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1. INTRODUCTION

1.1. Temporal Reasoning

Temporal Reasoning naturally arises when dealing with problems involving
time; the ability to represent and manage temporal knowledge is fundamental
in human as well as in artificial agents. This explains why Temporal Reason-
ing appears in so many areas, including planning, discourse analysis, natural
language understanding, medical knowledge representation systems etc. In any
activity that involves change, time is an essential feature.

The main goals of Temporal Reasoning are the formalization of the notion
of time and the construction of a computational rule—based system to reason
about time.

When we adopt intervals or points as ontological entities to represent time
and the constraint programming apparatus as the logical and computational
framework, we embark on an important area of Temporal Reasoning: Temporal
Constraint Programming. In this article, we shall study the main literature on
this subject which adopts time as the primitive and unique ontological object,
therefore events' are identified with their time of occurrence. We shall see the
expressive power and computational complexity of these approaches and, above
all, how constraint programming techniques can be used to answer temporal
queries.

1.2. Constraint Programming

Constraint Programming can be traced back to research in Artificial Intelli-
gence and Computer Graphics in the sixties and seventies. However only in
the last decade, it has emerged as a separate area of research.

1.2.1. Constraint problems and constraint satisfaction We begin by providing
the basic definitions.
A constraint satisfaction problem, from now on CP, consists of:

1. a finite set of n variables, x1,..., Ty,

2. n sets, Dy,...,D,, that, for every i = 1,...,n, D; is the domain of z;,

3. a finite number of constraints, where each constraint C;, . ;. is a subset of
some cartesian product D;; X --- x D; , m < n, where all ¢; are different;
Ci,..i,, s a constraint on the variables (x;,,. .., x;,, )-

m

The semantic is given by means of an interpretation function in the way
described as follows.

DEFINITION 1.1. Let s be a set of variables of a CP; an instantiation I is a
function defined on a subset t of different variables of s and which assigns to

1 Some authors make a distinction, cf. [48]: events happen instantaneously, that is their

time of occurrence is a time point; when they hold during an interval, they are usually
called fluents. However, referring to events, we mean both concepts.
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each variable x; € t a value in D;. An instantiation of m variables is called
m—consistent with a constraint Cy . ,, on the same variables, or to satisfy this
constraint, if (I(xy1),...,I(xy)) is in Cy...;m; whenever there is such a consistent
instantiation for C1. ., , then this constraint is said to be solved.

EXAMPLE 1.1. Let C a CP on two variables, ©1 and x5, whose domains are
respectively D1 = {0} and D> = {0,1} and just one constraint, that is C1o :=
{(0,0)}. The instantiation I of domain {z1,z2} defined as
I(Z’l) =0
{ I(Z’Q) =0

is 2—consistent with C1; therefore C1s is solved.

DEFINITION 1.2. Let s be a subset of variables of a CP, I an instantiation
with domain s and t a sequence consisting of different variables of s; I is
the instantiation obtained by restricting I to the elements of t and we call it
projection of I onto t. We will call an instantiation, with domain s, consistent
iff, for every constraint C' of CP on a sequence t of different variables from s,
the projection I satisfies C'. An instantiation is called m—consistent (with the
given CP) iff its domain consists of m wvariables.

By means of instantiations we can define what a solution for a CP is.

DEFINITION 1.3. LetC be a CP with variables x4, ..., x, and I an instantiation
of its variables n—consistent with it; the n—tupla (I(xy),...,I(x,)) is a solution
for C. The solution set of C is the set of all solutions for it. If this set is not
empty then C is said to be consistent; otherwise it is said inconsistent.

EXAMPLE 1.2. Let’s consider the CP in example 1.1; the instantiation I given
in that example is 2—consistent (with the given CP) and (I(x1), I(z2)) := (0,0)
is a solution for the CP; therefore this last one is consistent.

In dealing with Temporal Reasoning, we will see that variables may have
infinite domains. In this case, the constraint solving algorithms are based on
the algebraic and metric properties of domains.

In general, we can identify these main tasks:

— determining whether the given problem has a solution, that is if it is satis-
fiable,

— producing a solution,

— building up the whole set of solutions.

DEFINITION 1.4. Let C; and Cy be two CPs on the same set of variables. They
are said to be equivalent iff they have the same set of solutions.

In Temporal Constraint Programming, one of the key techniques in the
search of all solutions is to reduce the given temporal constraint problem (from
now on TCP) to an equivalent one till a minimal TCP, equivalent to the input
one, is gained. First we need to define what a “minimal” constraint problem
is.
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DEFINITION 1.5. A CP is minimal iff, for any of its constraint Ci.. ., for any
a := (ai,...,an) € Ci..n, there is a solution b for the CP so that @ is a
subsequence of b.

Intuitively, a constraint problem is minimal iff each solution to each of its
constraint can be extended to a solution of the problem.

DEFINITION 1.6. Let C be a constraint problem; if m(C) is minimal and equiv-
alent to C, then it is called a minimal constraint problem equivalent to C.

Reducing a given constraint problem C to an equivalent minimal constraint
problem allows to compute the set of all solutions to C; in general the task of
computing m(C) turns out to be an NP-hard problem; we will see it better in
Section 2. Now we are going to see, in general, the main techniques adopted
to solve constraint problems.

1.2.2. Algorithms to solve constraints Over the last two decades, research has
been focused on algorithms for solving constraint problems and on identify-
ing those problems whose satisfiability is tractable. Techniques for processing
constraints can be broadly divided into two classes.

1. Constraint enforcing rules, also known as constraint propagation or local
consistency technique: they enforce various forms of “local consistency”?
adding inferred constraints to the given problem, which may reduce the
search space by eliminating inconsistent values and building up partial
solutions.

2. Search algorithms to find a solution traversing either the whole space of
variable domains or a subset of it given by partial solutions. The best
known algorithm for searching a solution is backtracking®: at every stage
of backtracking search, the algorithm tries to extend a partial solution by
instantiating a variable towards a solution. In this process we can distin-
guish three sets of variables, of past (already instantiated), of current (being
instantiated) and of future (not yet instantiated) variables. When the al-
gorithm cannot find a value for the current variable to extend the partial
solution, then it backtracks to the previously instantiated variable z; the
value previously assigned is removed from the domain of z and x becomes
the current variable. This algorithm is sound and complete, which means
that if and only if the given problem is consistent the algorithm finds a solu-
tion; however, it is in general time—consuming, so a series of improvements
of it have been proposed (look-ahead, look-back schemes); moreover its per-
formance can be enhanced with heuristic methods, for instance choosing
an “optimal” order to process variables or to assign values.

2 We are going to precisely state what we mean by “local consistency” in definition 1.7.
3 For an account on backtracking algorithms in Constraint Programming, cf. [29].
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Algorithms to solve constraints generally interleave these two techniques;
for example, the first algorithm proposed to solve problems whose constraints
are relations of Allen’s algebra? first reduces the given problem to a local con-
sistent and equivalent one (namely a “path—consistent” one) and then it uses
backtracking for finding a solution.

The peculiarity of Constraint Programming is given by its inference rules;
we are going to introduce them in the next paragraph and see how we can
apply them in each temporal frameworks in Section 2.

Constraint propagation and local consistency Constraint propagation
algorithms transform a given constraint problem into an equivalent one deduc-
ing new constraints; this procedure restricts the set of partial solutions. In fact
these algorithms aim neither at checking or finding a solution, nor at construct-
ing the set of all solutions; instead of dealing with the (global) consistency of
the constraint problem, they try to approximate it in some loose sense, that is
they look for local consistency, defined in the way stated below.

DEFINITION 1.7. Let C be a CP onn and 1 < k <mn:

1. C is called 1-consistent iff, for every variable x; of the problem, D; # 0
and D; = C; whenever there is a constraint C; on x;;

2. if 1 <k, C is called k—consistent iff, taken any (k—1)—consistent instantia-
tion I on variables x4, ..., x—1 and any variable xy different from this one,
I can be extended to a k—consistent instantiatiation on x1,...,Tg_1,T}.

We will call a problem locally consistent if it is (k 4+ 1)—consistent for some
k less than the number of variables of the constraint problem.

In the literature different forms of local consistency were introduced before
the notion of k—consistency was; but we will see that they can be in general
characterized as k—consistency for some k.

Arc—consistency is one of the best known and widely used notions of local
consistency; it was introduced for binary constraints and then extended to ar-
bitrary ones; for our purposes the original version, as stated below, is sufficient.

DEFINITION 1.8. Let C;; be a binary constraint on (z;,z;), D; the domain of
z; and D; of zj; Cy; is arc—consistent iff the following conditions are fulfilled:

1. for all a; € D;, there is a; € D; such that (a;,a;) € Cyj;
2. for all a; € Dj, there is a; € D; such that (a;,a;) € Cjj.

It is immediate from the definitions to see that a binary CP, that is a CP
with only binary constraints, is arc—consistent iff it is 2—consistent; this is the
only case we will be interested in. An algorithm to enforce arc—consistency

4 Cf. section 2.2.
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AC(CP)

1. So(—CU{C_l} :CecC

2.5« Sy

3. while S # 0 do

choose Cj; € S

D; «+ {(J,i €D, : 3(1]' € Dj, (ai,aj) € Cl]}

lfDZ;éD; then S« SU{Cy : Cry € So, k=iVvIi=1i}
S+ S— {CZJ}

®© N> U

TABLE 1. Algorithm to enforce arc—consistency

is presented in table 1. In the algorithm, C is the set of all constraints, C'~!
indicates the transposed of the binary constraint C":

Ct={(b,a): (a,b) € C}

In this algorithm, C is the set of given constraints C'; S is instantiated to
the union of C and the set of transposed constraints of C' belonging to C. In
the while loop, domains are reduced trying to to enforce arc—consistency. In
general, when enforcing k—consistency, we are trying to reduce the input CP
to an equivalent one which is k—consistent; if the given constraint problem is
inconsistent, then the algorithm detetects it, for instance returning an empty
domain.

