The r-Rank of the groups of exceptional Lie type

by Arjeh M. Cohen and Gary M. Seitz
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands
Mathematical Department, University of Oregon, Eugene, OR 97403, U.S.A.

Communicated by Prof. T.A. Springer at the meeting of March 30, 1987

Abstract

In this note, we prove the following result, settling a question raised at the end of [Borel \& Serre, 1953], cf. [Borel, 1983 pp. 228 and 708]. A related result for Lie groups of type E_{8} was recently proved by J.F. Adams.

THEOREM. Let r be a prime and G a simple algebraic group of exceptional type over an algebraically closed field of characteristic $\neq r$. Let E be an elementary abelian r-subgroup of G of maximal rank. Then $\operatorname{rank}(E)=\operatorname{Lie} \operatorname{rank}(G)$ with the exception of $r=2$ and $G=G_{2}, F_{4}$, the adjoint E_{7}, and E_{8}, in which cases $\operatorname{rank}(E)=$ Lie $\operatorname{rank}(G)+1$. Moreover, E is unique up to conjugacy.

1. THE PRIME 2

In this section we prove the following
THEOREM. Let G be an algebraic group of type G_{2}, F_{4}, E_{6}, adjoint E_{7}, simply connected E_{7}, or E_{8} over an algebraically closed field of characteristic $\neq 2$, and let E be an elementary abelian 2-group in G of maximal order. Then $|E|=2^{3}, 2^{5}, 2^{6}, 2^{8}, 2^{7}, 2^{9}$ in the respective cases. Moreover, in each case any two such elementary abelian subgroups are conjugate.

PROOF. By a theorem of [Springer \& Steinberg, 1970], due to [Borel \& Serre, 1953] in the Lie group case, E is a subgroup of $N_{G}(T)$ for some maximal torus T of G. In particular, $|E| \leq 2^{l} \cdot|W|$, where l is the Lie rank of G and $W=N_{G}(T) / T$, so E is finite. We shall deal with each case separately, although
the arguments are similar. The idea is to produce a certain subgroup containing the preimage in N of a Sylow 2-subgroup of W.
G_{2}. Let J_{1}, J_{2} be commuting (nonconjugate) fundamental $S L_{2}$'s. We may take $T \leq D=J_{1} J_{2}$. Moreover $N_{D}(T) / T$ contains a Sylow 2-subgroup of $W=N_{G}(T) / T$, so we may assume $E \leq D$. Let $Z(D)=\langle e\rangle$. Maximality of E then implies $E=\left\langle e, x_{1} x_{2}, y_{1} y_{2}\right\rangle$, where $x_{1}, y_{1} \in J_{1}, x_{2}, y_{2} \in J_{2}, x_{1}^{2}=x_{2}^{2}=y_{1}^{2}=y_{2}^{2}=$ $=\left[x_{1}, y_{1}\right]=\left[x_{2}, y_{2}\right]=e$. It is clear that any two such groups are conjugate in D.
F_{4}. There is an involution in F_{4} with centralizer D, the simply connected group of type B_{4}. We may take $T \leq D$ and check that $N_{D}(T) / T$ contains a Sylow 2-subgroup of $N_{G}(T) / T$. Hence, we may take $E \leq D$. An involution in SO_{9} lifts to an involution in D if and only if the eigenspace for eigenvalue - 1 has dimension a multiple of 4 . A direct check then shows that D has 2 -rank 5 and all elementary abelian subgroups of D of order 2^{5} are conjugate.
E_{6}. Set $V=\Omega_{2}(T)=\left\{t \in T \mid t^{2}=1\right\}$. Then V is the natural module for $O^{-}(6,2) \cong W$. By § 8 of [Aschbacher \& Seitz, 1976] W has 4 classes of involutions, represented by a_{2}, c_{2}, b_{1}, and b_{3}. Here the subscript is the dimension of the commutator space of the involution. The involutions in $\Omega^{-}(6,2)$ are conjugates of a_{2} and c_{2}. Long root subgroups of W are generated by conjugates of a_{2}, the commutator space [$\left.V, a_{2}\right]$ is totally singular, and $C_{V}\left(a_{2}\right)=\left[V, a_{2}\right]^{\perp}$. Finally, by (19.9)(ii) of [Aschbacher \& Seitz, 1976], applied to $O^{-}(6,2) \cong$ $\cong U_{4}(2) \cdot 2$, we have $C_{W}\left(b_{3}\right) \leq C_{W}\left(b_{1}\right)$ for suitable choice of b_{1}.

