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Optimal Control of Admission to a Multiserver 
Queue with. Two Arrival Streams 

J.P. C. Blanc, Peter R. de Waal, Member, IEEE, Philippe Nain, and Donald Towsley, Member, IEEE 

Abstract-The problem of finding an optimal admission pol
icy to an M / M / c queue with one controlled and one uncon
trolled arrival stream is addressed in this paper. There are two 
streams of customers (customers of class 1 and 2) that are 
generated according to independent Poisson processes with con
stant arrival rates. The service time probability distribution is 
exponential and does not depend oil the class of the customers. 
Upon arrival a class 1 customer may be admitted or rejected, 
while incoming class 2 customers are always admitted. A state
dependent reward is earned each time a new class 1 customer 
enters the system. When the discount factor is small, we show 
that there exists a stationary admission policy of a threshold 
type that maximizes the expected total discounted reward over 
an infinite horizon. A similar result is also obtained when 
considering the long-run average reward criterion. The proof 
relies on a new device that consists of a partial construction of 
the solution of the dynamic programming equation. Applica
tions arising from teletraffic analysis are proposed. 

I. INTRODUCTION 

WE consider an M / M / c queueing system fed by two 
independent Poisson streams of customers with inten

sities /...1 and Ai . Customers of stream i will be referred to as 
class i customers, i = 1, 2. The buffer has unlimited capacity 
and the order of service is irrelevant as long as the service 
discipline is not anticipative. The customer service demands 
are independent and exponentially distributed random vari
ables with finite mean 1 / µ. 

Customers of stream 1 are controlled, in the sense that an 
arriving class 1 customer can be either accepted in the system 
or rejected on the basis of past and current queue-length 
information. Customers of stream 2 are not controlled; all are 
required to enter the queue. A reward g(k + l) is earned 
each time a class 1 customer is admitted when. the queue
length is k. Our objective is twofold: we want to find 
admission policies for class 1 customers that maximize: 1) 
the average discounted reward gained over an infinite hori
zon; and 2) the long-run average reward over an infinite 
horizon. 
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Throughout the years, many authors have studied flow 
control problems in the context of queueing systems, and a 
comprehensive discussion can be found in the survey paper 
by Stidham [22]. A standard approach in the control of 
queueing systems consists of formulating the optimization . 
problem at hand as a Markov decision problem (see, e.g., 
[14], [21]) or a semi-Markov decision problem (see, e.g., 
[ 16]), from which the functional equation of dynamic pro
gramming can be derived [4], [10], [20). Then, the so-called 
policy improvement algorithm (see, e.g., [14]) or the value 
iteration algorithm (see, for instance, [8], [9], [12), [17]) 
may be used to determine the optimal policy (e.g., threshold 
policy, switching curve). An alternative approach to dynamic 
programming is to convert the Markov decision problem to a 
linear program [10], [20] and to use results from the theory 
of linear programming to determine the structure of the 
optimal policy (see, e.g., [11], [18], [19]). In some cases, 
direct arguments arising from performance analysis tech
niques may also yield the optimal policy [13]. 

The contributions of this paper are the following: first, we 
establish the optimality of threshold policies for fairly general 
reward functions (in particular, g need not to be convex/ 
concave); second, these results are obtained in the presence 
of a noncontrolled input stream which makes the optimization 
problem more involved; third, we propose a new device for 
extracting information from the optimality equation since. we 
have not been able to apply any of the classical techniques 
listed above; last, we show that our model has interesting 
applications in teletraffic analysis. 

In Section II the problem is cast in the Markov decision 
process framework. Section III addresses the discounted re
ward control problem in the case where Ai = 0, which will 
turn out to be much simpler to analyze than the case where 
Ai > 0 (Section IV). In both cases, we show the existence of 
an optimal threshold policy for small discount factors. The 
optimality of a threshold policy for the long-run average 
reward problem is proved in Section V. Extensions of our 
results to nongeometrically decreasing/nonpositive reward 
functions are discussed in Section VI. Section VII contains 
two applications arising from teletraffic analysis. 

II. THE MooEL 

The optimization problem described in Section I is now 
formulated as a Markov decision problem. This formulation 
closely follows that of Lippman in [15]. Let ~ := 
{O, 1,2, ··· }, ~*:= ~ - {O}, 00:= (-oo, +oo), and 
~+ := (0, + oo). 
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Let tn be the time when the nth event occurs (arrival or 
departure). Let Un E { 0, 1} be the nth decision to be made (at 
time tn, the nth decision epoch). If tn corresponds to the 
arrival of a class 1 customer, then the controller may decide 
either to accept (Un = 1) or to reject (Un = 0) this new 
customer; otherwise, the decision is irrelevant since only 
class 1 customers are controlled. In that case, we shall 
assume by conven~ion that Un = 0. ,. 

Let Q(t) be the total number of customers in the system at 
time t, including the customers in service, if any. We assume 
that the sample paths of the process { Q(t), t ~ O} are 
right-continuous. At time tn the state of the system is repre
sented by Zn = (Q(t;), Xn)eS:= ~ x {O, 1}, where Xn 
is the number of class 1 customers seeking admittance. 

When in state (k, 1) a reward g(k + 1) is earned if the 
customer seeking admittance is accepted. Let µ k be the 
departure rate when there are k customers in the system, 
ke~. Observe that µk = µmin(k, c) for all ke~ (cf. 
Remark 2.1). We assume that the reward function g: ~*-+ 
IFl + satisfies the following conditions: 

for k = 1 , 2, · · · , c - 1 ; 
(2 .1) 

g(k + 1) s '1rg(k), fork=c,c+l,··-, (2.2) 

with '11' e (0, 1). It is seen from (2.1) and (2.2) that g is 
uniformly bounded on [M* (say by a constant G). 

Let us briefly discuss the conditions (2.1) and (2.2). Condi
tion (2.1) is satisfied (in particular) if g is nondecreasing in 
[l, c]. Condition (2.2) implies that g is geometrically de
creasing. It is also worth noting that the restrictions we place 
on g are particularly weak when c = 1 (M / M /l queue), 
since in that case we only require that g be geometrically 
decreasing. In particular, no convexity assumption is re
quired. The more general case when g is nonincreasing in 
[c, oo) (i.e., '1r = 1) will be discussed in Section VI-B. 

The process Z:= {Zn, n ~ 1} is a Markov decision 
process with state-space S [20]. An admission policy is any 
mapping u: S-+ {O, l}, where u(z) = 1 (respectively, u(z) 
= 0) indicates that the decision is to admit (respectively, 
reject) the new customer when the system is in state z e S. 
We only consider stationary policies since it is well known 
that nothing is gained by considering more general policies 
(e.g., randomized, nonstationary, history-dependent policies; 
for instance, see [16] or [20]). The set of all admission 
policies will be denoted by OIJ • 

Our objective is twofold. First, we want to maximize over 
OIL 

va(z; u) := Eu[ L e-"1•r(Zn; Un) I Z1 = z]. 
n<!:I 

a> 0 (2.3) 

the expected total a-discounted reward gained over an infi
nite horizon, for every initial state z e S, where r(z; a):= 
g(k + l)l(a = 1, x = 1) with z = (k, x). It is easily seen 
from (2.3) that V01(z; u) is uniformly bounded on S x OIL 

(by KO/.:= (a + A1)G /a) for every a > 0. Let V01*(z) := 
SUPue'*' VOl.(z; u). 

