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Abstract. Given only an interactive protocol of a certain type as a 
primitive, we can build a (non-interactive) signature scheme that is se
cure in the strongest sense of Goldwasser, Micali and Rivest (see [11]): not 
existentially forgeable under adaptively chosen message attacks. There 
are numerous examples of primitives that satisfy our conditions, e.g. 
Feige-Fiat-Shamir, Schnorr, Guillou-Quisquater, Okamoto and Brickell
Mc.Curley ([9], [17], [12], [15], [3]). 
A main consequence is that efficient and secure signature schemes can 
now also be based on computationally difficult problems other than fac
toring (see [11]), such as the discrete logarithm problem. 
In fact, the existence of one-way group homomorphisms is a sufficient 
assumption to support our construction. As we also demonstrate that our 
construction can be based on claw-free pairs of trapdoor permutations, 
our results can be viewed as a generalization of [11]. 

1 Introduction 

This paper deals with the construction of secure signature scheme'.'1. By "secure", 
we mean that some well-defined computational assumption can be shown to be 
sufficient for the scheme not to be existentially forgeable, even under an adaptive 
chosen message attack. This notion of optimal security was introduced in [11]. 
Most, if not all, signature schemes used in practice such a~ 1509796/RSA or 
DSA are based on a computational assumption that is certainly necessary for 
this kind of security, but not known to be sufficient. 

Goldwasser, Micali and Rivest [11] were the first to find a provably secure 
signature scheme, based on the existence of claw-free pairs of trapdoor permuta
tions. Merkle [13] showed essentially that existence of collision intractable hash 
functions is a sufficient assumption. Naor and Yung showed that any one-way 
permutation is also enough [14], and finally this was reduced to any one-way 
function (which is also a necessary assumption) by Rompel [16]. 

Although secure signature schemes are generally less efficient than the ones 
used in practice, the efficiency of the GMR scheme is not too bad when based 
on factoring. Measured in signature length and time for signature generation, 
G MR is worse than plain RSA by a factor of 5-20, depending on the number 
of messages to be signed. By relying on the (perhaps) stronger assumption that 
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RSA is hard to invert, Bos and Chaum [2] have been able to build an even 
more efficient secure scheme. Dwork and N aor [7] have exhibited an efficient and 
secure signature scheme whose security is also equivalent to the difficulty of RSA
inversion. In contrast with other schemes that use authentication trees, such as 
[11), they are able to re-use the authenticating nodes many times. As a result 
of this and further exploitations of the specific properties of the RSA functions, 
the length of their signatures can be made quite small, although a price has to 
be paid in the form of a large public file. In (6], similar trade-offs between shared 
random strings and the size of secure signatures have been achieved for certain 
families of claw-free pairs of trapdoor permutations, in particular a family based 
on the dificulty of factoring integers. 

On the theoretical side, the reduction in the necessary assumptions by [13), 
[14) and [16] have come at the price of dramatically reduced efficiency. In par
ticular, signatures have become larger. Where a GMR signature is of length 
0( k log i) bits, where k is the security parameter and i indicates the number of 
signatures made, a N aor-Yung signature would typically be of length 0( k2 log i) 
bits, because a full preimage under a one-way function is required to authenticate 
1 bit. 

Thus it has been an open question whether secure signatures with efficiency 
comparable to or better than that of GMR could be based on more general 
assumptions than claw-free pairs of trapdoor permutations. 

In this paper, we show that secure signature schemes with signatures as short 
as those of GMR can be built if so called signature protocols exist. In particular, 
our schemes have the same property as GMR that the length of signatures grow 
logarithmically with the number of messages signed. Note, however, that Goldre
ich [10] has shown that the GMR scheme can be modified so that all signatures 
have length 0( k log k) bits. This same modification applies to our scheme as well. 
Note also that Goldreich's modification makes the signature scheme memoryless, 
which implies that a signature will not reveal the number of signatures made so 
far. 

