: N. 
entries:: (C, actions)*, (rest_symbol, actions). 
actions :: (report, nr_of_skips, gotostate). 
report I nr_of_skips I #created_itemsets I gotostate :: N. 

Algorithm BM 

{ initialize } 
- read the keywords 
- prepare the set of all items 
- construct the set starting_items of items with the dot at the leftmost position 
- construct for each symbol a in the keywords the set items_before_symbol[a] of items with 

the dot before symbol a 
- Itemsets[l] := 0 
- Itemsets[l].is_a_skipstate := false 
- Itemsets[l].mask := (0, 0) 
- Itemsets[l]items := starting items 

- adjust_mask(Itemsets[l]) 
- put a reference to Itemsets[l] in the queue; #created_itemsets := 1 

{ treat next itemset in the queue } 
- while the queue is not empty do 

- take the reference to the next itemset from the queue and call the itemset : 
Current_itemset 

- if not Current_itemset.is_a_skipstate 
{ create skip itemset } 

{ suppose mask of Current_itemset = u . v } 
- if u = [ 0 I 1]* 0 1 n with n > 0 



- nr_of_skips := -n-1 
- else 

- if v = [ 0 I l]m O with m ~ 0 
- nr_of_skips := m 

- if nr_of_skips = 0 
- Current_itemset.is_a_skipstate := true { nothing to skip; treat Current_itemset 

again, but then as a skipstate } 
- else 

{ create skipitemset } 
- Skip_itemset := 0 
- Skip_itemset.is_a_skipstate := true 
- shift_dot_in_mask (Current_itemset.mask, nr_of_skips, Skip_itemset.mask) 
- complete_itemset(Skip_itemset, skip_itemsetnr) 
- Current_itemset.nr_of_skips_to_skipstate := nr_of_skips 
- Current_itemset.skip_state := skip_itemsetnr 
- remove the reference to Current_itemset from the queue 

- else { Current_itemset.is_a_skipstate } 
{ create from Current_itemset all possible New _itemset's with their mask } 

- collect in the set shift_symbols all symbols, excluding the don'tcare, on which 
a shift is possible 

207 

- shift_symbols := shift_symbols u rest_symbol { the reserved "rest_symbol" 
denotes the complement of the set of all symbols for which in Current_itemset a shift 
can be generated; it is alternatively written as"." } 

- for each symbol a e shift_symbols do 
- New_itemset := 0 
- New_itemset.is_a_skipstate := false 
{ shift mask over symbol } 

- New_itemset.mask := Current_itemset.mask 
- if a = rest_symbol 

- New _itemset.mask.msymbols[ dotposition] := ( {complement=} true, 
shift_symbols) 

- else 
- New_itemset.mask.msymbols[dotposition] := ({complement=}false, [a]) 

- New_itemset.mask.dotposition := New_itemset.mask.dotposition + 1 
- Temp := (Current_itemset n ( items_before_symbol[a] u 

items_before_symbol[*] ) 
- for each item i in Temp do 

- if match_of_item_ with_mask(successor item of i, New _itemset.mask, 
{complete=} true) 

- Current_itemset.entries[a, report] := number of keyword of item i 
- Current_itemset.items_reported := Current_itemset.items_reported u [i] 

- else 
- New _itemset.items := New _itemset.items u [successor item of i] 

- adjust_mask(New_itemset) 
- complete_itemset(New_itemset, itemsetnr) 
- remove the reference to Current_itemset from the queue 



208 

- for all itemsets replace all shifts to itemsets which are not a skipstate and for which a skip 
exists to a skipstate s, by a shift to skip state s, with an account of the number of skips 

{ end of BM} 

procedure adjust_mask(Itemset) 
{ suppose the current mask ofltemset is u1.v1 and the new mask is u2.v2} 
- determine for Itemset the sizes lu2 of u2 and lv2 of v2 such that 

lu2 := min( lu1I, max( lcxl)) for all ex of the items cx.l3 in Itemset 
lv2 := max( lv1I, min( 1131)) for all l3 of the items cx.l3 in Itemset 

- u2 := the suffix of u 1 with length lu2 
- v2 := the prefix ofv1 with length lv2 
- fill vacant positions in v2 with a 0 
{ end of adjust_mask } 

Boolean function match_char(item_symbol, mask_mset, complete) 
- match_char := ( ( item_symbol e mask_mset.symbolset ) and 

(not mask_mset.complement) ) 
or ( ( item_symbol e: mask_mset.symbolset ) and (mask_mset.complement) ) 
or ( ( mask_mset.symbolset = 0) and not complete ) 

{ end of match_char } 

Boolean function match_of_item_with_mask(item, mask, complete) 
{ suppose item = cx.l3 and mask= u.v 

U V 

- return true if 
- I al ::;;1 u I 

and - ( I v I::;; 1131 and not complete) or (Iv I= 1131 and complete) 
and for each position pin aT match_char( ex,T[p], uT[p], complete) (T means: reversed) 
and for each position pin v match_char( l3[p], v[p], complete) 

{ end of match_of_item_ with_mask } 

Procedure fill_skipitemset_according_to_mask(Skip_itemset) 
- for all non-reducing items i do 

- ifmatch_of_item_with_mask(i, Skip_itemset.mask, false) 
- if (i e: Skip_itemset.items) and (i e: Skip_itemset.items_reported) 

- Skip_itemset.items := Skip_itemset.items u i 
{ end of fill_skipitemset_according_to_mask } 

Procedure adjust_mask_and_add_to_queue(itemset, itemsetnr) 
- if itemset.items = 0 

- iternsetnr := 1 
- else 

- adjust_mask(itemset) 
- if itemset not already constructed 



- add reference to itemset to queue 
- itemsetnr := #created_itemsets := #created_itemsets+ 1 
- Itemsets[#created_itemsets] := itemset 

- else itemsetnr := number of the matched itemset 
{ end of adjust_mask_and_add_to_queue } 

Procedure complete_itemset(itemset, itemsetnr) 
- fill_skipitemset_according_to_mask(itemset) 
- adjust_mask_and_add_to_queue(itemset, itemsetnr) 
{ end of complete_itemset } 

Procedure shift_dot_in_mask(mask_old, s, mask_new) 
-ifs>O 

{ suppose mask_old = u. m1 .. m5+1 0 } 
- mask_new := u m1 ... m 8+1. 0 

- else { s < 0 } 
{ mask_old has to be of the form m1 ... mp 0 15• v , with p >= 0, see below } 
- mask_new := m1 ... mp. 0 15 v 

{ end shift_dot_in_mask } 

209 



210 

Example. 
We create an FSA with output and skip function for the keywords a*b and ba according to 
the algorithm as follows. (For better readability the masks are surrounded by a'-'.) 

Ss 

Ss 

b 
ba 

2 

3 

4 

3s 
-.ObO-

7 7s 
-ab.0-

1 1 
-a. bO- -a.OD-

Ss 

8 
-. bO-

Ss 
-b.0-

1 1 

Ss 

4 4s 9 

1 1 

Ss 

Generation of a FSA with output and skip function, on the average operating in less than 
linear time and in worst case inspecting each input character only once for the 
keywords: "a*b" and "ba" . 

6s 

In the next table format we create immediately a goto to a skip-state and perform the 
corresponding skip directly (the reading of a character always implies the shift of the input 
head): 



211 

state symbolreport skip goto state 

1 +1 ls 
ls a -2 2s 

b -2 3s 
-2 4s 

2s a +1 5s 
b ba +2 6s 

+2 6s 
3s a +1 7s 

+1 8s 
4s a +1 9s 

+2 ls 
5s a 5s 

b a*b 8s 
+1 ls 

6s a -2 2s 
b a*b -2 3s 

-2 4s 
7s a ba +1 6s 

b a*b 8s 
+1 ls 

8s a ba +1 6s 
b 8s 

+1 ls 
9s a +1 6s 

b a*b 8s 
+1 ls 

Runtime complexity. 

If n is the length of the input and m is the length of the shortest keyword, the upper bound 
for the number of inspected input characters will be n and the average will be n/m. No 
calculation at runtime is needed and each input character is inspected at most once. 

Complexity of constructing itemsets. 

We made use of a modification of the algorithm GenLRsets which runs, as we have seen, in 
time more or less linear in the size of the grammar. The number of possible itemsets will 
increase because a unique mask is added to an itemset. However, the mask governs the 
creation of new itemsets and the algorithm BM puts some constraints on the form which the 
mask can take. We will do some analysis on that point. After that we will present some 
average-cost measurements on the number of created itemsets. 



212 

Structure of the mask. 

The following observations can be made on the structure of the mask. We will denote with 
the reserved character "1" the elements in the mask which are not 0 and by "O" the elements 
which are 0. 

negative skip positive skip no skip 
Current_itemset [ 0 I 1]* 0 1 +. v 1 * • [ 0 I 1]+ 0 1*. 0 
Skip_itemset [ 0 I 1]* . 0 1 + v 1*[011]+.0 n.a. 
New_itemset [ 0 I l]* 1 . 1+ v 0* 1 *[ 0 I 1]+ 1 . 0* 1* 1. 0* 

simplified : [ 0 I 1]* 1. 1+ v 0* [ 011]+ 1. O* 1+. 0* 

Conclusions : 
- v will be right-padded with O's. Because v is initially o+ it will retain as a suffix the form 
o+. 
- u will always end on a 1 (when not empty). 
- therefore, the general form will be 

- for u : u = [ 0 I 1]* 1 (when not empty) 
- for v: there is a recurrence relation: v1 = o+, vn+t = 1+ vn o+ or o"'; this is 
satisfied by v = 1+ o+ or o*; therefore a more refined general form of vis 1* o* 

If the refined general form of v is used in the schema above it becomes 

Current_itemset 
Skip_itemset 
New_itemset 

negative skip 
co11]"'01+.1*0* 
[011]"' .01+ 1*0* 
[ 0 I 1]"' 1 . 1+ o* 

positive skip 
1*.1*0*0 
1* o*. o 
1* o* 1. o* 

With this schema we may write a recurrence relation for u : 
negative skip positive skip no skip 

U1 = 
Un = 
Un+l = 

no skip 
1*. 0 
1 *. 0 
1+. o* 

u may therefore be refined to the unifying pattern 1 * o* 1 *. Substitution of this pattern in the 
schema does not lead to a further refinement. 
Th al ti fth k ti . . h ti 1*0*1* .1* o* . Skip-e gener orm o e mas u . v or 1temsets 1s t ere ore 
itemsets will always have a O after the dot. 

Some measurements. 

We programmed the algorithm BM and did some measurements according to the lines of 
section 7 .1. The same program was used for the generation of grammars. We varied the 
parameters t (size of the alphabet), k (number of keywords) and l (length of keywords) and 
measured the number of generated itemsets, once for each combination of parameters. The 
results are as follows. 



Variation of the size of the alphabet : t 
k=l, l= 3 4 5 6 
t=2 6 15 23 39 
t=9 7 13 21 32 

7 
44 
42 

8 
54 
78 

Conclusion: there is nearly no influence of the size of the alphabet 

Variation of the number of keywords : k 
t=9, l= 3 4 5 6 7 8 
k=l 7 13 21 32 42 78 
k=2 13 25 44 69 88 114 
k=3 19 42 64 95 141 194 
k=4 28 55 87 130 202 255 

213 

Conclusion: there seems to be a linear correspondence of k with the number of generated 
itemsets. 

Variation of the length of the keywords : 1. The same table can be used as before. 
Conclusion: there is a more than linear correspondence. It seems not to be exponential, but 
there is a stronger influence of the length of the keywords than is the case with the 
unmodified algorithm GenLRsets. 

7 .4 The complexity of on-line recognition and parsing of type-2 grammars 

7.4.1 Within the system Parspat 

When cfg's are parsed with the PTA only the L-dag is used. In chapter 6 we showed that the 
compiler itself may be used as an Earley parser, by setting the switch "interactive" to true and 
the switch "multi" to false. Both parsers run, in general, in time O(n3), but the first parser 
runs much faster then the second because all possible itemsets are already constructed by the 
compiler. In between the two is the behaviour when the option "lazy compilation" is used : 
itemsets are only constructed by the compiler when the code for the corresponding states are 
needed by the PT A. 

The space complexity of the PTA is O(n2), the same as for Barley's method, because in a 
dagnode we store with each item the references to its return nodes (datastructure "poplist"). 
With each such reference a number of alternative paths (the datastructure "infolist") in the 
parse forest are associated. But this number can not be more than the number of adrnissable 
alternatives in the rhs of the corresponding grammar rule, which is a constant, even when the 
rule contains alternatives within regular expressions. This is the reason of the efficiency of 
the online representation of the parse forest. For each item in a dagnode, and for each 
returnstate which belongs to that item, the description for a path in the parse-forest is 
maintained. On a LSTK instruction only a finite amount of work is done for each of these 
infolists. On a LRDCF, PLRDCF or LRDCS instruction nothing extra has to be done to 
maintain the parse-forest: the infolist is simply attached to the created connector. For cfg's 
the information in a path concerns reports, builds, variables and the (alternative) parse(s) for 
the nonterminal at the lhs. 



214 

Towards linear time recognition of cfg's. 

We have already seen in chapter 6 that for the sub-class of cfg's which generate a regular 
language the compiler generates a FSA. This was done by making use of the concept of 
"compatibility calculation". The question arises whether this concept can also be used in the 
PTA in order to obtain an improvement in runtime for general cfg's. This question is of 
some importance, as witnessed by the following quotation from Knuth, Morris and Pratt 
(1977) : "One of the most outstanding unsolved questions in the theory of computational 
complexity is the problem of how long it takes to determine whether or not a given string of 
length n belongs to a given context-free language. For many years the best upper bound for 
this problem was O(n3) in a general context-free language as n -> 00 ; L.G. Valiant has 
recently lowered this to O(n1n7).1 On the other hand, the problem isn't known to require 
more than order n units of time for any particular language. This big gap ( .. ) deserves to be 
closed, and hardly anyone believes that the final answer will be O(n)." 
It seems that the authors were too optimistic with their statement about the linear time 
recognition of any particular language. Probably they were not aware of the "hardest context
free language" of Greibach (1973) which is a language encoding of any structural description 
of any well formed input sentence according to any arbitrary cf grammar. If the recognition 
time of this language is proven to be linear then all cf grammars may be recognised in linear 
time. 
However, up till now no such proof exists. It is desirable that such a proof will be given in a 
constructive way by the presentation of an algorithm for the recognition (and eventually 
parsing) of general context-free grammars. 

The question raised by Knuth et al. can be placed in the more general context of chapter 1. 
Ideally the formalism in which a problem .is expressed should not contribute to the 
complexity of solving the problem. If we know that a problem can be solved with less 
complexity when it is stated in another formalism then we get the opportunity to compare in 
more detail the two corresponding processes. Our goal is to improve in this way the 
algorithms within the system Parspat. 

In order to explore how an answer can be given to the question of the possibility of linear 
time recognition of cf g's we start our discussion with a recapitulation of some results about 
the complexity of cf recognition and parsing. We will analyse some worstcase languages and 
grammars from the literature and will try to discover the possible reasons for the worstcase 
behaviour. For each of the worstcase grammars we will show how they behave when they 
are treated by the Earley algorithm when it is enriched by the calculation of compatibility. 
This will be followed by the development of a cf grammar for the "most worstcase" language 
of Greibach and by a proposal for the extension of the concept of compatibility calculation in 
order to obtain a linear runtime behaviour for this language. 

7.4.2 Recapitulation of relevant results about cf recognition and parsing 

The following results are relevant to our discussion : 

I The present lower bound is O(n2.38) 



215 

Kasami (1965): - The upper bound for the recognition time of a linear cfl is O(n2). 

Earley (1970) : - The upper bound for the online recognition time of an arbitrary context-free 
grammar is O(n\ 

Ruzzo (1979) : - Parsing strings of length n is harder than recognizing such strings by a 
factor of only O(log n), at most. The same is true for linear and/or unambiguous cf
languages 

Ruzzo (1979): - The time to multiply n112 x n112 Boolean matrices is a lower bound on the 
time to recognize all prefixes of a string (or do on-line recognition), which in turn is a lower 
bound on the time to generate a particular convenient representation of all parses of a string 
(in an unambiguous grammar). Thus these problems are solvable in linear time only if n x n 
Boolean matrix multiplication can be done in O(n2) (Ruzzo presents also a language 
encoding of boolean multiplication). 

7.4.3 Extension ofEarley's algorithm with compatibility calculation 

In chapter 6 we introduced a modification of the algorithm GenLRsets. When an item 
reduces and the switch "multi=false" is used we did not create a reduce-entry in the LR-table 
but instead we copied the father item(s) in the father state(s) of the reducing item, with a shift 
on the reducing nonterminal. This is the technique of Earley, but applied to the algorithm 
GenLRsets. We extended the technique with the compatibility calculation between two 
itemsets which are referenced as father itemsets of an arbitrary item. We were able, with that 
extension, to generate an FSA for grammars which generate a regular language. The 
extension can be used also in the algorithm of Earley. We get its implementation for free 
when we use in the compiler of Parspat the switch "interactive=true" : in that case the 
algorithm GenLRsets constructs only a new itemset from the current one upon the reading 
of an input symbol. 
When we use the compatibility checking in that case (switch "test_comp_sets=true") and still 
perform the check if the core of a created itemset already exists then the thus extended 
algorithm of Earley creates only a fixed number of itemsets when the grammar describes a 
regular language. When the grammar describes a cfl then the creation of new itemsets on 
input symbols continues, but we may expect that fewer references to father itemsets will be 
created. 
Compatibility calculation takes, in general, O(n2) time. We will have a chance to obtain a 
O(n) time when we succeed in extending the algorithm for compatibility calculation in such a 
way that only one father has to be referenced for each item in an itemset. 
We will first investigate the behaviour of some worstcase grammars. 

7.4.4 Worstcase languages and grammars 

In this subsection we will recall a number of worstcase context-free languages and grammars 
which have been mentioned in the literature, with their bounds on runtime recognition. We 
will classify them according to a number of criteria how they show their worstcase 
behaviour: 



216 

- the difference between recognition and parsing, 
- the type of the language which is described, 
- the kind of ambiguity of the grammar, 
- the choice of the recognition strategy . 

7.4.4.1 The difference between recognition and parsing 

The difference between recognition and parsing is that in the latter case parse trees have to be 
represented. In section 7.4.2 we saw that the difference in runtime may be at most O(log n). 
General parsing strategies usually take into account the construction of parse trees. In the 
algorithm of Earley parsetrees are reconstructed after recognition has finished. In Tomita's 
and our algorithms the parse forest is constructed online. In our case we saw that this does 
not contribute to the complexity of recognition. We therefore disregard this factor in our 
search for an improvement of the time of recognition. 

7.4.4.2 The type of the language which is described 

Regular languages may be recognized in linear time. We already discussed our 
improvements with the aid of compatibility calculations. Below the effect is shown on some 
worstcase grammars. 

Source : (Griffiths and Petrick, 1965), referenced by (Earley, 1970) and (Bouckaert c.s., 
1975) 
Purpose : worstcase grammars for cf recognition 
Grammarl : called ORE 

X:alXblYa 
Y:elYdY 

with e.g. as input : (edteabb 
~: 1. a FSA is created with 6 states 

2. when the compiler is used as an extended Earley parser also only 6 itemsets 
are created 

Grammar2 : called UBDA 
A:xlAA 

Comment: Earley believes that UBDA is one of the few grammars which will take O(n3) 
runtime with his parsing method. In (Aho and Ullman, 1972, p. 165) an exercise is given to 
show that the number of distinct leftmost derivations of an+l according to UBDA is given by 
1/(n+l) (2nn). But in section 6.4.1 we showed that with the aid of compatibility calculation a 
FSA for this grammar is constructed. 

Gallaire tried to diminish the gap between lower and upper bounds for recognition by 
presenting an example of the coding of a problem into a linear cfl. For this problem a lower 
bound is known. 

Source: (Gallaire, 1969) 
Purpose: to show a lower bound for the recognition of cfl's with an on-line Turing machine 
with a language encoding of the pattern matching problem 



217 

Language : LGallaire = {I:•~•csu1s ... suts It >=1, z e I:•, lzl > 0, Uj e I:• for 1 <= j <= t 
and Ui = zT for some i, 1 <= i <= t}(one or more of the keywords u1 .. ut, which are 
separated by a 's' from each other, are to match in reverse with some substring z in the text 
string I:•zI:*, which is separated by a 'c' from the keywords). This set is a linear cfl. 
Therefore the upper-bound= O(n2) . Lower bound= n2/log non TM. 
Comment : Gallaire proved his lower bound for a TM, but we know now that the problem of 
pattern matching of a number of keywords can be solved in linear time by a FSA. The gap 
therefore increases. 
Grammarl : Ggallairel (written as a linear cfg) : 

S:OSllSIAslBs 
A:A0IAllAslBs 
B:0C0llCl 
C:0C0llCllD 
D:0DI lDlcE 
E: sl sF 
F:0FI IFIE 

Grammar2: Ggallairel rewritten as a ecfg: Ggallaire2: 
S:ABsC 
A: [a I b]* 
B:aBalbBblaDalbDb 
D:AcC 
C: [As]* 

~: for both grammars the number of connectors is O(n), the number of infolists which 
had to be treated O(n2) and the number of elementary comparisons of retumstates in infolists 
O(n3). However, the cpu-time is about O(n2). This can only be explained by the fact that the 
addition of an element to a list with a check on its presence is a really basic operation which 
hardly contributes to the total processing time. 

