
Secure Signature Schemes based on Interactive
Protocols

Ronald Cramer (CWI, Amsterdam, cramer@cwi.nl),
Ivan Damgard (BRICS *,Aarhus University, ivan@daimi.aau.dk)

Abstract. Given only an interactive protocol of a certain type as a
primitive, we can build a (non-interactive) signature scheme that is se­
cure in the strongest sense of Goldwasser, Micali and Rivest (see [11]): not
existentially forgeable under adaptively chosen message attacks. There
are numerous examples of primitives that satisfy our conditions, e.g.
Feige-Fiat-Shamir, Schnorr, Guillou-Quisquater, Okamoto and Brickell­
Mc.Curley ([9], [17], [12], [15], [3]).
A main consequence is that efficient and secure signature schemes can
now also be based on computationally difficult problems other than fac­
toring (see [11]), such as the discrete logarithm problem.
In fact, the existence of one-way group homomorphisms is a sufficient
assumption to support our construction. As we also demonstrate that our
construction can be based on claw-free pairs of trapdoor permutations,
our results can be viewed as a generalization of [11].

1 Introduction

This paper deals with the construction of secure signature scheme'.'1. By "secure",
we mean that some well-defined computational assumption can be shown to be
sufficient for the scheme not to be existentially forgeable, even under an adaptive
chosen message attack. This notion of optimal security was introduced in [11].
Most, if not all, signature schemes used in practice such a~ 1509796/RSA or
DSA are based on a computational assumption that is certainly necessary for
this kind of security, but not known to be sufficient.

Goldwasser, Micali and Rivest [11] were the first to find a provably secure
signature scheme, based on the existence of claw-free pairs of trapdoor permuta­
tions. Merkle [13] showed essentially that existence of collision intractable hash
functions is a sufficient assumption. Naor and Yung showed that any one-way
permutation is also enough [14], and finally this was reduced to any one-way
function (which is also a necessary assumption) by Rompel [16].

Although secure signature schemes are generally less efficient than the ones
used in practice, the efficiency of the GMR scheme is not too bad when based
on factoring. Measured in signature length and time for signature generation,
G MR is worse than plain RSA by a factor of 5-20, depending on the number
of messages to be signed. By relying on the (perhaps) stronger assumption that

* Basic Research in Computer Science, Centre of the Danish National Research

Foundation

298

RSA is hard to invert, Bos and Chaum [2] have been able to build an even
more efficient secure scheme. Dwork and N aor [7] have exhibited an efficient and
secure signature scheme whose security is also equivalent to the difficulty of RSA­
inversion. In contrast with other schemes that use authentication trees, such as
[11), they are able to re-use the authenticating nodes many times. As a result
of this and further exploitations of the specific properties of the RSA functions,
the length of their signatures can be made quite small, although a price has to
be paid in the form of a large public file. In (6], similar trade-offs between shared
random strings and the size of secure signatures have been achieved for certain
families of claw-free pairs of trapdoor permutations, in particular a family based
on the dificulty of factoring integers.

On the theoretical side, the reduction in the necessary assumptions by [13),
[14) and [16] have come at the price of dramatically reduced efficiency. In par­
ticular, signatures have become larger. Where a GMR signature is of length
0(k log i) bits, where k is the security parameter and i indicates the number of
signatures made, a N aor-Yung signature would typically be of length 0(k2 log i)
bits, because a full preimage under a one-way function is required to authenticate
1 bit.

Thus it has been an open question whether secure signatures with efficiency
comparable to or better than that of GMR could be based on more general
assumptions than claw-free pairs of trapdoor permutations.

In this paper, we show that secure signature schemes with signatures as short
as those of GMR can be built if so called signature protocols exist. In particular,
our schemes have the same property as GMR that the length of signatures grow
logarithmically with the number of messages signed. Note, however, that Goldre­
ich [10] has shown that the GMR scheme can be modified so that all signatures
have length 0(k log k) bits. This same modification applies to our scheme as well.
Note also that Goldreich's modification makes the signature scheme memoryless,
which implies that a signature will not reveal the number of signatures made so
far.

Dropping some technical details, a signature protocol is an interactive pro­
tocol for a hard problem that uses three messages, where the prover speaks first
and the verifier sends a random challenge as the second message. The essential
properties are

- The protocol must be secure (zero-knowledge) against the honest verifier.
- The challenge must be longer than the prover's first message.
- It must be infeasible for a cheating prover to answer more than one challenge

in a given protocol execution.