Second, we want to find an admission policy that rriaxi
mizes over !J/t 

W(z; u) := liminf2_Eu[ L r(Zn; Un) I Z1 = z] 
Ttoo T {n:O:st.<T} 

(2.4) 

the long-run average reward gained over an infinite horizon, 
for every initial state z e S. Observe that 0 s W(z, u) ::S AiG 
forall(z,u)eSx OIJ. · 

Theorem 2.1 gives the dynamic programming (DP) equa
tion that is satisfied by the optimal value function V"'*. The 
proof of this result can be found in Lippman [16, theorem l]. 

Theorem 2.1: Let Ak, 1 := {O, l} and Ak,o := {O} be 
the action spaces when in state ( k, 1) and ( k, 0), respec
tively. Then, for every a > 0, VO/.* is the unique uniformly 
bounded solution in S to the DP equation 

V"'*(z) = max {r(z; a)+ 9z(a) 
aeAk,x O'. + 8z{a) 

· L Q(z' I z; a)V01*(z')}, z = (k, x) eS (2.5) 
z'eS 

where QC- I z; a) and 8z(a) are the one-step probability 
transition of the process Z and the transition rate out of state 
z, respectively,. given that the current state is z and that 
action a is chosen. Furthermore, the control which selects an 
action maximizing the right-hand side of (2.5) for all z e Sis 
optimal. 

It is easily obtained from (2.5) (see [3] for details) that 

(a+ A.+ µk)V01*((k,O)) 

= A1Va*((k, 1)) + ~Va*((k + 1,0)) 

+µkVa*((k-1,0))l{k~ 1}; (2.6) 

V"'*( ( k, 1)) = max { g ( k + 1) + Va* ( ( k + 1, 0)) ; 

Va*((k,O))} (2.7) 

for all k e tro, where A.:= A.1 + ~. 
For k E tro, define 

x*(k) ·- ( V01*((k, 0)), 
"' .- V"'*((k, 0)) - V"'*((k - 1, 0)), 

k = O; 

k ~ 1. 

(2.8) 

As a consequence of the last statement of Theorem 2 .1 and 
(2.7), the optimal action u!(k) = u!((k, 1)) when the state 
of the system is ( k, 1) is given by 

u!(k) = l{x!(k + 1) + g(k + 1) > o}, 
ke~. (2.9) 

Further, it follows from (2.6) and (2.7) that for every a> O 
the function x! is the unique bounded solution of the DP 
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equation 

k 

- a L x! ( i) + A.1 u! ( k )( x! ( k + 1) + g ( k + 1)) 
i=O 

+ A.2 x!(k + 1) - µkx:(k)l{k ~ 1} = 0, 

ke~. (2.10) 

Remark 2.1: All the results in this paper are seen to hold 
if µ,1, µ2 , • • • , µ c- 1 are arbitrary numbers satisfying (2 .1). 
The assumption that µk = µk for k = 1, 2, · · ·, c - 1 is 
only made for the sake of notational convenience. 

III. DISCOUNTED REW ARD PROBLEM: THE 

SINGLE-STREAM CASE 

This section is devoted to the analysis of the single-stream 
discounted problem (i.e., A.z = 0). In that case, the DP 
equation (2 .10) reduces to 

k 

. -a:L x!(i) + )..1u!(k)(x!(k + 1) + g(k + 1)) 
i=O 

ke~,a>O. (3.1) 

·The main result of this section is the following. 
Proposition 3.1: The optimal a-discounted admission 

policy u! is such that: 
1) u!(k) := 1 fork= 0, 1,- ·-, c - 1, a> O; 
2) ifO < a < a 0 := µ(1 - '1r)/ '1r and ifthere is an I< oo 

such that u!(l) = 0, then u!(k) = 0 for k;;::::: /. 
Proposition 3. 1 shows that for small discount factors the 

optimal a-discounted policy is of threshold type, with a 
threshold greater than or equal to c. 

Proof of Proposition 3.1: We first prove 1) by induc
tion on k. Substituting k = 0 and k = 1 into (3 .1) yields 

-ax!(O) + A.1u!(O)(x:(l) + g(l)) = 0, (3.2) 

-a(x!(O) + x!(l)) + A.1u!(l)(x:(2) + g(2)) 

- JL1X:(l) = 0. {3.3) 

Subtracting (3.2) from (3.3) yields 

A1u!(l)(x!(2) + g(2)) - A.1u!(O){x!(l) + g(l)) 

= ( CX + µI ) x: ( 1) . 

If we assume that u!(O) = 0, then since u!(l)(x:(2) + 
g(2)) ~ 0 [see (2.9)] we can write ' 

(a+ µ 1)x!(l) ~ 0. (3.4) 

However, because u!(O) = 0, it follows that 0 ;;::::: x!(l) + 
g(l) > x:(l). But according to (3.4), · x!(l) is nonnegative 
which results in a contradiction and therefore u!(O) = 1. 

Assume now that u!(O) = u!(l) = · · · = u!(l - 1) = 1 
for I < c and let us show that u!(l) = 1. Substituting k = I 
and k = l + 1 into (3 .1) and subtracting the first equation 
from the second one, yields 

A.1 u! (l + 1 )( x! (I + 2) + g (I + 2)) 

-A.1u!(i)(x!(l + 1) + g(l + 1)) 

= (a+ µ1+ 1)x!(I + 1) - JLzX!(l). (3.5) 

If we assume that u!(l) = 0, we then deduce from (3.5) that 

since u!(I + l)(x!(l + 2) + g(l + 2)) ;;::::: 0, cf. (2.9), or 
equivalently that 

(a+ µ1+ 1)(x!(l + 1) + g(l + 1)) - 1t1(x!(l) + g(l)) 

- g(l + l)(a + µ 1+ 1) + JL1g(l);;::::: 0. (3.6) 

By noting now that x!U + 1) + g(l + 1) ::;; 0 (since u!(l) 
= 0 by assumption), -(x!(I) + g(/)) < 0 (since u!(I - 1) 
= 1 by assumption) and -g(l + 1)µ 1+ 1 + µ1g(l) :S 0 from 
(2.1), we see that the left-hand side of (3.6) is strictly 
negative, which gives a contradiction. Therefore, u!(l) = 1. 

We also prove 2) by induction. Fix a such that 0 < a < 
a0 • Let I;;::::: c be such that u!(l) = 0. This implies that 
x:u + 1) :S - g(I + 1). 

Define x: ~-+~as 

!
x!(k), 

x(k) = k-1 

-a ~o x(i)/(a + cµ), 

k=O,I,··-,1; 

k~l+l. 

(3.7) 

Note that the expression for x(k) for the case k > l is the 
recursion obtained from (3.1) by setting u!(k) = 0 for 
k > l (i.e., always reject an arriving class 1 customer when 
the queue-length exceeds /). 

We prove that x(k) :S - g(k) for k > I by induction 
on k. 

Basis Step: Let k = l + l. From the definition of x we 
have 

( ' 

x(l + 1) = -a:L x(i)/(a + cµ), 
i=O 

I 

= -a:Lx!(i)/(a+cJL), 
i=O 

= ( ax:(l + 1) - A.1u!(l + l){ x:(l + 2) 

+g(l + 2)) + cµx!(l + 1))/(a + cµ), 

::;; x!(l + 1), 

s -g(I + 1). 

The last two steps follow from the fact that u!(k)(x:(k + 
1) + g(k + 1)) ;;::::: 0 for all k e ~ [cf. (2.9)] and the fact that 
u!(l) = 0. 