7.4.4.3 Inherent and temporal ambiguity 

Novice grammar writers usually produce grammars with a large number of ambiguities. We 
call these ambiguities which are not intended "artificial ambiguities". For grammar writers 
who are only interested in recognition (with reporting) and not in parsing, the runtime 
behaviour of the parser should allow for the artificial ambiguities. 
Takaoka and Amamiya (1975) developed an "ambiguity function" in order to calculate a 
measure for the potential ambiguous parses of a grammar. The following grammars are 
typical examples of the coding of a very simple problem in a grammar formalism. We 
present also the time of recognition as we measured it with the system Parspat. 

Source: (Takaoka and Amamiya, 1975). 
Pm:pose : to develop "ambiguity functions" to measure inherent ambiguity. 

Knuth (1965) defines the 
Language : LKnuth = { x £ { a, b }+ I equal numbers of a and b occur in x} 

Hopcroft and Ullman (1969) specify for L the following grammar 
Grammarl: GKnuthl: 

S:bAlaB 
A:aSlbAAla 



218 

B:bSlaBBlb 
~: Takaoka and Amamiya calculate for this grammar an exponential ambiguity 
function. 
Parspat : see Ggallaire. 

Grammar2 : Takaoka and Amamiya specify for LKnuth also the grammar GKnuth2: 
S:aBSlbASlaBlbA 
A:bAAla 
B:aBBlb 

Result: This grammar is, according to their calculation, unambiguous. 
Parspat : O(n) 

Grammars can be written intentionally ambiguous. We then call them "inherently 
ambiguous". The following one is created very intentionally. 

Source: (Hopcroft and Ullman, 1979). 
Purpose : to exhibit a cfl for which every cfg is ambiguous. 
Language: Lhopcroft = anbncmdm+anbmcmdn, n>=l, m>=l. 
Grammar: a straightforward grammar for Lhopcroft is Ghopcroft: 

S:A,BIT 
A : a, A, b I a, b 
B : c, B, d I c, d 
T: a, U,d 
U:TIV 
V: b, V, c I b, c 

~ : see Ggallaire. 

A grammar can be temporarily ambiguous. This may depend upon the parsing strategy. For 
instance, when a variable number of lookahead symbols is needed before a decision can be 
made about the reduction of a grammar rule, then temporary ambiguity manifests itself. 

~ : (Graham, Harrison and Ruzzo, 1980) 
Purpose: to show an unambiguous grammar with recognition time O(n3) 
Grammar : GGraham : 

S:AIBC 
A:elaAB 
B:blclaB 
C:elbCD 
D:clbD 

Language: an ( a+(b+c) )n + ( a+(b+c)) bm(b+c)m, n, m >= 1 
~: see Ggallaire. 

7 .4.4.4 The choice of the recognition/parsing strategy 

LR(k) and LL(k) parser generation concentrates on deterministic parsing by avoiding 
shift/reduce-reduce conflicts, using k symbols lookahead. The generated parsers operate in 
linear time. But some LR grammars will parse with Earley's method in O(n2) time. An even 



219 

more striking difference is found in the recognition of palindromes. Palindromes cannot be 
described by a LR(k) grammar. Nevertheless, their exist efficient recognition strategies. 
Manacher ( 1975) describes an online algorithm for recognition of palindromes in linear time. 
The real time version is given by Galil (1978). 

Language: Lpalind: x xT, x e {a, b}+ 
Grammar : Gpalind :. 

S : a S a I b S b I a a I b b. 
~ : see Ggallaire. 

A linear time recognition algorithm is also given for the following grammar. 

Source: (Knuth, Morris and Pratt, 1977) 
Purpose : to show that palstars can be recognised in linear time by the KMP-algorithm 
Language : Lpalstar = { x* I x e Lpalind} 
Grammar : Gpalstar : 

S: SSlaSalbSblaalbb 
Parspat : see Ggallaire. 

7.4.4.5 The hardest context-free grammar: Ggreibach 

Greibach (1973) presented a language (which we call Lgreibach) which encodes the problem 
of parsing cf grammars itself. In order to have a "most worstcase" cf grammar at hand and to 
study its structure we will develop the grammar Ggreibach which describes Lgreibach. 
We recapitulate the definition of Lgreibach: 
V Let T = { a 1, a2, a.1, .l!..2, c, ©} where a 1, a2, a.1, .l!..2, c and © are all distinct. Let D be the 
context-free language generated by 

s: s s 
S : a1 S .ill 
S: a2 S .l!..2 
S: e. 

We call D a Dyck set on two letters. Let d be new and let 
Lo= {e} u {x1cY1cz1d ... dXnCYnCZnd I n~l, Yl•••YnE ©D, Xi, Zi e T* 

for all i, Yi e {a1, a2, ill, .l!..2}* for i~2}. 
Thus the language Lo selects one subword from each group set off by d's in such a way that 
the concatenation of the choices belongs to ©D, the Dyck set on two letters, preceded by ©. 
Lo will encode derivations in a cf grammar. V 
Greibach proves the following theorem : 
Vlf L is a cflanguage, there is a homomorphism h such that L - { e} = h-1 (Lo - { e }). V 
Greibach assumes that L does not contain the empty word and that the grammar which 
describes Lis written in the standard form, that is, the rules are of the form Z: a y, where a 
is a terminal and y contains neither terminals nor S. 
h is formed as follows : 
1. order the nonterminals in some way: Y 1, ... , Y n, such that Y 1 = S. 
2. define functions~.~ from productions into { a1, a2, ill, .l!..2}* as follows: 

- if p is the production Yi : a, then ~(p) = illJ!2iil1 
- ifp is the production Yi: a Yj1 ... Yjm, m ~ 1, then 



220 

g,(p) = .l!I.aiaiaia2jmaI,,,aia2!IaI, 
- if i '# 1 then s(p) = g,(p) , if i = 1 then s(p) = © aia2aig,(p) 

If Pa = {PI, ... , Pm} is the set of all productions whose rhs's start with a, then h(a) = 
cs(PI)c ... cs(Pm)cd; without loss of generality one may assume Pa'# 0 for all a in :E. 

Greibach then shows that h(w) = XICYICz1d ... dxnCYnCZnd with k = lwl, Yi e {aI, a2, .l!I, 
.l!Z}*, XiZi e T*, 1 <= i <= k and YJ ... yk e ©D if and only if YI .. ·Yk encodes the 
productions used in a left-to-right derivation ofw from S. 

We will now develop a grammar Go for Lo, Greibach notes that it is possible to construct Go 
such that the number of derivations of h(w) in Go is precisely the number of derivations of w 
in a grammar G for L; in this sense the homomorphism h "preserves multiplicities". 
Furthermore, Go can be so selected that an efficient parser for Lo can be converted 
automatically into an efficient parser for L. 
We a.'<! interested in the improvement of the upper bound for general cf recognition and will 
therefore give no attention to this "preservation of multiplicity". In that respect it should be 
more interesting when e.:f a linear cf grammar Go could be found. The recognition time 
would be in that case O(n ). 

Lo= XI c YI c ZI d xz c Y2 c z2 d ... d Xn c YnC Zn d describe 'xI c', 'xz c' etc. by 
A= [:E+ c]* 
'c zt', 'c z2' etc. by B = [c :E+]* 

then Lo= A YI B d A Y2 B d A y3 B d ... d A Yn B d 

then Lo = A YI C Y2 C y3 ... C Yn B d 

then S : A H B d => Lo 

describe 'B d A' by C 

describe YI Cy2CY3-.. Cyn by H 

remains H 

YI Y2 y3 ... Yn e © D, where D, the Dyck set on two letters, can be described by the 
grammar: 

Z:ZZ 
Z: a1 Z.l!I 
Z: a2 Z.l!2 
Z:e. 

In a non-empty form this becomes : 
Z:ZZ 
Z:aIZ.l!IlaI.l!I 
Z : a2 Z .l!2 I a2 .l!2 

We have to describe H = YI C Y2 C y3 ... C Yn· 
As a straightforward modification of the grammar for the Dyck set we may observe that 'C's 
are allowed between each terminal within the y's. We therefore get : 

H:© Z 
Z:Z[C] Z 
Z: aI [C] Z [C].l!I I aI [C].l!1 
Z : a2 [C] Z [C] .l!2 I a2 [C] .l!2 

Shorter: 



H:© Z 
L: Z [C] 
Z:L Z 
K: [C] I [C] L 
Z: a1 Ki!1 I a2 K.i!2 

Without regular expressions : 
H:© Z 
L:ZCIZ 
Z:L Z 
K:CILICL 
Z: a1 K a1 I a2 K .il2 I auu I a2 l!2 

221 

These are the ingredients for Go. The nonterminals A and B can be written out in a 
straightforward way. When we choose 

for a 1 the character [ 
for i!l the character] 
for a2 the character ( 
for.J!2 the character ) 

we get: 

Grammar : Ggreibach : 
S:AHBd 
C:BdA 
A:AEcle 
B:BcEle 
E: IIEI 
I: {1}1(1) 
H:© Z 
L:ZCIZ 
Z:L Z 
K:CILICL 
Z:(K) l{K}I() I{} 

Parspat : see Ggallaire. 

7.4.5 Evaluation of the results 

The grammar Ggreibach does not look much different from other worstcase grammars which 
operate in cubic time. Central in the development of the grammar was the grammar 
description of the Dyck set on two letters, which is the same as for Palstars. 
After inspection of the former grammars we have come to the conclusion that grammars 
which describe a regular language will run in linear time when the technique for compatibility 
calculation is used, but that grammars with infix recursion run in cubic time. In order to 
tackle the problem of the decrease of runtime we do not have to use Ggreibach : even the 
simpler grammars for the recognition of palindromes and palstars exhibit the cubic 
behaviour. Moreover, for the languages which they generate other strategies exist for the 
recognition in linear or in real time. It is therefore advantageous to concentrate on the 



222 

improvement of Barley's algorithm, to which we already added the compatibility calculation 
for the case of palindromes or Palstars. 

7 .4.6 Towards a linear time algorithm for general cf parsing 

The algorithm of Earley avoids to do work twice. But is it possible that still too much work 
is done ? We remind the reader of the pattern matching problem. Too much work was done 
in the naive algorithm by inspecting characters more than once. In the linear time algorithms 
this is avoided by the introduction of the concept of failure. This happens in the algorithms 
of A&C, KMP, BM and Manacher. 
In the algorithms for cf recognition the treatment of failure is, up till now, a neglected point. 
In the algorithm of Earley, and in our extended algorithms, nothing is done with the failure 
of items. In the algorithm of Earley common parts of grammar rules are combined, which 
counts for the improvement from exponential towards cubic recognition time. But failure 
items simply die out. This is nowhere registered. It seems to us that that kind of information 
can be made useful because for these failure items still an O(n3) bookkeeping has to be 
performed. 

We did some experiments along this line of thought by making combinations of the 
algorithm of Manacher and our algorithm for the calculation of compatibility, but did not 
succeed up till now to arrive at a general improvement. 

7.5 The complexity of on-line recognition and parsing of type-1 and type-0 grammars 

7.5.1 Within the system Parspat 

In this subsection we investigate the complexity of parsing type-1 and type-0 grammars. The 
complexity for transduction grammars will be the same as for type-0 grammars because the 
same kind of operations on the L- and R-dag are involved. Some theoretical results on the 
complexity of the parsing of cs grammars will therefore be relevant also for transduction 
grammars. 
The runtime complexity will be determined by the interaction between the L- and R-dag. The 
interaction is registered by the datastructure of the connector. The L-dag on its own has an 
O(n3) runtime complexity, the R-dag an O(n) complexity because for a lhs only a FSA is 
created. The difference between cf- and cs-parsing is that for the latter the LTI-instruction for 
cs-reductions is introduced, which results in a connector in which a reference is maintained 
to an "active_r" : a list of active nodes in the R-dag. In worstcase situations this results in a 
number of lists of active-L nodes and a number of lists of active R nodes. Within each list 
the O(n3) property is maintained, but the number of lists ca~ become, for worstcase 
grammars, exponential. 
In section 6.4.3 we discussed the use of 3 compiler switches which resolve inadequacies in 
the generated LR-tables. These switches cause an intervention in the case of shift/reduce
reduce conflicts, for cf- and/or cs-reduces. It is easy to implement other intervention 
strategies, based upon the application. In any case, when the number of type-1 or-0 
reductions for a symbol in a state is kept to O or 1 the runtime complexity becomes less than 
exponential. Walters and Turnbull already showed that for deterministic type-1 and -0 
parsing the runtime is proportional to the length of the parse. In the case of O or 1 type-1 or-0 



223 

parsing the runtime is proportional to the length of the parse. In the case of 0 or 1 t~pe-1 or-0 
reductions for a symbol in a state the runtime will therefore be, in worstcase, O(n ).!longest 
parse!. 
We will compare our results with already existing bounds and will investigate how the 
runtime complexity of the PT A can be further improved. 

7.5.2 Recapitulation of results about type-1 and -0 recognition and parsing 

Up till now no general parsing strategies were available for type-1 and -0 grammars other 
than the naive technique to generate all possible sentences and to compare them with the 
input We can therefore make no comparisons with other strategies. 
It is fact that, in general, the recognition problem for type-0 grammars is undecidable. This 
can be observed directly in the PT A in the unpredictable increase and decrease of the depth of 
the L- and the R-dag. 
The recognition problem for a csg is decidable, and Book (1978) proved that the recognition 
problem for a linear csg is NP-complete. He defines a linear csg as a csg which generates a 
sentence in linear time. The recognition time of a deterministic csg is proportional to the 
number of rewritings. Therefore the recognition time of deterministic linear cs g's is linear. 

The recognition time of an ambiguous linear csg with the system Parspat will therefore 
depend entirely on the complexity of recognition with a PT A. This provides us with a 
suitable starting point when we want to study improvements for the PT A. On the one hand 
we know that we are dealing with an NP-complete problem, on the other hand we may try 
out possible improvements until the inherent (supposed) exponential character of the problem 
manifests itself clearly. In order to do so we have to prepare, like we did in the cfg case, a 
worstcase linear csg. 
As an example we show the following linear csg of Book, which is unambiguous. 

~: (Book, 1978) 
Purpose : to show that recognition of linear cs-languages (to be generated in linear time from 
a csg) is NP-complete 
~: description of the CS-language LBook = { llyxdn I y E { 0, 1 }* and y is the binary 
encoding of n, without leading O's } 
Grammar: GBook : 

S:llxd 
lx:Cxd 
0x:lxd 
1 C: CO 
oc: 10 
lC:110 

Example of &eneration : S => l 1 x d => l C x d d => l 1 0 x d d => l 1 1 x d d d 
Parspat : runtime O(n) 

In search for a worstcase linear csg we investigated a number of grammars from the 
literature. They all center around the description of languages for which it is known that no 
cfg exists. The_ two favourite ones are the languages Lanbncn = { a%ncn I n >:a= 1 } and 
Lpower2 = { a1 I i is positive power of 2 }, with some variations. Turnbull (1975) studied 



224 

the deterministic parsing of a sub-class of type-0 grammars and developed a method to 
determine if a grammar is ambiguous. He presents the following two linear csg's. With the 
aid of the Parspat compiler it is easy to detect ambiguity by the inspection of the generated 
LR-tables. 

Source : (Turnbull, 1975, pp. 5-11) 
Purpose : to provide for a simple ambiguous cs grammar 
~ : language Lanbncn = { anbncn I n >= 1 } 
Grammarl : ambiguous grammar GTurnbulll : 

S:aSBclaBC 
aB: ab 
bB: bb 
bC: be 
cC :cc 
CB:BC 

Parspat : ambiguous grammar, but the number of parses is not exponential with n 
Grammar2 : non-ambiguous grammar GTurnbull2 : 

S:ABSc 
S: Abe 
Ab:ab 
Aa:aa 
B b: bb 
BA:AB 

Parspat : non-ambiguous grammar; there is always one parse, for any n. 

Because we did not obtain a linear csg with an exponential number of parses we constructed 
the following worstcase linear cs grammar, called "gramcss", which combines the worstcase 
aspects of cf and of cs grammars. 

(1) s: s s 
(2) S:a 
(3) aa:aaa 
(4) aa:baa 
(5) ab: aa 

The language which is generated by the grammar is simply an, with n >=2. This is not a 
context sensitive language, but for our purposes this is not relevant. 
The grammar is inherently ambiguous because the rhs of rule (5) is a suffix of the rhs of the 
rules (3) and (4). The number of parses is exponential. This is shown by the following 
calculations. 
Only those cs-reductions which lead to a string of only a's are permitted. Therefore, the 'b' 
which is introduced in rule (5) has to disappear by a rewriting with rule (4). 
Define: 
CF(n) = the number of parses for input an, with only cfrewritings. 
CS(n) = the number of parses for input an, with and without cs rewritings. 
ci (n) = the number of cs rewritings of an to an-I. 
c2(n) = the number of double ~ewritings of an to an-2. 



225 

Then we have : CF(n) = j=1I.n-l CF(n-j).CFG), which sums to 1/(n+l) (2nn), as we saw 
already with grammar UBDA in section 7.4.4.2. 
Cl (n) = with rule 3 : (n-2), with rules 4 and 5 : (n-3), therefore in total (2n-5). 
Then CS(n) = CF(n) + ci(n).CS(n-1) - c2(n).CS(n-2). 

In this formula we see that both cf and cs rules contribute to the exponential behaviour. 

Input= an Number of Parsetrees (CS(n)) CF(n) cl c2 
Calculated Constructed by Parspat cpu-time 

1 1 1 1 0 0 
2 1 1 1 0 0 
3 3 3 2 1 0 
4 14 14 5 3 0 
5 84 84 10s 14 5 0 
6 616 616 1:llm 42 7 1 
7 5256 5256 12:28m 132 9 5 

7.5.3 Towards improvements of the PT A 

We will indicate globally how the runtime complexity of the PTA can be improved. 
1. Some instances of undecidability can be removed when all connectors are kept and a new 
connector is compared with older ones with regard to all information to which it refers. In 
such a way the repetition of an identical situation can be trapped. 
2. In the analysis above we saw that in the case of type- I and -0 grammars a multitude of 
active lists can be present, which contributes to the (worstcase) exponential behaviour. It is 
possible to develop a PTA with only one active list in the L-dag and one active list in the R
dag and to show how recognition, but not parsing, can be speeded up for e.g. the grammar 
gramcss. We will publish these results later. 

7.6 The complexity of transduction with finite delay of transduction grammars 

The complexity of transduction is the same as the complexity of parsing of type-1 and -0 
grammars. The naive implementation cycles through the rhs's of all grammar rules in order 
to find a match. When a match is found, the rhs is replaced by the lhs, in the input. When 
more matches are possible usually the first one is chosen, which may be against the intention 
of the grammar writer. Apart from this, the runtime complexity will be dependent of the 
number of rules. The PTA operates for unambiguous transduction grammar in a time which 
is proportional to the number of rewritings, independent of the number of grammar rules. 

All information which is gathered during the parsing of a rhs is, upon the reduction of that 
rhs, available for the lhs by simply passing to a connector the pointer to the constructed path 
for the rhs. When this path is used in the R-dag for the evaluation of cover symbols the path 
is called an association list. The evaluation of a cover symbol takes time proportional to the 
depth of the subtrees in the associationlist. If there are alternative subtrees the efficient 
representation of the former parse can be exploited to the bone: a sub-dag can be build during 
the evaluation of a cover symbol, in the same way as when alternatives in a text may be read. 



226 

7.7 The complexity of the introduction of tree symbols in grammars 

In section 6.5.2 we discussed the generation of skip instructions for grammars which 
contain tree-symbols. Ifin the input (usually a large tree-structured text file) with an opening 
"(" a pointer is maintained to its corresponding ")" then, after the matching of a subtree
pattem, a jump may be made in the input to that")". In the case of type-4 pattern grammars 
with tree-symbols there will be, on the average, a sublinear behaviour. 