In our framework, path—consistency is a more important concept than that
of arc—consistency, as we will see better in Section 2. Defining path—consistency
requires an operation of composition between binary constraints; let’s assume
it is given and denote it by ®°.

DEFINITION 1.9. Let C be a CP and Ci, a constraint on (x1,x,). The con-
straint C1,, is path—consistent iff, for any n-tupla t := (x1,...,x,) of variables
of C , any consistent instantiation (ai,...,a,) of t satisfies the following con-
dition: for any couple of constraints Cy, and Cy; so that xy is a variable in t,
(ai,aj) €Ciy ® C'kj.

In [41] Montanari proved, arguing by induction, that path—consistency is
equivalent to 3—consistency.

ProPOSITION 1.1 ([41]) A CSP is path—consistent iff it is 3—consistent.

In table 2, we introduce the algorithm we will use in our article to enforce
path—consistency; as we will see, in each TCP, the operation of intersection
between constraints is the set—theoretic one. Given a TCP on n variables, its
constraint matriz M is just an n X n matrix whose entry M;; is the constraint

5 Its definition depends on the particular framework we are using.
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LRPC(C)

1. function LRPC (var M: matrix): boolean

2. repeat

3. M « M?
4. until M = M?
5. return M # 0

TABLE 2. LRPC algorithm to enforce path—consistency

on (z;, ;)% a solution of a constraint matrix M is an n—tupla (ai, ..., a,) such
that, for every i,j < n, (a;, a;) satisfies the constraint M;;; if, for some i, j < n,
we get M;; = ), then we know the TCP is inconsistent.

The n x n matrix intersection and composition between n X n constraint
matrices M and N are so defined:

(M O N)ij = Mi; N Ny

(MO N)ij =[] M © N
k<n

The power M™ is defined by induction as usual: M! := M; M"*! .= M"® M.

In order to prove the soundness of this algorithm (e.g., the resulting TCP
is indeed path—consistent), we have to define the operation of composition;
therefore we will demonstrate this for each of our framework in a different
manner.

1.3. Temporal reasoning and Constraint Programming

A Temporal Reasoning system consists of a temporal knowledge base, a pro-
cedure to check its consistency and an inference mechanism able to derive new
information and get a solution or all solutions to queries. Temporal Reasoning
tasks are formulated as constraint satisfaction problems; therefore, the con-
straint satisfaction tecniques can be used to check consistency, to search for
solutions or all solutions to the given problem.

Events are the primitive entities in the knowledge base; in Temporal Con-
straint Programming they are characterized by means of their time of oc-
curence, which can be given by intervals or points.

Temporal information can constraint events to happen at a particular time
(e.g., “E happens at 5:00 pm”) or to hold during a time interval (e.g., “E takes
three hours”); moreover it can state relations between events, of a qualitative
type (e.g., “El is before E2”) or of a metric one (e.g., “E1 has started at least
three hours before E2”). Given temporal information of this kind, in temporal
constraint programming we are able to answer queries of the following kinds.

6 We will see, in each temporal framework, how to reduce every TCP to an equivalent one
which has exactly one constraint between each pair of variables.
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1. Is it consistent to believe that E holds at time ¢ or that E1 happens before
E2?

2. At what time can E happen\hold? At what time can E1 and E2 hold?

3. What are all the possible times when E can happen\hold? What are all
the possible temporal relations between event E1 and E27

In Temporal Constraint Programming, we are going to study better in Sec-
tion 2, variables are always interpreted over rational\real points or intervals.
A solution to a query on events is achieved assigning to variables values on the
rational\real line so that these values are consistent with the constraints stated
in the problem; these values represent possible time of occurence of the events
of the query.

Constraints can be either extensionally characterized by means of either real
or rational numbers”, or intensionally represented as (finite) set or relations of
some algebra®. According to the formalization of constraints and the time unit
chosen, we have been able to classify the research in this field into three main
streams:

— temporal reasoning with metric information,
— qualitative approach based on Allen’s interval algebra,
— a mixed approach based on metric and qualitative constraints.

We are going to introduce them in the next thre subsections.

1.3.1. Temporal Reasoning with metric information In the quantitative—metric
approach, temporal primitive entities are points, ranging over real or rational
numbers. Constraint propagation algorithms are based on the metric properties
of the variable domain. In what we call the “original” temporal framework,
constraints are unions of finite sets of real intervals; lately, they have been
extended to unions of interval-sets like [I,7] — {b1,...,by}. The satisfiability
problem for general temporal constraints is NP—hard; therefore authors have
studied particular classes of Temporal Constraint Problems, namely Simple
Temporal Constraint Problems, backtracking algorithms and constraint propa-
gation algorithms to achieve some forms of local consistency or to approximate
it?.

1.8.2. Qualitative approach based on Allen’s interval algebra In the qualitative
approach, constraints are intensionally defined as relations between intervals
or points. However, the main work concerns Allen’s interval algebra, IA, where
constraints are relations between intervals; we examine it in section 2.2 and
there we see how qualitative point relations can be reduced to Allen ones.
Being the satisfiability of IA an NP-hard problem, series of alternatives have
been proposed:

7 Cf. section 2.1.

8 Cf. section 2.2.
9 We will see two algorithms to approximate path—consistency on p. 182.
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— solving the problem exactly but designing algorithms which are efficient
in practice, although the worst case analysis shows them to be exponential
in time (e.g., various forms of backtracking algorithms)°;

— producing approximation algorithms which run in polynomial time and
prune the search space (path—consistency, ordering heuristics etc.);

— reduction to IA subalgebras, of which the satisfiability can be computed
in polynomial time, to assemble a solution for TA constraint problems.

These three approaches are not so clearly distinct: authors prefer to inter-
leave these techniques in order to improve the search.

1.3.3. Mized approaches In this framework, the other ones are mixed in order
to gain in expressiveness, trying not to loose the tractability of the problem;
however not always the complexity results are optimal. If in the first approach
the ontological entities are only points and in the second one, based on Allen’s
interval algebra, the primitive entities are intervals, in this third approach
points and intervals are both primitive objects of the language; therefore new
relations)\ constraints are introduced in order to “relate” points and intervals.

Some authors have studied particular metric TCPs in order to find new
subalgebras of IA; we have classified this work as part of the qualitative ap-
proach, because its main goal is TA. Instead, we consider an approach “mixed”
when it aims at using both the expressive power of the qualitative and of the
quantitative approaches to create “new” temporal frameworks, of which the
satisfiability can be decided in polynomial time. The research in this direction
is one of the most promising!!, anyway the relative literature is still scarce.

2. TEMPORAL REASONING AND CONSTRAINT PROGRAMMING

2.1. Temporal Constraints with metric information

In the quantitative approach to temporal reasoning with constraints there is a
finite number of variables ranging over rational or real numbers; variables stay
for time—points.

2.1.1. A first order language A first order language with equality, L,,, is in-
troduced to formalize the problem; its non logical symbols are:

1. a 2-place relation symbol, <, whose intended interpretation is the non—
strict canonical order relation over rational\real numbers;

2. a 2—place function symbol, —, whose intended interpretation is the subtrac-
tion operation between rational\real numbers;

3. as many constant symbols as the rational\real numbers are.

10 Cf. [29].
11 Cf. [49].
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We will refer to constant symbols as rational\real numbers, because their
interpretation is fixed; the same convention is adopted for < and —. Additional
symbols are defined by means of the primitive ones < and = in the usual way:

T#y = (z=y)
r<y:=z<yANzc#y
r>2y:=y<w

r>y =y<zx

In that we call the “original” temporal constraint problem ([13]) variables
range over a continuous domain, so # is not allowed to logically formalize
constraints; this formalization has been further extended in [30] allowing con-
straints like  # r (unary) and z —y # r (binary), z, y variables and r a
rational\real number, or their disjunctions; which implies that we may have as
constraint a finite union of almost—convex sets like [I,7] — {r1,...,r,}.

2.1.2. The original Temporal Constraint Problem In [13], the general Temporal
Constraint Problem (TCP) is so formalized:

constraint variables: a finite number of variables ranging over real points;
binary constraints: each of them is the set of solutions of

Lh<zj—z; <m V..V, <zj—z; <1y (1)
where all real intervals [l1,71], ..., [ln,Tn] are pairwise disjoint.

So a TC is explicitly given as an interval set I U...UI,, where I; := [I;,7;].
Unary constraints on variables are represented as binary ones introducing a new
fresh variable, zy, whose domain is always reduced to a real number, usually
0: that is the constraint | < z; < r is expressed as the binary constraint [, r]
on the difference z; — .

EXAMPLE 2.1. It is evening; Paulo and Nikos decide to eat a pizza together.
Paulo needs at least 30 — 40 minutes to reach the pizzeria. Nikos gets there by
bike; depending on his mood, it takes him either 10 — 20 or 30 — 40 minutes.
Nikos leaves the office between 7 : 20 and 7 : 30; Paulo leaves home between 7 :
00 and 7 : 10. We wish to answer queries like “Is the whole story consistent?”
or “What are the possible time at which they can meet together at the pizzeria,
if any?”. We can associate the event “Paulo leaves his home” to x1, “Paulo
arrives at the pizzeria” to xa, so that we have the binary constraint (va — 1) €
[30,40]. The event “Nikos leaves the office” is associated with the variable
x3; introducing a fresh variable xo to represent the starting point of time and
assuming its domain is reduced to {7}, we get, for instance, the constraints
(z3 — mo) € [20,30] and (z1 — =) € [0,10].