Furthermore, we show that it is sufficient for the existence of signature pro­
tocols (and hence for the existence of secure signatures) that one-way group
homomorphisms exist. This has a nice theoretical consequence, because it shows
that, compared to GMR, the trapdoor property can be traded for the homomor­
phism property without getting longer signatures. Moreover, our construction
allows us, in both signature generation and verification, to minimize the number

299

of evaluations of the one-way function and replace them by evaluations of the
group operation in the groups involved. This means that we can use the discrete
logarithm assumption as a basis for secure signatures in a much more efficient
way than known before. Where earlier methods would, with security parameter
k, require O(k2) exponentiations per basic authentication step and give signa­
tures of length O(k2 logi) bits, our method requires 0(1) exponentiations and
gives signatures of length 0(k log i).

We also show that existence of a three pass public coin proof of knowledge
for any hard problem (A hard random self-reducible problem would be enough
for this) and a collision intractable hash function implies existence of signature
protocols. Although the hash function alone would be enough to construct secure
signatures, using our method may lead to shorter signatures (0(k log i) compared
to 0(k2 log i)), depending on the protocol used.

2 Signature Protocols

p v

(a,aux(a)) +- Pa(x, to)
a

c +- {0, l}Cp
c

r +- Pr(x, w;a, aux(a), c)
r

t/>(x, a, c, r) J: 1

Fig.1. Protocol P, common input x, private input for P is w

This section is devoted to defining the basic building block, a signature protocol,
that is used in our construction for secure signatures. Let 'P be a three round
public coin protocol where the prover speaks first. Figure 1 depicts the kind of
protocol we will look at. It resemqles a proof of knowlege for a binary relation R
(see for instance [8] for details), in that the prover can always make the verifier
accept on common input x, if the prover knows w such that (x, w) E R.

Indeed, by running (probabilistic) polynomial time algorithm Pa on x and his
secret witness w, the prover P computes his initial message a, and some (secret)
auxiliary information aux(a). The length of this first message a is denoted Ap,
the authentication length, which only depends on x. After having received a, the
verifier V chooses a challenge c uniformly at random, and sends it to P. The
length of admissible challenges in P is called the challenge length Op (we will
sometimes abuse this notation to refer to the set of possible challenges). Also
here, it is assumed to depend only on x. The prover P completes the conversation

300

by running (probabilistic) polynomial time algorithm Pr on x, w, a, c, and, the
auxiliary information aux(a) for a. The resulting response r is submitted to the
verifier V. We will assume that the procedure <P that the verifier V invokes to test
the validity of the conversation, is a polynomial time algorithm. The collection
of all possible accepting conversations with respect to x will be denoted Acc(x).
For the rest of this paper, P will denote a protocol as described above.

For the purpose of constructing secure signature schemes, we require the
following from P in stead of the ordinary soundness condition:

Definition 1 Let k be a security parameter for protocol P. Suppose we are given
a probabilistic polynomial time generator G for relation R that on input lk pro­
duces (x, w) ER, such that no probabilistic polynomial time algorithm, given x
as input, can generate two accepting conversations (with respect to x) (a, c, r),
(a, c', r') from Ace(x), with c f:. c', except with negligible probability of success.
Then P is called collision intractible over G.

Next, we need the protocol P to be honest verifier zero-knowledge, that
is, we only demand that conversations with a verifier who follows protocol P
can be simulated. Additionally, we require that the simulator outputs accepting
conversations where the challenge can be chosen in advance, i.e., the simulator
can take any value c as input, and will output an accepting conversation where
the challenge is equal to c. A protocol P satisfying these conditions will be called
special honest verifier zero-knowledge.

More precisely, let (x, w) E R and let a prover P and a verifier V with
common input x be given. The prover has w as private input. Then P(x, w)
denotes the probability distribution on Ace(x) induced by conversations between
P and V, provided that they both follow protocol P honestly. We require the
following:

Definition 2 Let (x, w) E R. Suppose we are given a probabilistic polynomial
time algorithm S with the following properties.