Inductive Step: We assume that x(k') ::;; - g(k') for k' 
=I+ l, I+ 2,. ·-, k. We show that x(k + 1)::;; -g(k + 
1). We have [cf. (3.7)] 

x(k + 1) = [-ax(k) - a~: x(i) ]/(a+ cµ,), 

= ( -ax(k) + (a+ cµ,)x(k))/( a+ cµ), 

= cµx(k)/(a + cµ), 

::;; -cµg(k)/(a + cµ), 

:S -g(k + 1) . {3.8) 
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by the induction hypothesis, the assumptions on g, and the 
condition on a. In particular, (3.8) shows that I x(k) I = 
(cµ/(0t. + cµ))k-t I x!(l) I :S 2K"' for all k <:::I+ 1, where 
the bound follows from the definition (2.8) together with the 
uniform bound on V"'* (see Section II). 

We have thus found a uniformly bounded function x that 
when substituted for x: in (3.1) satisfies that equation. 
Therefore, x* = x since (3.1) has only one uniformly 
bounded solution, which in turn implies that x!(k) + g(k) 
:S 0 fork> I and a e (0, a 0). This concludes the proof. • 

The next result tells us that the threshold is finite. 
Proposition 3.2: For every a E (0, cx0), the smallest inte

ger I such that u:(l) = 0 is finite. Moreover, I is uniformly 
bounded in 01. for all ex small enough. 

An immediate corollary of Propositions 3.1 and 3.2 is that 
for every fixed a e (0, a 0 ) the integer inf {I ~ c: u:(/) = .O} 
is the optimal threshold. 

Proof of Proposition 3.2: The proof follows from 
Lemma 4.3 in Section IV by letting Ai = 0 (see also Remark 
4.2). A direct proof is also available in [7, lemma 4.5 .4]. • 

The methodology used in the proof of Proposition 3.1 does 
not fall into any of the categories that were reported in 
Section I. This method-first proposed by de Waal [6], 
[7)- is based on the construction of an intermediate function 
(say f) that we suspect to be the optimal value function [here 
f = x; cf. (3.7)). If we can show that f is bounded and 
solves the DP equation, then the existence of a unique 
bounded solution to the DP equation enables us to conclude 
that f is indeed the optimal value function. This method has 
also been applied with success by Altman and Nain [1] for 

· controlling the vacations of the server in a Markovian queue. 
Therefore, we remark that the importance of the result lies 
not as much in the optimality of threshold polides but rather 
in the method of proof. 

The next section shows that this method also applies to the 
case where Ai > 0, although this case differs from the 
single-stream case in an essential way: in the two-stream 
case, the number of customers in the system is never bounded 
from above regardless of the admissiop. policy for class i 
customers. This fact makes the analysis of the two-stream 
case much more involved. 

IV. DiscouNTEo·REWARD PROBLEM: THE Two-STREAM 

CASE 

This section presents the analysis of the discounted prob
lem with two streams ·of customers. Recall that only the 
stream of class 1 customers is controlled. Again, our objec
tive is to find an admission policy that maximizes the dis
counted cost function (2.3). 

We first introduce some notation and state some prelimi
nary results. Let 

01.+cµ+Ai- J(01.+cµ+Ai) 2 -4Aicµ 
f31 := 2Ai (4.1) 

be the smallest zero of the polynomial (in t) Ai t 2 - ( 01. + cµ 
+ Ai)t + cµ. Denote by {32 the other zero and observe that 
0 < {31 < 1 < {32 for all 01. > 0. Assume now that "2 < cµ. 

By noting that {3 1 = 1 when a = 0 and that the mapping 
01. ~ {3 1 is strictly decreasing in [O, + oo), we see that there 
exists a 1 > 0 such that 

(3, > '1t (4.2) 

for a e (0, 01. 1), where '1t was introduced in (2.2). 
In the remainder of this section, we shall assume that the 

reward function g satisfies the following additional condi
tions (see Remark 4.1): 

g(k);:::; g(k + 1), fork= 1,2,· · ·, c - 1. (4.3) 

The following result holds (see Remark 4.2). 
Proposition 4.1: Assume that "2 < c µ and fix 01. e 

(0, a 1). If there exists a finite integer m <::: 0 (that clearly 
depends on a) such that the set of equations 

k 

O = -01.LY(i) + t-1(y(k + 1) + g(k + 1)) 
i=O 

0 :5 k < m + c; (4.4) 
m+c 

0 = -a L y(i) + Aiy(m + c + 1) 
i=O 

- cµy(m + c); (4.5) 
! 

0 = y(m + c + 1) - {3 1y(m + c) (4.6) 
has a solution that satisfies 

y(k) + g{k) > 0, for 1 :5 k s m + c; 

y(m + c + 1) + g(m + c + 1) s O 

then u!(k) = l{k < m + c} for kelf!J. 

(4.7) 

(4.8) 

Proof· Let m =::: 0 be such that (y(k))Z':o"+ 1 satisfies 
(4.4)-(4.8). Define x: [f!] ~ 00 as· 

x(k) = { y(k)' 
f3 1x(k-1), 

k=O,l,···,/; 

k <:::I+ 1 

with I:= m + c (see the comments below). 

(4.9) 

We prove that x(k) + g(k) :5 0 for k > I by induction 
on k. 

Basis Step: Let k = I + 1. From the definition of x we 
have 

x(l + 1) = {3 1y(l), 

=y(/+1), 

:S -g(l + 1) 
from (4.8). 

from (4.6), 

Inductive Step: We assume that x(k') + g(k') s 0 for 
k' = I+ 1, I+ 2, · · ·, k. We show that x(k + 1) + g(k + 
1) s 0. We have [cf. (4.9)] 

x(k + 1) = {3 1x(k), 

:S -f31g(k), 

:S -irg(k), 

:S -g(k+ 1) 

from (2.2). Consequently, 

from the induction hypothesis, 

from (4.2), 

x(k) + g(k) :5 0, fork> I. (4.10) 
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By combining this result together with the definition of y(k) 
for 0 s k :S m + c + 1 and the definition of /3 1 , it is easily 
seen that x satisfies the DP equation (2.10). 