DEFINITION 2.1. Given two interval sets, T := [y U...UI, and S := JyU...U
Jm, corresponding to either unary or binary constraints, the binary operations
of union, intersection and composition are defined in the following way.
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— The union of the constraints T and S is their set—union T U S.

— The intersection of the constraints T and S is their set—intersection TN S.

— The composition of the constraints T and S, written as T ® S, is the set of
numbers r such that there aret € T and s € S so that r =t + s.

The composition operation might result in constraints that are not pairwise
disjoint; therefore additional process might be required in order to re—establish
this condition.

DEFINITION 2.2. Given TCP1 and TCP2 on the same set of variables, we can
define their intersection TCP1N TCP2, union TCP1U TCP2 and composition
TCP1® TCP2 by means of their constraints:

for any couple of variables (x;,;), C}; of TCP1 and C}; of TCP2, Cj;UCE;
is the relative comnstraint on the same couple of variables of TCP1N TCP2;
if Cilj or C'?j are missing, they are set to (—oo, 00);

for any couple of variables (x;,x;), C}; of TCP1 and C}; of TCP2, C;NCE;
is the relative comnstraint on the same couple of variables of TCP1N TCP2;
if Cilj or C'?j are missing, they are set to (—oo,00);

for any couple of variables (z;,x;), C}; of TCP1 and C}; of TCP2, C},©C%;
is the relative constraint on the same couple of variables of TCP1® TCP2; if
Ci; or CF; are missing, they are set to (—00,00).

A TCP is represented by means of its associated directed graph, in which
nodes stay for variables and labels on nodes represent the constraints specified
by the problem.

The natural relation of order between constraints is the one of set inclusion:
TC1 C TC2 iff for every interval of T'C'1 there is one in T'C'2 which includes
it. An order relation between TCPs having the same set of variables is thereby
introduced.

DEFINITION 2.3. Let TC'P1 and TC P2 be on the same set of variables; TC P1
is included in TCP2, briefly TCP1 C TCP2, iff for any constraint TC1 of
TCP1, taken the corresponding (i.e. on the same variables) one TC2 of TC P2,
TC1CTC2.

Given a fixed set of variables, it is now possible to divide the constraints on
these variables into equivalence classes, so that two constraints are equivalent
iff they have the same set of solutions; every such a class is totally ordered by
means of constraint—inclusion (cf. definition 2.3) and so there ezists a minimal
constraint problem in every equivalence class wrt inclusion'?; as equivalent con-
straint problems are closed under intersection, this minimal constraint problem
is unique.

12 Cf. definition 1.4.
13 Tt is immediate to see that a constraint problem, equivalent to the given one, is minimal
according to definition 1.6 iff it is minimal wrt inclusion.
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PROPOSITION 2.1. For every constraint problem TCP there exists a unique
minimal constraint problem equivalent to it.

We will call it the minimal constraint problem of TCP and we will write
m(TCP). Reasoning about temporal constraints there are two main goals to
achieve:

1. checking consistency and\or finding a solution to the problem;

2. deriving new constraints from the given ones, which amounts to computing
the minimal constraint problem of the given one, that is the whole set of
solutions.

If one solves the second problem in polynomial time, then the first one can
be solved in polynomial time as well; unfortunately, with general TCP, the
first task turns out to be already an N P-hard problem.

THEOREM 2.1. The satisfiability problem for the general TCP is NP-hard.

ProoF. By reduction from the 3—coloring problem, cf. [13].

Since this result, it is worth finding subclasses of TCP for which the problem of
satisfiability and of computing the minimal constraint problem can be solved
in polynomial time.

The Simple Temporal Constraint Problem A simple temporal constraint
problem, STCP, is a TCP whose binary constraints reduce to an interval. The
notion of a distance graph is thereby introduced: it has the same nodes as the
directed graph but labels report as weight r;;. Each “(k+1)-path” (z;,..., ;)
from i to j induces an eventually new constraint on z; and z;, namely (z; —
z;) < 2221 Tng_1.m» Where, for each I, (zn, — Tn, ,) < Toy_yomy a0d Ty = 5,
Tpn,,, = Tr; the intersection of all these path constraints yelds the constraint

(zj — ;) < dij

in which d;; is the length of the “shortest” path from ¢ to j; if there is no such
one, then d;; is oo and is not usually reported.

EXAMPLE 2.2. In figure 1, we have represented the distance graph of a STC
subproblem of the TCP in example 2.1; the distance graph has the following
labels.

dor = —15
do2 =15
di2 =40
d10 - 30
d20 =0
dy1 = —30
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l.fori=1,...,ndod;; « 0

2. fori,jzl,...,ndodij S Tij
3.fork=1,...,ndo

4. fori,j=1,...,ndo

5. dij < min (dij,dik +dkj)

TABLE 3. Floyd-Warshall’s algorithm

Starting from the distance graph of a given STP, Floyd-Warshall's all-
pair-shortest—paths algorithm'* produces the d-graph of this STP, namely the
complete directed graph having the same nodes as G4 and edges labeled by
the shortest path between i and j; this algorithm runs in O(n?®) time, where
n is the number of variables of the problem; if there are no negative cycles,
then we can use Dijkstra’s algorithm, which runs in O(n?) time, once for each
vertex of the graph; this is a well known problem in the literature about linear
programming, cf. [12].

The main theorems concerning STPs are the following ones.

LEMMA 2.1 (CONSISTENCY-CHECK) Let STP be a constraint problem: it is
consistent iff its associated distance graph has no negative cycles.

Proor. Cf. [12].

THEOREM 2.2 (SOLUTION-SEARCH) Let STP be a constraint problem on n
variables; for any k < n, any k instantiation, consistent wrt the shorthest path

constraints induced by the associated d—graph, can be extended to a solution to
the given STP.

Proor. Cf. [12].

As an important consequence of theorem 2.2 we get the following statement.

THEOREM 2.3. Given a consistent STCP, the equivalent one induced by its
distance graph is the minimal STCP equivalent to it.

14 Cf. table 3.

° 40 -30

X

1

F1GURE 1. A distance graph representing an STCP of example 2.1.
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1. apply Floyd-Warshall's all-pair—shortest—paths algorithm (Cf. table 3.)
to produce the d—graph of this STP starting from its G g; it runs in O(n?)
checking consistency by inspecting the signs of the diagonal elements d;;;

2. assemble a solution “only” assigning to each variable any value which
satisfies the d—graph constraints relative to the assignments stated for
the previously instantiated variables; this process takes a time in O(n?),
because once a value is assigned to a variable it remains unaltered.

TABLE 4. Finding a solution for STCPs

Proor. Cf. [12].

This way we gain an effective procedure to check consistency and construct a
solution to a given STCP: see table 4.

So the tasks of checking consistency or finding a solution and of building
up the minimal constraint problem take a time in O(n?).

There is another procedure to find the minimal constraint problem equiv-
alent to the input STCP; it is obtained by applying path—consistency; an al-
gorithm to get path—consistency is shown in table 2. As usual, whenever there
are no constraints on (z;,x;), we set the constraint P;; to be (—o0,00).

The following lemma ensures that indeed, iterating the relaxation operation
in step 3, we get a path—consistent problem.

LEMMA 2.2. A constraint PC;; is path—consistent iff it is a subset of the set
Nk (PCi © Pij).

PROOF. Let PC;; be path—consistent, that is 3—consistent!5; take any a;; < ryj,
that is any instantiation I so that I(x;) — I(z;) = ai; < r45; by 3—consistency
I can be extended to “any” xj so that I(zx) — I(z;) = am < ry, and I(z;) —
I(zy) = ar; < rgj; this implies

Qi = I(I‘J) — I(:L’z) = I(l‘k) - I(l’l) + I(I’J) - I(:L’k) = Qi + Qg5
and so ajj € PCiy, ® PC’kj.
Let’s now suppose that, for “any” zp, PC;; C PCiy, © PCyj; let’s take any

instantiation I of x; and «; so that a;; = I(x;) — I(x;) < rij; by hypothesis,
for any xj, there are a;; < ry, and ag; < rp; such that

I(zj) — I(z:) = aij = air + ag; (2)

Just choose I(zy) so that the following two conditions hold.

15 Cf. theorem 1.1.
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(x;) + aix

I(zy)
( (z7) — ak;

I
I :L’k) =1
There is a solution because of (2).

PROPOSITION 2.2. Let S a STCP; the path—consistency algorithm produces
m(S).

PROOF. Since the relazation step in the path—consistency algorithm'® amounts
to two operations of updating the shorthest path-length in Floyd—Warshall’s
algorithm, applying the first algorithm is equivalent to applying the second
one.

STCP augmented with strict inequalities In [22], Gerevini and Cristani
consider the case when strict inequalities are explicitly introduced in con-
straints: this means that a constraint can be given as a closed, a semi—open
or an open interval. Let’s write STCP< for this new kind of simple tempo-
ral constraint problem. The binary operations between constraints as well the
relation of order are naturally extended; so the notion of minimal equivalent
problem.

A weaker version of theorem 2.1 still holds as stated below. First we need to
modify the definition of distance graph'”, arcs are labeled in this new way: if the
constraint on (z,y) is y —x < n, then the label will be (n, 1); if the constraint is
a strict inequality then the label will be (n,0). The shortest distance and path
between two points are computed using the following definitions for comparison
and addition:

(m,z) < (n,y)iff m<nV (m=nAz<y);
n,y) = (m + n,min (z,y)).

3
&
+

In the resulting d—graph an arc appears between every pair of nodes and
the inequalities corresponding to the arcs give the minimal constraint problem
equivalent to the input one. This way we get the following two results in the
same way as we obtained the similar ones for STCPs without strict inequalities.