7.8 The complexity of the introduction of Boolean operators in grammars 

In the chapters 5 and 6 we showed how Boolean operators are treated with the compiler in 
the case that the switch "multi"=false (then it is assumed that no nonterminals are rewritten 
with infix-recursion). In runtime nothing reminds the presence of the Boolean operators. 
Therefore the runtime behaviour is better than that of the algorithm of Ken-CHi-Liu ( 1981, 
p. 2.31). 

1 !J The complexity of the introduction of variables in grammars 

A TN's and Attribute Grammars are the most frequently used grammar formalisms which 
make use of variables. Their implementation is usually achieved with the aid of backtracking, 
which accounts in worstcase for an exponential runtime behaviour. For these grammar 
formalisms only one symbol appears at the lhs of a rule. In order to analyze the behaviour of 
the PT A for the same formalism we repeat from chapter 4 the datastructure of an infolist. 

varlable_ll;1t 

Info list 
refcount N 
returnstate 
nonterminal N 
path path 
variable 
lexicon 

set of variables 
- - N • varlable_valu. e refcount 

variable_value ar_symbol N 

pointer in a 
Irie-structured lexicon 

node 

In an infolist are brought together a path in the parse forest, a list of variables which their 
(multiple) values and a pointer in the lexicon. The number of created infolists depends upon 
the number of reduces which takes place and is not influenced by the number of values of 
variables. The number of reduces for grammars with rules with a llhsl = 1 has an upper 
bound of O(n2) (the same as with Barley's algorithm). An increase of the upper bound of the 
runtime complexity can therefore only be attributed to a multitude of values for sets of 
variables. This multitude is represented in the datastructure by multiple elements of 



227 

"variable_list". Each of these elements points to a "set_of_variables" in which for each 
variable in the grammar rule only one value is stored. After the reading of a symbol a shift or 
a reduce may be performed with the item to which the infolist belongs (in the poplist). The 
variable_list will be copied to the new infolist, with the current pointers to set_of_ variables. 
When an assignment is made to a variable then the new variable_ value for that variable is 
created. 
Two cases can be distinguished : 
1. each variable has a finite set of possible values; wh~n in runtime a check is performed in 
order to detect elements of variable_list with the same set of values then the upper bound for 
the runtime complexity still remains O(n3) with a constant factor which is influenced by the 
size of the set of possible values for each variable; 
2. if the set of possible values for at least one variable is not finite then the upper bound for 
the runtime complexity becomes exponential; it is possible that more infolists will be created 
for a current item. On a shift or reduce with that item and the execution of an assignment to a 
variable as an action the refernce to a variable may be found in multiple infolists. This 
accounts for a multiple number of elements in variable_list. (Our approach of creating dags 
in order to keep the runtime complexity polynomial fails here because no sequence is 
involved in the variables to which values may be assigned : at each place in a rule all 
variables may be assigned a value and therefore each combination of values of variables has 
to be kept as a separate set in variable_list.) 

The behaviour of the system Parspat for case 2. is demonstrated by the following two 
grammars. To the variables are assigned values with a variable length. We performed some 
measurements on the cpu-time which is needed for recognition according to these grammars. 

The first grammar for case 2. with the name Gpalindvar is the grammar for palindromes 
Gpalind (see section 7.4.4.4) extended with a variable in which we build the current parse, 
in parallel with the parse which is constructed iri the parse forest. The grammar is 
unambiguous and reads as follows: 
S(O:v) :: a(v := %}, [S(w)(v := v 11 '(' II w II')'}], a(v := v II%} I 

b(v := %}, [S(w)(v := v II'(' II w 11 ')'}], b(v := v II%}. 
The measurements are : 
in:t'ut : cpu-time in seconds 
a 0.04 
a4 0.13 
a6 0.19 
a8 0.28 
a10 0.37 
a50 11.27 
a100 30 

Conclusion : there seems to be a runtime behaviour between O(n2) and O(n3). The reason is 
that the grammar is not ambiguous but that temporarily more infolists are build in order to 
k~ track of multiple returnstates. Most of these infolists, together with their values of 
variables, are pruned thereafter. 



228 

The grammar for case 2. with the name Gpalvar is inherent ambiguous and looks like the 
grammar for palstars Gpalstar (also in section 7 .4.4.4 ). It is extended with a variable x to 
which we assign multiple values with a variable length. 
S(O:x) :: a(x := 'a'}, T(x). 
T(IO:x) :: a, T(x), T(x) I 

a(x := x II 'a'} I 
a(x:=xllx}. 

The measurements are : 
input : cpu-time number 

in seconds of parses 
a4 0.2 IO 
a6 0.7 16 
a8 9.6 80 

Conclusion : here we demonstrate an exponential behaviour. 

7.10 The complexity of the introduction oflexicon symbols in grammars 

Each infolist contains only one lexicon-pointer. The instruction LEXINC increments the 
pointer in the lexicon upon a terminal symbol that is read in. In section 2.2.7.2 we described 
the trie-structure of a lexicon with which the PT A cooperates. In (Skolnik, 1982) is 
described how the access to a trie-structured lexicon on disc can be optimized. Provisions are 
taken that substrings of an entry are kept as much as possible within one disc-page. Together 
with a built-in cache memory handling of these pages the number of accesses to external 
memory can be kept to a minimum. We measured an average between 2 and 3 disc-accesses 
for an arbitrary entry in the Longman Dictionary, which contains about 60.000 entries. 



229 

8. Applications 

In this chapter we present some applications of the Parspat system. We start with an example 
of an input text with a complicated structure : the representation of Hittite clay tablets. Then 
we will exemplify the process of recognition by the application of syntactic pattern recogni
tion in large enriched corpora of texts, music, historical and bibliographical records. The 
process of parsing is represented by a subset of an apsg-grammar for simplified English and 
by a small transformational grammar. The process of transduction is demonstrated by a 
grammar for the translation of Dutch number names and by a subset of a grammar for 
grapheme-phoneme transformation. Finally the combination of transduction and parsing is 
exemplified by a grammar for compound Dutch words. 
All examples are taken from projects which have run or still run in the Faculty of Arts of the 
University of Amsterdam in the period 1978-1987, in close collaboration with the author. 
The results of most of these projects have been published elsewhere. Some of them were 
obtained with a predecessor of the Parspat system, the "Query" program. For the sake of 
uniformity, we changed the formalism of "Query" into the unifying formalism in the exam
ples concerned. 

8.1 Physical codings : Hittite clay tablets 

This section shows an example of a text with a complicated structure. It serves to demon
strate the numerous additions to a plain text which can be made by a philologist in order to 
make it a valuable resource for philological and linguistic investigations. In order to operate 
on such an enriched text it is necessary to describe its structure by a rigorous syntax and to 
transform the text with the aid of a transducer like the Parspat system. That will be dealt with 
in the next subsection. 

The text concerns a corpus of Old- and Middle-Hittite texts from the periods 1700-1500 and 
1450-1380 BC. These texts are found on clay tablets which may be broken or damaged and 
which may be variants of each other. The languages used are mainly Sumeric, Accadic and 
Hittite. They are written on the clay tablets in cuneiform. The philologists Houwink ten Cate 
and De Roos (1984) added to each word in the text emendations, morphological codes, 
syntactic codes, lemmata (or notations to construct a lemma automatically) and sentence and 
paragraph classifications. In the transliteration of the text they tried to retain the original 
physical appearance of columns, paragraphs and lines. One of their goals was to make avail
able a corpus suitable for syntactic pattern recognition with the Parspat system. Other goals 
were to construct indices, to improve automatic lemmatization and to print out the image of 
individual clay tablets with a complementation by other tablets containing variants of the text. 

First we give an impression of the physical appearance of a broken tablet. Then we give an 
example of the complementation of individual tablets by other tablets. In section 8.2 we will 
discuss the general principle of the interactive description of a text by a grammar and the 
process of its transformation into a tree-structured file which is meant to be searched for by 
the runsystem of Parspat. The examples in this subsection serve to show that texts, in gen
eral, may take the form of a network and to show a specific operation on that network. 



230 

/l •. 

z' 
I----~ -,1,,,.,,,,/. 

,;,_,;,,&. ~,,, 
I~- ~ 

-~ii;' . "•;,; 