On the other hand, a direct inspection of (4.9) indicates 
. that Jx(k)J Smax0 ,,;sdlYU)I} for all ke!M. Conse
quently, x = x* since (2.10) has a uniquely uniformly 
bounded solution on IM, which in tum implies that x:(k) + 
g(k) > 0 for 1 :s k :Sm+ c [cf. (4.7), (4.9a)] and x:(k) 
+ g(k) s 0 fork<::: m + c + 1 [cf. (4.10)]. This concludes 
~~~ . 

Proposition 4.1 contains an existence result which makes it 
already quite interesting. Indeed, if one can show (for in
stance, numerically) that the finite set of equations 
(4.4)-(4.6) has a solution that satisfies (4.7)-(4.8), then 
Proposition 4.1 says that the optimal discounted policy is a 
threshold policy. In other words, the infinite system of 
equations (2.9), (2.10) has been reduced to a finite one. 

Let us now comment on the definition of x in (4.9) since 
this is the key point of our method. Assume that u!(k) = 0 
for all k <::: l <::: c. Then, (2.10) reduces to 

k -a L: x: (i) + Ai x: ( k + 1) 
i=O 

- cµx:(k)l{k ~ 1} = 0 (4.11) 

for k <::: /. Substituting k for k + 1 in (4.11), then subtract
ing (4.11) from this new equation, yields for k ~ I 

~x!(k + 2) - (o: +Ai+ cµ)x:(k + 1) 

+ cµx:(k) = 0. (4.12) 

It is known that the general solution to the second-order 
difference equation defined by (4.12) is 

x:(k) = af3t + b{3f (4.13) 

fork~ /,where we recall that /3 1 and /32 are the roots of the 
(characteristic) equation Ait2 - (o: + cµ + "1)t + cµ = 0. 
The coefficients a and b are easily identified by plugging 
(4.13) into (4.12) (see [3]). Because x: must be uniformly 
bounded on IM, (4.13.) and {32 > 1 necessarily imply that 
b = 0, or equivalently, that x:(/ + 1) = {3 1x:(l). This last 
relation in tum entails that a = x:(l) / /3f. In other words, if 
the optimal policy is such that u!(k) = 0 for all k <::: I~ c, 
then necessarily 

for k ~ I+ 1, which is nothing but the definition of x(k) 
given in (4.9) for k ~ I+ l. 

It could be tempting to replace y(k) in (4.9a) by x:(k) in 
direct analogy with the definition (3. 7a) of x in the single
stream case. However, we are not allowed to do it because 
there is a priori no reason why the extra condition (4.6) 
should hold for x!. 

The next step towards the optimality of a threshold policy 
is to establish the existence of a solution to (4.4)-(4.8). This 
is done in the following proposition. 

Proposition 4.2: Let o: e (0, o:1). Then, there exists a 
finite integer m = m*, m* ~ 0, such that the unique solu
tion to the set of equations (4.4)-(4.6) satisfies the con-

straints (4.7), (4.8). Further, m* is uniformly bounded as 
o:W. 

The proof of Proposition 4.2 relies upon the following 
three lemmas, of which proofs are given in the Appendix. 
We introduce the following notation: for any m <::: 0, . 
(Xm+c(k))"(/=+0+ 1 will denote the unique solution to the set of 
equations (4.4)-(4.6) (the uniqueness of the solution is dis
cussed at the beginning of the Appendix). 

Lemma 4.1: The unique solution (x/km'!:~ to the set of 
equations (4.4)-(4.6) when m = 0 is such that 

Xc(k) + g(k) > 0, for 1 :S k :Sc. (4.14) 

Lemma 4.2: Let Cm, m ~ 0, be the condition on the 
model parameters A.1, Ai, µ, c, o:, (g(k))';:/ +c, which is 
equivalent to Xm+c(m + 1 + c) + g(m + 1 + c) s 0. If 
none of the conditions Co, C1,·. ·,cm-I holds, m ~ 1, 
then Xm+/k) + g(k) > 0 for k = 1, 2, · · ·, m + c. 

Lemma 4.3: Let a e (0, o:1). Then, there exists m, 0 :s; 

m < + oo, such that Xm+c<m + c + 1) + g(m + c + 1) :s; 
0. Moreover, m is uniformly bounded as o:W. 

Proof of Proposition 4.2: Let m* be the smallest 
nonnegative integer such that Xm*+c<m* + c + 1) + g(m* 
+ c + 1) :s; 0, where the existence of m* is ensured by 
Lemma 4.3 .. If m* = 0, then the proposition follows from 
Lemma 4.1, whereas if m* > 0 the proposition follows from 
Lemma 4.2. 1'.he second part follows from the second state
ment of Lemma 4.3. • 

Combining Propositions 4.1 and 4.2 yields the following 
final result. 

Proposition 4.3: Assume Ai < cµ. Let g be a reward 
function such that conditions (2.1), (2.2), (4.3) hold simulta
neously. Then, for every o: E (0, o:1), there exists m! < oo 
such that u!(k) = l{k < m! + c} for all ke~. Moreover, 
there exists a 2 , 0 < o:2 < o: 1, and a constant M > 0 such 
that m! E [O, M) for all Q E (0, 0:2). 

Before concluding this section, let us briefly address the 
numerical computation of the optimal threshold m! + c. The 
standard way for computing m! is to solve the system of 
equations (4.4)-(4.6) for m = 0, 1, 2, · · · until we end up 
with a value of m such that the constraints (4.7), (4.8) are 
met. Then, m! = m. However, it is much more efficient 
both in terms of computation time and memory space savings 
to determine m! from the inequality (A.50) in the Appendix 
by using the recursions (A.22) and (A.23). More precisely, 
for every o: E (0, o: 1), m! will be the smallest integer such 
that (A.50) holds. 

Remark 4.1: The assumption that g is nonincreasing in 
[1, c) is only used in the proof of Lemma 4.1. We conjecture 
that Lemma 4.1 holds without this extra assumption on g 
(we have only checked it for c = 2 and c = 3, which 
implies, in particular, that Proposition 4.3 holds for c :S 3 
without this ass!Jmption). 

Remark 4.2: Proposition 4.1 still holds if Ai = 0 pro
vided that /31 is replaced by lim11.iio /3 1 = cµ/(o: + cµ). 
Moreover, when Ai = 0 Lemma 4.1 holds without the extra 
assumption (4.3) (see the comment at the end of the proof of 
Lemma 4.1), which in tum implies (see Remark 4.1) that the 
same is true for Proposition 4.1. 
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V. THE AVERAGE REWARD CONTROL PROBLEM 

In this section, we shall discuss the long-run average 
reward control problem. Since V"( z; u) is well defined for 
all z ES, u E 0ff (see Section II), we know from a Tauberian 
theorem [23, pp. 181-182] that 

w ( z ; u) :$ lim info v" ( z ; u) ( 5 . 1) 
cdO 

for all zeS, ue 0//. Further, if W(z; u) exists as a limit, 