1. On input x and any c E Op, S outputs an accepting conversation from
Ace(x), where c is the challenge.

2. The distribution of S(x, c), where c is chosen uniformly at random from Op,
is equal to P(x, w).

Then P is called special honest verifier zero knowledge, and S its special simu­
lator.

In the following we will demonstrate that a protocol P that is special honest
verifier zero-knowledge, is in fact secure against a slightly more general verifier. It
follows immediately from Definition 2 that, for each fixed c E Cp, S(x, c) outputs
conversations (a, c, r) E Acc(x) with exactly the same distribution as (a +­

Pa(x, w), c, r +- Pr(x, w, a, aux(a), c)), i.e., according to the honest prover who
has access to (x, w). Therefore, in order for the conversations to be simulatible,
it is sufficient that the verifier chooses challenges c independently from the first
message in any given execution of P. This proves the following theorem:

301

Theorem 1 If V is any probabilistic polynomial time verifier who, in any given
execution of protocol P, chooses the challenge c independently from the prover's
first message a, then the conversation between prover P and verifier V can be
simulated by means of the special simulator S.

Summarizing, we require the following of our protocol P in order for it to
support our construction of (non-interactive) secure signature schemes.

Definition 3 Suppose P satisfies the following conditions.

1. Op> Ap.
2. P is collision-intractible over G.
3. P is special honest verifier zero-knowledge.

Then P is called a signature protocol. If P satisfies the second condition and is
honest verifier zero-knowledge (so it does not necessarily have a special simula­
tor), P is called a quasi signature protocol.

The following theorem shows that any given signature protocol P can be
transformed into a new signature protocol P* where the challenge length Gp·
can be of any size polynomial in the security parameter k.

Theorem 2 Suppose there exists a signature protocol P for relation R and gen­
erator G, then there is a signature protocol P* for R and G, satisfying that
Gp· = t, for any t polynomial in the security parameter k.

Proof. Without loss of generality, we may assume that Ap+l =Gp The protocol
P* goes as follows:

1. The prover sends a first message a to the verifier, where a is computed as in
P.

2. The verifier sends t random bits b1, ... , bt.
3. The prover sends t conversations in P, (a;, c;, r;), i = 1, ... , t, where c; =

b; J Ja;+1 for i = 1, .. ., t - 1 and Ct = bt J IOI I · · ·I IO.
4. The verifier checks that a= a1, that all conversations are accepting conver­

sations, and that Ci = b;lla;+1fori=1, ... ,t-1, and that c1 = b1JIOll ·· ·JJO.

By construction, the challenge length t for P* can be chosen what we want
it to be, provided t = poly(k). Suppose now that we are given two accepting
conversations in P* for some public string x with the same first message a,
but with different challenges (b1 , .. .,bt) and (bi, ... ,b~). Let, for j = l. .. t,
(aj, Cj, ri) and (aj, cj, rj) be the respective replies in those conversations in P*,
and let i be an index such that b; -:f. b:. Clearly, this implies that c; f. c:. Take
i to be the smallest index such that c; f. c;. If i = 1, we have a collision in P
with respect to x, as by definition of P*, we must have ai = ai = a.On the
other hand, if i > 1, c;_ 1 must be equal to c:_1, i.e., b;-1IJa; = b:_ 1lla:. But
then ai =a: and we have a collision (ai,c;,ri), (a:,c:,rD in P with respect to
x. Therefore, P* is collision-intractible over Rand G.

302

As for special honest verifier zero-knowledge of p•, we now exhibit a spe­
cial simulator S* for P*, that runs S as a subroutine. S* starts by receiving
a public string x and a challenge (bi, ... , bt) as input. It proceeds by putting
Ct = btl\Oll···\\O, and feeding x and Ct to S. After S has output an accept­
ing conversation (at, Ct, rt) in P with respect to x, S* repeats the following for
i = t - 1 ... 1. Put Ci = b; \ \ai+1, feed x and Ci to S and receive an accepting
conversation (ai, Ci, r1) from S. By invoking Theorem 1, it is clear that S* gen­
erates accepting conversations in P* with respect to x, with exactly the same
distribution as the conversations with the honest verifier in P*.