10 

'lh.101/ 
Jao/f 

~ 

~- '¼-,\< 

YM'~ ,,,,"' 
~~~ .. •· ,,, 

l{ U]J !!.5.!2... 



231 

The conventions for the coding of the clay tablets are described in (Van der Steen, Houwink 
ten Cate and De Roos, 1981). We only highlight the coding of parallel tablets ("variants"), 
which may be used for all kinds of parallel manuscripts. 

As a separator for variants we use a "V", together with an indicator for the respective 
manuscripts, "A", "B", "C" etc. 

Examples: suppose there are 5 parallel manuscripts A, B, C, D and E. An arbitrary string we 
denote by a, b etc. 
Ex. 1 : a VA, b , AV g Manuscript A has, in addition to the other manuscripts, 
text b 
Ex. 2 : a VA, b , A VB, g BV d Manuscripts A and B have in common texts a and d, 
but they differ in between a and d; A has text b, B has text g 
Ex. 3 : a V AB, b , ABVC, g , CVDE, d, DEV e : Manuscripts A and B, C, D and E are, in 
their combinations, variants of each other 
Ex. 4: VA, a, AV[ b ]V: the philologist (denoted by square brackets) suggests the variant b 
ona 
Ex. 5: a VAB, b (a) g (b) d (c), ABVC, e (a) o (c), CVD, p (b) s (c) t (a), DV: the 
strings of the variants may be subdivided in substrings which are grammatically correlated in 
a different order, indicated by the characters a, b, c etc.; this is graphically represented in the 
next figure: 

correlation of text elements with 
the same grammatical function 

Example of a transformation of the text based upon the variants. 

We now show a text which is found on 6 different clay tablets (each broken in a different 
place). For simplicity we take a piece of transcribed text that only appears on 2 tablets. We 
call them manuscripts A and B. The output concerns the 2 manuscripts separately, where 
breaks are restored on the basis of the text of the other manuscript (between round brackets) 
or by the philologist himself (between square brackets). If the manuscripts differ in text from 
each other (variants) then it will be indicated by the program in a footnote. We will comment 
on some of the codings in the text. 



232 

+A3' +B2' @ [ERIN.MESJ~AB, UOBCYU (J· tt14CKBU GISGIGIR/VB, 

I.MES.BY UOBDYU @ UOBCYU ,B~ A-NA=A, In lhis lasl sign 

KBo 22-4 3' (riohl) joins lo KUB 40-5 II 1' (left). Line

numbering of KUB 40-5 (11) 1' henceforvard adapled. ,A= 

#10CBU LU UOBA Ytl URUZ a-al-pa/ #17 AGAU ,A~[(8)]] 

#tt +A4' +B3' [p \e \$i$-r ]~AB,a-an%$n$a #10AAAU U14BAD# 

MAt-ra-d,B~u/-us tt17 AOBU bu-u-Ja-an-z,A~[a] 

!buyai-/ bufia-1 U3AAADU 

Comment on the 3 lines beginning with +A3': 
+A3' For manuscript A the 3rd line from above starts. The start of the line is 
broken. 
@ 
[ 

ERIN.MES 
] 
~AB, 
#OBCY# 
'U 
Gl~GIGIR 
I 
VB, 
MES 
BV 

@ 
,B~ 
A-NA 
=A, 

Start of a number of words that will be taken together in the index 
The philologist supposes that the following text (which is now unreadable) 
appeared here 
A Sumeric word. 
End of the supposition. 
For both manuscripts A and B text becomes available 
The foregoing word gets the morphological classification OBCY 
Accadic word 
Sumeric part of a word with a prefix (together 2 cuneiforms) 
For the determination of the total lemma the whole word may be taken 
Manuscript A deviates from B from this point on 
Suffix of the former Sumeric word 
End of the deviation of B. There follows no deviation for A, so B has 
the foregoing wordpart as an extra (will be indicated by an automatic 
footnote in the compound manuscript) 
End of the already indicated number of words 
Manuscript B breaks 
Accadic word 
The philologist now starts a comment on manuscript A alone 



233 

A piece of the output of manuscript A, with restoration based on B, and together with 
foomotes from the editor and from the program looks as follows: 

3' [ERIN.MES] {; Gl!G(GfRO) A-NA9) LU URUZa-al-pa [ 

4' [pi-r]a-an-na MAt-ra-du-u! bu-u-ja-an-z[a] 

&) B If? 2' .MES ADDIOIT 

9) In lhis lasl sign KBo 22-4 3' (righl) joins lo KUB 40-5 II 1' (left). Line-numbering of 

KUB 40-5 (II) 1' henceforvard adapted. 

Idem for B (no footnotes) 

2' 0[ERiN.MES] {; 81!:G(GIR.MES [(A-NA LU URUZa-al-pa) 

3' [pf-r]a-an-na MAt-ra-d[(u-u! bu-u-ja-an-z)a] 

The reconstructed piece of the original clay-tablet, based on the (varying and broken) clay
tablets A and B, would look as follows (printed on a Versatec printer/plotter and making use 
of a set of digitized cuneiform characters) : 

4--~ ~ ~~7f4-
~ «<,?if ~ rf,-..c<t ~ >Wff$:i/= 

~>-r1'r-«t . r~ >N" --<~7f>-r1'rr 

Conclusion. 

The structure of a text with variants is, in general, a dag. Therefore, this should be the 
general input structure for the Parspat system. The PTA itself works with the two dag
structured L- and R-stacks, of which the R-stack acts as input for the L-stack. The parse 
forest also has the structure of a dag. A dag structure for the input will make this picture 
fairly complete. However, up till now we allow only for a tree-structured input in the 
Parspat system. In the application of Hittite clay-tablets we therefore transform the complete 
text into the contributions of the individual tablets, with a possible complementation by the 
other tablets, as we explained in the example. 
The structure of the input can be described by a grammar. With the aid of that grammar we 
can transform the input into a tree-structured file prepared for fast pattern matching. The 
process of description and transformation is described in the next section. 



234 

8.2 The p~ of the description, transfonnation and querying of free text 

Texts are usually assembled by people who have the tendency to work methodically and to 
organize their texts in a top-down fashion (and if not, they can easily be persuaded to do so). 
It is therefore natural to describe the organization of a text by a cfg. The advantages are : 
- by using a parser generator one may instantly create a parser to analyse the text in atomic 
parts 
- the text grammar is a precise description and may as such be used in other experimental 
programs which make use of the text 
- a text grammar provides for variable-length records 
- during the methodic construction of a new text according to the grammar there may be an 
instantaneous syntax check on the input (if the recognizer has the on-line property, as does 
the Parspat system) 
- the grammar reflects the hierarchical structure of the text and as such aids in the building of 
a tree structure. 
In the next figure we give an example of a simple grammar for a text-corpus. 

corpus :: [ subcorpus ]*. 
subcorpus :: '<', identification, '>', [ paragraph ]* . 
identification :: 'c', number. 
paragraph :: heading, body. 
heading :: writers_name, date. 
body :: [, '<', sentence_number, '>', sentence]*. 
sentence : : [ word_group ] *. 
word_group :: word, ' ', [lemma,' ' ], morphological_coding, ' '. 
morphological_coding:: digit, [char]* . 
word :: [char]+. 
lemma :: '{', word, '}' . 

................ etcetera ............. . 

A corpus which is treated by the above corpus-grammar may be organized in the following 
tree-structure: 

heading 
I 

paragraph i 

writers_name date 

corpus 

identification 

sent. nr. 

word 

paragraph j 

body 
I 

sentence 

I 

word_group 

'lemma': lemma 'code': code 



235 

All nodes which are brothers may be seen as a consecutive piece of text on which pattern 
matching can take place. For that purpose we have to use the tree symbols in the query
grammar. The next pattern grammar queries for all occurrences in the work of Shakespeare 
where a sentence ending with a form of the lemma 'work' is followed by a sentence ending 
with a noun or an adjective in 'ing'. 

writers name date:don't care word:don't care end of sentence 
- I I r - - I 

pattern:♦ - I 'shakespeare' • 11 · ( - f • 'lemma':('work') 'code':* i I _. 
~ord_group word_grou~ 

~meooe semeooe 
heading heading body 

paragraph 
subcorpus 

end of word lemma:don't care code end of sentence 

..... - - I I -1-
- ( I( -, 'ing')I • I 'noun' \ 'adjective' \ I -) -) 

!word word morf. morf. 
word_group word_group 

sentence sentence 
body 

paragraph 
subcorpus 

The development of a grammar for a text for which the structure is unknown is a process of 
trial and error for which a program generator like Parspat is of great help. The whole process 
of the development of a text grammar, the transduction of the text according to that grammar 
and the querying of the text is depicted in the following schema. 



236 

rB 
~errors,._____~ 

..---------, 
parser-generating 

part of 
PARSPAT 

transducing 
part of 

PARSPAT 

*) if a FSA is constructed 
the speed of a search is 
about 20.000 textwords/sec 
on a 0.6 mips machine 

text
tree 

(compresse 
by cod.I.) 

coding 
table 

report-generating 
____ in_t_e_ra_c_ti_ve_u_s_e_---1 part of 

PARSPAT 

Nearly all texts contain errors. Therefore, after the stabilization of the text grammar errors in 
the text will show up. They will be reported by the recognizer generated. 
In the following subsections we will give some examples of the second part of the process : 
the querying of text-corpora. 



237 

8.3 Pattern recognition in American, Dutch and Latin corpora 

In this subsection we show a few examples of syntactic pattern recognition in corpora of 
English, Dutch and Latin texts with the aid of the Parspat system or one of its predecessors. 
For a short overview of corpus based research we refer to chapter 1. 

Example Brown Corpus 

Remarks on the Brown Corpus. 
The Brown Corpus consists of samples taken from American English texts. 16 genres are 
covered totalling 1 million words. Each word is provided with an alphanumeric morphologi
cal code. The corpus was constructed by Francis and Kucera (1964) and is presently dis
tributed by the Norwegian Computer Centre for the Humanities, Bergen (Norway), on be
half of ICAME, the International Computer Archive of Modern English. It is available for 
scientific research. 

The corpus is transformed into a tree-structure on which the runtime system operates. The 
two most essential labels are "W" for a word in the text and "C" for a morphological code. 
The results of the queries are shown in the form of the sentences in the original corpus. 

Example (provided by P. Masereeuw). 

~: Locate sentences with two adjacent negative elements, one at word-level and 
one below word-level. 

~: 

S :: -, ( - C:( § ), W:( ['UN'I 'IM']l, - ), C:( 'JJ' ), - ), -. 

Comment on the pattern (if not mentioned in the former ones) : 

C 
w 
§ 
['UN'I 'IM'] 1 

JJ 

Part of the response: 

label in text for morphological code 
label in text for word 
code for a negation word ("not" and "n't") 
Between [ and] we are asking for words 
which start with either "un" or "im" 
the selected word has to be an adjective 

A:684 - 08 1570 but CC if CS the AT administration NN should MD find VB it PPS does 
DOZ not § need VB the AT $28 NNS million CD for IN a AT grant-in-aid NN program NN 
, , a AT not § unlikely JJ conclusion NN , , it PPS could MD very QL well RB seek VB a 
AT way NN to TO use VB the AT money NN for IN other AP purposes NNS . 

A:3430 - 37 1030 reprisals NNS are BER not § unheard JJ of IN in IN such JJ situations 
NNS , , but CC the AT recent JJ tendency NN has HVZ been BEN for IN the AT Congress 
NP to TO forgive VB its PP$ prodigal JJ sons NNS . 



238 

Example Eindhoven Corpus 

The following example (provided by J. de Jong), demonstrates the interactive 
querying of a corpus, in search for a particular linguistic phenomenon. 

Remarks on the Eindhoven Corpus. 
The Eindhoven Corpus consists of samples taken from Dutch texts. 9 genres are 
covered with a total of 600.000 words. Each word is provided with a numeric 
morphological code. The corpus was constructed in a project sponsored by the Dutch 
Research Council ('ZWO). A description of the corpus, together with calculated fre
quencies of words and lemmata can be found in Uit den Boogaart ( 197 5). 

The corpus has been transformed into a tree-structure on which the runtime system operates. 
The two most essential labels are "W" for a word in the text and "C" for a morphological 
code. The results of the queries are shown in the form of the sentences in the original 
corpus. 

Qum_: We want to study all sentences with a definite neutral noun-phrase 
containing (in departure from the general rule) an undeclined adjective or participle. 

First pattern: 
S :: -, ( - W:( 'HET') C:( 3, -), *, C:( [1 I '206' I '216']1 ), *, C:( '000' ), -), -. 

Part of the response: 

1: 43 - Het 37 vorig 1 jaar 000 kon 275 Bre!ero's 012 "De Spaanse Brabander 01 "nog 5 
uitkomst 000 bieden 21 ; dit 37 jaar 000 ziet 263 men 44 zich 34 al 5 voor 6 problemen 001 
gesteld 216 

1:114 - De 37 psychologiestudenten 001 van 6 Amsterdam 01 , die 42 zich 34 ~ 
afgelcmen 206 jaar 000 als 72" activisten 001 "deden 276 kennen 21 , laten 274 zich 34 nu 
51 lelijk 15 in 6 de 37 kaart 000 kijken 2. 

1: 208 - De 37 rijstprijs 000 vormt 253 met 6 die 36 van 6 - eveneens 5 met 6 hulpgelden 
001 in 62 te 65 voeren 21 - textielgoederen 001 , gedroogde 217 vis 000, braadolie 000, 
petroleum 000 en 7 een 45 paar 000 andere 453 artikelen 001 , de 37 zg. 103 prijsindex 000 
van 6 ~ dagelijks 1 levensonderhoud 000 

1: 691 - Jungk 01 staat 243 kritisch 1 tegenover 6 het 37 militair-industrieel 1 complex 000 

Comment on the response: 
Some of the matched adjectives and particles end in "-en", like in "het ijzeren gordijn". They 
are uninflected for purely morphological reasons. Therefore a second pattern is created 
which extends the first one with a Boolean negation in order to disregard these cases. 
(Such Boolean restrictions often emerge during interactive sessions.) 

Second pattern: 
S :: -, ( - W:( 'HET') C:( 3, -), W:( '[-, 'EN'] ), C:( [1 I '206' I '216']1 ), *, C:( 

'000' ), -), -. 



239 

Comment on the pattern: the second word of the preceding pattern is now replaced by '[-
, 'EN'], which indicates a word not ending in 'EN'. 

Pan of the response: sentences 43, 208 and 691 appear again, but sentence 114 does not. 

Conclusion: After inspection of the whole output the conclusion may be justified that the 
adjective or participle remains undeclined in mainly the following cases (these cases are rep
resented in the response shown): 

1. when some analogy is present ("bet vorig jaar", according to the adjunct of time 
"vorig jaar") 

2. when the adjective has an adverbial function ("bet dagelijks levensonderhoud") 
3. when the group as a whole has a name-like function ("bet militair-industrieel com

plex"). 

Example Liege Corpus 

Remarks on the Liege Corpus 
The Liege Corpus consists of samples taken from Latin texts. 19 samples of 8 writers have 
been selected, totalling 300.000 words. Each word is provided with a morphological code 
and a lemma. The corpus is part of a larger corpus that is distributed by "Laboratoire 
d'analyse statistique des langues anciennes", Liege, Belgium. 

The corpus is transformed into a tree-structure on which the runtime system operates. The 
three most essential labels are "W" for a word in the text, "L" for a lemma and "C" for a 
morphological code. The results of the queries are shown in the form of the sentences in the 
original corpus, without codes and without lemmata. 

Example (provided by J. de Jong). 

Pattern: 
s 
AB 
V 

PVF 

Give all sentences with passive verbs, accompanied by an Agent-adjunct 

:: -, ( -, AB, [ V ]1..4, PVF, - ), - . 
:: W:( A, B ), C:( *, 7, - ). 
:: *, C:( '[*, 5, *, *, 1, - I *, 5, *, *, 3, - I *, 8, 2, - I *, 4, 6, - I 

*, 4, 7, - I *, 6, 6, -]1 ). 
:: *, C:( *, 5, [A I BI CI DI E]l, - ). 

Comment on the pattern: This pattern demonstrates the possibility of the use of nonter-
minals (AB, V and PVF). It is the outcome of a trial and error process with the pmpose of: 

- the location of as many sentences as possible 
- the avoidance of "filthy" output : sentences where AB 

and the passive verb do not belong to the same syntactic unit. 
The pattern describes a sentence where a word with lemma AB is followed by a passive 
verb. Between them 1, 2, 3 or 4 words may occur which are not a finite verb, a subordinate 
conjunction or a relative pronoun (the "not" is indicated by the apostrophe after the closing 
square bracket of <W>). 



240 

Part of the response: 

A:6 - CAES, BG, 3A:1, 5 eorum una pars quam Gallos obtinere dictum est initium capit .a 
flumine Rhodano continetur Garunna flumine Oceano finibus Belgarum attingit etiam ab Se
quanis et Helvetiis flumen Rhenum vergit ad septentriones. 

A:18 - CAES, BG, 3A:3, 4 in eo itinere persuadet Castico Catamantaloedis filio Sequano 
cuius pater regnum in Sequanis multos annos obtinuerat et ab senatu populi Romani amicus 
appellatus erat ut regnum in civitate sua occuparet quod pater ante habuerat item que Durnno
rigi Haeduo fratri Diviciaci qui eo tempore principatum in civitate obtinebat ac maxime plebi 
acceptus erat ut idem conaretur persuadet ei que filiam suam in matrimonium dat. 



241 

8.4 Pattern recognition in written music : the "Cantigas de Santa Maria" 

Musicologists are often interested in patterns which appear in pieces of music. As an 
example we mention Plenckers (1984) who investigated the hypothesis that the "Cantigas de 
Santa Maria" (collected in Spain in the 13th century) were influenced by the traditional 
Algerian song form, the "muwashshah". The method he developed was to see if certain 
stereotype rhythmic as well as melodic patterns were equally present in both types of music. 
We illustrate a transcribed piece of the "Cantigas de Santa Maria" together with its original 
form. Text and music (together) are in this transcribed form searched for patterns by the 
Parspat system. 

1. a piece of the original text 

[C]omo Sanla Marl4 guareceu o JIIOfO pigureiro que leva,on a Saxon,el Ile fez 

saber o /eJ;la,mnJo d«s scr#uras, macar mmca /ecra. 

K1 A"I JV1 A111 n7 b7 ; ,.1 b1 I n7 b7 1,1 .,; 

• I >' I er• d' ; ~• I a I y d ~ 

'To, 67, f.811 a-6 
.E2, 63,f. 77 o 
Ea,~f.73 o-tl 

T•rJ N ■ 
M I'■ • I • ~ .~ ■ I ■ ll ■ f"' 

5t~f tr 008-FrfB-Fffiir-At~ 
Co - ,no poa' a Gro-rt - o • sa 111ui 6,n 1111-/,r • 

T• r-
■ f"' J1 • I ■ •n • I'■. ••,I 

' 

J' ,r =l ~ •' ! r Fu I £J I J & I r ra I J ~ J I J a I J D I - ~ ,nos sa - or, as-sl a-as gut non "' • ben po-de to-cio 

• ll 

Tor- = n r- , n r- • :a • r- ..,, ., • :.I 
-4: •. :EE ~ 
~¥ ti D I ,]. to &4 I J t? I r 8 lrfi#J JffibR 

la • b,·r dar. E de tal ja eod1 a • ve • 0 UD mi • 
Tor-n r■ i1 nr- .:i ·r- ... , ., •• J 

-l =l B • •. :EE ' ,~ J b I CJ -j I 1 I 0@1 J @1 r ffi&µ J"I J BI 
ra~re que di - zer vos quer · o - ra, que a Vir - gen quitsgrand1 

Fig. 1. - Canligas de Santa Maria, n. 53 - ANGLES 1943-59. • 

2. a piece of the transcribed text (done by hand) 
The following information was encoded in the data file for each song : 

a) the original Cantiga number plus title 
b) the song analysis (Roman letters concern the text structure, Greek letters the 

musical structure) 
c) the original clef in which the song was notated 



242 

d) the text and the music of the song presented on three levels: the highest shows the 
original note forms; the middle level contains pitch information; the lowest level gives the 
text syllabically. 

The way in which a, b and c have been coded can be seen by comparing the two figures. 
The notation of dis understood as an array of units, each containing three elements : (1) one 
textual syllable along with (2) the pertaining pitch information and (3) the shapes of the 
notational symbols. These three elements of one unit are all separated by a '/' and arranged 
as : shapes/pitches/syllable. 

Cantiga 53 

[Clemo Santa Maria guareceu o mac.a pigureiro que levaron 

a Saxon, et lle fez saber o testamento das scrituras, 
macar nunca leera. 

/\lpha-rJ? Beta-A? Gamma-N7 Delta-A?= 
Alpha 1-n7 Delta 1-b7:Alpha 1-n7 Delta~b7/ 

Alpha-n7 Beta-b7 Gamma-n7 Del ta-a?: 

C4 Bes 

Alpha 

pq/C$b/Co- p-n/AG/mo n/F/pod 1 n-hnl/GA/a n/B/Gro

bo-hn/AGA/ri- n+d/Cd/o- n 1/B/sa 
Beta 

n/C/mui n-hnl/DE/ben n/F/en- p-n/ED/fer- n/C/mos 
p-n/BA/sa-- n+d 1/Ga/ar, 
Gamma 

n/F/as- n-hnl/GA/si n/C/a- n+pq/Cb/os n/G/que p-n/AG/non 

r+r+r 1/AGF/sa- n 1/E/ben 
Del ta 

n/G/po- n+d/Ga/de n/F/to- n-hnl/GA/do pq/Cb/sa

p-n/AG/ber q/A/dar. 
Alpha 1 

pq/Cb/E p-n/AG/de n/F/tal n-hnl/GA/ia n/B/end 1 

p-n/AG/a- r+r+r 1 /AGF/ve-- n 1/E/o 

Delta' n/F/un n+d/Ga/mi- n/F/ra- n-hnl/G~/gre pq/Cb/que 

With the aid of the Parspat system the transcribed text is transformed into a tree-structured 
file. This file may be queried, again, with the aid of Parspat The essential labels are "P" for 
"pitch" and "S" for"shape". 