then lim cdo ex V"( z; u) exists as well, and 

w ( z ; u) = lim ex v" ( z ; u) 
aW 

(5.2) 

for all Z ES, U E 0//. 
Assume first that 0 < "2 < c µ and that the assumptions in 

Proposition 4.3 are fulfilled. Let z be fixed in S. For every 
a E (0, ex 2), we have from Proposition 4.3 that 

u:(J) = l{J < m! + c} 

for j ?: 0 with 0 :5 m! < + oo. Consequently, for ex E 

(0, a 2 ) 

(5.3) 

for all u E 0ff. 
Let { E;}~ be a sequence in (0,. ex 2 ) such that E;W as itoo. 

Since m: E [O, M] for ex E (0, ex 2 ) by Proposition 4.3, and 
since m! is· an integer, there exists J < + oo and a subse
quence of { E;} ~, denoted as { E J ~, such that m!; is a 
constant (denoted as m*) for all j?: J. Define u*(j) := l{j 
< m* + c}, j?: 0. 

If we now take the limit in (5.3) along Ej, jioo, we get 
from (5.1) that for every policy u E 02! 

W(z; u) :5 liJ?infEj~ (z; u*). (5.4) 
JiOO J 

By observing now that Z (see Section II) is an ergodic 
Markov chain when the threshold policy u* is used, we may 
deduce from Chung [5, section 1.15] that W(z; u) exists as a 
limit. Hence [cf. (5.2), (5.4)] W(z; u) :5 W(z; u*) for all 
Z ES, u E 02!. 

For "2 = 0, the same result can be shown by using Propo
sitions 3.1 and 3.2. However, (4.3) is not needed in that 
case. 

For "2 ?: cµ, it should be clear from limkioo g(k) = 0 
[cf. (2.2)] that W(z; u) = 0 for all u E 02!. 

The results of this section are collected in the following 
proposition. 

Proposition 5.1: If "2 = 0, then there exists a threshold 
policy with finite threshold that is average optimal over the 
set 0// of all admission policies. The same result holds if 
0 <'Ai< cµ provided that g is nonincreasing in [1, c]. If 
"2 ?: cµ, then all admission policies are average optimal. 

VI. EXTENSIONS OF THE MODEL 

Two extensions of the definition of a reward function will 
be discussed in this section. 

A. Nongeometrically Decreasing Rewards 

Let g: ~* 4 [jl+ be a mapping that satisfies both condi
tions (2.1), (2.2) with 'Ii" = 1. Further, we assume that there 

exists Ll > 0 such that 
sup kg ( k) :5 Ll . ( 6. I) 

ke!l!.l* 

Proposition 6.1: Proposition 5.1 holds under the forego
ing assumptions. 

Proof" Let t: E [0, 1) and z ES. Define g,: [M* -4 lfl+ 
such that 

[
g(k), 

g,(k) := g(k)(l - E)k, 

for k = 1 , 2, · · · , c; 

fork?: c + 1. 

(6.2) 

Let W.(z, u) be the long-run average reward gained over an 
infinite horizon when the reward function g, is used [cf. 
(2.4)]. Observe that W.(z, u) is uniformly bounded on [O, !) 
x S x 0// (by 1..10) and that W0(z, u) = W(z, u). 

Since g, satisfies conditions (2.1), (2.2), we may deduce 
from Proposition 5. 1 (provided that g is nonincreasing in 
[l, c]) that there exists an integer !,, c :5 l, < oo, such that 

W,(z; u1)?: W.(z; u) (6.3) 

for all u E 0//, where u1,(k) := l(k < /,), k E ~. 
Assume that for every policy u E 0//, the mapping E -. 

W,(z, u) is right-continuous at e = 0. Call this assumption 
H. Let { E;}; be a sequence in (0, 1) such that E;W when 
ii oo. Since l, lies in a compact set for e small enough [see 
(A.54)], there exists a subsequence { Ej}j of { E;}; and an 
integer J such that l,. = I for all j > J. Consequently, for 
j > J, J 

W.;(z, u,)?: W.)z, u) (6.4) 

for every u E 0//. Letting now j go to oo in (6.4), we have 
from assumption H 

W(z, u,)?: W(z, u) 

for every u E 0// , which proves Proposition 6 .1. 
It remains to show that assumption H is valid. Let u be an 

arbitrary policy in 02!. The following will be shown: there 
exists o, > 0 such that o, converges to 0 when e goes to 0, 
and such that 

W(z, u) - o, :5 W.(z, u) :5 W(z, u) (6.5) 

for e E [0, 1), from which H will follow. 
First, observe from (6.2) that the second inequality in (6.5) 

is trivially true since E -4 W.C z, u) is nonincreasing in [O, 1). 
Let us show that the first inequality is also true. 

We have (with Z1 = z) 

W.( z, u) ?: lim inf Eu[2_ I: 
Ttoo T {n: Ostn<T} 

·{g(Q(tn) + 1) +g(Q(tn) + 1) 

' ( ( 1 - E) Q(t nl + 1 - 1) } 1 ( X n = 1 , Un = 1)] , 

?: liminf{Eu[2_ L r(Zn; Un)] 
Tioo T {n: Ostn< T} 

-AEE [2_ L 1]} 
u T {n:Ostn<T} ' 

= W(z, u) - o, (6.6) 
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where (6.6) . follows from (6.1) and from the inequality 
(I - (1 - E) 1)/i ::5 €for EE(O, 1), iE[f!.I*. B 

Proposition 6 .1 yields the following interesting corollary. 

Corollary 6.1: Assume that c = 1 and that condition (6.1) 
holds. Then, for any nonincreasing reward function g: [f!.I*--+ 

IF!+, there exists a threshold policy that is average optimal. 

B. Nonpositive Rewards 

Let g: [f!.I* -+ ~ be a mapping such that (2.1) holds, and 
further 

g(k + 1) :s 'ltg(k), for k = c, c + 1 , · · · , C - 1 ; 

(6.7) 

g(k)>O, 

g(k) :s 0, 
for k = 1 , 2 , · · · , C - 1 ; ( 6 . 8) 

fork~ C (6.9) 

where C is an arbitrary constant greater than or equal to 

c + 1. The above conditions generalize (2.1), (2.2) since 
they reduce to (2.1), (2.2) when C = oo. 

We also assume that Assumptions 2 and 3 in [15] are 

satisfied (these assumptions ensure the validity of Theorem 
2.1 for nonuniformly bounded rewards). 

Then, it is seen that the results contained in Sections III-V 
still hold if (2.2) is replaced by the new set of conditions 

(6.7)-(6.9). In that case the optimal threshold lies in [c, C -
l]. This follows from (A.54). 

VII. APPLICATIONS 

In this section, we present two applications of our results 

arising from the context of teletraffic analysis. 

Example I: Assume that a deadline Dn > 0 on service 
time completion is associated with the nth arriving customer 

of class 1, n ~ 1. More precisely, if the nth customer has 

arrived at time t, then we want this customer to be served by 

time t + Dw Customers that miss their deadline are not 

discarded, meaning that once a class 1 customer gets ac

cepted in the system then it is served. This is a typical 
situation in many data networks where high level protocols 

are concerned with admission while low level protocols are 