Dropping some technical details, a signature protocol is an interactive pro
tocol for a hard problem that uses three messages, where the prover speaks first 
and the verifier sends a random challenge as the second message. The essential 
properties are 

- The protocol must be secure (zero-knowledge) against the honest verifier. 
- The challenge must be longer than the prover's first message. 
- It must be infeasible for a cheating prover to answer more than one challenge 

in a given protocol execution. 

Furthermore, we show that it is sufficient for the existence of signature pro
tocols (and hence for the existence of secure signatures) that one-way group 
homomorphisms exist. This has a nice theoretical consequence, because it shows 
that, compared to GMR, the trapdoor property can be traded for the homomor
phism property without getting longer signatures. Moreover, our construction 
allows us, in both signature generation and verification, to minimize the number 
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of evaluations of the one-way function and replace them by evaluations of the 
group operation in the groups involved. This means that we can use the discrete 
logarithm assumption as a basis for secure signatures in a much more efficient 
way than known before. Where earlier methods would, with security parameter 
k, require O(k2) exponentiations per basic authentication step and give signa
tures of length O(k2 logi) bits, our method requires 0(1) exponentiations and 
gives signatures of length 0( k log i). 

We also show that existence of a three pass public coin proof of knowledge 
for any hard problem (A hard random self-reducible problem would be enough 
for this) and a collision intractable hash function implies existence of signature 
protocols. Although the hash function alone would be enough to construct secure 
signatures, using our method may lead to shorter signatures ( 0( k log i) compared 
to 0( k2 log i)), depending on the protocol used. 

2 Signature Protocols 

p v 

(a,aux(a)) +- Pa(x, to) 
a 

c +- {0, l}Cp 
c 

r +- Pr(x, w;a, aux(a), c) 
r 

t/>(x, a, c, r) J: 1 

Fig.1. Protocol P, common input x, private input for P is w 

This section is devoted to defining the basic building block, a signature protocol, 
that is used in our construction for secure signatures. Let 'P be a three round 
public coin protocol where the prover speaks first. Figure 1 depicts the kind of 
protocol we will look at. It resemqles a proof of knowlege for a binary relation R 
(see for instance [8] for details), in that the prover can always make the verifier 
accept on common input x, if the prover knows w such that ( x, w) E R. 

Indeed, by running (probabilistic) polynomial time algorithm Pa on x and his 
secret witness w, the prover P computes his initial message a, and some (secret) 
auxiliary information aux(a). The length of this first message a is denoted Ap, 
the authentication length, which only depends on x. After having received a, the 
verifier V chooses a challenge c uniformly at random, and sends it to P. The 
length of admissible challenges in P is called the challenge length Op (we will 
sometimes abuse this notation to refer to the set of possible challenges). Also 
here, it is assumed to depend only on x. The prover P completes the conversation 
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by running (probabilistic) polynomial time algorithm Pr on x, w, a, c, and, the 
auxiliary information aux(a) for a. The resulting response r is submitted to the 
verifier V. We will assume that the procedure <P that the verifier V invokes to test 
the validity of the conversation, is a polynomial time algorithm. The collection 
of all possible accepting conversations with respect to x will be denoted Acc(x). 
For the rest of this paper, P will denote a protocol as described above. 

For the purpose of constructing secure signature schemes, we require the 
following from P in stead of the ordinary soundness condition: 

Definition 1 Let k be a security parameter for protocol P. Suppose we are given 
a probabilistic polynomial time generator G for relation R that on input lk pro
duces (x, w) ER, such that no probabilistic polynomial time algorithm, given x 
as input, can generate two accepting conversations (with respect to x) (a, c, r), 
(a, c', r') from Ace( x), with c f:. c', except with negligible probability of success. 
Then P is called collision intractible over G. 

Next, we need the protocol P to be honest verifier zero-knowledge, that 
is, we only demand that conversations with a verifier who follows protocol P 
can be simulated. Additionally, we require that the simulator outputs accepting 
conversations where the challenge can be chosen in advance, i.e., the simulator 
can take any value c as input, and will output an accepting conversation where 
the challenge is equal to c. A protocol P satisfying these conditions will be called 
special honest verifier zero-knowledge. 