3. two queries : 

~: Search for ligatures which begin with an A or C and are followed by a rising 
interval. 



Pattern: 

Pattern: 

T :: - ( -, P:([A, - I C, -] 1), S:( n, -, h ), - ), - . 

Search for a stereotyped way of cadencing at the end of a period. 

T :: - ( -, P:(-, G, - ), S:( - ), P:( A, - ), S:(-, ['n+pq'l'n+hpq']l, - ), - , 
P:(-, D ), S:( - ) ), -. 

243 

Conclusion: all the periods which were found to contain this pattern seem to show a more 
extensive resemblance. In all but one case, the melodic line A. .. D is filled in as APED or 
AFEDCD; the G is consistently absent. 



244 

8.5 A historical free-text database 

Recently historians have become more and more interested in the material culture of the past. 
Usually commercial database systems are used in order to process the material. Input to all 
these systems has to be in a strict format. 
Sources of historical data are often in natural language. They contain a wealth of relations 
which are often difficult to structure in existing (textual) database systems (Hamilton et al, 
1985). In that case it becomes necessary to search through all the data in a sequential way. A 
number of ad-hoc programs has been written to fulfil that purpose. 
In (Van der Steen, 1985) and (Wijsenbeek-Olthuis, 1987) a project is described in which 
Delft estate-inventories are used as a source for the study of the distribution of all sorts of 
goods among different income-groups. These 18th century inventories are written in acer
tain abbreviated notation, sometimes intermixed with natural language. The inventories had 
to be typed in the archives of Delft. It was not known beforehand exactly what kind of in
formation was stored in the inventories. We therefore decided that the inventories should be 
typed in a free format style, but in a consistent way. Afterwards the investigator described 
the structure of the input by a context-free grammar, assisted by the interactive use of the 
Parspat system. Finally the input was transformed to a tree-structure. Because it was not 
necessary to do pattern matching within individual words the words were coded as integers 
by a program. In this case the Parspat system replaces individual words in the query-gram
mar by their code (see also the schema in section 8.2). The words do not have to be sur
rounded by quotes in this case. 

1. a piece of the original text, transcribed from the original in a slightly different form in or
der to be consistent in the order of description. This ordering functions within a line of text 
and determines the grammatical functioning of the separate words. The syntactic recognition 
process makes use of this ordering. 

akte 3436-14 
datum 1785 
plaats delft 
erfl nicolaas keetwijk 
beroep mr.glazenmaker, verwer 
xonbekend 
beroepx onbekend 
adres oude delft 
belast 15 
kindgeen 
leeftijd bejaard 
=org 
*huis 
huis, woon
*land 
tuin 
*effect 
obligatie, frankrijk, a 1000 gulden, 2 2000g00s 
obligatie, planters op de deense amerikaanse eilanden, rente 4% lOO0g00s 
=contant 
rijder, goud 14g00s 
gulden, drie-, 11 33g00s 
=rg 



*goud en zilver 
schelling, scheepjes-, goud 
munt, goud, vreemd 

2. a piece of the transcribed text, put in the datastructure of a tree: 

ROEDEL :( KLASSE :( D ) 
GEZIN :(G) 
PERIODE :( 3 ) 
SOORT:(K) 
FILE :( DG24 ) 
AKTE :( 3436-14) 
DATUM:( 1785) 
PLAATS :(DELFT) 
ERFI.. :( NICOLAAS_KEETWUK) 
BEROEP :( MR.GLAZENMAKER, VERWER) 
X :( ONBEKEND ) 
BEROEPX:(ONBEKEND) 
ADRES :( OUDE_DELFT) 
BELAST :( 15 ) 
KIND :( GEEN ) 
LEEFTIJD :( BEJAARD) 
ORG RN :( RUIS KAT :( YR :( VO :( RUIS ) 

PR :(WOON) 
) 

) 
LAND KAT:( YR:( VO:( TUIN) 

) 
) 

EFFECT KAT:( YR:( VO:( OBLIGATIE) 
BIJZ :( FRANKRIJK) 
AA :( 1000. GELD ) 
HOEY :( GT :( 2. ) 

) 

) 
) 

TAX:( 2000.) 
YR :( VO :( OBLIGA TIE) 

) 

BIJZ :( PLANTERS OP DE D.A.E ) 
RENTE :( 4.) 

TAX:( 1000.) 

CONT ANT RN :( ONGEKA T KAT :( YR :( VO :( RIJDER) 
BIJZ:(GOUD) 

) 
TAX:( 14.) 
YR :( VO :( GULDEN ) 

PR :(DRIB) 
HOEY:( GT:( 11.) 

) 

245 



246 

) 

) 
TAX:( 33.) 

RG RN:( GOUD_EN_ZILVER KAT:( VR :(VO:( SCHELLING) 
PR :( SCHEEPJES ) 
BIJZ :( GOUD ) 

) 
VR :( VO :( MUNT ) 

BIJZ :( ZILVER) 
BIJZ :( VREEMD ) 
HOEY :( GT :( 23. ) 

) 

3. two queries and their coding in the unifying formalism 

Qym: "Give a report for all income-classes and periods, but only for 
minors (SOORT=K), on the sum of occurrences of the goods 'kom', 'kan' and 
'kruik', adjusted by the eventually given number of occurrences (HOEY) in 
the data base" 

s .. 

NEXTl :: 
NEXT2:: 
NEXT3 :: 
NEXT5 :: 

-, BOEDEL:(KLASSE:(*{R:1 }), -, PERIODE:(*{R:2}), 
SOORT:(K), -, NEXTl, -). 
*, RN:(-, NEXT2, -). 
*, KAT:(-, VR:(-, NEXT3, -, [NEXT5], -){R:9}, -). 
VO:(-, [KOM(R:3} I KAN(R:4} I KRUIK(R:5}]1). 
HOEV:([GT{R:6):(*{R:7}) I *{R:8)]1). 

Qym: "Give a report of all taxations of stocks (EFFECT) for people who own 
houses and land" 

S·· -, BOEDEL:(-, ORG, RN:([A & B & C]l), -). 
A-- -, RUIS, KAT:(-),-. 
B·· -, LAND, KAT:(-),-. 
C-· -, EFFECT, KAT:(-, TAX:(*(R:1}), -), -. 



247 

8.6 Pattern recognition as a research tool for documentalists 

In this section we show the use of syntactic pattern recognition as a tool for documentalists. 
The following piece of text stems from a corpus of bibliographic records with classifications 
from varying sources. Current research at the University of Amsterdam aims at the develop
ment of a strategy for document retrieval which makes use of a combination of classifica
tions, even when a query for retrieval is put in terms of only one kind of classification. 

1. A piece of the original text : 

10000 
#a000054 
10010 
78603681 

10080 
831122s1978 us Wi 10000 eng 
10500 
00 HV3022 .S921978 
10820 
00 362.40483 19 
@2450 
30 Summary report of the national survey of transportation handicapped people 
@2600 
00 [Washington, D.C.J The Office [1978) 
@6500 
00 Physically handicapped United States Transportation Statistics 
@6510 
00 Social surveys United States Statistics 
@7100 
21 Grey Advertising Inc 
@7100 
11 United States Office of Transportation Planning, Management, and Demonstrations 
@7450 
00 National survey of transportation handicapped people 

2. The transcribed text was put in a tree structured file. 

3. We show four queries, stemming from four different "classification-views", which will 
all result in the same report: 
(a) give all documents which have in the title of the document words which contain the 
strings "transport" and "handicap" 
(b) give all documents which have in their Library of Congress Subject Heading words 
which contain the strings "transport" and "handicap" 
(c) give all documents which are classified according to the Library of Congress Classifica
tion for "transport for the handicapped" 
(d) give all documents which are classified according to the Dewey Decimal Classification 
for "transport for the handicapped" 



248 

4. The grammars for the four queries (displayed in a fashion which corresponds with the 
report) are respectively : 
{a) S :: -, ( -, ( -. 'TRANSPORT'. - ) • { '@245', - ). - & -. (-.'HANDICAP'. - ). ( 
'@245'. - ), -), -. 
(b) S :: -, ( -, ( -, 'TRANSPORT', - ) , ( '@65', - ), - & -, (-,'HANDICAP',·), ( 
'@65', - ), -), -. 
(c) S :: -, ( -, ( 'HV3022'), (-), (-), ( '/050', - ), - ), -. 
(d)S :: -, ( -, ( '362.4', -), (-), ( '1082', - ), - ), -. 

5. one record of the report (corresponding with the source shown above and presented with 
all codings, which may be eventually disregarded during reporting) is : 

54 - #a000054 10000 78603681 10010 831122s1978 us wi 10000 eng 
10080 00 hv3022 .s92 1978 /0500 00 362.40483 19 !0820 30 @2450 
summary @2450 report @2450 of @2450 the @2450 national @2450 
survey @2450 of @2450 transportation @2450 handicapped @2450 people 

@2450 00 @2600 [washington, @2600 d.c.] @2600 the @2600 office 
@2600 [1978] @2600 00 @6500 physically @6500 handicapped @6500 
united @6500 states @6500 transportation @6500 statistics @6500 00 
@6510 social @6510 surveys @6510 united @6510 states @6510 
statistics @6510 21 @7100 grey @7100 advertising @7100 inc @7100 11 

@7100 united @7100 states @7100 office @7100 of @7100 transportation 
@7100 planning @7100, management @7100, and @7100 demonstrations 
@7100 00 @7450 national @7450 survey @7450 of @7450 transportation 
@7450 handicapped @7450 people @7450 



249 

8. 7 An Augmented Phrase Structure Grammar for Simplified English 

In this subsection we show a piece of a grammar which describes "Simplified English", as 
defined by Fokker B.V. (trademark), which language is in use for the writing of technical 
manuals. The grammar is written by B. van der Korst by order of BSO Research. The cho
sen subset of the unifying formalism is suitable for the implementation of attribute grammars 
or apsg's ("augmented phrase structure grammars"). The grammar makes use of a lexicon. 
The parse which has to be constructed is not the internally constructed parse but a 
dependency tree which is built up in a variable. 

Examples of (simple) imperative sentences, written in Simplified English: 

1. install the clamp to connect the duct to the duct assembly. 
2. do not use a cigarette lighter to find a gas leak. 
3. apply the protective compound with a soft-bristle brush on the clean area of the fuselage 
skin. 

Basic rules ( only for imperative sentences) : 

1. rule for imperative sentences : 

IMP:: [ FADJ ]*, [ do,not ], Vrb, [COM], [ FADJ ]*. 

2. rule for 'free adjuncts' : 

FADJ:: Adv I PP I INF I ADVa... 

3. rule for the complement of a verb : 

COM:: AP I NP I 
NP, [ Prt ], [ PP I INF] I 
Prt, [ NP ], [ PP ] I 
PP I INF. 

Additions to the basic rules : 

la. actions with variables for the construction of dependency trees 
b. parameters for the passing of subtrees 

2. lexicon symbols with attributes; lexicon symbols are preceded by a '$' 

3. tests with variables for the management of over-generation (congruency, sub-categoriza
tion) 

4. other rules (e.g. coordination & ellipsis) 

IMP(O:tree):: 
[ FADJ(fadj) {fadjl:=fadjlllfadj} 
]*, $vrb(vrb,type,cmpl,prt), [ COM(com,ty,cmpl,prt) I 

E {type='intr' & cmpl=" & prt="} 
]1, 



250 

[ FADJ(fadj) {fadj2:=fadj211fadj} ]* 
{ tree:='[E-GOV,'llvrbllfadj lllcomllfadj211']'} I 
], 'do','not', $vrb(vrb,type,cmpl,prt), [ COM(com,type,cmpl,prt) I 

E { type='intr' & cmpl=" & prt="} 
], 

[ FADJ(fadj) {fadj2:=fadj211fadj} ]* 
{ tree:=' [E-GOV ,'lldo'llfadj 111' ,[E-INT ,not] ,[E-INFC, 'llvrbl lcomll']'l lfadj21 I']'}. 

FADJ(O:fadj):: [ FADJ(fadj) {fadj 1:=fadj lllfadj} 
], 'do','not', $vrb(vrb,type,cmpl,prt), [ COM(com,type,cmpl,prt) I 

E { type='intr' & cmpl=" & prt="} 
], 

[ FADJ(fadj) {fadj2:=fadj211fadj} ]* 
{ tree:='[E-GOV,'lldo'llfadj lll',[E-INT,not],[E-INFC,'llvrbllcomll']'llfadj211']'}. 

FADJ(O:fadj):: 
[ $adv(fadj) I 

PP(prp,fadj) I 
INF(fadj) I 
ADVCL(fadj) 
] 1 { fadj:=',[E-CIRC,'llfadjll']'}. 

COM(O:com,I:type,I:cmpl,I:prt):: 
[ AP(pred) I NP(pred) ]1 {type='kww' & com:=',[E-PRED,'llpredll']'}I 
NP(obj) {type='trans' & com:=',[E-OBJ,'llobjll']'}, 
[ $part(p) {p=prt & com:=comll',[E-P,'llpll']'} 
], [ PP(prp,pp) {prp=cmpl & com:=comll',[E-PREC,'llppll']'} I 

PP(prp,pp) { cmpl='advc' & com:=ccimll'[E-ADVC,'llppll']'} I 
INF(int) { cmpl='infc' & com:=comll' ,[E-INFC,'llppll']'} ] I 

$prt(p) {p=prt & com:=',[E-P,'llpll']'}, 
[ NP(obj) { type='trans' & com:=comll'[E-OBJ,'llobjll']'} 
], [ PP(prp,pp) {prp=cmpl & com:=comll',[E-PREC,'llppll']'}] I 

PP(prp,pp) {prp=cmpl & com:=',[E-PREC,'llppll']'} I 
PP(prp,pp) { cmpl='advc' & com:=',[E-ADVC,'llppll']'} I 
INF(int) { cmpl='infc' & com:=' ,[E-INFC,'llinfl I']'}. 

E::. 

A few words in the lexicon: 

(the values for variables are written after each word; some words have more values for vari
ables) 

compress#$vrb# 1 #into 
compress#$vrb#3#into 
disconnect#$vrb# 1 #from 
disconnect#$vrb#3#from 
do#$vrb#l# 
does#$vrb# 1 # 
writes#$vrb#3#no 
often#$adv 



251 

8.8 A Transformational Grammar 

In this section we discuss the application of the testing of a piece of a grammatical theory. 
The grammar is written according to some principles of Transformational Generative Gram
mar (TGG) and describes the movement of the verb particle in English. The first nine lines 
can be regarded as a package which is used here in the description of particle movement (line 
10-16) but which may also serve as a starting point for a different grammar. 
A verb may have one or more arguments (line 4) which are realized by a noun phrase, 
preposition phrase or a verb phrase. If one of the arguments is a subclause (infl, line 4 last 
alternative, also possible via line 6 and 8), the same restrictions apply to the verb in this 
clause as to the verb in the main clause (line 4, first 4 alternatives). 
The particle is connected with the verb (sentence 1 below). It may change position but the 
possibilities are restricted. The particle may move across the first noun phrase (line 14, sen
tence 2 below). Furthermore, if two noun phrases or a noun phrase and a prepositional 
phrase follow each other, the particle is placed in between (line 15, sentence 3 below). 
Movement of the particle is always clause internal; it can never cross a comp, which is the 
marker of the beginning of the clause (line 4, 5, 6; that-clause, relative clause, prepositional 
clause). 
Sentences 7, 8, 9, 10 below are not accepted by the grammar. The particle may not skip 
more than one argument (sentence 7, 8 below) or a clause (sentence 9 below) or end up in a 
different clause (sentence 10 below, particle from the main clause in a relative clause). 

During parsing with the Parspat system the user may inspect at any moment the (partial) 
parses which are constructed. Parses may be printed out in a tree-format. This is shown in 
the "example ofan analysis". 

Grammar (written by B. Molenaar} : 

1. infl2 .. 
2. infll .. 
3. v2 .. 
4. vl .. 
5. n2 .. .. 
6. nl .. 
7. p2 .. .. 
8. pl .. 
9. comp .. .. 
10. V .. .. 
11. vpar .. 
14. n2, vpar, n2 .. .. 
15.n2,vpar,n2,n2 .. 

16. comp, infll 

Correct sentences are : 

infll. 
v2 . 
[n2], vl. 
v, n2, p2 Iv, p2 Iv, n2 Iv, n2, n2 Iv, comp, infll. 
[$det], nl. 
[$adj]*, $n I [$adj]*, $n, comp, infll. 
pl. 
$p, n2. 
$plusw. 
$vs I vpar. 
$v, $par. 
[$det], [$adj]*, $n, $v, [$det], [$adj]*, $n, $par. 
[$det], [$adj]*, $n, $v; [$det], [$adj]*, $n, $par, [$p], 

[$det], [$adj]*, $n. 
$plusw, $v, [$det], [$adj]*, $n, $par. 

1. the happy dean brought IN the suspect 
2. the happy dean brought the suspect IN. 
3. the happy dean brought the suspect IN on the bicycle. 
4. the happy dean called up that he brought the suspect IN. 
5. the happy dean called IN the suspect who put some fortune BY. 



252 

6. the happy dean called IN on the suspect who put some fortune BY. 

Incorrect sentences are : 

7. the happy dean brought the suspect on the bicycle IN. 
8. the happy dean brought the suspect the bicycle IN. 
9. the happy dean called that he saw the suspect UP. 
10. the happy dean brought the suspect IN who put some fortune BY. 

Example of an analysis: 

before movement: 

"the happy dean called IN the suspect who put BY some fortune" 

infl2: 
I 

infll: 
I 

v2: ----------

n2: vl: --------

$det nl: v: ------
I 

$adj $n _vpar: $det 
I I 

n2: 

nl: 

$v $par $n comp: infll: 
I 

$plusw v2: 

vl: 

v: n2: 

_vpar: nl: 
I I I I 
$v $par $adj $n 

after movement: 
(movement can only take place in the sub clause (by); the particle in the main clause (in) can
not be placed in the sub clause) 



"the happy dean called in the suspect who put some fortune by" 

infl2: 

$det 

I 
infll: 

I 
v2: ---------------

n2: 

nl: v: 
I 

$adj $n _vpar: $det 
I I 
$v $par 

J.ll_n.l..;_ 
I I I 

vl: 

n2: 

(1) 

$n comp: [$plusw $v $adj $n $par]CsRule:16 

253 

infll 



254 

8.9 Parallel transduction rules for the translation of numbers into Dutch number names 

In this section we demonstrate the use of the transduction capability of the Parspat system by 
the application of the translation of numbers into Dutch number names. 

The characteristic of the following grammar is that, in contrast to other number grammars, all 
the rules may be applied in an arbitrary sequence (all rules are "waiting", at any moment, to 
be applied). The grammar was partly supplied by M. Elstrodt. 

Grammar: 

! thousands, millions, billions ! 
1 VOORSTUK", d, u, i, z, e , n, d, DRIETAL", # .. VOORSTUK, 

DRIETAL,#. 
2 VOORSTUK", m, i, l, j, o, e, n, ZESTAL", # .. VOORSTUK, 

ZESTAL,#. 
2a VOORSTUK", m, i, l ,j, a, r, d, NEGENTAL", # .. VOORSTUK, 

NEGENTAL,#. 

! hundreds! 
3 h, o, n, d, e, r, d, C0l", CO2", NOTC" .. 1, COl, CO2, NOTC. 

! in Dutch one does not say 'onehundred' ! 
4 C2" , h , o , n , d , e , r, d, C0l" , CO2" , NOTC" .. C2 , C0l , CO2 , NOTC . 

! tens! 
5 C3" , t , i , e , n , NOTC" 
6 Cl" , e , n , C2" , t , i , g , NOTC" 

1, C3, NOTC. 
C2 , Cl , NOTC . 
C2,0,NOTC. 7 C2" , t , i , g , NOTC" 

! elimination ofleading O's! 
8 NOTC" < 0, 0, NOTC. 
9 Cl" , NOTC" .. 0,Cl ,NOTC . 
10 C01" , CO2" , NOTC" .. 0 , C0l , CO2 , NOTC . 

! digits ! 
11 e , e , n , NOTC" .. l ,NOTC . 
12 t,w,i,n,t .. 2, t . 
13 t , w , e , e , NOTt" .. 2, NOTt . 
14 d, e, r, t .. 3 't. 
15 d , r , i , e , NOTt" .. 3 ,NOTt . 
16 v,e,e,r,t .. 4' t. 
17 v , i , e , r , NOTt" .. 4, NOTt . 
18 v , i , j , f , NOTC" .. 5 ,NOTC . 
19 z , e , s , NOTC" .. 6,NOTC . 
20 z , e , v , e , n , NOTC" .. 7,NOTC . 
21 a , c , h , t , NOTt" .. 8, NOTt . 
22 t,a,c,h,t .. 8 't. 
23 n , e , g , e , n , NOTC" .. 9,NOTC . 
24 t , i , e , n , NOTC" .. 1,0,NOTC . 
25 e , l , f, NOTC" .. 1, I, NOTC . 
26 t , w , a , a , 1 , f , NOTC" .. 1, 2, NOTC . .. 



Rewriting of the nonterminal symbols : 

COl .. 
CO2 .. 
DRIETAL .. 
ZESTAL .. 
NEGENTAL .. 
VOORSTUK :: 
co .. 
Cl .. 
C2 .. 
C3 .. 
NOTC .. 
NOTt .. 

Input. 

co. 
co. 
co,co,co. 
DRIETAL, DRIETAL. 
DRIETAL, ZESTAL. 
Cl , [CO , [CO]] . 
0 .. 9. 
1 .. 9. 
2 .. 9. 
3 .. 9. 
0 .. 9'. 
t' { C: 1} I O .. 9' { C: 1 } . 

! the negation of a digit O .. 9 ! 
! the { C: 1 } establishes a 

Boolean 'and' ! 

255 

The structure of the input is : [l..9][0 .. 9]* (to a maximum of 12) followed by the end
marker #. 
( The grammar may be extended in a trivial way for larger numbers. ) 

Output. 

Example : if the input is 2972632# then the output is : 
'tweemiljoennegenhonderdtweeenzeventigduizendzeshonderdtweeendertig#' 



256 

8.10 Parallel transduction rules for the translation of graphemes to phonemes 

In this section we show the use of the Parspat system for the application of grapheme
phoneme conversion for the Dutch language. The grammar consists of 9 sub-grammars 
which are cascaded. 
The grammar was written by M. Elstrodt, together with E. Berend. 

We show a piece of a sub-grammar which treats the character 'c'. First we give the rules 
written in standard phonological notation and then their rewriting in the unifying formalism. 

Grammar written in phonological notation : 

( - alternatives are denoted vertically between curly brackets; e.g. 
{ e, ' ( { m, *} ) } Means: e followed by not m and not r, u. 

{ r, u} 
- negations are denoted by a quote 
- transduction is denoted from left to right 
- phonemes are written in uppercase 
- graphemes in lowercase ) 

cl: C -> S / 

c2: C ->KI 

c3: c, h -> X 

{e} 
{ i} 

{ y} 

I ( { h}) 

{e} 
{ i} 

{ y} 

ch: c, h -> S~ / <-segm> 

! Means: e followed by not m and not r, u.! 

a,u: a, u -> AU 

au: a, u -> O: / S~ 

{ e, I ( {ffi, * } ) } 

{ r, u} 

{ o, { C} 

{w} 
{i, a' 
{a, I ( { k, *}) } 

{ 0, *} 

{r, i} 
{ r, y} 



257 

The grammar rewritten in the unifying formalism, as currently implemented in the Parspat 

~ 

(- transduction is denoted from right to left ) 

! a, u ! 
a,@, u, AU < a, u. 

! au! 
S~, a,@, u, 0 

! cl! 
c, S, Rel < 
Rel .. 

! c2 ! 
c, K, Rc2 < 
Rc2 .. 

! c3 ! 
c,@,h,X < 

! ch! 

< 

c, Rel. 
e Ii I y . 

c, Rc2. 

! the @ is a dummy which serves as an 
indication that the au is rewritten ! 

S~, a, @, u, AU. 

'[e I i I h I y ] . 

c, h. 

segM", c, @, h, S~, Rch2" < segM, c, @, h, X, Rch2. 
Rch2 .. a, [foneem], aPAT I e, [foneem], ePAT Ii, [foneem], a' Io, [foneem], 

aPAT 
ePAT 

! definities ! 
foneem 
vowfon 
El. 
confon 
Ml 

segM 
universe 

[c I w]l. 
'[k I o Ir] Ir, [foneem], '[i I y]. 
'[m Ir] Ir, [foneem], u'. 

@ I vowfon I confon. 
AH I EH I Ill I OH I OE I SW I A I E I I I O I Y I U I EU I E~ I AU I NY I 

P I B I TI D I KI G I F I V I S I Z I X I QI S~ I Z~ I C I L I R I WI J I HI 

M~INI N~l 9. 
grens. 
a .. z I# I&. ! universe for the negation of phonemes! 



258 

8.11 A grammar for compound Dutch words 

The following grammar was written (by G.J. van Schaaik) to analyse compound words of 
Dutch: 