To prove the theorem for E_{6} we may and shall assume that E is not contained in a maximal torus of $G,|E| \geq 2^{6}$, and $E \leq N_{G}(T)$. Set $\bar{E}=E T / T$, and for $x \in E$, write $\bar{x}=x T$. If \bar{E} centralizes b_{1}, then there is a fundamental $S L_{2}$ normalized by T, containing a preimage in $N(T)$ of b_{1}, and such that $E \leq S L_{2} \circ S L_{6}$. A direct check then shows that E is necessarily contained in a maximal torus, a contradiction. Hence \bar{E} does not centralize a b_{1} involution. In particular, $\bar{E} \leq \Omega^{-}(6,2)$. Moreover, if $C_{\nu}(\bar{E})$ contains a nonsingular vector v, then \bar{E} centralizes the unique involution b_{1} of W satisfying $\left[V, b_{1}\right]=\langle v\rangle$, a contradiction. Therefore, $C_{V}(\bar{E})$ is totally singular, $|E \cap T| \leq 4$, and $|\bar{E}| \geq 2^{4}$.

Let $\bar{E} \leq P$ be the stabilizer in $O^{-}(6,2)$ of a singular 1 -space of V. Then $P=O_{2}(P) L$, where $L \cong \Omega^{-}(4,2)$ and $O_{2}(P)$ is the natural module for L. Since $|\bar{E}| \geq 2^{4}$, an easy argument shows that $\bar{E}=O_{2}(P)$ and so $|\bar{E}|=2^{4}$. Hence, \bar{E} contains distinct a_{2} involutions \bar{x}, \bar{y}. Then $C_{V}(\bar{x})$ and $C_{V}(\bar{y})$ have distinct radicals, so the singular points of $C_{V}(\bar{x}) \cap C_{V}(\bar{y})$ span a subspace of dimension ≤ 1. Consequently, $|E| \leq|\bar{E}| \cdot|E \cap T| \leq 2^{4} \cdot 2<2^{6}$. This contradiction finishes the proof of the E_{6} case.
E_{7}. Fix a maximal torus T and corresponding system of root groups. Let Σ denote a maximal set of pairwise commuting fundamental $S L_{2}$'s from this system. If we label the diagram as follows

then we can take $\Sigma=\left\{J_{1}, \ldots, J_{7}\right\}$, where $J_{i}=\left\langle U_{ \pm \beta}\right\rangle$ and the β_{i} are as follows:

$$
\begin{aligned}
& \beta_{1}=2234321, \quad \beta_{2}=0112221, \beta_{3}=0000001, \beta_{4}=0112100, \\
& \beta_{5}=0000100, \quad \beta_{6}=0100000, \quad \beta_{7}=0010000 .
\end{aligned}
$$

Set $Z\left(J_{i}\right)=\left\langle e_{i}\right\rangle$ and $J=J_{1}, \ldots, J_{7}$. Then $\left\{e_{1}, \ldots, e_{7}\right\}$ is a set of commuting involutions which span $Z=Z(J)$.
lemma $1\left(E_{7}\right)$.
(i) $N_{G}(J) / J \cong L_{3}(2)$ and $N_{G}(J)$ is 2-transitive on Σ, hence on $\left\{e_{1}, \ldots, e_{7}\right\}$.
(ii) If G is simply connected, the relations on $\left\{e_{1}, \ldots, e_{7}\right\}$ are spanned by $\left\{e_{4} e_{5} e_{6} e_{7}, e_{2} e_{3} e_{6} e_{7}, e_{1} e_{2} e_{5} e_{6}\right\}$. So $|Z|=2^{4}$.
(iii) If G is adjoint, the relations on $\left\{e_{1}, \ldots, e_{7}\right\}$ are spanned by $\left\{e_{4} e_{5} e_{6} e_{7}, e_{2} e_{3} e_{6} e_{7}, e_{1} e_{2} e_{5} e_{6}, e_{1} e_{2} e_{3}\right\}$. So $|Z|=2^{3}$.

PROOF. For each i, the centralizer $C_{G}\left(J_{i}\right)$ is of type D_{6}. Within D_{6} a maximal commuting product of fundamental $S L_{2}$'s corresponds to a decomposition of the usual orthogonal module into three perpendicular 4-spaces. One checks that S_{4} is induced on such a commuting product, transitive on the 6 copies of $S L_{2}$. Hence, $N_{G}(J)$ is 2 -transitive on $\left\{J_{1}, \ldots, J_{7}\right\}, N_{G}(J) / J$ has order 168, and (i) follows.

For (ii) and (iii) first check that $e_{4} e_{5} e_{6} e_{7}, e_{2} e_{3} e_{6} e_{7}, e_{1} e_{2} e_{5} e_{6}, e_{1} e_{2} e_{3}$ are each in $Z(G)$ (show that they centralize each root group corresponding to a fundamental root). Hence, in the simple group $|Z| \leq 2^{3}$. Equality must hold since $L_{3}(2)$ acts nontrivially on Z. This gives (iii). For (ii), view $E_{7} \leq E_{8}$ and note that $e_{4} e_{5} e_{6} e_{7}, e_{2} e_{3} e_{6} e_{7}, e_{1} e_{2} e_{5} e_{6}$ are in $Z\left(E_{8}\right)=1$, while $e_{1} e_{2} e_{3}$ is not.