More precisely, let ( x, w) E R and let a prover P and a verifier V with 
common input x be given. The prover has w as private input. Then P(x, w) 
denotes the probability distribution on Ace( x) induced by conversations between 
P and V, provided that they both follow protocol P honestly. We require the 
following: 

Definition 2 Let (x, w) E R. Suppose we are given a probabilistic polynomial 
time algorithm S with the following properties. 

1. On input x and any c E Op, S outputs an accepting conversation from 
Ace( x), where c is the challenge. 

2. The distribution of S(x, c), where c is chosen uniformly at random from Op, 
is equal to P(x, w). 

Then P is called special honest verifier zero knowledge, and S its special simu
lator. 

In the following we will demonstrate that a protocol P that is special honest 
verifier zero-knowledge, is in fact secure against a slightly more general verifier. It 
follows immediately from Definition 2 that, for each fixed c E Cp, S(x, c) outputs 
conversations (a, c, r) E Acc(x) with exactly the same distribution as (a +

Pa(x, w), c, r +- Pr(x, w, a, aux(a), c)), i.e., according to the honest prover who 
has access to (x, w). Therefore, in order for the conversations to be simulatible, 
it is sufficient that the verifier chooses challenges c independently from the first 
message in any given execution of P. This proves the following theorem: 
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Theorem 1 If V is any probabilistic polynomial time verifier who, in any given 
execution of protocol P, chooses the challenge c independently from the prover's 
first message a, then the conversation between prover P and verifier V can be 
simulated by means of the special simulator S. 

Summarizing, we require the following of our protocol P in order for it to 
support our construction of (non-interactive) secure signature schemes. 

Definition 3 Suppose P satisfies the following conditions. 

1. Op> Ap. 
2. P is collision-intractible over G. 
3. P is special honest verifier zero-knowledge. 

Then P is called a signature protocol. If P satisfies the second condition and is 
honest verifier zero-knowledge (so it does not necessarily have a special simula
tor), P is called a quasi signature protocol. 

The following theorem shows that any given signature protocol P can be 
transformed into a new signature protocol P* where the challenge length Gp· 
can be of any size polynomial in the security parameter k. 

Theorem 2 Suppose there exists a signature protocol P for relation R and gen
erator G, then there is a signature protocol P* for R and G, satisfying that 
Gp· = t, for any t polynomial in the security parameter k. 

Proof. Without loss of generality, we may assume that Ap+l =Gp The protocol 
P* goes as follows: 

1. The prover sends a first message a to the verifier, where a is computed as in 
P. 

2. The verifier sends t random bits b1, ... , bt. 
3. The prover sends t conversations in P, (a;, c;, r;), i = 1, ... , t, where c; = 

b; J Ja;+1 for i = 1, .. ., t - 1 and Ct = bt J IOI I · · ·I IO. 
4. The verifier checks that a= a1, that all conversations are accepting conver

sations, and that Ci = b;lla;+1fori=1, ... ,t-1, and that c1 = b1JIOll ·· ·JJO. 

By construction, the challenge length t for P* can be chosen what we want 
it to be, provided t = poly( k ). Suppose now that we are given two accepting 
conversations in P* for some public string x with the same first message a, 
but with different challenges (b1 , .. .,bt) and (bi, ... ,b~). Let, for j = l. .. t, 
( aj, Cj, ri) and ( aj, cj, rj) be the respective replies in those conversations in P*, 
and let i be an index such that b; -:f. b:. Clearly, this implies that c; f. c:. Take 
i to be the smallest index such that c; f. c;. If i = 1, we have a collision in P 
with respect to x, as by definition of P*, we must have ai = ai = a.On the 
other hand, if i > 1, c;_ 1 must be equal to c:_1, i.e., b;-1IJa; = b:_ 1lla:. But 
then ai =a: and we have a collision (ai,c;,ri), (a:,c:,rD in P with respect to 
x. Therefore, P* is collision-intractible over Rand G. 
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As for special honest verifier zero-knowledge of p•, we now exhibit a spe
cial simulator S* for P*, that runs S as a subroutine. S* starts by receiving 
a public string x and a challenge (bi, ... , bt) as input. It proceeds by putting 
Ct = btl\Oll···\\O, and feeding x and Ct to S. After S has output an accept
ing conversation (at, Ct, rt) in P with respect to x, S* repeats the following for 
i = t - 1 ... 1. Put Ci = b; \ \ai+1, feed x and Ci to S and receive an accepting 
conversation (ai, Ci, r1) from S. By invoking Theorem 1, it is clear that S* gen
erates accepting conversations in P* with respect to x, with exactly the same 
distribution as the conversations with the honest verifier in P*. 