Thus, in the constructions to follow, whenever we have a signature protocol,
we may assume that the challenge length is whatever we need it to be. Before
investigating under which general assumptions signature protocols can be shown
to exist, we mention Guillou-Quisquater [12], Okamoto [15] (both the factoring
and the RSA-versions) and Fiat-Shamir [9] {if the number of secret roots is cho­
sen sufficiently large) as examples of proofs of knowledge that can be viewed as

signature protocols. Schnorr's discrete log protocol [17] does not directly satisfy
the conditions, but can be modified to do so since it is based on a one-way group
homomorphism (see below).

3 Sufficient Assumptions

The most general computational assumptions we have been able to find, suf­
ficient for existence of signature protocols, is the existence of one-way group
homomorphisms, and the existence of claw-free pairs of trapdoor permutations.
No implication is known in either direction between these two assumptions.

One-Way Group Homomorphisms

Definition 4 A family of one-way group homomorphisms is a family of group
homomorphisms :F = {! : G -+ H}. In the following, we let kt ::;: log2(\H\),
i. e. the number of bits needed to represent an element in H. We will sometimes
drop subscript f, if it is clear which f we refer to. The family has to satisfy the
following properties:

1. There is a polynomial time algorithm which given f and w E G, computes
f (w) in time polynomial in k.

2. There is a probabilistic polynomial time algorithm which on input 1 k outputs
an element f: G-+ H chosen uniformly from :F, subject to k = k1 .

3. The elements f : G -+ H E :F satisfy that there is a probabilistic algo­
rithm which given G outputs an element chosen uniformly from G, in time
polynomial in k. .

4. The one-way property: Let A be any probabilistic polynomial time algorithm
which receives input f and f (w), where f, w are chosen as in points 2 and
3. Then the probability that A outputs y such that f(y) = /(w) is superpoly­
nomially small in k.

303

5. The elements f : G -1- H E :F satisfy that group operation and inversion in
G and H can be computed in time polynomial in k.

Examples of possible one-way group homomorphisms are the RSA func­
tions, squaring modulo a composite number, or discrete exponentiation modulo
a prime, or on an elliptic curve. Given a family as in this definition, we can make
the following binary relation and generator for it:

Definition 5 Let :F be as in Definition 4. Then RF is the binary relation con­
sisting of pairs ((f,x1, ... ,xk1 +i),(wi, ... ,wk1+1)), where f E :F and f(wi) =
Xi. G F is the generator that on input 1 k generates f using property 2 of Defini­
tion 4, generates w1, ... , WA:1+1 using property 3 and finally computes Xi = f (w1).

Theorem 3 Suppose :F is a family of one-way group homomorphisms. Then
there exists a signature protocol for RF and G F.

Proof The protocol claimed takes /, x1 , ... , Xk+l as common input, while the
witnesses w1, ... , WA:+l are private input to the prover. The protocol is now a
straightforward generalization of Feige-Fiat-Shamir [9] and goes as follows:

1. The prover chooses a random r E G and sends /(r) to the verifier.
2. The verifier chooses bits e1 , .•• , ek+l at random and sends them to the

prover.
3. The prover returns z = r · w~ 1 • • • w:~i1 • The verifier checks that f(z) =

f(r) · x!1 • • ·x:~11

This protocol is clearly complete with probability 1. Honest verifier zero knowl­
edge is clear by standard arguments: first choose z and el, ... , e.1:+1 at random,
then use this to compute an f(r)-value. It is also clear that the challenge is
one bit longer than the first message from the prover. Thus, only the colli­
sion intractable property remains to be argued. Assume by contradiction that
some enemy A can produce z,z' and (e1, ... ,e1:+1) =f. (e!, ... ,e~+l) such that

/(z) = J(r) · x~ 1 • • -x~~+11 and f(z') = f(r) · x~~ · · ·x:i+11 • This means that

f(z z'-1) _ xd1 xdk+1
. - 1 ... k+l'

where all di are 1, -1 or 0, and at least one of them is non-zero.
We can then build the following algorithm which will invert f with the help

of A: given a random !-image x, generate an output seemingly coming from G:F
as follows: choose w1, ... , Wk+i and 1 ::; j ::; k + 1 at random. Put Xi = f (Wi)

for i =f. j, and Xj = f(w;) · x. Now run A's algorithm with f and the xs's as
input. Clearly the set of Xi is distributed exactly as output from G F, whence
A's success probability is the same as in real life. Note that if A has success, we
can write xd; as

xd; = f(z. z'-1. fl w;d;)
i

Now note that the set of x,'s contains no information about j, whence the
probability that dj =f. 0, given that A has success, is at least equal to 1/(k + 1).