concerned with scheduling and transmission. In many cases, 

the lower level protocols do not have access to deadline 

information whereas the high level protocols do. 
This model can also serve as an elaborate version of the 

queueing model for call request processing in a telephone 

exchange as presented in [7, chapter 4]. Customers of type 1 

represent the requests from subscribers that are connected 
locally to the switch, while customers of type 2 represent call 

requests that are forwarded from other switches. The latter 

are always admitted to the exchange because of the process
ing time that is already spent on them at the forwarding 

switch. The deadline of type 1 customers corresponds to the 
limited patience of the subscriber when they are waiting for 

the completion of their call. 
We assume that {Dn}n is a sequence of i.i.d. random 

variables, independent of the input and service times pro
cesses. The reward function g is defined to be the probability 
that a new class 1 customer meets its deadline given there are 

k customers in the system, including its~lf, upon its arrival. 
With this definition, it is seen that the long-run average 

reward gained over an infinite horizon [see (2.4)] provides a 
measure of the goodput of the system, that is the rate of class 
1 customers that complete service before their deadline. 

With the definition of g in mind, we observe that (2.1) 

holds since g(k) = P(D < S) for k < c, where S (respec
tively, D) denotes a generic random variable for the service 
time (respectively, deadline) of a customer. 

In the case that P(D :::;; x) = 1 - exp ( - 'Y x) for x ::::: 0, 

'Y > 0 (exponentially distributed deadlines), an easy computa
tion shows that 

!
µ/(µ. + 'Y), k = 1,2,· ·., c; 

g(k)= (µ/(µ+'Y)) k=c+l,c+2,-··. 

·(cµ/(cµ. + 'Y))k-c, 

It is also easy to see that the above expression for g(k) 

satisfies both conditions (2 .1) and (2. 2) with it = c µ / ( c µ. + 
'Y ). 

In the general case where the deadline distribution function 
is arbitrary, then g( k) cannot be computed in closed form. 

However, many interesting deadline distribution functions 
are such that condition (2.2) is met. More precisely, we have 
the following result. 

Proposition 7.1: The mapping g satisfies condition (2.2) 
if one of the three following conditions is fulfilled: 

1) the deadlines are deterministic; 
2) the deadlines have a failure rate that is bounded away 

from 0 by a strictly positive constant; 
3) the deadlines have an Erlang distribution. 

The proof of Proposition 7 .1 can be found in [7]. Note that 
condition 2) in Proposition 7 .1 is satisfied by a large class of 

distributions, including the exponential distribution, subsets 
of the class of Gamma distributions, and truncated normal 
distributions (see [2, sect. 5]. The mapping g also satisfies 
the condition (2.2) if the deadline distribution is a finite 

mixture of distribution functions that satisfy any of the condi
tions of Proposition 7 .1. 

If one of the conditions of Proposition 7. 1 is satisfied, then 

the goodput of the system is maximized by rejecting a class 1 
customer if the queue size exceeds a (finite) threshold upon 
its arrival. This follows from Proposition 5.1. 

Example 2: A classical problem in teletraffic analysis is to 
find a tradeoff between response times and throughput. Let us 

illustrate this phenomena through the following simple model. 
Define g(k) := r - w(k), k 2:: l, where r > l/µ and 

where w(k) is the mean sojourn time of a customer that 
enters the system when the queue-length is k - 1. Conse

quently, we must find a tradeoff between accepting all the 
customers which would imply high throughput but high re

sponse times, and rejecting most of the customers which 
would yield low response times but also low throughput. 

For the long-run average reward criterion this formulation 
is equivalent to the one where a reward is gained for every 
admitted customer and holding costs are payed per time unit 

for every waiting customer ( cf. the dynamic flow models in 
[22]). The formulations differ in the sense that in our model 

the total expected holding costs of each customer are incurred 

at the moment of his arrival. 
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Let us show that the reward function g satisfies conditions 
(2.1), (6.7)-(6.9). Because w(k) = l/µfor k = 1,2,···, c, 
we see that condition (2.1) is satisfied. Define C :::::: inf { k ;;::: 
1, g(k) :S O} (note that C;;::: c + 1 since g(c) = r - 1/ µ 
> 0). Since w(k) is nondecreasing in k, we immediately 
deduce that condition (6.9) holds, and that condition (6.7) 
also holds with 'IT:= maxcs ks c- 2 g(k + 1)/ g(k). 

Therefore, the results in Sections ill-V apply to this 
model, which shows the exj.stence of optimal threshold poli
cies for both the average discounted reward criterion and the 
long-run average reward criterion. 

APPENDIX 

We first introduce some notation and establish some inter
mediate results. 

Define the matrices 

ao O! 

-µj a + :h 

0 -µ,j+I 

0 0 
M£(a0 , b0 , c0 ) := 

0 0 

0 0 

for 1 ':S j < k, and 

Mj(a0 , b0 , c0 ) := ( ~~j ~~) (A.2) 

for j ;;::: 1, where a0 , b0 , and c0 are arbitrary constants 
[recall that µj = µ min (j, c)]. 

Let IM I be the determinant of any matrix M, with the 
convention that I x I = x if x is a scalar number. It is easily 
seen by using an induction argument in k that 

(A.3) 

when a0 > 0, b0 > 0, and c0 > 0, for 1 :Sj :S k. 
Let us show that the set of equations (4.4)-(4.6) has a 

unique solution for all m ;;::: 0. Let Xm+c(k) := y(k), k = 
0, 1, · · ·, m + c + 1, in Proposition 4.1. 

By substituting (4.6) into (4.5), by eliminating Xm+c(O) 
from (4.4), by using (4.5), and finally by using the definition 
of {,11, we obtain the matrix equation 

Am+eXm+c = -A1Km+c (A.4) 

where 

Km+e== (g(l), .. ·, g(m + c))T; 

Am+c := - ~. A.1 + cµ/f3i), \ M~+c-i(a +A, cµ/f31 
ifm+c>l; 