Thus, in the constructions to follow, whenever we have a signature protocol, 
we may assume that the challenge length is whatever we need it to be. Before 
investigating under which general assumptions signature protocols can be shown 
to exist, we mention Guillou-Quisquater [12], Okamoto [15] (both the factoring 
and the RSA-versions) and Fiat-Shamir [9] {if the number of secret roots is cho
sen sufficiently large) as examples of proofs of knowledge that can be viewed as 

signature protocols. Schnorr's discrete log protocol [17] does not directly satisfy 
the conditions, but can be modified to do so since it is based on a one-way group 
homomorphism (see below). 

3 Sufficient Assumptions 

The most general computational assumptions we have been able to find, suf
ficient for existence of signature protocols, is the existence of one-way group 
homomorphisms, and the existence of claw-free pairs of trapdoor permutations. 
No implication is known in either direction between these two assumptions. 

One-Way Group Homomorphisms 

Definition 4 A family of one-way group homomorphisms is a family of group 
homomorphisms :F = {! : G -+ H}. In the following, we let kt ::;: log2(\H\), 
i. e. the number of bits needed to represent an element in H. We will sometimes 
drop subscript f, if it is clear which f we refer to. The family has to satisfy the 
following properties: 

1. There is a polynomial time algorithm which given f and w E G, computes 
f ( w) in time polynomial in k. 

2. There is a probabilistic polynomial time algorithm which on input 1 k outputs 
an element f: G-+ H chosen uniformly from :F, subject to k = k1 . 

3. The elements f : G -+ H E :F satisfy that there is a probabilistic algo
rithm which given G outputs an element chosen uniformly from G, in time 
polynomial in k. . 

4. The one-way property: Let A be any probabilistic polynomial time algorithm 
which receives input f and f ( w), where f, w are chosen as in points 2 and 
3. Then the probability that A outputs y such that f(y) = /( w) is superpoly
nomially small in k. 
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5. The elements f : G -1- H E :F satisfy that group operation and inversion in 
G and H can be computed in time polynomial in k. 

Examples of possible one-way group homomorphisms are the RSA func
tions, squaring modulo a composite number, or discrete exponentiation modulo 
a prime, or on an elliptic curve. Given a family as in this definition, we can make 
the following binary relation and generator for it: 

Definition 5 Let :F be as in Definition 4. Then RF is the binary relation con
sisting of pairs ((f,x1, ... ,xk1 +i),(wi, ... ,wk1+1)), where f E :F and f(wi) = 
Xi. G F is the generator that on input 1 k generates f using property 2 of Defini
tion 4, generates w1, ... , WA:1+1 using property 3 and finally computes Xi = f ( w1). 

Theorem 3 Suppose :F is a family of one-way group homomorphisms. Then 
there exists a signature protocol for RF and G F. 