One can now list explicitly all relations on the e_{i} 's, listing tuples of integers to indicate corresponding products of e_{i} 's which are trivial.

G simply connected: 4567, 2367, 1256, 1247, 2345, 1357, 1346.
G adjoint: 4567, 2367, 1256, 1247, 2345, 1357, 1346, 123, 145, 347, 356, 167, 246, 257, 1234567

Lemma $2\left(E_{7}\right)$. Let $E \leq J$ be an elementary abelian 2-group.
(i) There exist subgroups Q_{i} of $J_{i}(1 \leq i \leq 7)$ such that $Q_{i}=\left\langle x_{i}, y_{i}\right\rangle$ is quaternion of order $8, N_{J_{1}}\left(Q_{i}\right)$ induces S_{3} on Q_{i}, and $E \leq Q=Q_{1} \ldots Q_{7}$.
(ii) $|E| \leq 2^{8}, 2^{7}$ according to whether G is adjoint or simply connected.
(iii) If G is adjoint, there is a unique J-class of elementary abelian groups of order 2^{8}, represented by
$\left\langle Z, x_{4} x_{5} x_{6} x_{7}, x_{2} x_{3} x_{6} x_{7}, x_{1} x_{2} x_{5} x_{6}, x_{1} x_{2} x_{3}, y_{1} \ldots y_{7}\right\rangle$.
(iv) If G is simply connected, there is a unique J-class of elementary abelian groups of order 2^{7}, represented by $\left\langle Z, x_{4} x_{5} x_{6} x_{7}, x_{2} x_{3} x_{6} x_{7}, x_{1} x_{2} x_{5} x_{6}\right\rangle$.
(v) Any 2-group in G is conjugate to a subgroup of $N_{G}(J)$.

PROOF. Consider $E Z / Z \leq J / Z$ and project to each of the simple summands. Each projection of E is contained in the Klein 4-subgroup of a group isomorphic to S_{4}. The preimages of the S_{4} 's are the normalizers of the Q_{i} 's. This gives (i).

For the other parts take E of maximal order. Then $Z \leq E$. Suppose $e \in E-Z$. Conjugating by a suitable element in the product of the normalizers of the Q_{i} 's we may assume e is a product of certain of the elements x_{1}, \ldots, x_{7}. Since e is an involution the relations force $e=x_{i} x_{j} x_{k} x_{l}, x_{i} x_{j} x_{k}$, or $x_{1} \ldots x_{7}$, where $i j k l$ or $i j k$ is one of the tuples in (*).

For each $i,\left[x_{i}, y_{i}\right]=e_{i}$. Moreover, inspection of the above tuples shows: $|\{i, j, k, l\} \cap\{r, s, t\}|=0$ or 2 and $|\{i, j, k, l\} \cap\{r, s, t, v\}|=2$ if $\{i, j, k, l\} \neq$ $\neq\{r, s, t, v\}$. The proof of (ii), (iii), and (iv) is completed using these facts and an easy check of cases. Finally, (v) follows since $E \leq N_{G}(T)$ and the orders of $N_{G}(T) / T$ and $N_{J}(T) / T$ have the same 2-part (2^{10}).

Lemma $3\left(E_{7}\right)$. Assume G is adjoint and $E \leq N_{G}(J)$ is an elementary abelian 2 -group. Then $|E| \leq 2^{8}$, equality possible only if E is G-conjugate to a subgroup of J.

Proof. Suppose $|E| \geq 2^{8}, E \leq N_{G}(J)$, but $E \not \pm J$. Let $X=E J / J$, regarded as a subgroup of $L_{3}(2)$. Hence, $X \cong \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The permutation action of $N_{G}(J) / J$ on Σ is the same as that on $Z^{\#}$. Let $Y=E \cap J$, with $Y \leq Q=Q_{1} \ldots Q_{7}$ as in Lemma 2, and E normalizing Q (use the fact that $N_{G}\left(J_{i}\right)=J_{i} C_{G}\left(J_{i}\right)$ for each i). Set $a_{i}=x_{i} Z$ and $b_{i}=y_{i} Z$.