304

Remark 1 It is clear that the protocol constructed in the proof above can be
modified to have any challenge length desired by having more x,-values. Enlarging
the challenge length in this way will be more efficient than using Theorem 2.

We briefly state that, in the definition of a signature protocol, we can ex­
change the assumption on the challenge length and the existence of a special
simulator for the assumption that we are given a family of collision-intractable
hash-functions, as can be seen from the following theorems. The proofs are given
in [5].

Theorem 4 Let 'P be honest verifier zero-knowledge and collision-intractable
over R and G. Then 'P can be compiled into a protocol 'P* (for relation R and
generator G), that is also collision-intractable over R and G but that additionally
satisfies special honest verifier zero-knowledge.

Theorem 5 Suppose there exists a quasi signature protocol'P for relation R and
generator G and that a family 1{ of collision intractable hash functions exists.
Then there exists a signature protocol 'P* for R1t and 011. Here R'H. consists of
pairs ((x, h), w) where (x, w) E R, w is of length k bits and h E 1{ has output
length k. The generator G1i runs G to generate (x, w) and then selects h E 1{

with the desired output length.

Claw-Free Pairs of Trapdoor Permutations

In [11), a secure signature scheme is exhibited, based on (a family of) claw-free
pairs of trapdoor permutations. The following theorem is proved in [5].

Theorem 6 Suppose that a family of claw-free pairs of trapdoor permutations
exists. Then there exists a signature protocol.

4 Main Result

We will now present the new signature scheme Dp, based on a signature protocol
'P. In Section 5, we prove that Ep is not existentially forgeable under adaptively
chosen message attacks. A concrete example is given in Section 6.

Theorem 7 Let 'P be a signature protocol for relation R and generator G. Then
the signature scheme IJp is not existentially forgeab/e under adaptively chosen
message attacks.

It is assumed that we are given a signature protocol 'P for relation R and
generator G. By Theorem 2, we may assume that for each security parameter
k and for each instance (x,w) as output by running G(lk), the (non-constant)
polynomial t(k) satisfies t ==Op ? 3 · Ap. The construction of Ep from 'P works
as follows.

305

Initialization Phase
Given a security parameter k, the signer uses the generator G to generate
two solved instances xo and x1 , with respective witnesses w0 and w1. He
also computes (ai, aux(ai)) +- Pa(x 1 , w1) and puts (xo, x1, ai) in his public
directory.

Signing Phase
Let m E {O, l}t be the message to be signed and let i 2: 1. The i-th signature,
on a message m E {O, l}t, is computed as follows. First, the signer computes

1. (at, aux(ab)) +- Pa(xo, wo),
2. rb +- Pr(Xo, wo; ah, aux(at), m),

2· 2· 2·+1 2+1 3. (a 1', aux(a1')) +- Pa(x1, wi), (a1' , aux(a1')) +- Pa(x1, w1),
. . . 2· 2i+l .

4. ri +- Pr(x1, w1; aL aux(ai), a1'lla1 ila0).
The signer stores afi, aux(afi), ai'+1, aux(aii+l), a&, rf. Let Auth(ah) be an
authentication path for at, i.e., Auth(ab) consists of all tuples of the form
(i 2i 2H 1 i _j) . th l < . < . h th t i . t f i W a1, a1 , a 1 , a0 , 1-1 , w1 _ J _ i, sue a a1 is an ances or o a1. e
assume that the tuples in Auth(ab) are ordered in decreasing ancestry from
left to right. The signature a(m) on m consists of (Auth(ab), rb).

Verification Phase
The receiver puts a-(m):: (Auth(a~·), 7{•), where r is the number of tuples
in Auth(ai) and (aj 1 a2i 1 a2i 1+1 aj1 r-!1) is the l-th tuple in Auth(aj•) After o l•l•l •O•l o·
having checked whether a{1 :J: ai, the receiver has to perform the following
verifications, for j = 2, ... , r.

1 ii E? { 2i1-1 2j1-1+1} . a1 a1 , a1

2 ..i.(x ah a2iz i la2iz+1 I lah ,ti) ..'.!.. 1 . 'I' 1, 1' 1 1 0, 1 - .

Finally, he checks whether <f>(x0 , a~·, m, r{•) = 1. If all verifications hold, the
signature is accepted.