Proof The protocol claimed takes /, x1 , ... , Xk+l as common input, while the 
witnesses w1, ... , WA:+l are private input to the prover. The protocol is now a 
straightforward generalization of Feige-Fiat-Shamir [9] and goes as follows: 

1. The prover chooses a random r E G and sends /(r) to the verifier. 
2. The verifier chooses bits e1 , .•• , ek+l at random and sends them to the 

prover. 
3. The prover returns z = r · w~ 1 • • • w:~i1 • The verifier checks that f(z) = 

f(r) · x!1 • • ·x:~11 

This protocol is clearly complete with probability 1. Honest verifier zero knowl
edge is clear by standard arguments: first choose z and el, ... , e.1:+1 at random, 
then use this to compute an f(r)-value. It is also clear that the challenge is 
one bit longer than the first message from the prover. Thus, only the colli
sion intractable property remains to be argued. Assume by contradiction that 
some enemy A can produce z,z' and (e1, ... ,e1:+1) =f. (e!, ... ,e~+l) such that 

/(z) = J(r) · x~ 1 • • -x~~+11 and f(z') = f(r) · x~~ · · ·x:i+11 • This means that 

f( z z'-1) _ xd1 xdk+1 
. - 1 ... k+l' 

where all di are 1, -1 or 0, and at least one of them is non-zero. 
We can then build the following algorithm which will invert f with the help 

of A: given a random !-image x, generate an output seemingly coming from G:F 
as follows: choose w1, ... , Wk+i and 1 ::; j ::; k + 1 at random. Put Xi = f ( Wi) 

for i =f. j, and Xj = f(w;) · x. Now run A's algorithm with f and the xs's as 
input. Clearly the set of Xi is distributed exactly as output from G F, whence 
A's success probability is the same as in real life. Note that if A has success, we 
can write xd; as 

xd; = f(z. z'-1. fl w;d;) 
i 

Now note that the set of x,'s contains no information about j, whence the 
probability that dj =f. 0, given that A has success, is at least equal to 1/(k + 1). 
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Remark 1 It is clear that the protocol constructed in the proof above can be 
modified to have any challenge length desired by having more x,-values. Enlarging 
the challenge length in this way will be more efficient than using Theorem 2. 

We briefly state that, in the definition of a signature protocol, we can ex
change the assumption on the challenge length and the existence of a special 
simulator for the assumption that we are given a family of collision-intractable 
hash-functions, as can be seen from the following theorems. The proofs are given 
in [5]. 

Theorem 4 Let 'P be honest verifier zero-knowledge and collision-intractable 
over R and G. Then 'P can be compiled into a protocol 'P* (for relation R and 
generator G ), that is also collision-intractable over R and G but that additionally 
satisfies special honest verifier zero-knowledge. 

Theorem 5 Suppose there exists a quasi signature protocol'P for relation R and 
generator G and that a family 1{ of collision intractable hash functions exists. 
Then there exists a signature protocol 'P* for R1t and 011. Here R'H. consists of 
pairs ((x, h), w) where (x, w) E R, w is of length k bits and h E 1{ has output 
length k. The generator G1i runs G to generate (x, w) and then selects h E 1{ 

with the desired output length. 

Claw-Free Pairs of Trapdoor Permutations 

In [11), a secure signature scheme is exhibited, based on (a family of) claw-free 
pairs of trapdoor permutations. The following theorem is proved in [5]. 

Theorem 6 Suppose that a family of claw-free pairs of trapdoor permutations 
exists. Then there exists a signature protocol. 

4 Main Result 

We will now present the new signature scheme Dp, based on a signature protocol 
'P. In Section 5, we prove that Ep is not existentially forgeable under adaptively 
chosen message attacks. A concrete example is given in Section 6. 

Theorem 7 Let 'P be a signature protocol for relation R and generator G. Then 
the signature scheme IJp is not existentially forgeab/e under adaptively chosen 
message attacks. 

It is assumed that we are given a signature protocol 'P for relation R and 
generator G. By Theorem 2, we may assume that for each security parameter 
k and for each instance (x,w) as output by running G(lk), the (non-constant) 
polynomial t(k) satisfies t ==Op ? 3 · Ap. The construction of Ep from 'P works 
as follows. 
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Initialization Phase 
Given a security parameter k, the signer uses the generator G to generate 
two solved instances xo and x1 , with respective witnesses w0 and w1. He 
also computes (ai, aux(ai)) +- Pa(x 1 , w1) and puts (xo, x1, ai) in his public 
directory. 