CASE 1. $C_{Z}(E) \cong \mathbb{Z}_{2}$. By transitivity we may assume $C_{Z}(E)=\left\langle e_{1}\right\rangle$. Since involutions in $L_{3}(2)$ have a 2 -dimensional fixed space on the usual module, $X \cong Z_{2} \times Z_{2}$. So $Y=E \cap J$ is elementary abelian of order at least 2^{6} and $|Y Z / Z| \geq 2^{5}$.
$R=C_{J / Z}(X)$ is the product of groups of type $P S L_{2}$, one for each orbit of X on Σ. Now, X has orbits of size $1,2,2,2$. Write $R=R_{1} \ldots R_{4}$, each $R_{i} \cong P S L_{2}$ and $R_{1}=J_{1} Z / Z$. If $\left\{J_{i}, J_{j}\right\}$ is an orbit, then $e_{i} e_{j}$ is fixed by E, hence $e_{1}=e_{i} e_{j}$. Thus $1 i j$ is one of the triples above. So the orbits are $\left\{J_{2}, J_{3}\right\},\left\{J_{4}, J_{5}\right\}$, $\left\{J_{6}, J_{7}\right\}$, with corresponding $P S L_{2}$'s $R_{2}, R_{3}, R_{4} . Y Z / Z \cap R_{1}=1$ (since $Y \cap J_{1}=$ $\left.=\left\langle e_{1}\right\rangle\right)$. So conjugating by an appropriate element of $N(Q)$ we may assume that the image of $Y Z / Z$ under projection to $R_{2} R_{3} R_{4}$ contains a hyperplane of $\left\langle a_{2} a_{3}, b_{2} b_{3}, a_{4} a_{5}, b_{4} b_{5}, a_{6} a_{7}, b_{6} b_{7}\right\rangle$. Intersecting the projection with $\left\langle a_{2} a_{3}, b_{2} b_{3}\right\rangle$, $\left\langle a_{4} a_{5}, b_{4} b_{5}\right\rangle$, and $\left\langle a_{6} a_{7}, b_{6} b_{7}\right\rangle$, we may assume Y contains elements projecting to $a_{2} a_{3}, a_{4} a_{5}$, and $a_{6} a_{7}$. Hence, we may assume Y contains $x_{1} x_{2} x_{3}, x_{1} x_{4} x_{5}$, and $x_{1} x_{6} x_{7}$. But also, Y contains an element projecting to an involution in $\left\langle b_{2} b_{3}, b_{4} b_{5}\right\rangle$, forcing Y to be nonabelian. Contradiction.

CASE 2. $C_{Z}(E) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then E fixes $3 J_{i}$'s, but does not centralize Z. So we may assume E normalizes J_{1}, J_{2}, and J_{3}. No element of $L_{3}(2)$ fixes more than 3 elements of the usual module, so X is semiregular on $\left\{J_{4}, J_{5}, J_{6}, J_{7}\right\}$.

First assume $X \cong \mathbb{Z}_{2}$. Then $Y Z / Z$ has order at least 2^{5} and without loss of
generality we may assume the nontrivial orbits of E on Σ to be $\left\{J_{4}, J_{5}\right\}$ and $\left\{J_{6}, J_{7}\right\}$. Now $Y \cap J_{1} J_{2} J_{3}$ is not contained in Z, so we may assume $x_{1} x_{2} x_{3} \in Y$. If $Y \cap J_{1} J_{2} J_{3}=\left\langle e_{1}, e_{2}, x_{1} x_{2} x_{3}\right\rangle$, then the image of Y under projection to $J_{4} J_{5} J_{6} J_{7} Z / Z$ coincides with $\left\langle a_{4} a_{5}, b_{4} b_{5}, a_{6} a_{7}, b_{6} b_{7}\right\rangle$ and this forces Y to be nonabelian. So assume $x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}$ are both in Y. As above, we may assume Y contains an element projecting to $a_{4} a_{5}$, which again forces Y to be nonabelian. Thus $X \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Hence E has a unique nontrivial orbit on Σ of size 4 and $|Y Z / Z| \geq 2^{4}$. It follows that $\left|Y \cap J_{1} J_{2} J_{3}\right| \geq 2^{4}$, so we may assume $x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3} \in Y$. Now $N_{G}\left(J_{1}\right) \cap N_{G}\left(J_{2}\right) \cap N_{G}\left(J_{3}\right)=J_{1} J_{2} J_{3} D$, where $D=D^{0}$ is simply connected of type D_{4} (indeed, $Z(D)=\left\langle e_{4} e_{5}, e_{5} e_{7}\right\rangle$). Take $h \in E-\left\langle Z, x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right\rangle$. Since h commutes with $x_{1} x_{2} x_{3}$ and $y_{1} y_{2} y_{3}$, we may take $h \in D$. Now D has just 1 class of involutions in $D-Z(D)$, represented by e_{4} (corresponding to involutions in SO_{8} of type $\left.(1)^{4}(-1)^{4}\right)$. Hence $C_{D}(h)$ is D-conjugate to $C_{D}\left(e_{4}\right)=J_{4} J_{5} J_{6} J_{7}$. Thus, $E \leq J_{1} J_{2} J_{3} C_{D}(h)$, a D-conjugate of J. This completes the proof of Lemma 3.

Lemma $4\left(E_{7}\right)$. Assume G is simply connected and $E \leq N_{G}(J)$ is an elementary abelian 2-group. Then $|E| \leq 2^{7}$, equality possible only if E is G-conjugate to a subgroup of J.