Note that, by assumption on the challenge length t(k), 2·Ap(x1)+Ap(xo) ~ t, so
the challenges are long enough to encode the strings arillai;+111at. These strings
can be padded up to t bits, if necessary, using standard techniques. As we have
also assumed that all occurring values have fixed length descriptions (depending
only on the corresponding public string), parsing these concatenations is easy.

5 Proof of Security

Our notion of security for signature schemes is that of (11]. In this section we
show that no polynomially bounded adversary can construct a forgery on a
message that hasn't been signed by the real signer, even if he is allowed to get
polynomially many signatures on messages that he has chosen in an adaptive
fashion. It will be shown that the existence of such a successful forger contradicts
the assumption that the protocol P is collision intractable over the generator G.
To this end, we compile this successful forger into an attacker that breaks that
assumption.

306

In the following theorem, it is assumed that we are given a signature protocol
p for generator G and relation R. By Theorem 2, we may assume that for each
security parameter k and for each instance (x, w) as output by running G(l.1:),
the (non-constant) polynomial t(k) satisifies t =Gp~ 3 · Ap.

Theorem 8 Any probabilistic polynomial time cracking algorithm A. that forges
a signature on a new message with probability £(k), after at most polynomially
many calls to a signer, can be compiled into probabilistic polynomial time pro­
cedure A* that breaks the collision intractability of P over G with probability of
the order of t(k). The running time of A'" is of the same order as the running
time of A.

Proof. Let a security parameter k be given, and let x be an instance of P gen­
erated by G on input l k.

We now describe how A* cracks the collision intractability of P by using the
forger A and the following simulation of Ep. A* receives x as input.

A* first runs G on input l .kin order to obtain a solved instance (x', w'). Then
a bit bis chosen at random. Put (xb, wb) = (x', w'), and Xt-b = x.

For the simulation, we distinguish between two cases.
Case b = 0: We create an authentication tree with P(k) internal nodes, starting
at the leaves. The leave!? a{ are generated as follows.

1. d +- {O, l}t
2. (a{,d,r{) +-S(x1,d).

For children af; and aii+1, generate ab +- Pa(xo, wo). Then the parent ai will
be generated as

(ai a2illa2i+1llai r;) +- S(x a2iila2i+1llai) l> 1 1 O> 1 1, 1 1 0 •

The resulting instance (x 0 , x 1, aD of Ep is sent to the forger A. After this,
the cracking algorithm can start making its (at most P(k)) calls.

The above takes care of Auth(ab), for i = 1, ... , P(k). Note that this simula­
tion can now deal with any signature request, as the i-th signature, on a message
m;, can be completed by computing r~ +- Pr(xo, wo; ab, aux(ab), mi).

Case b = l:

1. Generate (aL aux(ai)) +- Pa(xi, w1), and send the instance (xo, x1, ai) to
the forger A.

2. Let mi E {O, lP be the i-th message to be signed. Generate ab +- S(xo, mi).
Proceed as in Step 3 of the signing phase of E-p.

Note that in both cases the simulation can deal with any signature request,
by the properties of the special simulator S. Furthermore, the distribution of
the at, rt, a{ and r{ is always according to the honest signer who has access
to both wo and w1, by Theorem l. Thus the simulation is perfect, and we may
now assume that the cracking algorithm outputs a forgery on a new message
(i.e, a message that has not been signed by the simulator) m. Without loss of

307

generality, we assume that this happens after exactly P(k) calls, with probability
l(k).

Let (Auth(ao), ro) be the forgery, on a new message m. Suppose that a0 =a{,
for some 1 :5 j :5 P(k), with probability £1(k). As m has not been signed by
the simulation, w~ must. have m ¥ m;, so A* can get a collision for P from
(ao, m, ro) and (a~, m;, rfi).

If, on the contrary, ao -:/: at for all 1 :5 j :5 P(k), then there clearly exist a
tuple (ai, ar, af', a~, ri) i~ Auth(ao) a.nd a node at in the tree, with ai = aL
such that ai ~s a leaf or ai is an internal node with a~llaf'lla~ ¥ a~'lla~'Hlla~.