ifm+c=l. A.1 + cµ/f31, 

By noting that cµ/{31 - A:i > 0 (since {3 1 < 1, cf. (4.1) for 
a > 0, and A:i < cµ.), we see from (A.3) that I Am+c I > 0 
for m ;;::: 0. Therefore, the set of equations (4.4)-(4.6) has a 
unique solution for all m ::::: 0. 

We start with the proof of Lemma 4.1. 
Proof of Lemma 4.J:· For m = 0 rewrite the equation 

(A.4) as 
Ac[xc+gc] = [Ac-A1lc]Kc:=hc 

where le stands for the identity matrix and he := 
(he(l), · · ·, hc(c)?. It follows readily that 

c-1 

hc{k) = -µk-1g(k - l)l{k > 1} + O! I: g(i) 
i=k 

+ A:ig(k) + ( ~ - A:i) g(c) (A.5) 

O! O! O! bo 
O! O! O! bo 

a+ :h 

-µj+2 
(A.1) 

O! 

O! + )\ O! 

0 - µ,k-1 a + A bo 
0 0 -µk Co 

fork=l,2,···,c. 
By developing the determinant which forms the numerator 

of xc(j) + g(j) to the jth column we get after a tedious but 
easy computation 

(xc(j)+g(j))IAcl 
,j ("-1)' 

::::: I Aj+l 1 ""' h (k) I A I . J . j-k 
c f;:1 c k-l(k-l)!µ 

j (j-1)! . 
" I A I J-k -t:1. k-1 (k-1)!/L 
c 

L he(i) >.I-j- I I v,f I (A.6) 
i=j+I 

for j = 1,2,· ··, c, where 

ifl :Sj':S c-1; 

if j = c; 

if j = c + 1; 

if 1 :S j :S c - 1 ; 

if j::::; c; 

if k > 1; 
if k = 1; (A.?) 
if k = 0. 
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With the above definitions the following recursions can easily 
be established for j = 1, 2, · · ·, c - 1: 

I A~I =(a+ A) I A~+l 1 +jµj v;+ 1 1, (A.8) 

IV/I= al A~+ 1 I +jµI V/+ 1 I. (A.9) 

Repeated application of the recursions (A.8) and (A.9) leads 
to 

c 

IA~+ 1 1=x:-J+ I:~-J- 1 IV/I, 
i=j+ I 

j=O,l,···,c-1. (A.10) 

Further [cf. (A.12), (A.13), (A.14)] 

X1+c(l + c) 

aI:~=oXi+Ji) - A1g(l + c) + f.LcX 1+c(c) = ~~~~~~~~~~~~~~~ 
A 

a I:~=Oxc(i) - A1 g(l + c) + µcxc( c) > ~~~~~~~~~~~~~-
)\ 

'A.zxc(l + c) - 'A1g(l + c) 
= 

and so 

Introducing (A.10) into (A.6) finally yields for j = Xi+c(l + c) + g(l + c) 
1, 2, ... ' c, 

j (j-1)! . 
(xc(j) + g(j)) I Acl = J;1 (k _ l)! I Ak-1 I µJ-k 

·{hc(k)X:-J+ .t [hc(k)-hc(i)J>-!-J-llV/I}· 
l=J+I 

As we have seen before I Ac I > 0, I Ak- I I > 0 for k = 
0, 1, ... ' c - 1, I v/ I > 0 for i = 1, 2, ... ' c. Further, the 
assumptions on g imply that: a) hc(k) > 0 for k = 
1,2,· · ·, c; and thatb) hc(k) - hc(i) > 0 fork< i. Hence, 
xc(j) + g(j) > 0 for j = 1,2,· · ·, c, which concludes the 
proof of Lemma 4.1 [if 'Az = 0 then it is easily seen that a) 
and b) are satisfied without the additional assumption (4.3)] . 

• 
Proof of Lemma 4.2: Let us show that the lemma is 

true if 

(A.11) 

when condition Cm_ 1 , m;:::: 1, is not satisfied. We use an 
induction argument. 

First notice that [cf. (4.4), (4.5)] 

Xm+Ak) 

aI:7:o1Xm+c(i) - "-1g(k) + µk-IXm+c(k - 1) 
A 

1 :s k :s m + c; (A.12) 

(A.13) 

for all m ~ 0, c ~ 1. 
Basis Step: Assume that C0 is not satisfied and let us 

show that Xi+c(k) + g(k) > 0 for 1 :s k :s 1 +c. From 
(A.12) and the inequality (A.11) (with m = 1), it is readily 
seen that 

for 0 :s k :s c (A.14) 

which implies from Lemma 4.1 that Xi+cCk) + g(k) > 
Xc(k) + g(k) > 0 for k = 1, 2, ···,c. 

Ai > }:(xc(l + c) + g(1 + c)) > 0 

from the assumption on C0 . 

Inductive Step: Assume that none of the conditions 
C0 , C1 , • • ·, Cm_ 2 , m ~ 2, is satisfied and that 

Xm-l+c(k) + g(k) > 0, 

forl:sk:sm-l+c. (A.15) 

Let us show that Xm+c(k) + g(k) > 0 for 1 :s k :s m + c 
if Cm-i is not satisfied. It is easily seen from (A.11), 
(A.12), (A.13), that 

for 1 :s k :s m - 1 + c; (A.16) 

Xm+c(m + c) 

'Azxm-l+c(m + c) - 1'.1g(m + c) 
> A (A.17) 

Consequently, xm+c(k) + g(k) > 0 for 1 :s k :s m - 1 + 
c from (A.15) and (A.16), and Xm+cCm + c) + g(m + c) 
> 0 from (A.17) and the assumption on Cm-I· 

We are therefore left to prove that (A.11) holds if the 
condition cm-I is not satisfied, m;:::: 1. More precisely, we 
shall show that 

[xm+c(O) - Xm-l+c(O)] I Am+cl 

= Ai Am-l+c( cµ - Ai) 
a !31 

·[xm-I+c(m+c) +g(m+c)] (A.18) 

for all m ~ 1, if Cm-I is not satisfied (i.e., Xm-l+/m + 
c) + g(m + c) > 0), which will prove (A.11) since 
I Am+cl > 0 and cµ/(3 1 - 'Ai> 0. The proof decomposes 
into three steps. 

Step I: Computation of xm-i+cCm + c) + g(m + c). 
Recall the definition of Ak [cf. (A.7)]. Let 

if k > l; 

if k = 1; (A.19) 

if k = 0. 
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With these definitions, we easily obtain that 

I Ak I = (a + /...)I Ak-1 I +a I Yk-1 I; (A.20) 

I yk I = µk( I Ak-1 I + I yk-1 I) (A.21) 

for k ~ 1, from which we deduce that 

/...µk I Ak-1 I = µk I Ak I - Cl. I yk I; (A.22) 

/...µk I yk-1 I = (Cl. + /...) I yk I - µ,k I Ak I (A.23) 

fork~ 1. 
By means of the recursion 

Xm+c(m+c)IAm+cl = -X1g(m+c)IAm-l+cl 

+ µm-1+cXm+c-1(m - 1 + c) I Am-l+cl, m~O 

which follows from (A.4) we obtain for m ~ 0, 

Xm+c(m + c) I Am+cl 

(A.24) 

m 

-/...1L;g(j+c)(cµ)m-jlAc+j-ll (A.25) 
j=O 

where by convention we have assumed that EJ= 1 = 0. 
Next, we introduce the new quantities 

\
M~+c-1(a + /..., cµ,/f31 

Am+t ;::;:; - ~. /...1 + cµ/{3 1), 

/...1 + cµ,/{31> . 

!
M~+c- 1 (a, cµff31 

Vm+I := - ~. /...1 + cµ/{3 1), 

cµ, I f31 - Ai, 
\ 

Then, for m ~ 0, c ~ 1, 

if m ~ 1; 

if m = O; 

if m ~ 1; 

if m = 0. 

IAm+cl = IAc-1l IAm+1I + IYc-1l IVm+1I· (A.26) 

For c = 1, the proof of (A.26) is trivial by noting that 
Am+I = Am+I when c = 1, A0 = 1 [cf. (A.7)] and Y0 = 0 
[cf. (A.19)]. For c ~ 2, the proof follows from Lemma A. l. 

For these new matrices, it is easily seen that for m ~ 0 

I Am+! I =(a+ X) I Ami+ cµ,I Vml; (A.27) 

(A.28) 

Further, (A.26) and (A.29) imply that for m ~ 0 

I Am+cl = ( IAc-1 I+ I Yc-1 I) I Am+1 I 
- Al Yc-1 I I Am I· (A.31) 

Introducing the matrix 

A ·= {M~+c-i(a +/...,a, a+/...), 
m+I · 

Cl.+/..., 

we have similarly to (A.31) 

I Am+c I = (I Ac- I I + I Ye- I I) I Am+ I I 

if m ~ 1; 

if m = 0 

- Al Yc-1 I I Am J (A.32) 

for m ~ 0, with the convention that I A0 I = 1. 
Using (A.32), (A.25), and the relation Xm-i+c(m + c) = 

{3 1xm-l+c<m - 1 + c) [cf. (4.6)], we finally obtain for 
m ~ 1 

[xm-l+c(m + c) + g(m + c)] I Am-l+cl 