Proof. Assume $|E| \geq 2^{7}$ and $E \nsubseteq J$. Then, up to conjugacy in $N_{G}(J) / J \cong$ $\cong L_{3}(2)$, we have that $X=E J / J$ is one of the groups listed in the table below, where a, b, c are elements of $N_{G}(J) / J$ inducing the permutations $(2,3)(6,7)$, $(4,5)(6,7),(4,6)(5,7)$, respectively, on Σ. A direct check shows that, in each case, $C_{Z}(X)$ is as indicated in the table. Thus, the rank of $E \cap Z$ (a subgroup of $\left.C_{Z}(X)\right)$ is at most 3,2 , and 3 , so that $|(E \cap J) Z / Z| \geq 2^{3}, 2^{3}$, and 2^{2}, in the respective cases.

On the other hand, if $q=q_{1} \ldots q_{7}$, where $q_{i} \in Q_{i} Z / Z$, is an involution then the tuple of indices i with $q_{i} \neq 1$ is a 4-tuple of (${ }^{*}$). Moreover, if q is centralized by X, this tuple must be invariant under the permutation action of X on Σ. In the table, under $\operatorname{inv}(X)$, those tuples from (${ }^{*}$) are listed which are X-invariant. It readily follows from the structure of $\operatorname{inv}(X)$ that $(E \cap Q) Z / Z$ has size at most 2^{2} in all three cases. Therefore, we must have $X=\langle b, c\rangle, E \geq\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, and, without loss of generality, $(E \cap J) Z / Z=\left\langle x_{4} x_{5} x_{6} x_{7}, y_{4} y_{5} y_{6} y_{7}\right\rangle Z / Z$. In particular $E \leq N_{G}\left(J_{1}\right) N_{G}\left(J_{2}\right) N_{G}\left(J_{3}\right)$, and we can finish as in the previous lemma.

X	$\langle c\rangle$	$\langle a, b\rangle$	$\langle b, c\rangle$
$C_{Z}(X)$	$\left\langle e_{1}, e_{2}, e_{3}\right\rangle$	$\left\langle e_{1}, e_{2} e_{3}\right\rangle$	$\left\langle e_{1}, e_{2}, e_{3}\right\rangle$
$\operatorname{inv}(X)$	$4567,1357,1346$	$4567,2367,2345$	4567

The E_{7} case of the theorem follows from Lemmas 2, 3, and 4.
E_{8}. We proceed as for E_{7}. Again T is a maximal torus, and Σ a maximal set of pairwise commuting fundamental $S L_{2}$'s. We label the diagram

and take $\Sigma=\left\{J_{1}, \ldots, J_{8}\right\}$, where $\left(J_{i}\right)_{1 \leq i \leq 7}$ as for E_{7} and $J_{8}=\left\langle U_{ \pm \beta_{8}}\right\rangle$, with $\beta_{8}=23465432$. Set $Z\left(J_{i}\right)=\left\langle e_{i}\right\rangle$ and $J=J_{1} \ldots J_{8}$. Then $\left\{e_{1}, \ldots, e_{8}\right\}$ is a set of commuting involutions spanning $Z=Z(J)$.

Lemma $5\left(E_{8}\right)$.
(i) $N_{G}(J) / J \cong \mathbb{Z}_{2}^{3} L_{3}(2)$ and $N_{G}(J)$ is 3-transitive on Σ, hence on $\left\{e_{1}, \ldots, e_{8}\right\}$.
(ii) The relations on $\left\{e_{1}, \ldots, e_{8}\right\}$ are given by the tuples of even length in (*) and the tuples obtained by joining 8 to the tuples of odd length in (*).

PROOF. For each $i \in\{1, \ldots, 8\}$, the group $C_{G}\left(J_{i}\right)$ is of type E_{7}, so the lemma is easily derived from Lemma 1.

Lemma $6\left(E_{8}\right)$. Let $E \leq J$ be an elementary abelian 2-group.
(i) There exist subgroups Q_{i} of J_{i} such that $Q_{i}=\left\langle x_{i}, y_{i}\right\rangle$ is quaternion of order $8, N_{J_{i}}\left(Q_{i}\right)$ induces S_{3} on Q_{i}, and $E \leq Q=Q_{1} \ldots Q_{8}$.
(ii) $|E| \leq 2^{9}$.
(iii) There is a unique J-class of elementary abelian subgroups of order 2^{9}, represented by $\left\langle Z, x_{4} x_{5} x_{6} x_{7}, x_{2} x_{3} x_{6} x_{7}, x_{1} x_{2} x_{5} x_{6}, x_{1} x_{2} x_{3} x_{8}, y_{1} \ldots y_{8}\right\rangle$.
(iv) Any 2-group in G is conjugate to a subgroup of $N_{G}(J)$.