LEMMA 2.3. Let S be a STCP<: if its associated distance graph has no negative
cycles, then it is consistent.

THEOREM 2.4. Let S be a STCP<: the equivalent one induced by its distance
graph is the minimal STCP equivalent to it.

The algorithm proposed by Gerevini and Cristani to find a solution in this
framework performs the following steps, the input being a STCP S and the
output a solution, if it exists, nil otherwise.

16 Cf. line 3 in table 2.
17 cf. [28].
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1. Check the consistency of S by the criterium of lemma 2.3; if it is not
consistent, then return nil and exit;

2. relax every strict inequalities of S, non involving co, to a non—strict one;
call S’ the resulting temporal constraint problem;

3. compute m(S'), by means of the algorithm in table 4; call it M;

4. for each left-open interval (label of the graph) bounded from the left by a,
replace it with the left—closed interval bounded from the left by b+ (5/(n*+
1)), where § is either the finite length of the shortest interval constraint of
M or any finite number if every interval constraint of M has oo as one of
its bounds; call it M';

5. compute m(M') and so a solution by means of the algorithm in table 4.

The following theorem also states that indeed this algorithm is sound and
complete.

THEOREM 2.5. The above algorithm computes a solution for a given STCP
augmented with strict inequalities, whenever it exists; otherwise it returns nil.
It takes a time in O(n®) where n is the number of variables involved in the
problem.

PROOF. See p. 1463 of [22].

STCPs augmented with inequations In [30], the original STCP frame-
work is extended with inequations and their disjunctions. Constraints can be
implicitly defined in the way below.

1. Unary constraints are conjunctions of a formula as z; < dy; or z; > —djo

and of inequation formulae as x # 7“]1-1», ce, X FE r?{ ¢ where we require that
the following condition holds.

—j0<1“jlli<...<1“h-ji<d0j (3)

As usual, by introducing a new fresh variable zy, any unary constraint can
be translated into an equivalent binary one.

2. Binary constraints are conjunctions of a formula as (z; — z;) < d;; or
(zj — ;) > —dj; and of inequations as (x; —x;) # i, ..., (v; — ;) # r?gi,
where we require that condition 4 holds.

—dji<’f';i<...<7'?iji<dij (4)

3. Finally we define d—ary constraints, which we will briefly call d—constraints:
they are disjunctions of inequations involving d distinct variables.
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These constraints can be set theoretically defined in the obvious way; in
particular binary constraints can be explicitly given by almost-convex intervals
like I := [=dji,dij] —{r};, ... ,r?{i }; conv(I) will stay for the convex hull of I'8.

Disjunctions of inequations have been introduced in [30]: the motivation
behind this choice is that, eliminating variables from a set of temporal con-
straints, an inequation may give rise to a disjunction of inequations.

Starting with a STCP with inequations but without d—constraints, let’s say
Py, replacing each almost—convex interval I with its convex hull conv(I), we get
a STCP, P,, to which path—consistency algorithm can be successfully applied
to check satisfiability and find (all) solutions'?. In [31] Koubarakis proves the

following important results.

THEOREM 2.6. Enforcing 5—consistency on a STCP with inequations but with-
out d—constraints is necessary and sufficient to get global consistency; the al-
gorithm runs in time O(kn*), where k is the number of inequations and n that
of variables.

Proor. Cf. [31].

Modifying step 2 of this algorithm, Koubarakis designs an algorithm to pro-
duce the minimal (equivalent) constraint problem of a STCP with inequations
without d-constraints, which runs in O(max (kn?,n?)) time.

The algorithm to enforce global consistency in the case of STCPs with
d—constraints is a generalization of the one to gain 5—consistency: instead of
enforcing 5—consistency, it enforces (2V + 1)-consistency, where V' is the max-
imum number of variables in any disjunctions of inequations. It is exponential
in V', but if this number is fixed, then the time complexity of this algorithm is
polynomial in the number of variables and of constraints.

The Simple Temporal Constraint Problem augmented with inequa-
tions and inequalities We can go further on and take into consideration the
case when constraints are almost—convex open, semi—open or closed intervals;
this means that they can be implicitly given by formulae involving <, < or #.

— A unary constraint can be implicitly given by a formula either as x <
rV@EnrnA... AT Fory),asr <azV@EriA...ANx # ), as
z<rV(@#mnA...\Nz#£r,)orasr<zV(@#riAN...\NxF£ry,).

— A binary constraint can be formalized by a conjunction of either z; — z; <
di]’, Tj — Tj < —dji, T; —x; < dij orr; —w; < —dji and of a formula as
(xj —mi A A NTj — #rzhj’)

The algorithm, briefly sketched below, receives as input a STCP S so aug-
mented and returns true if S is consistent, nil otherwise:
18 The class of almost—convex intervals is closed under intersection and composition of con-
straints as given in definition 2.2.

19 This procedure is sound because path—consistency is complete for simple temporal con-
straint problems, cf. theorem 2.2.
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1. substitute every non convex constraint by its convex hull; call S’ the re-
sulting constraint problem;

2. compute the d—graph of S’; call it D;

. if D containts negative cycles, then return nil;

4. else, for each inequation z; — x; # r in S, do: if the label from z; to x;
in D is d and that from z; to z; in D is —d, then return nil; else return
true.

w

In order to prove that this algorithm is sound and complete, we need the
following lemma; if S is a simple temporal constraint augmented with disjunc-
tions of inequations, let’s call relazation of S, writing conv(S), the constraint
problem obtained by replacing each constraint which is a non convex interval
by its convex hull.

LEMMA 2.4. A simple temporal constraint problem S augmented with disjunc-
tions of inequations and strict inequalities is consistent if the distance graph of
conv(S) does not have negative cycles and conv(S) does not entail x; —x; # d
whenever x; — x; = d is among the constraints of S.

Proor. Cf. [22] pg. 1464.

THEOREM 2.7. If the input S is consistent then the algorithm sketched above
detects it, otherwise it returns inconsistency; it runs in O(n® + k) time, where
n is the number of variables and k is that of inequations.

Proor. Cf. [22] pg. 1465.

The following algorithm finds a solution, if it exists, taking as input a STCP
S augmented with disjunctions of inequations and inequalities; if it does not
exists, then it returns nil:

1. check the consistency of S by means of the previous algorithm; if it is not
consistent, then exit and return nil;

2. compute m(conv(S));

3. add to m(conv(S)) the input inequations z; — x; # d such that d is a
boundary of the constraint of m(conv(S)) on (z;,x;); call S” the resulting
constraint problem;

4. compute m(S");

5. add to m(S") the input inequations z; — x; # d such that d is not a
boundary of the constraint of m(conv(S)) on (x;,z;); call M the resulting
constraint problem,;

6. for each left-open interval (label of the graph) bounded from the left by b,
replace it with the left—closed interval bounded from the left by b+ (5/(n*+
1)), where 0 is so defined:

— min (§;;) if at least one interval has either finite bounds or the lower
bound is finite and the interval is not convex;
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— any finite number otherwise;

i,j=1,...,n, ¢ # j, and d;; is the lenght of the first convex subinterval of
the possibly non convex intervals of M; call M’ the resulting constraint;
7. omit all the non convex inequations from M'; call M" the minimal con-
straint problem of the constraint problem so obtained;
8. compute a solution by means of algorithm in table 4.

THEOREM 2.8. The previous algorithm is sound and complete; it runs in O(n>+
k) time.

PROOF. Similar to that of theorem 2.7.

The General Temporal Constraint Problem Since theorem 2.1, different
strategies to approach the general problem have been proposed. The main
approaches can be so classified:

i. splitting the TCP into simple temporal constraint problems tractable in
polynomial time;
#. backtracking search tecniques®®;
i15. local consistency pruning algorithms: path—consistency, 5—consistency etc.

i. Splitting

A constraint in a TCP is a disjunction of simple temporal constraint prob-
lems; selecting a disjunct from each constraint of TCP, we get a single STCP
that can be solved by means of one of the appropriate algorithm given above,
depending on the kind of simple temporal constraints we choose to deal with.
Let’s call labeling a selection of one disjunct from each constraint: so there is
a solution of the given TCP iff there exists a labeling whose associated STCP
is consistent (any solution of the given TCP is a solution of at least one of the
STCPs generated by means of labelings and a solution of any of these STCPs is
a solution of the given TCP). Moreover, by definition, it is immediate to prove
that the minimal network of a given TCP is the union of M;, the minimal net-
works of the STCPs given by means of all the possible labelings of TCP. The
algorithm given above can be improved by a backtracking search.
i15. Path—consistency and its improvements

The path-consistency algorithm?' gives the minimal constraint problem
equivalent to the given one if we deal with STCPs or STCPs<, as we saw in
proposition 2.2. In the general case, this does not hold: take, for example,
the constraint problem on three variables, x, y, z, and temporal constraints
Cy =10,1]U[10,20], Cyy = [10,20], C,, = [0, 20] U [40], C,. = [25, 50].

As Schwalb and Dechter observe in [45], path—consistency is achieved by
means of a relaxation operation, namely Cj; ¢ C;; N (Cix @ Cr;) which may
increase the number of intervals of the associated constraint problem; this
20 Cf. [29].
2L Cf. table 2: for improved versions of this algorithm, see section 6 of [13].
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means that the number of intervals in the resultant path—consistent TCP may
be exponential in the number of intervals per constraint in the input problem:;
this is known in the literature as the fragmentation problem ([45]).

In [45], they propose an algorithm, called ULT, that, used before performing
path—consistency, can reduce the number of intervals; it relies on the fact that
path—consistency is enough to gain consistency for STCPs or STCPs<.