Signing Phase 
Let m E {O, l}t be the message to be signed and let i 2: 1. The i-th signature, 
on a message m E {O, l}t, is computed as follows. First, the signer computes 

1. (at, aux(ab)) +- Pa(xo, wo), 
2. rb +- Pr(Xo, wo; ah, aux(at), m), 

2· 2· 2·+1 2+1 3. (a 1', aux(a1')) +- Pa(x1, wi), (a1' , aux(a1' )) +- Pa(x1, w1), 
. . . 2· 2i+l . 

4. ri +- Pr(x1, w1; aL aux(ai), a1'lla1 ila0). 
The signer stores afi, aux( afi), ai'+1, aux( aii+l ), a&, rf. Let Auth( ah) be an 
authentication path for at, i.e., Auth(ab) consists of all tuples of the form 
( i 2i 2H 1 i _j ) . th l < . < . h th t i . t f i W a1, a1 , a 1 , a0 , 1-1 , w1 _ J _ i, sue a a1 is an ances or o a1. e 
assume that the tuples in Auth( ab) are ordered in decreasing ancestry from 
left to right. The signature a(m) on m consists of (Auth(ab), rb). 

Verification Phase 
The receiver puts a-(m):: (Auth(a~·), 7{•), where r is the number of tuples 
in Auth(ai) and (aj 1 a2i 1 a2i 1+1 aj1 r-!1) is the l-th tuple in Auth(aj•) After o l•l•l •O•l o· 
having checked whether a{1 :J: ai, the receiver has to perform the following 
verifications, for j = 2, ... , r. 

1 ii E? { 2i1-1 2j1-1+1} . a1 a1 , a1 

2 ..i.(x ah a2iz i la2iz+1 I lah ,ti) ..'.!.. 1 . 'I' 1, 1' 1 1 0, 1 - . 

Finally, he checks whether <f>(x0 , a~·, m, r{•) = 1. If all verifications hold, the 
signature is accepted. 

Note that, by assumption on the challenge length t(k), 2·Ap(x1)+Ap(xo) ~ t, so 
the challenges are long enough to encode the strings arillai;+111at. These strings 
can be padded up to t bits, if necessary, using standard techniques. As we have 
also assumed that all occurring values have fixed length descriptions (depending 
only on the corresponding public string), parsing these concatenations is easy. 

5 Proof of Security 

Our notion of security for signature schemes is that of (11]. In this section we 
show that no polynomially bounded adversary can construct a forgery on a 
message that hasn't been signed by the real signer, even if he is allowed to get 
polynomially many signatures on messages that he has chosen in an adaptive 
fashion. It will be shown that the existence of such a successful forger contradicts 
the assumption that the protocol P is collision intractable over the generator G. 
To this end, we compile this successful forger into an attacker that breaks that 
assumption. 
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In the following theorem, it is assumed that we are given a signature protocol 
p for generator G and relation R. By Theorem 2, we may assume that for each 
security parameter k and for each instance (x, w) as output by running G(l.1:), 
the (non-constant) polynomial t(k) satisifies t =Gp~ 3 · Ap. 

Theorem 8 Any probabilistic polynomial time cracking algorithm A. that forges 
a signature on a new message with probability £(k), after at most polynomially 
many calls to a signer, can be compiled into probabilistic polynomial time pro
cedure A* that breaks the collision intractability of P over G with probability of 
the order of t(k). The running time of A'" is of the same order as the running 
time of A. 

Proof. Let a security parameter k be given, and let x be an instance of P gen
erated by G on input l k. 

We now describe how A* cracks the collision intractability of P by using the 
forger A and the following simulation of Ep. A* receives x as input. 

A* first runs G on input l .kin order to obtain a solved instance (x', w'). Then 
a bit bis chosen at random. Put (xb, wb) = (x', w'), and Xt-b = x. 

For the simulation, we distinguish between two cases. 
Case b = 0: We create an authentication tree with P(k) internal nodes, starting 
at the leaves. The leave!? a{ are generated as follows. 