PROOF. Similar to Lemma 2.
LEMMA $7\left(E_{8}\right)$.
(i) Let $K=\left\langle e_{j} e_{k} \mid 1 \leq j, k \leq 8\right\rangle$ and $R / J=O_{2}(N(J) / J)$. Then K is a hyperplane in Z and $R=N(J) \cap C(K)$.
(ii) $R-J$ contains a conjugate d of e_{1} such that each involution in $R-J$ is $N(J)$-conjugate to an involution in $d K$.
(iii) If ijkl is a 4-tuple as in Lemma 5(ii) and if $x_{i}, x_{j}, x_{k}, x_{l}$ are elements of order 4 in $J_{i}, J_{j}, J_{k}, J_{l}$, respectively, then $x_{i} x_{j} x_{k} x_{l} \in e_{1}^{G}$.

Proof. $N(J)$ acts on K since it permutes Σ, and clearly K is a hyperplane in Z. So $N_{G}(J)$ induces $L_{3}(2)$ on K and (i) follows. Observe that R / J acts regularly on Σ.

Let $z \in K^{\#}$. Then $J \leq D=C_{G}(z)=D_{8}$ (half-spin). Consider SO_{16} (an image of the covering group of D) and its subgroup $\tilde{D}=S O_{16} \cap\left(O_{4}\right)^{4}$. Set $(\tilde{D})^{0}=\tilde{J}$, a group corresponding to J. Choose reflections $t_{1}, t_{2}, t_{3}, t_{4}$, one from each O_{4}. The product of any two of these is in SO_{16}, and these products generate an elementary abelian group \tilde{S} of order 8 which acts faithfully on the set $\tilde{\Sigma}$ of simple factors of \tilde{J}. Let \tilde{R} denote the subgroup corresponding to R. Then $\tilde{S} \cap \tilde{R}$ is not contained in \tilde{J}. Since $t=t_{1} t_{2} t_{3} t_{4}$ is the unique element in \tilde{S} acting semiregularly on $\tilde{\Sigma}$, we have $t \in \tilde{R}-\tilde{J}$. In $S O_{16}, t$ is conjugate to an involution in a
fundamental $S L_{2}$. Translating this to D we conclude that there must exist an element $d \in(D \cap R)-J$, with d a conjugate of e_{1}.

To prove (ii) let t be any involution in $R-J$. Since $(R / J)^{\#}$ is fused in $N_{G}(J)$, we may assume $t J=d J$. Hence, J / Z is the direct product of simple groups permuted semiregularly by t. Therefore, all involutions in $d J$ are conjugates of those in $d Z$. Hence, we may assume $t \in d Z$. Also, $C_{Z}(d)=K$ (since $Z-K=\left\{e_{1}, \ldots, e_{8}\right\}$). So the only involutions in $d Z$ are in fact in $d K$. This proves (ii).

For (iii) again consider D and choose $X \circ Y \leq D$ with X, Y of type D_{4}. Then X and Y are simply connected and we may take $J \leq X, Y$, where $J \cap X$ and $J \cap Y$ are each a product of 4 of the fundamental $S L_{2}$'s. Say $J \cap X=J_{r} J_{s} J_{u} J_{u}$. One checks that $e_{r} e_{s} e_{u} e_{v}=1$ so rsuv is one of the 4-tuples of Lemma 5(ii). From 3 -transitivity of $N(J)$ on Σ we may assume $\{r, s, u, v\}=\{i, j, k, l\}$. Set $x=$ $x_{i} x_{j} x_{k} x_{l}$. The image of x in a quotient of X isomorphic to SO_{8} is necessarily conjugate to the images of e_{i}, e_{j}, e_{k}, and e_{l} (by consideration of the action of this image on the orthogonal module). Without loss we may assume the kernel to the map is $\left\langle e_{i} e_{j}\right\rangle$. Hence, $x \sim e_{i}$ or $e_{i}\left(e_{i} e_{j}\right)=e_{j}$, proving (iii).

LEMMA $8\left(E_{8}\right)$. Let $E \leq N_{G}(J)$ be an elementary abelian 2-group. Then $|E| \leq 2^{9}$, equality possible only if E is G-conjugate to a subgroup of J.

Proof. Assume $|E| \geq 2^{9}$ and let $X=E J / J$. If X has a fixed point, say J_{8}, on Σ, then $E \leq N\left(J_{8}\right)=J_{8} E_{7}$ and we are done by reduction to E_{7}. Similarly, we may assume E centralizes no conjugate of e_{1}.

Assume $X \cap(R / J)=1$, so $|X| \leq 4$. Involutions in $N(J) / J$ fixing a point in Σ fix exactly 4 points, so from the above paragraph we conclude X contains a regular involution, say x. Then $C_{Z}(x) \leq K$ (as $Z-K=\left\{e_{1}, \ldots, e_{8}\right\}$) and x is nontrivial on K (as $x \notin R$). Thus, $|E \cap Z| \leq\left|C_{Z}(E)\right| \leq 4$. But $|E \cap J| \geq 2^{7}$, whence $(E \cap J) Z$ is an elementary abelian group of order at least 2^{9}.