The key-idea is quite simple: a generic metric constraint P! is expressed as
a disjunction of intervals I; U. . .UI,; the lowest and the greatest extreme points
among those of these intervals are selected in order to define a STCP called
P2; path—consistency algorithms can be applied to this constraint problem to
get its equivalent minimal constraint problem P? in time O(n®R?), where n is
the number of variables and R is the range of the constraints??. Then a con-
straint problem P? equivalent to P! is obtained intersecting the corresponding
constraints of P! and of P3.

Algorithm ULT runs in O(n®ek + €?k?) time, where n is the number of
variables, e is the number of edges and k is the maximal number of intervals
in each constraint.

They call a constraint C;; redundant-prone if, after running ULT, the re-
sultant constraint C?j is not path—consistent yet. As they prove, if C’fj =
Nk (C7,©CF)), then CF; is redundant-prone; after applying ULT to a constraint
problem Pj, one can check if this condition is fulfilled in order to remove some
constraints which are not path—consistent yet. In a subsequent paper, [46], they
improve ULT, introducing a new algorithm, called LPC, and some of its vari-
ants to better approximate path—consistency simply modifying the intersection
operation.

DEFINITION 2.4. IfT := [U...UIl, and S := J1U...UJ,, are two constraints,

!

their loose intersection, T ol S, is the set of intervals {L1, ..., Ly} so defined:
for every i :=1,...,n, L; = [l;,u;] where l; and u; are respectively the lower
and upper bound of the interval set I; N S.

!

REMARK 2.1. Since #(T; ol S) < #Tyj, the number of intervals of T;; is
!

not increased during the relazation T;; ol (Tir, © Tij)-

By definition 2.4, it is always the case that

loose
1}j ns - 1}j n s - ij
and so, in particular, it is true when S = Ty, © Ty;.
The operation of loose intersection is not commutative: for instance, if T =
loose
{[0,2],[1,4]} and S := {[0,3]}, then T N S is the set {[0,2],[1,3]}, while

loose

S N T is the set {[0,3]}. However, contrary to what it is remarked in [46],

22 The range of the constraints is the difference between the lowest and the highest numbers
specified, [13].
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. input P!

P3 « P!

. repeat

Pl « p3

compute P?, P3.

. until

3 iaj (123 = @)

or Vi, j #17; = #T;

O U W

7.1f
8. then return “inconsistent”
9. else return P3

TABLE 5. LPT algorithm

loose loose
it may be that T N S =T N S; take for instance S = {[0,2]} and T =

loose

l l
{[1,3]}; then TN S ={[1,2]} and so it is S N T.

Replacing the intersection operation with the loose intersection operation,
the fragmentation problem disappears. A sketch of the algorithm LPC is given
in table 5:

— P? is obtained from P' by T7; := Ny (Tj, © Ty;);
— P? is derived from P2 by T3 := Tk loF‘lse TZ.
ij ij ij

As P? is, by construction, equivalent to P' (cf. lemma 2.2), and the loose
intersection operation does not introduce new solutions and preserves old ones,
we get the following lemma.

LEMMA 2.5. The input and the output constraint problem of LPT are equiva-
lent; moreover every iteration of this algorithm removes at least one interval
from some of the constraints.

ProOOF. The first claim follows immediately from the previous remark. Since
step 6 of LPT, if this algorithm does not remove any constraint then it stops.

THEOREM 2.9. Algorithm LPT takes a time in O(n3k%e), where n is the num-
ber of variables, e is the number of constraints and k is the mazimal number
of intervals in each constraint.

In [46] they refine also algorithms to approximate path—consistency, simply
substituting intersection by loose intersection.

If LPT and ULT are not able to find a solution, they are useful when
propagating constraints during backtracking search or before starting search:
their effectiveness lays in the fact that they reduce the number of intervals in
the given constraints, otherwise they stop.
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2.2. Allen’s Interval Algebra

2.2.1. Introduction to Allen’s interval algebra In 1983 Allen’s article on Tempo-
ral Reasoning appeared under the self-explanatory title Maintaining Knowl-
edge about Temporal Intervals: he describes a temporal representation that
takes the notion of temporal interval as primitive; constraints are therefore
represented as relations holding between intervals.

[...] This representation is designed explicitly to deal with the problem
that much of our temporal knowledge is relative, and hence cannot be
described by a date (or even a fuzzy date). [...]

Metric TCPs are useful to express metric information; but a statement like
“Event E1 and event E2 are disjoint” cannot be expressed by binary metric
constraints. Whenever temporal information reduces to qualitative relations
between the intervals at which events occur, like “Alessandra was away when
Eyal defended his thesis” or “After defending our thesis, we will go to London
on holidays”, most of applications adopt Allen’s interval algebra.

As Allen further arguments in his paper [1], his framework is particularly
designed for these reasons:

— it allows “significant imprecision”: much temporal knowledge is relative
and sometimes it has no relation to absolute dates;

— “uncertainty of information” can be represented by means of disjunctions
of relations between two intervals;

— since the qualitative representation of the constraints in this apparatus,
one has a certain freedom when modeling knowledge and can choose the
grain of reasoning she or he prefers, for instance expressing time in terms
of days, weeks or business—days;

— the reasoning machinery allows default reasoning of the type “If I parked
my car in lot A this morning, then it should still be there now”.

But Allen’s framework has gained its popularity because it represents a
good balance between expressiveness and computational efficiency: it allows
disjunctive information but only between pairs of intervals.

[The temporal representation of Allen] does not insist that all events
occur in a known fixed order [...] and it allows disjunctive knowledge,
such as that event A occurred either before or after event B [...].

A first order language In Allen’s framework, variables range over real or
rational valued intervals. Constraints are specified as unions of atomic (basic)
relations, which are pairwise disjoint: before, starts, during, overlaps, meets,
finishes and their converse relations, after, started — by, includes, overlapped — by,
met — by, finished — by plus the equality relation =. This way we are not com-
mitted with a “particular” representation over a set, that is over rational or
real intervals.
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i beforej
jafter i

i meets
j met-by i

i durin
Jincludesi

i startsj

j started-by i

i finishes|

j finished-by i

ioverlapsj
j overlapped-by i

FIGURE 2. Allen relations.

The class of all possible unions of the atomic relations forms a boolean
algebra; that is Allen’s interval algebra, IA: there are 13 atomic relations and
so 213 relations in TA.

Allen introduced further operations in his framework??; these operations
can be generally defined among binary relations over a universe U in the way
stated below.

DEFINITION 2.5. Given two binary relations R and S on the same universe U,
their composition, written as R ® S, is the set of all (x,y) so that there exists
z satisfying this condition: (z,z) € R and (z,y) € S.

The converse of a binary relation R is the set of all (z,y) such that (y,z) € R;
this new relation is written as R™'.

Since IA is closed under these operations and contains the equality relation,
it is a relation algebra. In [35], Peter B. Ladkin and Alexander Reinefeld
describe the framework from Allen as a finite relation algebra?* this way:

1. the universe U is a set of atomic relations which correspond to the 13
pairwise disjoint basic relations given by Allen;

2. the operations among them are the binary of set union (which corresponds
to the logical operator of disjunction V), intersection (corresponding to A)
and composition and the unary operation of converse.

A binary constraint on the variables z; and z; can be extensionally charac-
terized as a (finite) union of the atomic relations, that is
23 Cf. [1].

24 For a complete description, cf. [33]. In [34] they state that A does not have a represen-
tation over a finite set25.
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B,uU...UB,

in which By,...,B, are n < 13 of the atomic relations, once it is stated if
these relations are represented on rational or real numbers. But it is usually
intensionally described in the following two ways, without committing to any
particular representation over any set:

By V...V B, as a logic formula,

{Bi,...,By,} in a set theoretic fashion.

We will stick to the second expression, feeling free to choose the other one when
useful.

Now we are able to present the temporal constraint problems of Allen in a
first order logic framework.

DEFINITION 2.6. A first order language with equality is given, let’s call it L, ; it
has twelve relation symbols corresponding to the basic Allen relations different
from the equality relation; these are the only non logical symbols. We have:

1. a finite number of variables ranging over real or rational valued intervals;
2. a finite number of binary constraint relations.

NP-—completeness of IA Checking consistency for TA constraint problems
turned out to be NP-hard; to prove this, Vilain and Kautz2® reduce the 3—
clause satisfiabiliy problem to the problem of determining consistency in IA,
constructing a “computationally trivial mapping between a formula in 3-SAT
form and an equivalent encoding of the formula in the interval algebra”.

THEOREM 2.10. Determining the consistency of a subset of IA is NP-hard.

Proor.  For every literal A and its negation —A in the formula, let’s de-
fine a couple of intervals ¢4 and iNegA. These intervals are then related to
a “truth—determining” interval called middle: intervals that are before middle
correspond to false literals and those falling after correspond to true ones. The
original formula can be so encoded, in polynomial time, in TA: for each clause
PVQV R, intervals are created so that at most two of them can be before middle
(which makes them false) and the other ones can fall after middle (which makes
them true). Since the original formula has a model iff the interval encoding is
satisfiable and 3-SAT is an NP—complete problem, the assertion follows.

2.2.2. Path—consistency and IA In his paper [1], Allen introduces path—consistency
to deal with TA constraint problems; he motivates his choice as follows.

[...] [ Path—consistency | is an attempt to characterize the inferences
about time that appear to be made automatically or effortlessly during
a dialogue, story comprehension, or simple problem—solving.

26 Cf. [39].
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The path-consitency algorithm, as we will see later?”, “propagates” re-
lations between intervals, by means of composition, in search of a minimal
constraint problem equivalent to the given one; this means that, whenever new
relations between two intervals are introduced in the problem, new constraints
are added computing the composition of these new relations and so on. Intu-
itively, the process keeps on in the way described below ([1]).