1. d +- {O, l}t 
2. (a{,d,r{) +-S(x1,d). 

For children af; and aii+1, generate ab +- Pa(xo, wo). Then the parent ai will 
be generated as 

(ai a2illa2i+1llai r;) +- S(x a2iila2i+1llai) l> 1 1 O> 1 1, 1 1 0 • 

The resulting instance (x 0 , x 1, aD of Ep is sent to the forger A. After this, 
the cracking algorithm can start making its (at most P( k)) calls. 

The above takes care of Auth(ab), for i = 1, ... , P(k). Note that this simula
tion can now deal with any signature request, as the i-th signature, on a message 
m;, can be completed by computing r~ +- Pr(xo, wo; ab, aux(ab), mi). 

Case b = l: 

1. Generate (aL aux(ai)) +- Pa(xi, w1), and send the instance (xo, x1, ai) to 
the forger A. 

2. Let mi E {O, lP be the i-th message to be signed. Generate ab +- S(xo, mi). 
Proceed as in Step 3 of the signing phase of E-p. 

Note that in both cases the simulation can deal with any signature request, 
by the properties of the special simulator S. Furthermore, the distribution of 
the at, rt, a{ and r{ is always according to the honest signer who has access 
to both wo and w1, by Theorem l. Thus the simulation is perfect, and we may 
now assume that the cracking algorithm outputs a forgery on a new message 
(i.e, a message that has not been signed by the simulator) m. Without loss of 
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generality, we assume that this happens after exactly P( k) calls, with probability 
l(k). 

Let (Auth(ao), ro) be the forgery, on a new message m. Suppose that a0 =a{, 
for some 1 :5 j :5 P(k), with probability £1(k). As m has not been signed by 
the simulation, w~ must. have m ¥ m;, so A* can get a collision for P from 
(ao, m, ro) and (a~, m;, rfi). 

If, on the contrary, ao -:/: at for all 1 :5 j :5 P(k), then there clearly exist a 
tuple (ai, ar, af', a~, ri) i~ Auth(ao) a.nd a node at in the tree, with ai = aL 
such that ai ~s a leaf or ai is an internal node with a~llaf'lla~ ¥ a~'lla~'Hlla~. 

In case ai is an internal node, say with probability £2(k), we immediately 
get a collision. If ai is a leaf, with probability £s(k), however, the probability 
that a~llaf'lla~ #- c' is 1 - ffe, as the distribution of at is independent of the 
distribution of d (by the properties of the special simulator), and d was chosen 
uniformly at random. Thus in this case we get a collision with probability 1 -
ffe· From the perfectness of the simulation it follows that the distribution of 
everything sent to A is independent of b. Therefore the probability that A* can 
compute a collision for the instance xi-b = x is 

which is clearly of the same order as £( k). Thus we have shown that any forger 
of the signature scheme Ep can be turned very efficiently into a cracker of the 
collision intractibility of P, with essentially the same probability of success. 

6 Concrete Examples 

We now describe a signature scheme whose security is equivalent to the difficulty 
of computing discrete logarithms, by applying our main construction to a suitable 
transformation of the discrete log based protocol of Schnorr (17]. In its basic form, 
this is a protocol for proving knowledge of a discrete log in a group g of prime 
order q. Such a group can be realized, for example as a subgroup of z;, where 
p is a prime, and q divides p - 1. 

This protocol is a quasi-signature protocol by standard arguments. With 
some modifications, it can be turned into a signature protocol: we will have as 
input to the protocol d instances instead of one, (x1, w1), ... , (xd, wd), where 
x; = gw;. Then the new protocol P goes as follows: 

1. The prover chooses z at random in [O, ... , q), and sends a = gz to V. 
2. The verifier chooses c1 , ..• , Cd at random in [O, ... , 21), and sends them to P. 
3. P sends r = (z + c1w 1 + · · · + cdwd) modq to V, and V checks that gr= 

a· x? · · ·x~.i,. 

where l = Llog2( q)J. Completeness and special honest verifier zero-knowledge are 
clear by the same arguments as above. Collision intractability can be shown by 
essentially the same proof as for Theorem 3. Finally, it is clear that by choosing 
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d large enough, we can get a large enough challenge length, and therefore a 
signature protocol. 