Apply Lemma 6. Replacing E by a J-conjugate, if necessary, we may assume $(E \cap J) Z / Z=\left\langle Z, x_{4} x_{5} x_{6} x_{7}, x_{2} x_{3} x_{6} x_{7}, x_{1} x_{2} x_{5} x_{6}, x_{1} x_{2} x_{3} x_{8}, y_{1} \ldots y_{8}\right\rangle$. However, x must centralize $(E \cap J) Z / Z$ and have no fixed points on Σ. Checking possible orbits of x we see this to be impossible.

We may now assume $X \cap(R / J) \neq 1$ and let $s \in(E \cap R)-J$. Lemma 7(ii) implies $s K=a K$ for some $a \in e_{1}^{G}$. From the first paragraph it follows that E does not centralize K. In particular, E is not contained in R. Let $f \in E-R$. Then $|E \cap Z| \leq\left|C_{Z}(E)\right| \leq\left|C_{Z}(s) \cap C_{Z}(f)\right|=\left|C_{K}(f)\right|=4$.

It follows that $E \cap J$ must contain an element of the form $d=x_{i} x_{j} x_{k} x_{l} z$, where $i j k l$ is a tuple as in Lemma 5, x_{r} is of order 4 in J_{r} for $r \in\{i, j, k, l\}$, and $z \in Z$. Note that $\{i, j, k, l\}$ is necessarily a union of two orbits of $\langle s\rangle$. Also X must act on $\{i, j, k, l\}$ and also on its complement (as E centralizes s).

If $|X| \leq 4$, then as above $|(E \cap J) Z| \geq 2^{9}$ and we again obtain (recall that $|E \cap Z| \leq 4$) a contradiction using Lemma 6. Hence, $|X| \geq 8$. Restricting the abelian group X to $\{i, j, k, l\}$ we obtain an element $1 \neq x \in X$ fixing i, j, k, and l. Also X is transitive on either $\{i, j, k, l\}$ or its complement $\left\{i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right\}$.

Order considerations imply $E \cap J$ must also contain an element of the form $x_{i^{\prime}} x_{j^{\prime}} x_{k^{\prime}} x_{l^{\prime}} z^{\prime}$, so we may assume X is transitive on $\{i, j, k, l\}$. Let $e \in E$ satisfy $e J=x$. Then $d=d^{e}=\left(x_{i} x_{j} x_{k} x_{l}\right)^{e} z^{e}$. But e normalizes each of $J_{i}, J_{j}, J_{k}, J_{l}$, so $x_{i}^{e}=x_{i} e_{i}^{t}$ for $t=0,1$. Transitivity forces $x_{r}^{e}=x_{r} e_{r}^{t}$ for each $r \in\{i, j, k, l\}$, and so $\left(x_{i} x_{j} x_{k} x_{l}\right)^{e}=x_{i} x_{j} x_{k} x_{l}$. Thus, $z=z^{e}$ and so $z \in C_{Z}(e)=\left\langle e_{i}, e_{j}, e_{k}, e_{l}\right\rangle$. Hence $d \sim x_{i} x_{j} x_{k} x_{l}$ (use an element of $\left\langle y_{i}, y_{j}, y_{k}, y_{l}\right\rangle$) and so by Lemma 7(iii), $d \in e_{1}^{G}$, contradicting the first paragraph.

The E_{8} case of the theorem is now immediate from Lemmas 6 and 8 .
COROLLARY. Let q be an odd prime power. Then the 2-rank of ${ }^{2} G_{2}(q)$, $G_{2}(q), F_{4}(q), E_{6}(q),{ }^{2} E_{6}(q), E_{7}(q), \hat{E}_{7}(q), E_{8}(q)$ is $3,3,5,6,6,8,7,9$ in the respective cases.

PROOF. Let G be the algebraic group and let q be a power of the prime p. If σ is a field endomorphism, then it is immediate from the description given that the elementary abelian 2-groups of maximal rank can be taken in $O^{p^{\prime}}\left(G_{\sigma}\right)$. Suppose G is of type E_{6} and that $\sigma=q \tau$, where τ is a graph automorphism. Set $E=\Omega_{2}(T)$, where T is a σ-stable torus contained in a σ-stable Borel subgroup. Let $\dot{w}_{0} \in N(T)$ represent the long word $w_{0} \in W=N(T) / T$. Since $\tau \dot{w}_{0}$ acts on T by inversion it fixes E elementwise; hence $\sigma \dot{w}_{0}=q \tau \dot{w}_{0}$ fixes E elementwise. The result follows since Lang's Theorem implies that σ and $\sigma \dot{w}_{0}$ are G-conjugate. Finally, consideration of the centralizer of an involution shows that the 2-rank of ${ }^{2} G_{2}(q)$ is 3.