When a new interval relation is entered, all concequences are com-
puted. [...] The new fact adds a constraint about how its two intervals
could be related, which may in turn introduces new constraints between
other intervals through the transitivity rules®® governing the temporal
relationships. For instance, if the fact that i during j is added, and
j before k, then it is inferred that ¢ before k. This new fact is added
to the network?® in an identical fashion, possibly introducing further
constraints on the relationship between other intervals.

Allen’s original path—consistency algorithm represents constraints as queues;
we will not use this representation, as we will see on page 188.

Soundness of the path—consistency algorithm for IA problems Arc—
consistency is computationally cheap, unfortunately it is not a good approx-
imation to consistency in the case of IA problems, as stated in [33]. This is
indeed the case of path—consistency, which was used for the first time by Allen3°
to approximate the set of all solutions; moreover, it sufficient to guarantee con-
sistency of problems on some particular important subalgebras of IA3!, but it
is not enough to guarantee the consistency of IA problems®?.

However there are IA constraint problems which are not path—consistent,
which means that path—consistency is a good candidate as a pruning technique
in this framework: for instance, consider the constraint problem on three vari-
ables, z, y and z, so that the constraint on (z,z) is before V after , it is

before V meets on (z,y) and it is before V meets on (y,z); since
(before V meets) @ (before V meets) =
(before @ before) V (before © meets) V (meets © before) V
(meets © meets) =
before

this constraint problem is not path—consistent (so it is not consistent).

As seen in this case, by means of the composition table and the distributivity
of ® wrt N (V), one can easily compute the composition between any two of
the 2'3 Allen relations; however use of these distributive laws is very time—
consuming and some techniques have been explored to speed up composition,

2T Cf. table 2.

28 E.g.: by computing the composition of these new relations.
29 E.g.: the constraint problem.

30 ¢Cf. [1].

31 Cf. p. 168.

32 Cf. [1].
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as we will see later. Computing composition is the key step in the process of
path—consistency reduction of a TCP, because of the subsequent statement.

PROPOSITION 2.3. A constraint problem is path—consistent iff the following
condition holds: for any of its constraints B;;, for any variable xy, B;; C
Bij, ® By;.

PROOF. We saw that path—consistency is equivalent to 3—consistency>?; that
is any consistent instantiation of two variables z; and z; can be extended to a
consistent instantiation of {z;,zy,z;}, for any z; of TCP. In our framework®!
this means exactly that for any (r;,r;) € Byj, for any k, there is 7, such that
(ri,mr) € Bix and (rg,rj) € Byj;; by definition of composition, this amounts to
saying that B;; C B, ©® By;.

From the previous proposition we get immediately the following result.

COROLLARY 2.11. Searching a path—consistent CP amounts to the search for
the greatest fixed point of the following set of equations:
{ Xij C Bjj
Xij = Bij N Ng<n Bik © Brj
where B;j is the constraint on (z;,x;), for everyi,j.

In [36], Ladkin and Reinefeld show how to represent an IA problem as an
n X n—matrix; first they reduce a given TCP to an equivalent one such that:

a) for each couple of the n variables (z;,2;), there exists and is unique the
constraint on them;
b) each one of the n constraints Cj; is a subset of the identity relation.

How do we get this result? For every (z;,x;) such that there is a constraint
on it, let’s intersect all the constraints on this couple; whenever x; = z;, let’s
intersect all these constraints with the equality relation too; this process leads
to a TCP equivalent to the original one. If there are no constraints on (z;,z;),
z; # xj, just choose any (a;,a;) in U x U and state it as a new constraint
between these two variables: if it happens that z; = x;, let’s choose a; = a;;
this way we get a TCP equivalent to the original one and satisfying conditions
a and b.

The constraint matrix M of a given TCP?? is just the n X n matrix whose
entry M;; is the constraint on (z;,z;) of the equivalent TCP we get the way
described above.

PROPOSITION 2.4. Searching a path—consistent CP amounts to the search for
the greatest fixed point of the following set of equations:
{ XijC Mi;
Xij = Mij N Ny<p Mir © My,
where M is the constraint matriz.
33 See proposition 1.1.

34 Once we have chosen to represent the Allen relations either on rational or real numbers.
35 Cf. p. 169.
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LRC(C)

1. function LRC (var M: matrix; i,j integer): boolean

2. N&M

3 for each Iy € M;; N € do

4. Mij «— I

5. if LRPC(M) then

6 if M;; is the last one or LRC (M, next(i),next(j)) then
7 return true

8 M« N

9

return false

TABLE 6. LRC algorithm to check consistency

Proor. It follows immediately from corollary 2.11.

The previous proposition proves the soundness of the algorithm given in table
2 to reduce the given TCP to an equivalent path—consistent one.

As Allen’s original algorithm, LRPC takes a time in O(n®), because of
compositions, that is the relazation M < M?. Some improvements to speed
up composition are presented in the following paragraph.

Further Ladkin and Reinefeld introduce an algorithm to check consistency
of a TCP, which calls LRPC as a subroutine: see table 6. We propose to use
any subset £ of IA, from which the constraints [, can be chosen, this way:

1. for &, path—consistency is sufficient to guarantee consistency,

2. intersecting an element of £ with anyone of the Allen relations yields () or
an element of £: that is, if B € £ and R is anyone of the Allen relations,
then BNRe€E.

PROPOSITION 2.5. The algorithm in table 6 is sound whenever £ is a subset
of IA satisfying conditions 1 and 2 above.

PRoOOF. Immediate because of conditions 1 and 2.

REMARK 2.2. Ladkin and Reinefeld suggest £ be the set of atomic relations; the
algorithm runs correctly because path—consistency is complete in this case>® and
the intersection of any atomic relation with anyone of the 213 Allen relations
1s still an atom.

How to speed path—consistency reduction As already observed, the
computation of composition is the main cause for the complexity of path—
consistency algorithms. A CP with n variables has n - (n — 1)/2 possible
constraints; this means that the number of compositions and intersections to

36 Cf. [50].
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perform is (n — 2) - n - (n — 1)/2. Moreover, path—consistency is an iterative
process, that usually requires more than one iteration to stabilize. That is why
a certain number of techniques to speed up the triangle operation

Mij — Mij n (Mzk © Mkj)

have been developed.
How to compute compositions

To speed up composition, one can compute compositions of non atomic rela-
tions by looking up the composition table of atomic relations (Allen’s method);
if there is enough memory available, the full 2'% x 2!3 relation table can be
stored and accessed efficiently; if this is not feasible, one could split it in four
(Hogge’s method, cf. [35].) or two tables.

Avoiding useless operations

The path—consistency algorithm in table 2 recomputes all labels in every
iteration; it would be enough to recompute only the constraints which changed
in the previous iteration. Avoiding this step can be done implementing a hash-
ing table which holds all previously computed compositions: before performing
a new composition, one simply looks in this table and sees if this computation
is available: in this case, the result is taken without performing any new com-
putation; otherwise one can use one of the previous method to compute the
new composition®7.

In [56] a series of heuristics to skip useless computations is presented: for
instance, if M;j, or My; is the equality relation, the computation can be avoided;
if two constraints include before and after, or after and before or during and
includes, then the resulting composition is =; if the computation to perform
would produce a larger constraint than the input one, it can be avoided because
it would not constraint its couple of variables further.

2.2.3. Tractable subalgebras of IA Allen’s algebra IA contains 2'3 = 8192 re-
lations, this means that there are 2892 subsets in IA and so their complete
classification is probably not feasible. So research has focused on identifying
first tractable and recently mazimal tractable subalgebras of TA, that is alge-
bras which cannot be extended further by means of any relation without loosing
tractability.

Some of the most important subalgebras of IA are obtained “translating”
qualitative point relations or metric ones into Allen relations; this means that
first we will have to introduce other languages to describe some set of qualitative
or quantitative relations between points and then we will translate them in
subalgebras of TA.

An exaustive search by computers is a key technique to prove the maximality
of the algebras that up to now have been discovered; this machine case analysis
was firstly introduced by B. Nebel and H.J. Biirckert[43].A different approach

37 Cf. [34].
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to this problem, in a geometric and not a logic apparatus, is given in Ligozat’s
work ([38],[37]).

The point algebra The point algebra (PA) has been one of the first important
structures to be studied in the literature of Temporal Constraint Programming:
it was introduced by Vilain and Kautz®® and further research was carried on
by van Beek.

PA constraint problems can be defined as follows:

1. variables range over the set of rational (real) numbers and they stand for
time points;
2. constraints are disjunctions of binary relations belonging to the set

{<7 S7:7 >7 27#7?}

where 7 := {<,=,>1}3% these are called the basic relations.

We will call Ly, the language individuated by these relations to distinguish
it from L,.

The operations of intersection, composition and converse between PA rela-
tions are computed by means of the basic ones?’.

A restricted set of Allen relations, namely SA, can be translated into PA
relations and vice versa, without loss of information*'. In SA constraint prob-
lems, the constraints between two intervals are only those which can be trans-
lated into conjunctions of PA relations among the endpoints of these two in-
tervals. A lot of applications of IA problems in the literature actually use only
SA relations: for instance, in representing temporal information in medical ex-
pert systems, Hamlet and Hunter [26] adopt only relations of SA except the
disjointness relation. In fact the expressive power of SA is limited by the fact
that the “disjointness” of intervals cannot be translated into PA constraints;
take for instance the IA relation {before, after}, which requires disjunction of
conjunctions of PA relations among endpoints.

However SA turns out to be expressive enough for many practical tasks
and can be used to approximate solutions for IA constraint problems. Let’s
examine PA.

In [53], van Beek shows how to transform constraints involving only the
relations <, <, =, >, > into simple temporal metric constraints (STCs) this way:

zi=z; - 0<z;—2; <0
z;<z; - 0<z;—1; <00
r;<xzy; > —€e<rj—2x; <00
38 Cf. [39)].
39 We use ? when we do not have any explicitly stated constraint between two variables.