In case ai is an internal node, say with probability £2(k), we immediately
get a collision. If ai is a leaf, with probability £s(k), however, the probability
that a~llaf'lla~ #- c' is 1 - ffe, as the distribution of at is independent of the
distribution of d (by the properties of the special simulator), and d was chosen
uniformly at random. Thus in this case we get a collision with probability 1 -
ffe· From the perfectness of the simulation it follows that the distribution of
everything sent to A is independent of b. Therefore the probability that A* can
compute a collision for the instance xi-b = x is

which is clearly of the same order as £(k). Thus we have shown that any forger
of the signature scheme Ep can be turned very efficiently into a cracker of the
collision intractibility of P, with essentially the same probability of success.

6 Concrete Examples

We now describe a signature scheme whose security is equivalent to the difficulty
of computing discrete logarithms, by applying our main construction to a suitable
transformation of the discrete log based protocol of Schnorr (17]. In its basic form,
this is a protocol for proving knowledge of a discrete log in a group g of prime
order q. Such a group can be realized, for example as a subgroup of z;, where
p is a prime, and q divides p - 1.

This protocol is a quasi-signature protocol by standard arguments. With
some modifications, it can be turned into a signature protocol: we will have as
input to the protocol d instances instead of one, (x1, w1), ... , (xd, wd), where
x; = gw;. Then the new protocol P goes as follows:

1. The prover chooses z at random in [O, ... , q), and sends a = gz to V.
2. The verifier chooses c1 , ..• , Cd at random in [O, ... , 21), and sends them to P.
3. P sends r = (z + c1w 1 + · · · + cdwd) modq to V, and V checks that gr=

a· x? · · ·x~.i,.

where l = Llog2(q)J. Completeness and special honest verifier zero-knowledge are
clear by the same arguments as above. Collision intractability can be shown by
essentially the same proof as for Theorem 3. Finally, it is clear that by choosing

308

d large enough, we can get a large enough challenge length, and therefore a
signature protocol.

We can now carry out our construction of E-p (see also Section 4). To set
up an instance of Ep, the signer generates two independent instances of P,
(x, w) = ((x1, w1), ... , (xa, wa)) and (x, w) = ((X-1, w1), .. . , (xa, wa)), with x; =
gw' and x; = gw' for i = l, ... , d. The w; and w; are chosen at random from
Zq. Note that both these instances use the same pair (g, 9). The root of the
authentication tree, al, is computed as al = gz~, where z{ is chosen at random
from Zq. The initialization phase of E-p is completed when the public key of the
signer, (x, x, ai), is placed in the public directory.

We will now show how the signer computes the first signature on a mes­
sage m E {O,l}d·I, where m = m 1 lj ... jlma and them; are l-bitstrings, to be
interpreted as members of [O ... 2').

First, he computes ab as ab = gz~, with z6 chosen at random from Zq, and
rfi as r6 = z6 + m1 w1 + · · · + mawa. Before establishing an authentication for
ab, he computes a~ and ar (in the same way as ai). Next, a6 is authenticated,
together with ai and ar, by computing r1 as rl = zf + µ1 w1 ... + µawa, where
µ1 II··· llµa = aillarl!a6. Theµ; are l-bitstrings, to be interpreted as members of
[O,. .. ,21).

The values r6, rL a6, ar and ar are forwarded to the receiver, who checks
whether

Note that the values ar and ar are ready to play the role of ai in the sec­
ond and third execution of E-p, i.e., to authenticate a5, ai, af, and ag, a~, ai,
respectively.

The i-th signature (i > 1) consists of at, rb and an authentication path for
ab, which is a list of all tuples (a{, aij, aii +l, a~, r{) such that a{ is an ancestor
of ai.

For example, such a list for a51 would effectively consist of aL ai, ar, ai, af,
10 11 i 2 s 1 2 d 5 N t th t 'fi t. f h h . l o1 , o1 , o0, a0 , o0 , r0 , r0 an r0 . o e a ven ea ion o t e pat requires on y

three exponentiations in g.
We get signatures of length 0(k log i) bits, where k is the number of bits

needed to represent an element in g, and i indicates the number of signatures
made. Moreover, one authentication step requires a constant number of expo­
nentiations in Q, both for signing and verification. Note that the 1 exponen­
tiation needed from the signer uses input independent from the bits authenti­
cated (c1, ... , ea). Therefore we can use the idea suggested by Schnorr of having
the signer precompute this exponentiation if some idle time is available on his
computer. This way the on-line time to generate a signature becomes almost
negligible.