2. ODD PRIMES

In this section r is an odd prime and G is an algebraic group of exceptional type over an algebraically closed field of characteristic distinct from r. We begin with a general lemma.

LEMMA 9. Let J be an algebraic group over an algebraically closed field of characteristic $p \neq r$. Suppose $J=T_{s} \circ J_{1} \circ \cdots \circ J_{k}$, a central product of an s dimensional torus and k groups isomorphic to $S L_{r}$. Then the r-rank of J is $s+k(r-1)$ and all elementary abelian r-subgroups of maximal rank are contained in a maximal torus of J.

PROOF. Assume $2<r \neq p$. J contains a maximal torus of rank $s+k(r-1)$, so the r-rank of J is at least $s+k(r-1)$. Since the r-rank of both $S L_{r}$ and $P S L_{r}$ is easily checked to be $r-1$, the first assertion follows by induction, factoring out T_{s} and all but one of the $S L_{r}$'s. These remarks also show that J / J_{i} has r-rank $s+(k-1)(r-1)$, for each $1 \leq i \leq k$. Let E be an elementary abelian r-subgroup of J having maximal rank and fix $i(1 \leq i \leq k)$. By the above, $E \cap J_{i}$ has rank $r-1$, and since $E \cap J_{i}$ is abelian it is contained in a maximal torus T_{i}^{\prime} of $J_{i} \cong S L_{r}$. Moreover, $C_{J_{i}}\left(E \cap J_{i}\right)=T_{i}^{\prime}$. Hence, $E \leq \bigcap_{i} C_{J}\left(E \cap J_{i}\right)=T_{s} T_{1}^{\prime}, \ldots, T_{k}^{\prime}$, a maximal torus of J. The lemma follows.

By the results of [Springer \& Steinberg, 1970] every elementary abelian r group in G can be embedded in a torus if $r>3$ for G_{2} and $F_{4}, r>5$ for E_{6} and E_{7}, and $r>7$ for E_{8}. Thus, we only consider the remaining odd primes. Let T be a maximal torus of G. The following subgroups D of G contain T and are such that $N_{D}(T) / T$ contains a Sylow r-group of $N_{G}(T) / T$.

G	$r=3$	$r=5$	$r=7$
G_{2}	A_{2}		
F_{4}	$A_{2} A_{2}$		
E_{6}	$\left(A_{2} A_{2} A_{2}\right) 3$	$T_{2} A_{4}$	
E_{7}	$T_{1}\left(A_{2} A_{2} A_{2}\right) 3$	$T_{3} A_{4}$	
E_{8}	$A_{2}\left(A_{2} A_{2} A_{2}\right) 3$	$A_{4} A_{4}$	$T_{2} A_{6}$

Here, T_{i} stands for a torus of rank i, and A_{r-1} for a fundamental subgroup isomorphic to $S L_{r}$.

PROPOSITION. If r is an odd prime and G is an algebraic group of exceptional Lie type over an algebraically closed field of characteristic $\neq r$, then the r-rank of G is the Lie rank of G. Moreover, all elementary abelian r-subgroups of maximal rank are conjugate and contained in a maximal torus of G.

PROOF. Let E be an elementary abelian r-subgroup of G of rank at least the Lie rank of G. In view of the previous comments we may take r to be one of the primes in the table above and assume that $E \leq D$, where D is also given in the table. A dimension check shows that D^{0} contains a maximal torus of G, so the result follows from Lemma 9 provided $E \leq D^{0}$.
Suppose there is $e \in E-D^{0}$. Then $r=3, G=E_{6}, E_{7}$, or E_{8}. Here D contains a normal subgroup S with $S \cong 1, T_{1}$, or A_{2}, respectively, $D / S Z(D)$ the wreath product of $P S L_{3}$ with \mathbb{Z}_{3}, and $C_{D / S Z(D)}(e) \cong P S L_{3} \times \mathbb{Z}_{3}$. So the 3 -rank of E is at most 3 plus the 3 -rank of $C_{S Z(D)}(e)$. From the action of e it is clear that the latter is at most $2,3,4$, respectively, so this is a contradiction.

REFERENCES

Aschbacher, M. and G.M. Seitz - Involutions in Chevalley groups over fields of even order, Nagoya J. Math. 63, 1-91 (1976).
Borel, A. - Oeuvres, Collected papers, I, 1948-1958, Springer, Berlin (1983).
Borel, A. and J.-P. Serre - Sur certains sous-groupes des groupes de Lie compacts, Comment. Math-Helv. 27, 128-139 (1953).
Springer, T.A. and R. Steinberg - Conjugacy Classes, Part E in: Seminar on Algebraic Groups, and Related Finite Groups (A. Borel et al.) Springer Lecture Notes in Math. 131, Springer, Berlin (1970).