40 ¢f. [52].
41 cf. [52].
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Note that the positive real number € allows to transform the PA problem
in one using only <,=,>, ruling out <; for instance we could choose ¢ =
(1/(n? + 1)), where n is the number of variables of the constraint problem.

This transformation shows that: if the set of allowed relations is a subset of
{<,=, >}, then there are not negative cycles,*? therefore one can use Dijkstra’s
algorithm for each of the n variables to find a consistent instantiation of the
constraint problem; if the set of allowed relations include also < or >, then
there might be negative cycles and so one can use Floyd-Warshall’s algorithm
which takes a time in O(n?®) to produce a consistent instantiation.*3

The constraint relation z; # «; cannot be transformed into STCs, because
we need disjunction to express it: in fact it is (logically) equivalent to z; <
zjVz; < x; and so it is transformed into —e < zj—2; < ooV —e < z;—x; < 00.

This is only one possible technique to solve PA constraints, going back
to Dechter, Meiri and Pearl’s paper [13]; another one is that given by Ladkin
and Maddux** whose algorithm to find a consistent instantiation runs in O(n?)
time, reducing the problem to a path—consistent one; in [53], van Beek proposes
an algorithm, called CSPAN, which runs in O(n?) time.

This algorithm applies topological sort; this requires we rule out <, =, #
and >, dealing only with < or >. The input of CSPAN is an adjacency matrix
C, of which the elements C;; are the constraint relations\labels < 4,j > of
the associated d—graph; first he “condences” the given PA into an equivalent
one substituting the verteces x; with the classes S; of all vertices which are
“constrained” to be equal®® and the new constraints Cs, s; are the intersections
Nves; we s C'y . While creating these equivalence classes, the algorithm detects
inconsistencies, if any; first replacing < with < and > with > (this process
velds to an equivalent TCP because = and @ have already been removed),
then performing topological sort, he gets a solution iff the original TCP had
one. The relation # is handled implicilty: because of the previous steps of the
algorithm, there are only distinct time points. These facts yeld the following
result; for a more detailed proof of soundness, see [53].

PROPOSITION 2.6. The algorithm in table 7 is sound and complete: that is,
given as input a PA constraint problem which is consistent, it produces a solu-
tion; otherwise it detects inconsistency. It takes a time in O(n?).

PRrROOF. Because Tarjan’s algorithm runs in O(n?) time and so do the tasks of
condensing the constraints and of topoligical sort, the given algorithm takes a
time in O(n?).

Further van Beek gives an algorithm, called FEASIBLE (cf. table 8), able to
find all solutions computing the minimal constraint problem equivalent to the

42 Cf. [12].

43 ¢cf. [12].

44 cf. [33].

45 Producing these equivalence classes is proved to be equivalent to indentifying the strongly
connected components of a graph, as van Beek shows in [52]; one may use Tarjan’s algo-
rithm to perform the last task because this algorithm takes a time in O(n?).
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CSPAN(C)
1. Tarjan’s algorithm to get the strongly connected components Sy, ..., Sy,
2. fori,j«1,....m
do Csisj A {<):>>}
for each 2z € S;, y € S
do Csigj — CSiSJ- NCry

if Cs,5, =0
. then return (“Inconsistent network”)
8. Replace any remaining {<,=} with {<}
9. Topological sort using only the constraints (edges) involving {<}

ootk W

TABLE 7. CSPAN algorithm to find a consistent instantiation for PA

FEASIBLE(C)
1. PATH-CONSISTENCY(C)
2. FIND-SUBGRAPHS(C)

FIND-SUBGRAPHS(C)
1. for each (z,y) st y € adjx(z) do

2. S (adj>(z) Nadj>(y))
3. T ¢ (adj<(z)Nadj<(y))
4. foreachse S, teT do
5. Cst — {<}
6. Cts — {>}

TABLE 8. FEASIBLE algorithm to find all consistent instantiations of PA

input one, which runs in O(maz(mn?,n?)), where n is the number of vertices
of the graph and m is the number of pairs of points which are in the relation #.
So first this algorithm prunes the search space by means of path—consistency*%
and then it looks for what van Beek calls “the forbidden subgraph” (cf. [52],
[53])-

REMARK 2.3. As we have previously observed, path—consistency is complete
for constraints of atomic relations*”; further, it has been proved that it is also
complete for PA constraints problems without #, since they can be translated
into STCPs. The importance of the algorithm FEASIBLE lies in this fact:
path—consistency is not sufficient for finding the minimal constraint problem if
PA constraints involve #3.

As van Beek suggests in [53], one can solve an SA problem translating it into
PA ones, solving them and then taking the union of solutions; the algorithm
performs well if the number of points said to be unequal is minimal.

46 We can use the algorithm given in table 2, now relations being PA ones.
a7 cf. 2.2.
48 [54].
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The NB algebra In [43], Nebel and Biirckert have singled out the maximal
subalgebra of TA containing all Allen basic relations, called NB, of which the
satisfiability can be decided in polynomial time.

A time interval is defined to be a formula as Bz;x;, where B stays for one
of the basic Allen relations; as usual, we will write it as z;Bz;. A formula
(positive clause) of the form z;B1z; V ... V x;Bpz; is called interval formula;
we will briefly write it as «;{B1,...,Bn}z;.

In any interval-interpretation I, briefly I-interpretation, the B; are always
interpreted as Allen relations, while I(x;) and I(x;) are interpreted as real
intervals.

Another first—order language with equality, namely the language L, :=<=
, <75 >, <R has to be introduced to define NB.

An R-interpretation of the formulae of this language interprets r; as a real
number and it always assigns to < the usual linear order relation.

The point form of an interval formula ¢ := z;{B1...By}z; is the set of
clauses € in L, so that any I-model of ¢ can be translated into an R—model of
this set 6, by translating the Allen relations into end—point relations involving
=, < and their negation, and vice versa. For instance x; begins z; gets {b,;, =
be;ser; < €y, # emj}, where b, represents the beginning point and e, the
ending point of z; that is, if Z(x) = a, then the corresponding R-interpretation
will have to interpret b, as the beginning point of a and e, as the ending one.

In the following we are only concerned with clauses whose literals do not
allow the negation of <; the ORD-point form of an interval formula ¢ =
zi{B1 ... By}z;, written as m(p), is the point form of ¢ so that its compound
clauses are so restricted. For every interval formula we can find its ORD—point
form, since we can equivalently*® reduce r; £ r;j to {r; < r;,r; #ri}.

PROPOSITION 2.7. Let © be a set of interval formulae; © is I-satisfiable iff
m(0O) is R—satisfiable.
PRrOOF. Immediate by definition.

We select a subclass of these closed clauses to define NB: we consider the subset
NB of Allen relations st 7(NB) has only ORD—point form sets whose clauses
contain at most one positive literal; so these clauses are called ORD Horn
clauses.

Not all of the Allen relations can be translated this way; for instance

x1{overlaps, overlapped_by, meets, met_by}zs

is translated as

49 Equivalently with respect to R-interpretations.
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{(bey < by, V bay <bay),

(ez, <€z, V o€z, <egy),
(bml # bitz):
(eﬂh 7é eitz):
(ez, # bzs),

Let’s now consider the theory ORD which axiomatizes = as a congruence
relation with respect to < and < as a partial order on the equivalence classes,
that is:

Ver =x

Vey(zr=yANy=z — z=y)
Veyz(z=yANy=z — = =2)
Vey(x=y = 2 <y)
Vey(x=y - y<a)

Vex <z

Vezy(z<yAy<z — z=y)
Veyz(z<yANy<z — z<2)

PROPOSITION 2.8. A finite set I' of ORD—Horn clauses is R-satisfiable iff
ORD UT is satisfiable.

Proor. If T is R-satisfiable, then R :=< R, <> is a model of I" and so of
ORDUT.
Let’s suppose that U = ORDUT', which implies that = is a congruence relation
and so that U/ == T; since U/ = is logically equivalent to U, U/ = is a model
of ORD U T; but every partially ordered set can be extended to a linearly
ordered one which is equivalent to it and can be embedded into R, it follows
that R satisfies I

Let’s denote with ORDr the skolemization of ORD obtained by means of
the endpoints occurring in I'*°; as a corollary of Herbrand theorem we get the
following proposition.

ProrosiTION 2.9. ORD UT is satisfiable iff ORDr UT is satisfiable.

Now we can give a sketch of the proof of the completeness of path—consistency
for determining the consistency of NB constraint problems®!.

LEMMA 2.6. Let © be a path—consistent set of interval formulae whose relations
are in N B; © is [-satisfiable iff the empty relation is not among those occurring

in O,

PROOF. A case analysis of the possible non-unit clauses in 7(0) U ORD(e)
shows that no new units can be derived by positive unit resolution, because
of path—consistency. By refutation completeness of positive unit resolution we
get our result.

50 If I is finite, then ORDr is finite, because there are not function symbols.
51 For the full proof, see [43].
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1. Input: a set N of NB relations.

Output: a solution if the problem is consistent; nil otherwise.

2. Reduce the given problem to a path—consistent one; if it is not consistent,
then return nil; otherwise, let M be the reduced path—consistent set of
NB relations.

3. Execute CSPAN (cf. table 7) on a set of PA—constraints in m (M) U D,
where 7 (M) is the set of unary clauses in 7 (M), wo (M) that of binary ones
(the soundness of this algorithm also relies on the fact (M) = m (M) U
m2(M)) and D is a set of #-relations consisting of a #-disjunct for each
clause in 72 (M). Let s be the solution computed by CSPAN.