1 invoer :: comp. 
2 comp:: [ N(last), [ [cons{last=%}], T] ]+. 
3 N(O:l) :: lexword{l:=%}. 
4 lexword :: $n I $na, [B]. 
5 T :: e, [n] I s. 
6 B :: 'er'. 
7 cons :: b I d I f I g I k I 11 m I n I p I r I s I t. 
8 S, T < Z, T. 
9 f, T < v, T. 

The effect of each rule is discussed on the basis of some examples. Rule 1 states that the in
put exists of a compound word. Rule 2 is basicly to be interpreted as follows: 

(1) comp :: [ N, [T] ]+. 

meaning that a compound word is to be analysed as an N, possibly followed by T. This se
quence occurs 1 or more times, indicated by +. Rule 5 spells out the terminal symbols of T, 
the connectives 'e', 'en', and 's'. This tiny part of grammar accepts in principle the fol
lowing types of compound words (the hyphen indicates the morpheme boundaries): 

(2) a ei-dooier 'egg yolk' 
b koek-e-bakker 'pastry cook' 
C boek-en-plank 'book shelf 
d geluid-s-golf 'sound wave' 

The symbol N is rewritten into the symbol lexword, which in its tum is rewritten into either 
$n or $na, the latter possibly followed by B. The symbol $n stands for a dictionary item 
categorized as noun, and $na means that the corresponding dictionary item noun may be 
followed in a compound word by an archaic connective 'er', symbolized by Band rewritten 
in Rule 6. The alternative at the right hand side of Rule 4, together with Rule 6 account for a 
correct analysis of compound words like: 

(3) a 
b 
C 

rund-er-markt 
kind-er-feest 
ei-er-markt 

'cow market' 
'child party' 
'egg market' 

There remain two more types of compound words which can be analysed by the grammar 
given above. The first type constitutes a class of compounds the first noun of which is sen
sitive to voicing of the last consonant if it is followed by a vowel. This can be exemplified 
by: 

(4) a 
b 

huis + markt --> huiz-en-markt 'house market' 
duif + hok --> duiv-en-hok 'pigeon house' 

Rule 8 and Rule 9 take care of the transduction of 's before T --> z and of 'v before T' --> 
f. It implies that even erroneously spelled words like 'huisenmarkt', 'duifenhok', and ab-



259 

berations like 'huissmarkt' and 'duifshok' will be accepted by the grammar, although it is 
very unlikely that words like these occur in a written text input for analysis. 
The last type of phenomena that can be tackled by the grammar is the doubling of a conso
nant in words that have a 'short' vowel. The rules of Dutch spelling require that when the 
'shortness' of a vowel is preserved in a derivation, it is reflected by doubling the final con
sonant. So we have for instance: 

(5) a 
b 

kip + soep --> kip-p-e-soep 
kat + bak --> kat-t-e-bak 

'chicken soup' 
'cat's box' 

Let's consider Rule 2 in its original form together with Rule 3: 

(6) Rule 2 
Rule 3 

comp:: [ N(last), [ [cons{last=% }], T] ]+. 
N(O:l) :: lexword{l:=%). 

In (6) it is shown that the last read letter (indicated by'%') of the input is assigned to the 
variable 'l' and forwarded by means of Rule 3. In Rule 2 it is evaluated if the last read letter 
equals a consonant, that is, an element of the set rewritten in Rule 7. If the test in Rule 2 
succeeds, then the connective T can be accepted. 
The grammar produces an output with labeled brackets (7) which can be transformed into a 
tree structure (8). The output of (3b) will be given: 

(7) < invoer:(comp):(N:(lexword:($na:(k ind) 
B:(er) 

) 
) 

N:($n:(f e est) 
) 

(8) invoer 
I 

--- comp ---
1 I 
I I 

lexword N 
I I I 
$na B $n 

kind er feest 

Some entries in the lexicon are : 

afdruk#$n 
mechanisme#$n 
afstand#$n 
bediening#$n 
alarm#$n 
centrale#$n 
antwoord#$n 
kaart#$n 



260 

nummer#$n 
bad#$n 
hand#$n 
doek#$n 
basis#$n 
verzekering#$n 
beest#$n 
spul#$n 
beroep#$n 
voorlichting#$n 
keuze#$n 
bescherrn#$n 
kap#$n 
bijzet#$n 
tafel#$n 
bivak#$n 
muts#$n 
bloed#$n 
doorstroming#$n 
boer#$n 
traditie#$n 
boodschappen#$n 
wagen#$n 
buffet#$n 
kast#$n 
rijtuig#$n 



261 

9. Suggestions for further research 

We suggest a number of possible extensions of the research which we described in this 
book. 

In chapter 1 we motivated the development of a program generator by the minimization of the 
number of transformations that have to be made by the human in order to translate a problem 
into a program. In chapter 2 we made an inventory of the most frequently used constructs in 
computational linguistics and unified them into one formalism. It remains to be seen if less 
frequently used constructs can also be expressed easily in the unifying formalism. On the 
one hand one may expect a convergence of the number of basic constructs which are in use 
in a discipline, on the other hand a divergence may be expected when other disciplines are 
used as a support. In that case new sub-formalisms will have to be added to the unifying 
formalism and the program-generation techniques will have to be extended. 

The transduction formalisms which we presented in chapter 2 are sufficient for a number of 
applications. It is possible that other applications will profit from more shorthands for com
pact notations. In order to handle probabilistic grammars it will be necessary to allow for real 
arithmetic with the variables. 

In chapter 4 a number of improvements suggest themselves. The compiler and the PTA can 
be extended in order to work with lookahead, which will decrease the runtime complexity, 
but which will increase the compilation time. The methods for disambiguation by the user in 
inadequate states can be extended. This has to be tried out in new applications. We already 
experimented with notations and implementations for indicating the ordering of some rules 
within one grammar. 
The cubic runtime complexity of the recognition of context-free grammars is caused by the 
fact that items in nodes are shared, as is the case with Barley's algorithm. This principle can 
be extended further to the whole PT A, from which the treatment of variables will benefit: to 
share records where this is possible. 
Unification of variables, like in Prolog, has to be implemented for cascaded grammars as a 
whole. 
Error detection and -correction is an important topic. Recent research on error-recovery in 
LR-parsing can be used in order to include this capability in the Parspat system. 
We discussed already the possibilities for implementation on parallel hardware. Intriguing is 
the thought of microprogramming the instructions for the PT A or, eventually, of building a 
complete computer upon its concept. 

The runtime complexity of the compiler is an important subject. Especially during the devel
opment of a grammar the compiler is frequently called. The complexity is directly related to 
the number of generated itemsets. In chapter 6 we made some observations on this number. 
More research is needed in order to decrease it by further optimizations or different algo
rithms. At this time we are implementing "lazy compilation": an itemset is only created when 
the runsystem asks for it. 
We discussed the compiler switch "multi". With the value "false" a recursive grammar is 
transformed into a FSA by the execution of a cf reduction in compile time. In that case the L
dag of the PT A will not be used. In the same way a process may be imagined for the avoid
ance of the R-dag when a cs reduction will be processed in compile time. It will then be pos-



262 

sible to create a FSA for a sub-class of type-0 grammars which generate a regular language 
(which will call for a precise definition of that sub-class). In the case of decidable 
transduction grammars without recursion a FSA with output will then be produced. This will 
account for a very fast transducer in the case of, for instance, the shown application of 
grapheme-phoneme conversion in chapter 8. 

In chapter 7 we indicated further research on reducing the runtime complexity of cfg's and 
linear cs g's by a possible extension of the PT A. 

The unifying formalism has a large potential for its use in applications, as we showed in 
chapter 8. We should like to explore the possibilities for its use further in general rewriting 
systems. Rule-based expert systems could profit from the compilation technique and of the 
integrated use of a lexicon in which large amounts of facts can be stored. 

In general, improvements of the complexity of the compiler and the PT A obtained in the 
context of one application directly improves the performance of other applications. This was 
demonstrated in the years in which we experimented with implementations of the Parspat 
system. 



263 

10. Literature 

Aarts, J. and Van den Heuvel, T. (1984), "Linguistic and Computational Aspects of Corpus 
Research". In: Aarts and Meijs, eds. (1984), pp. 83-94. 

Aarts, J. and Meijs, W., eds. (1984). Corpus Linguistics, Rodopi, Amsterdam. 

Aho, A.V. and Corasick, M.J. (1975), "Efficient String Matching: An Aid to Bibliographic 
Search", CACM, June 1975, Vol. 18, nr. 6, pp. 333-340. 

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974). The Design and Analysis of Computer 
Algorithms, Addison-Wesley. 

Aho, A.V. and Johnson, S.C. (1974), "LR parsing", Computing Surveys 6 (2), pp. 99-
124. 

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). Compilers, Addison Wesley. 

Aho, A.V. and Ullman, J.D. (1972). The Theory of Parsing, Translation and Compiling (2 
vols.). Prentice-Hall. 

Aho, A.V. and Ullman, J.D. (1977). Principles of Compiler Design, Addison Wesley. 

Akkerman, E., Masereeuw, P. and Meijs, W.J. (1985). "Designing a computerized lexicon 
for linguistic purposes: Ascot report nr. l ". Rodopi, Amsterdam. 

Anderson, S.O. and Backhouse, R.C. (1981), "Locally Least-Cost Error Recovery in Ear
ley's Algorithm", ACM Trans. on Progr. Lang. and Systems, vol. 3, nr. 3, july 1981, pp. 
318-347. 

Apostolico, A. and Giancarlo, R. (1986), "The Boyer-Moore-Galil string searching strate
gies revisited", Siam J. Comput., Vol. 15, Nr. 1, Feb 1986, pp. 98-105. 

Atwell, E.S. (1982). "Lob Corpus Tagging Project: Manual Postedit Handbook". Depart
ment of Linguistics and Modem English Language and the Department of Computer Studies, 
Univ. of Lancaster. 

Atwell, E.S. (1983), "Constituent-Likelihood Grammar". In: Newsletter of the International 
Computer Archive of Modem English (I CAME NEWS), 7, pp. 34-66. 

Atwell, E., Leech, G. and Garside, R. (1984), "Analysis of the Lob Corpus: Progress and 
Prospects". In: Aarts and Meijs, eds. (1984), pp. 41-52. 

Bailey, R.W., ed. (1982). Computing in the Humanities, North Holland. 

Bara, B.G. and Guida, G. (eds.) (1984). Computational models of natural language pro
cessing, North Holland. 



264 

Bates, M. (1978), "The Theory and Practice of Augmented Transition Network Grammars". 
In: Bole, L., ed., "Natural Language Communication with Computers", Lecture Notes in 
Computer Science, Vol. 63, 1978, Springer Verlag. 

Bole, L., ed. (1983). The Design of Interpreters, Compilers, and Editors for Augmented 
Transition Networks, Springer Verlag. 

Book, R.V. (1978), "On the complexity of Formal Grammars", Acta Informatica 9, pp. 
171-181. 

Bouckaert, M., Pirotte, A. and Snelling, M. (1975), "Efficient Parsing Algorithms for Gen
eral Context-free Parsers", Information Sciences 9, pp. 1-26. 

Boyer, R.S. and Moore, J.S. (1977), "A Fast String Searching Algorithm, CACM, Vol. 20, 
nr. 10, pp. 762-772. 

Bullen, R.H. and Millen, J.K. (1972), "Microtext - The Design of a microprogrammed finite 
state search machine for full-text retrieval". Fall Joint Computer Conference. 

Burgess, C. and Laurence, J., "An Indexed Bibliography for LR Grammars and Parsers". 
Continually updated and available by Dr. C.J. Burgess, Dept. of Comp. Sc., School of 
Math., Univ. of Bristol, University Walk, Bristol, BS8 lTW, England. 

Buttelmann, H.W. (1975), "On the syntactic structure of unrestricted grammars", Informa
tion and Control 29, pp. 29-101. 

Chauce, J. (1974). Transducteurs & Arborescences. Doctoral Dissertation, Grenoble. 

Chiang, Y.T. and Fu, S.K. (1984), "Parallel Parsing Algorithms and VLSI Implementations 
for Syntactic pattern recognition", IEEE Transactions on Pattern Analysis and Machine In
telligence, Vol. PAMI-6, nr. 3, May 1984, pp. 302-314. 

Chomsky, N. (1965). Aspects of the Theory of Syntax, M.I.T. Press, Cambridge, Mas
sachusets. 

Clocksin, W.F. and Mellish, C.S. (1981). Programming in Prolog, Springer Verlag. 

Cohen, B.L. (1977), "A Powerful and Efficient Structural Pattern Recognition System", 
Artificial Intelligence 9, pp. 223-255. 

Cohen, J. (1985), "Describing Prolog by its Interpretation and Compilation", CACM, Vol. 
28, nr. 12, pp. 1311-1324. 

Cohen, J. and Kolodner, S. (1985), "Estimating the Speedup in Parallel Parsing", IEEE 
Transactions on Software Engineering, Vol. SE-11, Nr. 1, Jan. 1985. 

Courcelle, B. and Franchi-Zannettacci, P. (1982), "Attribute grammars and recursive pro
gram schemes", Theor. Comput. Sci. 17, pp. 163-191 and 235-257. 

Dahl, V. (1985), "Hiding complexity from the Casual Writer of Parsers". In: (Dahl and 
Saint-Dizier, 1985), pp. 1-19. 



265 

Dahl, V. and Saint-Dizier, P. (eds.) (1985). Natural Language Understanding and Logic 
Programming. North Holland. 

Date, C.J. (1981). An Introduction to Database Systems. Addison-Wesley. 

De Jong, J., and Masereeuw, P. (1985), "Using a Latin Computer Corpus for Linguistic 
Research", to appear in "Melanges Delattes", 12 pp. 

De Jong, J., and Masereeuw, P. (1987), "Parscot, a new implementation of the LSP-gram
mar". In: Meijs, ed. (1987), "Corpus Linguistics and Beyond", Rodopi, Amsterdam, pp. 
195-206. 

De Mori, R. (1983). Computer Models of Speech Using Fuzzy Algorithms. Plenum Press, 
New York. 

DeRemer, F.L. (1969). Practical Translators for LR(k) languages, Ph.D. dissertation, MIT, 
Cambridge, Mass. 

DeRemer, F.L. (1971), "Simple LR(k) grammars, CACM, Vol. 14, nr. 7, pp. 453-460. 

De Roos, H. (1984), Amsterdam. Doctoral Dissertation, University of Amsterdam. 

Dershowitz, N. (1985), "Computing with Rewrite Systems", Information and Control 65, 
pp. 122-157. 

Earley, J., 1970, "An efficient context-free parsing algorithm", CACM, Vol. 13, nr. 2, pp. 
94-102. 

Eeg-Olofsson, M. and Svartvik, J. (1984), "Four-level Tagging of Spoken English". In: 
Aarts and Meijs, eds. (1984), pp. 53-64. 

Ehrig, H., Nagl, M. and Rosenberg, G. (1983). Graph-grammars and their application to 
Computer Science, Springer Verlag. 

Elstrodt, M., Honig, J., Masereeuw, P., Portier, J., Schwartzenberg, G., Skolnik, J., Van 
der Steen, G.J. and Van Halteren, H. (1984). Ystrings, a package for the manipulation of 
strings in standard Pascal. Technical report, available from the Computer Department Faculty 
of Arts, University of Amsterdam. 

Engels, L.K. (1981). Leuven English Teaching Vocabulary-List, Based on Objective Fre
quency Combined with Subjective Word Selection. Dept. of Linguistics, Univ. ofLeuven. 

Faloutsos, C. (1985), "Access Methods for Text", Computing Surveys, Vol. 17, Nr. 1, 
March 1985, pp. 49-74. 

Finin, T.W. (1983), "The Planes Interpreter and Compiler for Augmented Transition 
Network Grammars". In: Bole, ed. (1983), pp. 1-69. 

Fischer, C.N. (1975), "On parsing context-free languages in parallel environments", Ph.D. 
dissertation, Dep. Comput. Sci., Cornell Univ., Ithaca, NY, Apr. 1975. 



266 

Fischer, P.C. and Paterson, M.S. (1974), "String-matching and other Products". In: 
Complexity of Computation (SIAM-AMS Proceedings, vol. 7), R.M. , ed., American 
Mathematical Society, Providence, RI, pp. 113-125. 

Fisher, A.J. (1985), "Practical LL(l)-Based Parsing of Van Wijngaarden Grammars", Acta 
Informatica 21, pp. 559-584. 

Francis, W.N. (1982), "Brown Corpus Bibliography". In: Johansson, ed. (1982), ap
pendix. 

Francis, W.N. and Kucera, H. (1964)."Manual of Information to Accompany a Standard 
Sample of Present-Day Edited American English, for Use with Digital Computers", Depart
ment of Linguistics, Brown University, rev. eds. 1971 and 1979. 

Francis, W.N. and Kucera, H. (1982). Frequency Analysis of English Usage: Lexicon and 
Grammar, Houghton Mifflin, Boston. 

Friedman, J. (1971). A Computer Model of Transformational Grammar, Elsevier. 

Fu, K.S. (1982). Syntactic pattern recognition and applications, Prentice Hall. 

Galil, Z.(1978) "Palindrome Recognition in Real Time by a Multitape Turing Machine", 
Journal of Computer and System Sciences 16, pp. 140-157. 

Galil, Z. and Giancarlo, R. (1986), "Improved String Matching with k Mismatches", ACM 
Sigact News, Vol. 17, nr. 4, Spring 1986. 

Galil, Z. and Seiferas, J. (1978), "A Linear-Time On-line Recognition Algorithm for 
'Palstar' ", JACM, Vol. 25, Nr. 1, pp.102-111. 

Galil, Z. and Seiferas, J. (1980), "Saving Space in Fast String-Matching", Siam J. Com
put., Vol. 9, Nr. 2, May 1980, pp. 417-438. 

Gallaire, H. (1969), "Recognition Time of Context-Free Languages by On-line Turing Ma
chines", Information and Control 15, pp. 288-295. 

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability, Freeman, San Fran
cisco. 

Garside, R. and Leech, G. (1982), "Grammatical Tagging of the LOB Corpus: General 
Survey". In: Johansson, ed. (1982), pp. 110-117. 

Geens, D., Engels, L.K. and Martin, W. (1975), "Leuven Drama Corpus and frequency 
List". Leuven: PAL, Institute of Applied Linguistics, University ofLeuven. 

Geller, M.M. and Harrison, M.A. (1977), "Characteristic parsing, a framework for pro
ducing compact deterministic parsers", parts I and II, J. Comput. System Sci. Vol. 14, nr. 
3, pp. 267-317 and 318-343. 

Gonzalez, R. and Thomason, M.G. (1978). Syntactic pattern recognition, Addison Wesley. 



267 

Graham, S.L. and Harrison, M.A. (1976). "Parsing of general context-free languages", 
Advances in Computers 14, pp. 77-185. 

Graham, S.L., Harrison, M.A. and Ruzzo, W.L. (1980). "An improved context-free recog
nizer", ACM Transactions on Programming Languages and Systems 2, pp. 415-462. 

Greenbaum, S. (1984), "Corpus Analysis and Elicitation Tests". In: Aarts and Meijs, eds. 
(1984), pp. 193-201. 

Greibach, S.A. (1973), "The hardest context-free language", SIAM J. on Comput. 2, pp. 
304-310. 

Griffiths, T. and Petrick, S. (1965), "On the relative efficiency of CF grammar recognition", 
CACM, Vol. 8, nr. 5, May 1965, pp. 289-300. 

Griswold, R.E. and Griswold, M.T. (1983). The Icon Programming Language. Prentice 
Hall. 

Griswold, R.E. and Hanson, D.R. (1980), "An Alternative to the Use of Patterns in String 
Processing", ACM Transactions on Programming Languages and Systems, Vol. 2, nr. 2, 
April 1980, pp 153-172. 

Guibas, L.J. and Odlyzko, A.M. (1980), "A new proof of the linearity of the Boyer-Moore 
string searching algorithm", Siam J. Comput., Vol. 9, nr. 4, November 1980. 

Haan, P. de (1984), "Problem oriented Tagging of English Corpus Data". In: Aarts and 
Meijs, eds. (1984), pp. 95-122. 

Hamilton, C.D., Kimberley, R. and Smith, C.H. (eds.) (1985). Text retrieval, a directory of 
software. Gower, Aldershot. 

Hardgrave, W.T. (1980), "Ambiguity in Processing Boolean Queries on TDMS Tree Struc
tures: A Study of Four Different Philosophies", IEEE Transactions on Software Engineer
ing, Vol. SE-6, nr. 4, July 1980, pp. 357-372. 

Harris, Z. (1962). String Analysis of Sentence Structure, Mouton, The Hague. 

Harrison, P.G. (1981), "Efficient Table-Driven Implementation of the Finite State Machine". 
The Journal of Systems and Software 2, 201-211. 

Heilbrunner, S. (1979), "On the definition of ELR(k) and ELL(k) Grammars", Acta Infor
matica, Vol. 11, pp. 169-176. 

Henderson, P. (1980). Functional Programming, Prentice Hall. 

Hobbs, J.R. and Grishman, R. (1976), "The Automatic Transformational Analysis of En
glish Sentences : An Implementation", Intern. J. Computer Math., Section A, Vol. 5, pp. 
267-283. 



268 

Hoffmann, C.M., and O'Donnell, M.J., "Pattern Matching in Trees", JACM, Vol 29, nr. 1, 
Jan. '82, pp. 68-95. 

Hofstadter, D.R. (1979). Godel, Escher, Bach: an Eternal Golden Braid, Basic Books, New 
York. 

Hofland, K. and Johansson, S. (1982). Word Frequencies in British and American English, 
The Norwegian Computing Centre for the Humanities, Bergen. 

Hooper, J.B. (1976). An Introduction to Natural Generative Phonology, Academic Press, 
New York. 

Hopcroft, J.E. and Ullman, J.D. (1969). Formal Languages and Their Relation to Au
tomata, Addison Wesley. 

Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Languages and 
Computation. Addison Wesley. 

Horning, J.J. (1974), "LR grammars and analysers", in: Bauer F.L. and Eickel, J., eds., 
"Compiler Construction, an Advanced Course", Lecture Notes in Computer Science 21, 
Springer, pp. 85-108. 

lcame News, ed.: Johansson, The Norwegian Computing Centre for the Humanities, 