= g(m + c) J Am-l+cl - A1f31(cµ,)m-I 

c-1 ( C - 1) ! . 
. ~ g(j) ( . - 1)' µC-J I Aj-1 I 

J=I J . 

m-1 
- A1[j1 L g(j + c)(cµ,)m-1-j 

j=O 

· [ ( I Ac- 1 I + I Ye- 1 I) I A j I - A I Ye- I I I A j- ii] • 
(A.33) 

Step 2: Computation of Xm+c(O) - Xm-l+c(O). 
In order to describe Xm+c(O), we introduce the matrix 

if 1 :S j < m + c; 

if j = m +c. 

By straightforward manipulations with the determinants, it 
can be shown that 

(1)1 A I = -"1g(l) I Am+cl - I v~+cl 
Xm+c m+c A A 

m+c 
+ A1 L g(j)Ai- 2 I V~+c r. 

j=2 
m~ 0. 

From this relation, it follows readily by using (A.12) with 
k = 1 that 

from which it follows that for m ~ 0 
m ~ 0. (A.34) 

(A.29) From the definitions of the matrices V~+c and Vm+l+c-i we 
have 

I Am+2 I =(a+ A+ cµ,) I Am+1 I - Cµ,AI Ami (A.30) 

provided I A0 I = 1 and IV0 I = 1 - A.if31 /(cµ,). 

V~+c = vm+I +c-j (A.25) 

for c s j s m + c. Further, by applying again Lemma A.1 
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to V~+c it is easily seen that 

I V~+c I = I W/-1 I I Am+1 I + I z~-1 I I Vm+1 I (A.36) 

for 1 s j s c - 1, m 2:: 0, where 

Wj ·= { M/_2(a., a., a.+;>..), 
c-1 · 

a.' 

if 1 :S j s c - 2; 

if j = c - 1; 

if 1 sj s c - 2; 

ifj==c-1. 

These matrices satisfy the recursions 

I w/ I = (a. + >-.)I w/_ 1 I + a. I z~-1 I; (A.37) 

I z~ I== cµ( I W/_1 I+ I ZL1 I) (A.38) 

for i = l·, 2, · · ·, c - 1, c 2:: 2, while I wee I = a. and I z~ I 
= cµ for. c 2:: 1. With the aid of relations (A.35) and (A.36) 
we may rewrite (A.34) as 

·[I w/-1 I I Am+1 I+ I z{-1 I I vm+1 I] 

Hence, for m 2:: 1 

a. 
i"[xm+c(O) - Xm-l+c(O)] I Am+cl I Am-l+cl 

I 

=(I Am+1 I I Am-l+cl - I Ami I Am+cl) 

c-1 
·I: g(j)A!- 1 I w/-1 I 
j=l 

+(I vm+1l I Am-l+cl - I Vml I Am+cl) 
c-\ 

. L g(j)>J- 1 1 Z!-1 I 
j=I 

+ g(m + c)>-.m-l+c1VI11 Am-l+cl 
m-1 

+ L g(j + c)>-.j-l+c 
j=O 

·(I Vm+1-jl I Am-l+cl - I vm-jl I Am+cl). 
(A.40) 

It can be shown by induction on m [and by using (A.30)] that 
for m > 1 and j = 1, 2, · · ·, m - 1 or m = 1 and j = 0, 

I Am+1 I I vm-jl - I Ami I vm+1-jl 

·= A1{3 1(cµ)m-l-j>-,m-jl Vi I IAjl. (A.41) 

By applying (A.26) and (A.41) to the first two terms on the 
right-hand side of (A.40), as well as (A.29) and (A.41) to the 

last one, it is straightforward to reduce (A.40) for m 2:: 1 to 

c-\ 

== \f31(cµ)m-l>-.ml VI I L g(j)'J.!-I 
j=\ 

·(I Yc-111 Wl-11 - IAc-1l IZ!-1I) 

+g(m + c)>-.m-l+c I V111 Ain-l+c I 
m-1 

+I: g(j + c)>..1'31(cµ)m-i-j"-m-i+c1 V1 I 
j=O 

·(} .. I Yc-1 I IAj-1 I 

-[IAc-11 -f IYc-1l]IAjl). (A.42) 

Step 3: Proof of (A.18). 
We are now in position to prove (A.18). For c == 1, it is 

·seen from (A.33) and (A.42) that (A.18) is true. · 
For c 2:: 2, it follows from (A.33) and (A.42) that the 

relation 

c-1 
L g(j)}!-l( I Yc-1 I I W/-1 I - I Ac-i 11 Z{-1 I) 
j=\ 

c-1 (c-1)' 
::::: - }{- 1 "°"' ( ·) . c-j I A· I (A.43) ~ g j ( . - 1) f µ 1-I 

J=I J . 

has to be proved ill order to establish (A.18). 
For c = 2, this relation reads 

I Y1 I I W11 I - I A1 I I Zf I = - A.µ I Ao I 

which is true since I Y 1 I = µ, I A0 I = 1, I A1 I = a.+ A., 
I w11 I = a., and I zf I = µ. 

Now suppose that (A.43) holds for some fixed c, c 2:: 2. 
Then 

c-1 
== ">fg(c)cµI Ac-1 I +ACµ L g(j)}.!-I 

j=\ 

On the other hand, using the recursions (A.20), (A.21), 
(A.37), and (A.38), it follows that 

c . 

L g(j)}!-l(IAcl IZ{I - I Ycl I W/I) 
j=I 

c-1 
+ A.cµ L: g(j)}.!- 1 

j=I 

·(IAc-1l IZ{_1I - I Ye-ii I W/-11). (A.45) 

Finally, by using (A.22) with k = c, it is seen that (A.44) 
and (A.45) are equivalent, so that (A.43) holds for c instead 
of c - 1, which concludes the proof. • 
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The notation introduced in the proof of Lemma 4.2 will be 
used in the remainder of this Appendix. 

Proof of Lemma 4.3: By using (A.24) and the identity 
Xm+cCm + c + 1) = f3 1Xm+cCm + c), it follows that the 
condition Cm, m 2: 0, can be expressed as 

A1f31 m+c \A._1\ m+c 
g(m + 1 + c) :S - ~ g(J) I J I P. µi. 

cµ ;= 1 Am+c 1=1 

(A.46) 

On the other hand, it is easily seen from the definition of the 
matrices Am+c• Ym+c• and Am+c that form;;::: 0 

\ Am+c \ = ( A1 + ~) \Am- I +c \ 

+ ( ~ - "2) I ym-1+c I (A.47) 

which implies, together with (A.20) and (A.21), that for 
m;;::: 1 

Repeated applications of (A.48) give for m 2: 1 

I Am+cl = ( ~ r I Ac\ 

Note that (A.49) trivially holds for m = 0. 
With (A.49) it is easily seen that (A.46) is equivalent to 

g(m + 1 + c) 

• [ ( ~) m I Ac I + >--1 i:~: 1 ( ~ r+c-J I Aj-11] 

c (c-1)' 
:S A1 f31 L µm+c-Jcm ( . ) . \ A;-1 \ g(J) 

}=I j - 1 ! 

m+c 

+ A1f31 L (cµ)m+c-j\A;-1 \ g(J) 
j=c+l 

for m 2: 0. 
Be41use ex is such that 

"IJr < /31 < 1 

and generally [see (2.2)] 

g(m + 1 + c) :S irm+l-J+cg(J) 

for j 2: c, it follows that for all m > 0 

m+c ( cµ) m+c-J 
g(m + 1 + c) L - \ A1_1 \ 

j=c+I f31 
m+c 

<f31 L (cµ)m+c-j\A;-1\g(J). 
}=c+l 

(A.50) 

(A.51) 

(A.52) 

(A.53) 

Further, (A.51) and (A.52) imply that 

lim g(m) = 0 
mfoo {31('1 

so that there must exist an M (that clearly depends on a), 
0 s M < + oo, such that for all rn 2: M, 

g(m+I+c) 
{31(1 \Ac\ 

c .(c-1)! 
:S A1/31 ~ µC-J ( . - 1) I I A;-1 I g(J). (A.54) 

j= 1 J . 

By combining (A.50), (A.53), and (A.54), we finally see that 
Cm is satisfied for all m ;;::: M. 

The proof'is concluded by observing that such an M also 
exists for a = 0, since {3 1 = 1 if a = 0 (cf. Section IV), and 
since limmfoo g(m) = 0. • 

Lemma A.I: Let c 2: 2 and define 

A- (b ) ·= {M~+c-1(0t: +A, b0 , c0 ), 
m+I O• Co . 

Co, 
ifm;;:::l; 

ifm = O; 

V (b c)·= {M~+c-1(0t:,bo,Co), 
m+I O• 0 · b 

0• 

ifm2:1; 

if m = O; 

Then, 

if 1 ::5 j :S c - 2; 

ifj=c-1; 

if 1 ::5 j :S c - 2; 

ifj=c-1. 

\M~+c-1\ = \Wj_,(ao)\ \Am+ 1(bo,Co)\ 

+ I z~_,(ao) 11 vm+1(bo, Co) I (A.55) 

for 1 :S j :S c - 1, m 2: 0, and for any constants a0 , b0 , 

and c0 . 

Proof: The proof is easily obtained by induction on m 
(see [3]). • 
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