Previously, the only known way to get a signature scheme provably secure
based on discrete log was to use the method from [4] to build a collision in­
tractable hash function and then use Merkle's construction. This would require

309

an exponentiation for each bit processed in the hashing, and moreover we would
need as a part of the signature a full preimage under the hash function to au­
thenticate 1 bit. Therefore we would get signatures of length O(k2 logi) bits and
would need O(k2 log i) exponentiations to make a signature.

7 Conclusion

We have shown that the existence of signature protocols is a sufficient condition
for the existence of signature schemes that are not existentially forgeable under
adaptively chosen message attacks, which is the strongest notion of security
for signature schemes (see [11]). The length of. the signatures in our schemes
grows logarithmically in the number of signatures. In addition to the existence
of claw-free pairs of trapdoor permutations, on which the scheme from [11] is
based, the most general computational assumption we have been able to find,
sufficient for the existence of signature protocols, is the existence of one-way
group homomorphisms. As an example, we have presented a signature scheme
whose security is equivalent to the difficulty of computing discrete logarithms.

8 Acknowledgements

It's a pleasure to thank Berry Schoenmakers for many valuable discussions and
comments. Also thanks to Matt Franklin for commenting on an earlier version
of this paper.

References

1. M. Abadi, E. Allender, A. Broder, J. Feigenbaum and L. Hemachandra: On Gen­
erating Solved Instances of Computational Problems, Proc. of Crypto 88, Springer
Verlag LNCS series.

2. J .Bos and D.Chaum: Provably Unforgeable Signatures, Proc. of Crypto 92, Springer
Verlag LNCS series.

3. E. F. Brickell and K. S. McCurley: An Interactive Identification Scheme Based on
Discrete Logarithms and Factoring, Journal of Cryptology, 5(1), pp.29-39, 1992.

4. I. Damgard: Collision Free Hash Functions and Public-Key Signature Schemes,
Proc. of EuroCrypt 87, Springer Verlag LNCS series.

5. R. Cramer, I. Damgard: Secure Signature Schemes based on Interactive Protocols,
BRICS report series, RS-94-29, September 1994, Aarhus University.

6. R. Cramer: On Shared Randomness and the Size of Secure Signatures, CWI tech­
nical report CS-R9530, April 1995.

7. C. Dwork, M. Naor: An Efficient Existentially Unforgeable Signature Scheme and
its Applications, Proceedings of Crypto'94, Santa Barbara, August 1994, Springer
Verlag LNCS series, pp. 234-246.

8. U.Feige, A.Shamir: Witness Indistinguishable and Witness Hiding Protocols, Proc.
of STOC 90.

9. U. Feige, A. Fiat and A. Shamir: Zero-Knowledge Proofs of Identity, Journal of
Cryptology 1 (1988) 77-94.

310

10. 0. Goldreich: Two Remarks concerning the GMR Signature Scheme, Proc. of
Crypto 86, Springer Verlag LNCS series.

11. S. Goldwasser, S. Mica.Ii and R. Rivest: A Digital Signature Scheme Secure Against
Chosen Message Attacks, SIAM Journal on Computing, 17(2): 281-308, 1988.

12. L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol fitted to
Security Microprocessor Minimizing both Transmission and Memory, Proc. of Eu­
roCrypt '88, Springer Verlag LNCS series.

13. R.C.Merkle: A Digital Signature Based on a Conventional Encryption Ftlnction,
Proc. of Crypto 87, Springer Verlag LNCS series.

14. M.Naor and M.Yung: Universal One-Way Hash Functions and their Cryptographic
Applications, Proc. of STOC 89.

15. T. Okamoto: Provably Secure and Practical Identification Schemes and Correspond­
ing Signature Schemes, Proc. of Crypto '92, pp.31-53, Santa Barbara, August 1992.

16. J.Rompel: One- Way Functions are Necessary and Sufficient for Secure Signatures,
Proc. of STOC 90.

17. C.P. Schnorr: Efficient Signature Generation by Smart Cards, Journal of Cryptol­
ogy, 4{3):161-174, 1991.

18. M.Tompa and H. Woll: Random Self-Reducibility and Zero-Knowledge Proof of In­
formation Possession, Proc. of FOCS 87.