Bergen. 

Janssen, 0. (1984). Lemmatisierte Konkordanz zu den Schweitzer Minnesangern, Indices 
zur deutschen Literatur, Bd. 17. TU bingen, Niemeyer. 

Johansson, S. (1982), "Lob Corpus Bibliography". In: Johansson, ed. (1982), appendix. 

Johansson, S., ed. (1982). Computer Corpora in English Language Research. The Norwe
gian Computing Centre for the Humanities, Bergen. 

Johansson, S., Leech G. and Goodluck, H. (1978). Manual of Information to Accompany 
the Lancaster/Oslo-Bergen Corpus of British English, for Use with Digital Computers, De
partment of English, University of Oslo. 

Johansson, S. and Jahr, M.C. (1982), "Grammatical Tagging of the Lob Corpus. Predicting 
Word Class from Word Endings". In: Johansson, ed. (1982), pp. 118-146. 

Jouannaud, J.-P. (ed.) (1985). Rewriting Techniques and Applications, Lecture Notes in 
Computer Science, Vol. 63, Springer Verlag. 

Jourdan, M (1984), "Strongly non-circular attribute grammars and their recursive evalua
tion", ACM SIGPLAN, Vol. 19, nr. 6, June 1984, pp. 81-93. 

Karp, R.M., Miller, R.E. and Rosenberg, A.L. (1972), "Rapid Identification of Repeated 
Patterns in Strings, Trees and Arrays", Proc. 4th Ann. ACM Symp. Th. of Comp., pp. 125-
136. 



269 

Kasami, T. (1965). An efficient recognition and syntax analysis algorithm for context-free 
languages. Sci. Rep. AF CRL-65-785, Air Force Cambridge Research Laboratory, Bedford, 
Mass. 

Katayama, T. (1984), "Translation of attribute grammars into procedures", ACM Trans. 
Program. Lang. Syst. 6, pp. 345-369. 

Kemp, R. (1984). Fundamentals of the Average Case Analysis of Particular Algorithms, 
Wiley-Teubner Series in Computer Science, Stuttgart. 

Ken-Chih Liu (1981), "On string pattern matching: a new model with a polynomial time al
gorithm", Siam J. Comp., Vol 10, nr.l, Feb. 1981, pp. 118-140. 

King, M. (1981), "Design characteristics of a machine translation system", 7th. Interna
tional Joint Conference on Artificial Intelligence, pp. 43-46. 

Kjellmer, G. (1982), "Some Problems relating to the Study of Collocations in the Brown 
Corpus". in: Johansson, ed. (1982), pp. 25-33. 

Kjellmer, G. (1984), "Some Thoughts on Collocational Distinctiveness". In: Aarts and 
Meijs, eds. (1984), pp. 163-171. 

Klint, P. (1985). A Study in String Processing Languages. Lecture Notes in Computer 
Science 205, Springer-Verlag. 

Knuth, D.E. (1965), "On the translation of languages from left to right", Information and 
Control, Vol. 8, pp. 607-639. 

Knuth, D.E. (1968), "Semantics of Context-Free Languages". Mathematical Systems The
ory 2, pp. 127-145. 

Knuth, D.E., Morris, J.H. and Pratt, V.R. (1977), "Fast pattern matching in Strings", 
SIAM J. Comput., Vol. 6, Nr. 2, 1977, pp. 323-350. 

Koster, C.H.A. (1970), "Affix Grammars". In: Peck, J.E., ed., ALGOL68 Implementation, 
North-Holland, pp. 95-109. 

Kristensen, B.B. and Madsen, O.L. (1981), "Methods for Computing LALR(k) Looka
head", ACM Transactions on Programming Languages and Systems, Vol. 3, nr. 1, pp. 60-
82. 

Kron, H. (1975). Tree templates and subtree transformational grammars, Ph.D. Disserta
tion, Univ. of California, Santa Cruz, Calif., 1975. 

Kunst, A.E. and Blank, G.D. (1982), "Processing Morphology: Words and Cliches". In 
(Bailey, 1982). 

Lalonde, W.R. (1979), "Constructing LR Parsers for Regular Right Part Grammars", Acta 
Informatica 11, 1979, pp. 177-193. 



270 

Lalonde, W.R. (1981), "The Construction of Stack-Controlling LR Parsers for Regular 
Right Part Grammars", ACM Transactions on Programming Languages and Systems, 
Vol.3, Nr.2, April 1981, pp. 168-206. 

Lang, B. (1974). Deterministic Techniques for Efficient Non-deterministic Parsers, Techni
cal report nr. 72, IRIA Laboria, Le Chesnay, France. Also presented at the Second Collo
quium on Automata, Languages and Programming, Saarbriicken, 1974. 

Leech, G., Garside, R. and Atwell, E.S. (1983a), "The Automatic Grammatical Tagging of 
the LOB Corpus". In: Newsletter of the International Computer Archive of Modern English 
(!CAME NEWS), 7, pp. 13-33. 

Leech, G., Garside, R. and Atwell, E.S. (1983b), "Recent Developments in the Use of 
Computer corpora in English Language Research". In: Transactions of the philological So
ciety, 23-40. 

Levelt, W.J.M. (1973). Formele grammatica's in linguistiek en taalpsychologie. Van 
Loghum Slaterus, Deventer. 

Lewerentz, C. and Nagl, M. (1984), "A Formal Specification Language for Software Sys
tems Defined by Graph Grammars". In: U. Pape (ed.), Graphtheoretic Concepts in Com
puter Science, Proceedings WG, Linz, 1984, pp. 224-241. 

Lewi, J., De Vlaminck, K., Huens, J. and Huybrechts, M. (1979). A Programming 
Methodology in Compiler Construction, 2 vols., North Holland. 

Lipkie, D.E. (1979). A compiler design for multiple independent processor computer, Ph.D. 
dissertation, Univ. Washington, Seattle, 1979. 

Ljung, M. (1974). A Frequency Dictionary of English Morphemes, Data Linguistica 9, Uni
versity of Goeteborg, A WE/Gebers, Stockholm. 

Longman (1978) Dictionary of Contemporary English, Harlow&London. 

Lorho, B., ed. (1984). Methods and Tools for Compiler Construction, Cambridge Univer
sity Press, New York, 1984. 

Maas, D. and Maegaard, B. (1984). Syntax and Semantics of the Eurotra Formalism, 
Preliminary Version, October 1984. To be obtained from the European Committee. 

Madsen, O.L. and Kristensen, B.B (1976), "LR-Parsing of Extended Context Free Gram
mars", Acta Informatica 7, 1976, pp. 61-73. 

Manacher, G. (1975), "A New Linear-Time 'on-line' Algorithm for Finding the Smallest 
Initial Palindrome of a String", JACM, Vol. 22, Nr. 3, 1975, pp. 346-351. 

Marcus, M.P. (1980). Theory of Syntactic Recognition for Natural Language. Cambridge, 
MIT Press, Mass. 

Marshall, I. (1982), "Choice of Grammatical Word-Class without Global Syntactic Analysis 
for Tagging Words in the LOB Corpus", Dept. of Computer Studies, Univ. of Lancaster. 



271 

Maurer, H. (ed.) (1979). Automata, Languages and Programming, 6th Colloquium, Graz, 
Vol. 71 in Lecture Notes in Computer Science, July 1979. 

Meijer, H. (1986). Programmar: a Translator generator, Bloembergen Santee, Nijmegen. 
Doctoral diseertation, University of Nijmegen. 

Meijs, W.J. (1982), "Exploring Brown with Query". In: Johansson, ed. (1982), pp. 34-48. 

Meijs, W.J. (1984), "You can do so if you want to". In: Aarts and Meijs, eds. (1984), pp. 
141-162. 

Menzel, W. (1984), "A Grapheme-to-Phoneme Transformation for German", Computers 
and Artificial Intelligence, 3 (1984), Nr. 3, pp. 223-234. 

Mickunas, M.D. and Modry, J.A. (1978), "Automatic error recovery for LR parsers", 
CACM, vol. 21, pp. 459-465, June 1978. 

Mickunas, M.D. and Schell, R.M. (1978), "Parallel compilation in a multiprocessor envi
ronment", in Proc. ACM 78, pp. 241-246. 

Nijholt, A. (1983). Deterministic Top-down and Bottom-up Parsing: Historical Notes and 
Bibliographies. Mathematisch Centrum, Amsterdam. 

Ogden, W. (1968), "A helpful result for providing inherent ambiguity", Math. Systems 
Theory, 2, pp.191-194. 

Oostdijk, N. (1984). "An Extended Affix Grammar for the English Noun Phrase". In: Aarts 
and Meijs, eds. (1984), pp. 95-122. 

Overmars, M.H. and Van Leeuwen, J. (1979). Rapid subtree identification revisited, Tech. 
Rep. CS-79-3, Univ. ofUrecht, Utrecht, Netherlands. 

Pager, D. (1977), "A practical general method for constructing LR(k) parsers", Acta Infor
matica, Vol. 7, 249-268. 

Partsch, H. and Steinbruggen, R. (1983), "Program Transformation Systems", ACM Com
puting Surveys, Vol. 15, nr. 3, sep. 1983, pp. 199-236. 

Pavlidis, T. (1977). Structural Pattern Recognition, Springer Verlag. 

Penello, T.J. and DeRemer, F., "A forward move algorithm for LR error recovery", in 
Conf. Rec., 5th Ann. ACM Symp. Principles of Programming Language, 1978, pp. 241-
243. 

Plenckers, L.J. (1984). "A pattern recognition System in the Study of the Cantigas de Santa 
Maria". In: Musical Grammars and Computer Analysis, Modena 1984. 

Pohlmann, W. (1983), "LR Parsing for Affix Grammars", Acta Informatica, Vol. 20, pp. 
283-300. 



272 

Purdom, P.W., and Brown, C.A. (1981), "Parsing Extended LR(k) Grammars", Acta In
formatica, Vol. 15, pp. 115-127. 

Quirk, R. (1984), "Recent work on Adverbial Realisation and Position". In: Aarts and 
Meijs, eds. (1984), pp. 185-192. 

Remmen, F. (1985), "Hoe vriendelijk zijn vraagtalen in het gebruik ?", Informatie, jrg. 27, 
nr. 7 /8, juli/aug 1985, pp. 666-673. 

Renkema, J. (1981), "De taal van Den Haag", Staatsuitgeverij, Den Haag. Doctoral 
dissertation, Free University of Amsterdam. 

Renouf, A. (1984), "Corpus Development at Birmingham University". In: Aarts and Meijs, 
eds. (1984), pp. 3-39. 

Riesbeck, C.K. (1978), "An Expectation-Driven Production System for Natural Language 
Understanding". In (Waterman and Hayes-Roth, 1978). 

Rosenkrantz, D.J. (1967), "Programmed Grammars: a New Device for Generating Formal 
Languages", Conf. Rec., 8th IEEE Ann. Symp. Switching Automata Theory, Austin, 
Texas. 

Ruzzo, W.L. (1978), "General Context-Free Language Recognition". Ph.D. dissertation, 
U.C. Berkeley. 

Ruzzo, W.L. (1979), "On the complexity of general context-free language parsing and 
recognition". In (Maurer, 1979), pp. 489-497. 

Rytter, W. (1980), "A correct preprocessing algorithm for Boyer-Moore string-searching", 
Siam J. Comput., Vol. 9, Nr. 3, August 1980, pp. 509-512. 

Rytter, W. (1987), "Parallel time O(log n) recognition of unambiguous context free lan
guages", Information and Control 73, april, pp. 75-86. 

Sager, N. (1981), Natural Language Information Processing, Addison-Wesley. 

Salton, G., Fox, E.A. and Wu, H. (1983), "Extended Boolean information retrieval", 
CACM 26, Nov. 1983, Vol. 11, pp. 1022-1036. 

Schane, S.A. (1973). Generative Phonology, Prentice-Hall. 

Schell, R.M. (1979), "Methods for Constructing parallel compilers for use in a multiproces
sor environment", Ph.D. dissertation, Univ. Illinois, Urbana. 

Schimpf, K.M. and Gallier, J.H. (1985), "Tree Pushdown Automata", Journal of Computer 
and System Sciences 30, pp. 25-40. 

Schmucker, K.J. (1984). Fuzzy sets, natural language computations, and risk analysis, 
Computer Science Press, Rockville. 



273 

Schneider, H.J. and Ehrig, H. (1976), "Grammars on Partial Graphs", Acta Informatica, 
Vol. 6, pp. 297-316. 

Seiferas, J.I. and Galil, Z. (1977), "Real-time recognition of substring repetition and rever
sal", Math. Systems Theory, Vol. 11, pp. 111-146. 

Simon, H-U. (1983), "Pattern matching in Trees and Nets", Acta Informatica, Vol. 20, pp. 
227-248. 

Skolnik, J. (1982). L-Trees, Technical report of the Computer Dept. Fae. of Arts, Univ. of 
Amsterdam. 

Slocum, J. (1985), "A Survey of machine translation: its History, Current Status, and Fu
ture Prospects", computational linguistics, Jan-March, pp. 1-17. 

Smit, G. de V. (1982), "A Comparison of Three String Matching Algorithms", Software
Practice and Experience, Vol. 12, pp. 57-66. 

Snell, B. (1979). Translating and the Computer, North Holland. 

Stenstrom, A-B. (1984), "Discourse Tags". In: Aarts and Meijs, eds. (1984), pp. 65-81. 

Svartvik, J. (1982), "London-Lund Corpus Bibliography". In: Johansson, ed. (1982), ap
pendix. 

Svartvik, J. and Quirk, R., eds. (1980), "A Corpus of English Conversation". In: Lund 
Studies in English, Vol. 63, CWK GLeerup, Lund. 

Svartvik, J. and Eeg-Olofsson, M. (1982), "Tagging the London-Lund Corpus of Spoken 
English". In: Johansson, ed. (1982), pp. 85-109. 

Svartvik, J., Eeg-Olofsson, M., Forsheden, 0., Orestrom, B. and Thavenius, C. (1982), 
"Survey of Spoken English: report on Research 1975-81 ". In: Lund Studies in English, 
Vol. 63, CWK GLeerup, Lund. 

Takaoka, T. and Amamiya, M. (1975), "On the ambiguity Function of Context-Free Lan
guages", Systems, Computers, Controls, Vol.6, Nr. 1. 

Thompson, K. (1968), "Regular expression search algorithm", CACM, Vol. 11, nr. 6, pp. 
419-422. 

Tomita, M. (1986), "Efficient Parsing for Natural Language", Kluwer, Boston. 

Turnbull, C.J.M. (1975), "Deterministic Left to Right Parsing", Technical report CSRG-48, 
Computer Systems Research Group, Univ. of Toronto. 

Uit den Boogaart, P.C. ed. (1975). Woordfrequenties in geschreven en gesproken Neder
lands, Scheltema en Holkema, Utrecht. 

Ullman, J.D. (1982). Principles of Database Systems, Computer Science Press, Rockville. 



274 

Valiant, L. (1975), "General context free recognition in less than cubic time", J. Compu. 
Syst. Sci. 10, pp. 308-315. 

Van der Steen, G.J., ed. (1981). De computer in de letteren, Computer Dept. Fae. of Arts, 
Univ. of Amsterdam. 

Van der Steen, G.J. (1982), "A Treatment of Queries in Large Text corpora ". In: Johans
son, ed. (1982), pp. 49-65. 

Van der Steen, G.J. (1984), "On the unification of Matching, Parsing and Retrieving in 
Text corpora", ICAME News, nr. 8, May 1984, pp. 41-46. 

Van der Steen, G.J. (1985), "Syntactic pattern recognition as a Data-Base Tool". In: Allen, 
R.F. (ed.): Data Bases in the Humanities and Social Sciences, Paradigm Press, Florida, 20 
pp. 

Van der Steen, G.J., Houwink ten Cate, Ph. H.J. and De Roos, J. (1981). Coding conven
tions for the computational treatment of Hittite clay tablets, Computer Dept. Fae. of Arts, 
Univ. of Amsterdam. 

Van Halteren, H. (1985). A Linguistic Database. Technical report, Dept. of Engels
Amerikaans, University of Nijmegen. 

Vigna, P.D. and Ghezzi, C. (1978), "Context-Free Graph Grammars", Information and 
Control, Vol. 37, pp. 207-233. 

Walters, D.A. (1970), "Deterministic Context-Sensitive Languages", Information and Con
trol, Vol. 17, 1970, part I: pp 14-40, part II: pp 41-61. 

Waite, W.M. and Goos, G. (1984). Compiler Construction, Springer Verlag. 

Warshall, S. (1962), "A Theorem on Boolean matrices", JACM 9, pp. 11-12. 

Wijsenbeek-Olthuis, T. (1987). Achter de poorten van Delft, Verloren, Hilversum. Doctoral 
dissertation University of Amsterdam. 

Winograd, T. (1983). Language as a Cognitive Process, Volume I: Syntax, Addison-Wes
ley. 

Woods, W.A. (1970), "Transition Network Grammars for Natural Language Analysis". 
CACM, Vol. 13, nr. 10, pp. 591-606. 



11. Index 

Aarts 10,262,264,266,268,270,271,272 
ACTION 32, 35, 36, 41, 42, 43, 44, 56, 59, 60 
action 67, 96 
active node 78, 79, 100, 117, 146,148,221 
affix-grammar 33, 49, 63 
Aho 18,25, 36,52,62, 66, 71, 76,149,167,194,198,202,215,262 
Akkerman 17, 262, 272 
Amamiya216 

275 

ambiguity 1, 4, 5, 7, 57, 61, 63, 75, 76, 80,214,216,217,222,266,270,272 
ambiguous 4, 7, 11, 14, 18, 28, 43, 44, 45, 62, 63, 65, 71, 72, 74, 75, 76, 79, 82, 87, 88 

147,166,183,216,217,221,222,225 
analytic aspect 2 
Anderson 262 
Apostolico 194, 204, 262 
apsg 228, 248 
arb 22, 29, 30, 31, 37, 43, 45, 46, 59, 61, 62, 80, 89, 91, 149, 153, 161, 192, 194, 

202,204 
Ariane-78 12 
assignment 23, 32, 33, 34, 45, 56, 60, 61, 107, 225 
association list 79, 94, 95, 112, 127, 223 
ATN (Augmented Transition Network) 16, 22, 32, 33, 51, 63,167,224,263,264 
APSG (Augmented Phrase Structure Grammar) 49, 248 
attribute grammar 6, 16, 22, 32, 49, 56, 63, 224, 248, 263, 267, 268 
Atwell 12, 13, 14, 262, 269 
Backhouse 6,262 
backtracking 4, 5, 6, 7, 55, 56, 61, 73, 172,193,224 
Bailey 262, 268 
Bara 262 
Bates 263 
Blank 41, 268 
BNP-notation 24 
Bole 263, 264 
Book 221, 263, 267 
bookkeeping instruction 167 
bookkeepingitemset 178,179,182 
Boolean construct 8, 18, 20, 21, 23, 31, 33, 58, 61, 149, 155, 163,166,202,224 
Boolean negation 23, 36, 37, 38, 56, 60, 63, 89, 149, 156, 157, 158, 161, 162, 163, 194, 

197,202,237,254,256 
bottom-up 44, 62, 72, 270 
Bouckaert 63, 215, 263 
Boyer 62,194,202,203,204,262,263,266,271 
bracketed parse 26, 27 
breadth first 4 
Brown Corpus 12, 13, 236, 265, 268 
Brown, C.A. 63, 67 
build operator 21, 32, 39, 44, 45, 60, 61, 79, 96, 101, 114, 149,165,212 
built-in function 6, 7, 30 



276 

Bullen 263 
Burgess 62, 263 
Buttelmann 263 
cascaded grammar 10, 21, 27, 44, 165, 191, 260 
cf reduction 90, 110,142,260 
chart parsing 63, 75 
Chiang263 
Chomsky 8, 20, 21, 22, 24, 27, 50, 61, 65, 72, 80, 263 
clay tablet 228, 230, 232, 273 
Clocksin 56, 263 
CLOSURE (function) 150, 151, 156, 160, 162, 163 
closure 68, 69, 74, 105, 107, 108, 109, 112, 114, 115, 141, 165, 176, 177, 178, 179, 181 

182, 186, 187, 188, 190, 191, 204 
code generation 95, 141, 146 
Cohen, B.L. 263 
Cohen,J. 146, 147,J. 263 
Cornit54 
compatibility 181, 183, 185, 194, 212, 213, 214, 215, 220 
compatible item(set) 180, 181, 182 
complexity 2, 3, 6, 19, 61, 62, 64, 76, 79, 146, 165, 193, 194, 197, 199, 201, 203, 210, 
212,213,214,220,221,223,224,225,226,260,261,263,271 
compound word 257 
Computational Linguistics 1, 10, 15, 49, 260, 272 
condensed path 80, 95, 96, 97, 106 
configuration of a connector 100, 101, 102, 103 
configuration of a processor 72, 73, 90, 91, 92, 93, 101, 106, 113 
confluence 27, 28 
connector77,78,79,92,93, 100,101,102,103,104,105,109,113,117,119,120,121 

122, 123, 124, 125, 133, 135, 138, 140, 141, 142, 146, 148, 191, 212, 
216, 218, 219, 221 

control structure 55, 56 
cooperation of grammar rules 20, 35, 36, 48, 49, 60, 93, 149, 155, 163, 168, 176, 

178, 183 
Corasick 18, 62, 202, 262 
core 68, 69, 151, 178, 179, 180, 181, 182,187,214 
corpus 9, 12, 12, 13, 14, 15, 35, 36,44,47,228,233, 235,236,237,238,246,262,264 

265,266,267,269,271,272,273 
Corpus Linguistics 11, 12, 13, 15, 16, 34, 262, 264 
Courcelle 64, 263 
coversymbol45,46,94,95,96,98, 110,112,114,176,223,224 
cs reduction 90, 221, 260 
csg 28, 221, 222 
cuneiform 228, 231, 232 
dag 8, 41, 63, 76, 77, 78, 79, 80, 82, 87, 88, 90, 92, 96, 103, 105, 106, 110, 114, 117, 

121,123,125,127,132,134,166,212,220,221,223,224,232,260 
Dahl 19,56,263,264 
Data Description Language 57 
Data Manipulation Language 58 
De Jong 13, 35, 36, 47, 264 
De Mori 16 
depth-first 194 



277 

De Roos 228, 230, 264, 273 
De Vlaminck 269 
decomposition 156, 157 
deep binding 79, 82 
delimiter 22, 23, 24, 25, 41, 42 
dependency tree 248 
depth-first 177 
DeRemer 72, 264, 270 
Dershowitz 27, 28, 53, 264 
deterministic 4, 6, 8, 62, 63, 64, 66, 67, 71, 72, 73, 74, 75, 146, 147,180,217,219,220, 

265,269,270,272,273 
disambiguation 17, 75, 166,183,260 
disassembler 165, 189, 191 
document conversion 11 
document retrieval 246 
don't care 8, 9, 18, 22, 29, 30, 37, 58, 59, 61, 62, 80, 91, 149, 152, 153, 157, 161, 186, 

192, 194, 197, 198,199,200,201,212,213,214,215,216 
don't care dot 158, 159, 160, 163, 176 
Dyck set 218,219,220 
Earley 63, 65, 71, 73, 74, 79, 146, 147, 166, 178, 181, 192,198,213,214,215,216, 

222,260,264 
ecfg 19, 20, 22, 29, 57, 58, 63, 167, 215 
Eeg-Olofsson 13, 14, 15, 264, 272 
Ehrig 53, 264, 272 
Eindhoven Corpus 237 
Elstrodt 166,183,192,253,255,264 
emendation 228 
empty rule 25, 63, 165, 166, 183, 184 
Engels 13, 264, 265, 273 
error correction 63 
error detection 4, 63 
estate-inventor 243 
Eurotra 11, 12, 269 
exponential time 3, 18, 56, 75 
Faloutsos 41, 264 
father item 150, 156, 163, 214 
father itemset 178,181,214 
Finin 6,264 
finite control 66, 67, 72, 79 
finite delay 28, 79, 87, 90, 142, 223 
Fischer 62, 146, 147, 202, 264, 265 
Fisher 147, 265 
forest of parses 74, 75, 77, 79, 80, 82, 90, 92, 93, 95, 96, 97, 106, 112, 114, 115, 127 

131,212,214,224,225,232 
forest of stacks 75 
formal machine 2, 5, 7, 65, 147 
Formula Manipulation 53 
Fox 271 
Francis 12, 13, 236, 265 
free text 56, 57, 233 
Friedman 64, 265 



278 

Fu 1, 147, 263, 265 
functional aspect 2, 8, 21, 22 
Galil 200,217,262,265,272 
Gallaire 215, 265 
Gallier 53, 271 
garbage collection 79, 90 
Garey 3,265 
Garside 12, 13, 14, 15, 262, 265, 269 
Geens 13, 265 
Geller 71, 265 
general rewriting 11, 24, 45, 54, 79, 90, 261 
generator 2, 6, 7, 8, 10, 55, 63, 65, 89, 233, 270 
genetic aspect 2, 17, 19 
GETA 12, 34 
Ghezzi273 
Giancarlo 194, 200, 204, 262, 265 
Gonzalez 1, 265 
Goodluck 267 
Goos 64,273 
GPSG 12 
Graham 63,217,266 
graph-grammar 52,264 
grapheme-phoneme conversion 255,261 
Greenbaum 266 
Greibach 213,217,218,219,220,266 
Griffiths 215, 266 
Grishman 11, 266 
Griswold, M.T. 55, 266 
Griswold, R.E. 55, 266 
Guibas 266 
Guida 262 
Haan 13,266 
Hamilton 243, 266 
Hanson 266 
Hardgrave 62, 266 
Harris 11, 63, 71,217,265,266 
Heilbrunner 63, 71, 167, 266 
Henderson 266 
hierarchical data base 56, 57 
Hobbs 11, 266 
Hoffmann 62, 267 
Hofland 12, 13, 267 
Hofstadter 267 
Honig 192, 264 
Hooper267 
Hopcroft 29, 36, 62, 197,202,216, 262, 267 
Homing267 
Houwink ten Cate 71 
Huens 269 
Huybrechts 269 
Icon 4, 6, 55, 56, 266 



lcame 12, 13, 267 
ill-formed input 4, 200, 201 
inadequate67,69, 70, 72, 73,80, 166,260 
instable 102, 142, 167 