We can now carry out our construction of E-p (see also Section 4). To set 
up an instance of Ep, the signer generates two independent instances of P, 
(x, w) = ((x1, w1), ... , (xa, wa)) and (x, w) = ((X-1, w1), .. . , (xa, wa)), with x; = 
gw' and x; = gw' for i = l, ... , d. The w; and w; are chosen at random from 
Zq. Note that both these instances use the same pair (g, 9). The root of the 
authentication tree, al, is computed as al = gz~, where z{ is chosen at random 
from Zq. The initialization phase of E-p is completed when the public key of the 
signer, (x, x, ai), is placed in the public directory. 

We will now show how the signer computes the first signature on a mes
sage m E {O,l}d·I, where m = m 1 lj ... jlma and them; are l-bitstrings, to be 
interpreted as members of [O ... 2'). 

First, he computes ab as ab = gz~, with z6 chosen at random from Zq, and 
rfi as r6 = z6 + m1 w1 + · · · + mawa. Before establishing an authentication for 
ab, he computes a~ and ar (in the same way as ai). Next, a6 is authenticated, 
together with ai and ar, by computing r1 as rl = zf + µ1 w1 ... + µawa, where 
µ1 II··· llµa = aillarl!a6. Theµ; are l-bitstrings, to be interpreted as members of 
[O,. .. ,21). 

The values r6, rL a6, ar and ar are forwarded to the receiver, who checks 
whether 

Note that the values ar and ar are ready to play the role of ai in the sec
ond and third execution of E-p, i.e., to authenticate a5, ai, af, and ag, a~, ai, 
respectively. 

The i-th signature (i > 1) consists of at, rb and an authentication path for 
ab, which is a list of all tuples (a{, aij, aii +l, a~, r{) such that a{ is an ancestor 
of ai. 

For example, such a list for a51 would effectively consist of aL ai, ar, ai, af, 
10 11 i 2 s 1 2 d 5 N t th t 'fi t. f h h . l o1 , o1 , o0, a0 , o0 , r0 , r0 an r0 . o e a ven ea ion o t e pat requires on y 

three exponentiations in g. 
We get signatures of length 0( k log i) bits, where k is the number of bits 

needed to represent an element in g, and i indicates the number of signatures 
made. Moreover, one authentication step requires a constant number of expo
nentiations in Q, both for signing and verification. Note that the 1 exponen
tiation needed from the signer uses input independent from the bits authenti
cated ( c1, ... , ea). Therefore we can use the idea suggested by Schnorr of having 
the signer precompute this exponentiation if some idle time is available on his 
computer. This way the on-line time to generate a signature becomes almost 
negligible. 

Previously, the only known way to get a signature scheme provably secure 
based on discrete log was to use the method from [4] to build a collision in
tractable hash function and then use Merkle's construction. This would require 
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an exponentiation for each bit processed in the hashing, and moreover we would 
need as a part of the signature a full preimage under the hash function to au
thenticate 1 bit. Therefore we would get signatures of length O(k2 logi) bits and 
would need O(k2 log i) exponentiations to make a signature. 

7 Conclusion 

We have shown that the existence of signature protocols is a sufficient condition 
for the existence of signature schemes that are not existentially forgeable under 
adaptively chosen message attacks, which is the strongest notion of security 
for signature schemes (see [11]). The length of. the signatures in our schemes 
grows logarithmically in the number of signatures. In addition to the existence 
of claw-free pairs of trapdoor permutations, on which the scheme from [11] is 
based, the most general computational assumption we have been able to find, 
sufficient for the existence of signature protocols, is the existence of one-way 
group homomorphisms. As an example, we have presented a signature scheme 
whose security is equivalent to the difficulty of computing discrete logarithms. 
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