intermediate symbol 20, 24, 30, 31, 37, 38, 93, 105, 152, 156, 166, 176 
intersection of grammar rules 35, 36 
Jahr267 
Johansson 12, 13,265,267,268,270, 272 
Jouannaud 24, 267 
Jourdan 64, 267 
Karp267 
Kasami268 
Katayama 63, 64, 268 
Kemp268 
Ken-Chih Liu 63, 202, 268 
keyword 18, 41, 43, 62, 195, 196, 197, 198, 200, 201, 202, 203, 204, 206, 207, 209, 

210, 211, 212, 215 
Kimberley 266 
King268 
Kjellmer 13, 268 
Klint 55, 56, 268 
knowledge-based systems 13, 193 
Knuth53,62,65,66, 71, 72,194,202,203,212,213,216,217,268 
Kolodner 146, 147, 263 
Koster 49, 268 
Kristensen 63, 167, 268, 269 
Kron 62,268 
Kucera 12, 13, 236, 265 
Kunst 41,268 
L-stack 66, 72, 78, 79, 82, 88, 232 
Lalonde 63,167,268,269 
language encoding 213, 214, 215 
Language Industry 13 
Laurence 62, 263 
layer 10, 11, 15, 16, 17 
lazy compilation 199 
LOOCE17 
Leech 12, 13, 14, 15, 262, 265, 267, 269 
lemma 13,228,231,233,234,237,238 
Levelt 28, 269 
Lewerentz 269 
Lewi269 

279 

lexicon 9, 11, 13, 14, 15, 17, 10, 21, 33, 34, 40, 41, 42, 50, 52, 60, 94, 101, 106, 108, 
109,114,141,142,176,191,224,249,258,261,262 

lexicon symbol 24, 33, 40, 41, 42, 191, 226, 248 
line 23, 30, 31, 37, 43, 59, 61, 62, 80, 89, 149, 154, 161, 162, 186, 187, 192, 194, 

195,202 
linear time 3, 18, 193, 201, 202, 203, 212, 213, 215, 217, 220, 221 
Linguistic String Parser 11, 47 
linking loader 165, 191 
Lipkie 146,269 



280 

LISP 52, 63 
Ljung 269 
look-ahead 8, 63, 96 
Lorho 64, 269 
LR parsing method 6, 18, 63, 65, 67, 146, 149, 178,181,203 
Maas 11,269 
machine translation 3, 10, 11, 12, 24, 45, 268, 272 
Madsen 63,167,268,269 
Maegaard 11, 269 
Manacher 217,220,269 
Marcus 4, 269 
markov-chain 16 
Marshall 269 
Martin 13, 265 
Masereeuw 13, 17, 35, 36, 47, 192, 236, 262, 264 
Maurer 270, 271 
Meijer 64, 270 
Meijs 12, 13, 17,262,264,266,268, 270, 271, 272 
Mellish 56, 263 
Menzel270 
metagrarnmar 18, 20, 21, 22, 24, 167, 175 
METAL12 
Meteor 54, 55 
Mickunas 146,270 
Millen263 
Miller267 
mismatch 200, 201, 202, 265 
Modry270 
Moore 62, 194, 202, 203,204,262,263, 266, 271 
morphology 11, 12, 13, 14, 15, 17, 29, 31, 41,228,231,233,236,237,238,268 
Morris 62,194,202,203,212,217,268 
multiword 17 
music 1, 9, 228, 240, 241, 270 
Nagl264,269 
natural language 1, 6, 13, 17, 19, 51, 57, 75, 243, 262, 271 
negation marker 151 
negdot 157, 159, 160, 163, 198 
Nijholt 62, 270 
NP-complete 4, 193, 221 
O'Donnell 62, 267 
object-oriented processing 147 
Occam 147 
off-line 3, 11, 168 
Ogden270 
on-line 3, 4, 5, 9, 11, 16, 21, 26, 28, 41, 42, 43, 44, 47, 74, 79, 82, 87, 88, 168, 171, 

192,193,201,212,213,214,215,217,220,233,265,269 
Oostdijk 49, 270 
ordering of rules 6, 50, 56, 260 
Overmars 62, 270 
Pager 72, 270 
parallel transducing 2 



281 

parallel processing 146, 147 
parallel hardware 18, 90, 147, 168, 184, 260 
parse tree 5, 9, 10, 11, 16, 18, 26, 32, 35, 38, 39, 40, 43, 45, 46, 47, 50, 64, 74, 75, 76, 

79, 96, 97, 112, 113, 120, 121, 123, 127, 168, 181, 214, 223 
Parspat 2, 20, 21, 24, 27, 31, 34, 36, 37, 40, 41, 42, 44, 46, 50, 54, 56, 57, 79, 90, 175, 

191,192,193,195,200,212,213,214,215,216,217,220,221,222, 
223,225,228,232,233,234,236,240,241,243,250,253,255,256, 
260,261 

Partsch 270 
Pascal34,55,91, 166,172,192,264 
Paterson 62, 202, 265 
pattern grammar 2, 34, 40, 57, 58, 153, 194, 195, 224, 234 
pattern matching 6, 18, 29, 30, 36, 43, 52, 55, 56, 62, 194, 195, 197,200,202, 203, 204, 

215,220,232,234,243,267,268,272 
pattern recognition 1, 54,228, 236, 240, 246, 263, 265, 270, 273 
Pavlidis 1, 270 
Penello270 
Petrick 215,266 
philology 14,228,230,231, 269 
phonological transduction 29 
phonology 267, 271 
phrase structure grammar 20, 24, 26 
Pirotte 63, 263 
Plenckers 240, 270 
Pohlmann 64, 270 
polynomial time 3, 4, 5, 7, 18, 64, 268 
position tree 199 
Portier 264 
Pratt 62, 194, 202, 203, 212, 217, 268 
predecessor 76, 228, 236 
preprocessing 18, 62, 74, 149, 183, 194, 203, 204, 271 
probability 14, 15, 16, 198 
processor 72, 92, 101, 102, 105, 108, 110, 112, 114, 117, 120, 121, 125, 127, 131, 134 

136,142,146,147,148,269 
production 20, 25, 53, 73, 74, 150, 151, 162,178,218,271 
program code 5, 7, 105, 115 
program generator 2, 4, 5, 7, 18, 22, 61, 62, 65, 149, 234, 260 
program_code 108, 109, 110, 111, 112 
projective node 78, 79, 100, 117, 132 
Prolog 4, 6, 16, 32, 56, 193, 260, 263 
pruning 16, 90, 92, 101, 112, 114, 142, 225 
PSG 20, 21 
PTA2, 7,9, 18,65, 70, 71, 72, 74, 76, 77, 79, 80, 82, 87,90,92,93, 101,114, 

115, 146 
Purdom 63, 167, 271 
Quirk 13, 271, 272 
R-stack 66, 72, 78, 79, 80, 87, 88, 89, 232 
range of terminal symbols 23, 31, 34, 38, 61, 89, 105, 149, 152, 154, 156, 162, 176, 

198,202 
real-time 3, 272 
recursive descent 6, 55, 56 



282 

reduce instruction 100, 106, 115, 150, 178, 185 
reduce-reduce conflict 63, 165,187,217,221 
reference count 79, 88, 142 
regular expression 8, 18, 21, 23, 29, 31, 32, 36, 37, 45, 47, 51, 59, 62, 63, 76, 80, 82, 89 

91, 148, 149, 151, 152, 156, 157, 158, 159, 160, 163, 166, 167, 168, 169, 
171, 180, 191, 192, 194,195,202,212,219,272 

Remmen271 
Renkema 13,271 
Renouf271 
report20,43, 58, 79, 82,93, 112,114,135,149,168,204,205,207,210,245,246,247 
reserved symbol 22, 33, 35, 37, 68, 176, 204 
rest symbol 152, 153, 154, 189, 205 
restriction rule 47, 50 
rewriting rule 20, 66, 91, 167 
Riesbeck 271 
Rosenberg 264, 267 
Rosenkrantz 271 
Ruzzo 213,214, 217266, 271 
Rytter 147, 203, 271 
Sager 11, 47,271 
satisfiability 197 
scanner 74, 93, 105, 106, 108, 165, 188, 198 
Schane 271 
Schell 146, 147, 270, 271 
Schimpf 53, 271 
Schmucker 271 
Schneider 272 
segmentation 1, 14, 16 
Seiferas 265, 272 
sequencing 1, 6, 11, 61, 62, 64 
Sethi 149,167,194,198,262 
shallow binding 79 
shared code 63, 113, 165, 188 
shared parse trees 5, 44 
shift instruction 100 
signal 9, 14, 16, 29, 43, 68, 114, 115, 163 
Simon272 
Skolnik 40, 41, 94, 141, 192, 226, 264, 272 
Slocum 12, 272 
Snell 272 
Snelling 63, 263 
Snobo16,30, 32,45,55,56,202 
soundness 28 
speech 3, 9, 11, 13, 14, 16, 264 
spoken language 1, 10, 12, 14, 16 
SPR 1, 2, 19, 53 
square bracket 27, 151, 169, 171,230,238 
stable item 151 
starting item 68, 113, 114, 138, 153, 177, 183, 190,199,206 
Steinbruggen 270 
structural description 3, 4, 9, 43, 213 



structure building 144 
sub-linear 202, 204, 224 
successor itemset 151, 153, 154 
Summer 4, 55, 268 
SUSY 12 
Svartvik: 13, 14, 15, 264, 272 
switch for compiler 37, 165, 172, 183, 184, 185, 192,212,214,221,224,260 
switch for runsystem 80 
symbolic differentiation 53, 54 
syntax-directed translation 52 
Takaoka 216, 272 
IDG20,21 
term-rewriting 18, 24 
termination 5, 27, 146, 231 
text analysis 11, 16 
text grammar 233, 234, 235 
Thomason 1, 265 
Thompson 167, 272 
Tomita 8, 63, 65, 73, 74, 75, 76, 146, 272 
transducer 3, 10,28,64, 79,147,228,261 
transducing 1, 4, 9, 10, 18, 98, 147 
transduction grammar 8, 18, 20, 27, 28, 46, 47, 79, 98, 102, 115, 149, 166, 204, 220, 

223,261 
transformational grammar 6, 24, 50, 64, 228, 250, 265, 268 
translation 5, 6, 12, 14, 27, 38, 52, 79, 148, 167,228,253,255,262, 268 
transliteration 228 
transputer 147 
travel 151, 152, 153, 157, 160, 176, 177, 180,198,201,203 
tree grammar 24, 50, 52, 53 
tree replacement systems 52 
treesymbol8,23, 30, 33,38,44, 57,60, 68,149,154,162,189,202,224,234 
tree-structured file 44, 52, 189, 224, 228, 232, 236, 237, 238, 241, 243, 244, 246 
tree-structured input 9, 57, 68,232 
tree-structured stack 75 
trie 17, 40, 41, 42, 94, 114, 141, 203, 226 
triggering of cooperating processes 9, 43 
Turnbull 64, 65, 71, 72, 73, 90, 221, 222, 272 

283 

type-0 8, 18, 21, 22, 24, 25, 27, 65, 71, 72, 73, 87, 89, 146, 147, 149, 166, 177, 192, 
204,220,221,222,223,261 

type-1 27, 64, 65, 71, 73, 80, 166, 177, 192, 204,220,221, 223 
type-2 25, 65, 166, 204, 212 
type-3 25, 65, 66, 180, 201 
type-4 65, 66, 201 
U-grammar 20, 22, 24, 49, 93, 101, 110, 149, 152, 167, 172, 176 
Uit den Boogaart 13,237,272 
Ullman 25, 29, 36, 52, 62, 66, 71, 76, 149, 167, 194, 197,198,202,215,216,262, 

267,272 
undecidability 18, 28, 90, 146, 221, 223 
unification 16, 17, 19, 30, 33, 56, 273 
unit reduce 63, 69, 120, 165, 166, 183, 184, 185, 188 
unit rule 69, 166, 183 



284 

UNIVERSE 156, 161 
universe 23, 37, 38, 166, 256 
unstable item 151 
Valiant 63, 213, 273 
Van den Heuvel 10,262 
Van der Steen 15, 75, 192, 230, 243, 264, 273 
Van Halteren 15, 192, 264, 273 
Van Leeuwen 62,270 
Van Wijngaarden Grammar 147,265 
Vigna273 
VLSI 147,263 
Waite 64, 273 
Walters 26, 64, 65, 71, 72, 73, 90, 221, 273 
Warshall 177, 273 
Wijsenbeek-Olthuis 243, 273 
Winograd 4, 5, 6, 11, 19, 49, 51, 63, 273 
Woods 273 
worstcase 194, 199,204, 213,214,215, 217, 220, 221, 222, 223, 224 
Yacc7 



CWI TRACTS 
I D.H.J. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 J.J. Dijkstra. F~e _topological Hilbert SJ!OCes and characteri
zations of dimem1on m terms of negl,g,bjfjty. 1984. 
3 AJ. van der Scbaft. System tMoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approack 1984. 
5 B. Hoogenboom. Intertwining functions on compact lie 
groups. 1984. 
6 A.P.W. Bohm Dataj/ow computation. 1984. 
7 A. Blokbuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984. 
9 C.P J. Koymans. Models of the lambda calculus. 1984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 
functions: tM gomma function, the exponential integrals and 
'"or-like function,. I 984. 
11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
stiff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approack 1985. 
15 FJ. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case-study in Fourier integrjl opera
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 1: Philosophy, framework, computer science. 
1986. 
20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vecbt. Inequalities for stopped Brownian 
motion. 1986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrafilters over definable subsets 
of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The misconstrued semicolon: Reconciling 
imperative languages and datajlow machines. 1986. 
27 A.J.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. I 9g6. 
28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 1: Applications to natural language. 1986. 
29 H.L. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production-inventory control models: approxi
mations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs for 
factorial experiments. 1981. 
32 J.HJ. Einmabl. Multivariate empirical processes. 1981. 
33 O.J. Vrieze. Stochastic games with finite stale and action 
spaces. 1981. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approack 1981. 
35 M.L. Eaton. Lectures on topics in probability inequalities. 
1987. 
36 A.H.P. van der Burll11, R.M.M. Mattheij (eds-)- Proceed
ings of the first intematlonal conference on mdustr,a/ and 
applied mathematics (IC/AM 81). 1987. 
37 L. Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 
regenerative processes. 1987. 

39 HJ.M. Peters, OJ. Vrieze (eds.). Surveys in game theory 
and related topics. 1981. 
40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1981. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers 1984-/987. 1987. 
42 P.RJ. Asveld, A. Nijbolt (eds.). Essays on concepts, for
malisms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1987. 
44 A.W. van der Vaart. Statistical estimation in large parame
ter spaces. I 988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 
46 S.P, Spekreijse. Multigrid so/uJion of the steady Euler equa
tions. J 9gg_ 
47 J.B. Dijkstra. Analysis of means in some non-standard 
situations. I 988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness-of-fit tests. 1988. 
49 F.W. Wubs. Numerical solution of the shallow-water equa· 
lions. 1988. 
50 F. de Kerf. Asymptotic analysis of a class of perturbed 
Korteweg-de Vries initial value probfems. 1988. 
51 P.J.M. van Laarboven. 'Theoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous decoupling transformations for 
linear boundary value problems. 1988. 
53 K.C.P. Macbielsen. Numerical so/uJion of optimal control 
problems wilh state constraints by sequential quadratic pro
gramming in function space. 1988. 
54 L.C.R.J. Willenborg. Computational aspects of survey data 
processing. 1988. 
55 GJ. van der Steen. A prqgram generator for recognition, 
parsing and transduction with syntactic patterns. 1988. 





MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. I 964. 
3 G. de Leve. Generalized Markavian decision processes, part 
I: model and methad. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
II: probabilistic background 1964. 
5 G. de Leve, H.C. Tijms, P J. Weeda. Generalized Markavian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. I 964. 
7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. I 966. 
16 J.W. de Bakker. Formal definition ofprogrammi"!, 
~~ges with an application to the definition of AL OL 60. 

17 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P J. van der Hou wen. Finite difference methods for solving 
partial differential equations. 1968. 
21 E. Wattel. The compactness operator in set theory and 
topology. I 968. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part I. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1969. 
f ~ltropean Meeting 1968. Selected statistical papers, part I. 

27 European Meeting 1968. Selected statistical papers, part II. 
1968. 
28 J. Oosterhoff. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoeff. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 

31 W. Molenaar. Approximations to the Poisson. binomial and 
hypergeometric distribution Junctions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal Junc
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, PJ. van der Houwen, G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap· 
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica 
Symposium. I 971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. I 972. 
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972. 
41 A. Verbeck. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). f972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. f973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkerna. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riet. ABC ALGOL, a portable language for 
formula manipulation systems, part I: ihe language. 1973. 
47 R.P. van de Riet. ABC ALGOL, a portable language for 
formula manipulation systems, part 2: the compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-X8. 1973. 
49 H. Kok. Connected orderable spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. 0'namic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations. partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. n-!l· Mijnheer. Sample path properties of stable processes. 

60 F. Gobel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1975. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lome 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness ofintuitionistic logic. 1979. 
74 H.J.J. te Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1916. 
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. I 977. 
79 M.C.A. van Zuijlen. Emperical distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical study of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.): Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science I I, part 2. 1976. 
83 L.S. van Benthem Jutting. Checking Londau's 
"Grundlagen" in theAUTOMATH system. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?/, books 
vii-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming SfStem for Of!erations on vectors and matrices Oller arbi
trary fields and oJ variable size. l 978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Complex Fourier transformation and 
analytic functionals with unbounded colliers. 1978. 



90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. I 98 I. 
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979. 
92 P J. Weeda. Finite generalized Markov programming. 1979. 
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory. 
1977. 
94 A. Bijlsma. Simultaneous approximations in transcendental 
number theory. I 978. 
95 K.M. van Hee. Bayesian control of Markov chains. I 978. 
96 P.M.B. Vitlmyi. Lindenmayer systems: structure, languages, 
and growth .functions. 1980. 
97 A. Federgruen. Markovian control problems; .functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boa,s 
(eds.). Interfaces between compuJer science and operations 
research. I 978. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
1. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 
Ji~s°· van Dulst. Reflexive and superrejlexwe Banach spaces. 

103 K. van Harn. C/assifving infinitely divisible distributions 
i,, functional equations. 1978. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979. 
105 R. Hebners. Edgeworth expansions for linear combinations 
of order statistics. I 9"82. 
J~/- Schrijver (ed.). Packing and covering in combinatorics. 

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979. 
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part 1. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part 2. 1979. 
110 J.C. van Vliet. ALGOL 68 transput, part J: historical 
review and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part ll: an implemen
tation model. 1979. 
112 H.C.P. Berbee. Random walks with stationary increments 
and renewal theory. 1979. 
113 T.A.B. Snijders. Asymptotic optimality theory for testing 
problems with restricted alternatives. 1979. · 
114 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures 11, 
part 1. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures 11, 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes with continuous 
state space. I 979. 

!i~~- ~-9¥0oeneboom. Large deviations and asymptotic efficien-

119 F .J. Peters. Sparse matrices and subsln1ctures. with a novel 
implementation oJ finite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980. 
121 W .H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solution of systems of nonlinear 
equations. 1980. 
J~M- Yuhasz. Cardinal .functions in topology - ten years later. 

124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approack 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction systems. 1980. 
128 AJ.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicialfixedpoint algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Smt. A.H. Veen. /LP: intermediate language for pictures. 
1980. 

131 R.J.R. Back. Correctness preserving program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder. The interval.Junction ofa grapk 1980. 
133 C.A.J. Klaassen. Statistical peiformance of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68. 1981. 
135 J.A.U. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part J. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part 11. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematical models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov 
decision processes and Markov games. 1981. 
140 J .H. van Geldrop. A mathematical theory of ,fvure 
r981~nge economies without the no-critical-point iypothesis. 

141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano threefolds. I 98 I. 
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
stn1ctures, par/ I. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eij~enraam. The solution of initial value problems using 
;1':]g7.a/ arllhmetic,· formulation and analysis of an algorithm. 

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. I 98 I. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. 198-1. 
l~~r-H, Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek. W.A.J. Luxemburg. 
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium 
in honour of A. C. Zaanen. 1982. 
150 M. Veldhorst. An analysis of sparse matrix storage 
schemes. I 982. 
151 R.J.M.M. Does. Higher order asymptotics for simple linear 
rank statistics. 1982. 
:~~2?.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the analysis of a queueing model with paired ser
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part 1. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part 11. 1982. 
156 P.M.G. Apers. Query processing and data a/location in 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part /. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract A UTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen
tation techniques, with an application to garbage collection. 
1983. 
167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions of 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lotzer (eds.). Topology and order 
structures, part 2. 1983. 