4. Assigning to each interval endpoint of M a number consistent with s, a
solution for M (therefore for N) is assembled.

TABLE 9. Procedure to get a solution for NB—problems

LEMMA 2.7. NB is a subalgebra of IA.

Proor. The only difficulty lies in showing the closure wrt composition.
From the two previous lemmas the result below immediatly follows.

THEOREM 2.12. The satisfiability of a set of NB relations can be decided by
means of path—consistency.

COROLLARY 2.13. The satisfiability of a (finite) subset of NB relations can be
decided in polynomial time; the same claim holds for any subalgebra of NB.

PROOF. As path—consistency algorithms run in O(n®) and theorem 2.12,
our claim trivially follows.

REMARK 2.4. Since SA is a subalgebra of IA and is a subset of NB, the pre-
vious result applies to SA constraint problems as well.

A method for finding a solution for NB constraint problems is given in [22];
if the given constraint problem is already path—consistent, it takes O(n?) time,
where n is the number of variables in the problem; otherwise it takes a a time
in O(n?); this procedure is given in table 9.

So far, we have seen that NB is indeed a subalgebra of TA, but we have still
to see that it is the maximal one including all Allen atoms; an important tool
to prove the maximality of NB is given by the concept of “closure in TA”.

DEFINITION 2.7. Let S be a subset of relations of IA; Cra(S) is the minimal
subalgebra of IA containing S; it is called the IA—closure of S.%?

52 This means that it is the least subset of IA containing S and that is closed under converse,
intersection and composition.
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Closure can be computed using the utility aclose. The pivotal role played
by the closure operator is made clear by this result.

PROPOSITION 2.10. Let S be a subset of relations of IA; checking the satisfia-
bility of Cra(S) is either a polynomial or an NP—complete problem iff respec-
tively that of S is.

Proor. Cf. [43].

THEOREM 2.14. NB is the mazimal subalgebra of NB containing all of the
Allen atoms and whose consistency can be decided in polynomial time.

PROOF. NB is a subalgebra of IA®?. Let S C IA strictly contain all NB
relations; running the utility aclose, it turns out that its closure includes at
least one of two relations for which checking satisfiability is NP—complete®*; by
proposition 2.10, it follows that the satisfiability prolem for S is NV P—complete
as well.

New maximal subalgebras A line of research has been open in finding other
subalgebras of TA, incomparable with NB, but whose consistency can be still
decided in polynomial time.
Intractable subsets

The main subsets of Allen relations used to prove intractability of some
subalgebras of TA are those given in the following definition.

DEFINITION 2.8. Let’s call A the set given by the following relations:
{before, includes, overlaps, meets, finished — by}
{before, during, overlaps, meets, starts}
We can now define the following sets of Allen relations.
N1 := AU {during, includes, overlapped — by, started — by, finishes}
Ny := A U {includes, overlaps, overlapped — by, started — by, finished — by}
N3 := {before, after} U {overlaps, overlapped — by}
Ny := {before, after} U {overlaps, overlapped — by, meets, met — by}
Ns := {meets, met — by} U {before, after, starts, started — by, finishes,
finished — by}

The fact that they are intractable is proved in [16].
Tractable subalgebras
Let b one of Allen atoms except meets and met — by. Let r be one of the
following compound relations.
{before, includes , overlaps, meets, starts, finished — by}
{before, during, overlaps, meets, started — by, finished — by}
{before, during, overlaps, meets, starts, finishes}
{before, during, overlaps, meets, starts, finished — by}

53 Cf. lemma 2.7.
54 Cf. [43].
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SAT(A(r, b))

1. Redirect the arcs of C to get relations in A; (b) U A2 (r,b) U As(r,b)

2. Remove arcs whose labels are not in Ax(r,b) U Az(r,b); call C' the result
3. Find the strong componentsSC of C'37

4. for every arc e in C' whose relation does not contain = do

5. if e connects two nodes in some SC' then reject

6. accept

TABLE 10. FEASIBLE algorithm to find all consistent instantiations of PA

DEFINITION 2.9. A(r,b) is the set of all Allen relations v which satisfy the
following conditions.

{b,b=1} C ¢

phCr C{=}ur

{(plycr c{=pur!

r'C{=}

PROPOSITION 2.11. There are 20 distinct A(r,b) sets®® and all they are alge-
bras®® containing 2178 elements; furthermore each of them contains exactly 3
basic relations, namely b, b= and =.

PRrOOF. See [17].

Among these algebras there are four, namely A(r, before ), which contain the
relations =, before , { before , = }, after, { after, =}, { before, after };
these relations are needed to express the notion of sequentiality, useful to argue
about actions. The NB algebra does not contain the relation

{ before , after }

and so it cannot express the notion of sequentiality.

An algorithm to solve satisfiability for each A(r,b) is given in table 10; the
input constraint problem C is represented as a directed labeled graph where
the label on the arc (z,y) is r iff the constraint on (z,y) is the relation r. It
runs in time O(n?), where n is the number of interval variables: cf. [17].

We are not simply interested in tractable subalgebras of TA but in the
maximal ones.

PROPOSITION 2.12. Let b be either finishes or starts; then A(r,b) are mazi-
mal tractable algebras. All the other (20 — 8) ones are not tractable.

ProoOF. Running the utility atry, the minimal extensions of A(r,b) are gen-
erated adding a relation and computing the closure in IA of the new set; since
the closure of every set so generated is TA itself and deciding the satisfiability

55 Since A(r~1,b71) = A(r,b).
56 Tt is easily verified running the utility aclose.
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of TA is an NP—complete problem, by proposition 2.10 the first result follows.
The extensions of the other 12 algebras will be given further on.

There is another maximal tractable subalgebra of TA, namely A_, defined
below.

DEFINITION 2.10. A_ is the algebra that contains every relations which con-
tains = and the empty one.

That A— is an algebra can be easily verified by hand; it contains 4097 el-
ements. An easy algorithm to check its satisfiability is the following: if some
relation contains the empty one, then inconsistency; else it is satisfiable. Argu-
ing as with the other 8 maximal algebra, by means of the utility atry we get
the following result.

PROPOSITION 2.13. A— is a mazimal tractable algebra.

Notwithstanding its cardinality and the fact that it is a maximal tractable
subalgebra of TA, the expressive power of A_ is clearly too weak.

One of the most adopted techniques to prove consistencies of IA problems
is to split compound relations into relations from some algebra for which the
path—consistency algorithm is complete; it turns out that the path—consistency
algorithm is complete for all A(r,b) algebras and for A= too.

THEOREM 2.15. Let A(r,b) one of the algebras in definition 2.9; the path—
consistency algorithm decides satisfiability for A(r,b) and A—.

Proor. Cf. [17].
Tractable subalgebras via metric constraints In their paper [15], Drakengren
and Jonsson identify more tractable subalgebras of A via metric constraints
in the form of Horn disjunctive linear relations (DRLs), whose expressiveness
subsume that of the NB algebra.

In order to define these new algebras, first we need to introduce a new first
order language: it is an extension of L,,*® by means of a binary function symbol
+, whose intended interpretation is that of sum over rational\real numbers.

DEFINITION 2.11. A linear relation over a finite set of real-valued variables,

let’s say the set {x1,...,xp}, is an expression of the form (ayx; +ap) r (bix; +

bo), where a1, ap,b1,by are constant symbols (they stay for real numbers) and r

is either <, <, =, #, >, >. A disjunctive linear relation (DLR) over {z1,...,x,}
is a disjunction of one or more linear relations. A DLR is said to be Horn iff
“at most” one of its disjuncts is not of the form (a1x; + ao) # (biz; + bp).

PROPOSITION 2.14. There is a polynomial-time algorithm to decide the satis-
fiability of Horn DLRs.

Proor. Cf. [15] .

58 Cf. section 2.1.
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REMARK 2.5. Nevertheless this, the eight mazimal algebras presented in [17]
are not expressible as Horn DLRs.

Now let’s give the explicit transformation from interval relations to ending—
point relations as given in [15].

DEFINITION 2.12. Let’s suppose that b is one of the Allen basic relations, T
and J interval variables; then we can define a binary relation sprel(r) between
the starting points of I and J in the following way.
sprel(=) == «="
sprel(before) := “ <"
sprel(during) := “ >"
sprel(overlaps) := “ <"
sprel(meets) := <
sprel(starts) := “ =
sprel(fzmshes) = >N
sprel(r—1) := (sprel(r)) !

Similarly we can define a binary relation eprel(r) between the ending points
of I and J. In the case of a compound relation r := by V ...V b,, then
sprel(r) := sprel(by) V... Vsprel(b,) and eprel(r) := eprel(bi) V... Veprel(by,).
Furthermore sprel™(r) := sprel(r N { =, finishes, finished — by}) and symmet-
rically sprel™(r) := sprel(r N { =, starts, started — by}).

n [15], Drakengren and Jonsson use this transformation to transfer infor-
mation from interval relations to point relations and vice versa, maintaining
satisfiability: they define two new classes of subalgebras of TA, calling them
starting point and ending point algebra; then they present an algorithm which,
using the procedures for checking the satisfiability of Horn and PA DLRs, is
able to decide if these algebras are satisfiable or not in polynomial time.

They also identify 8 new subalgebras of TA, given in the definition below.

DEFINITION 2.13. Let’s define the following two relations.>®

rs := { after , during, overlapped — by, met — by, finishes}

re := {before, during, overlaps, meets, starts}

If b is one of the relations after, during, overlapped — by, then let’s define

S(b) as the set of relations r such that either one of the following holds.

{p,b '} Cr

{b} Cr CrsU{=, starts, started — by}

{b=1} Cr Crytu{=, starts, started — by}

r Cre{=, starts, started — by}

Symmetrically, E(b) is defined as the set of relations r satisfying the following
conditions.

59 Observe that rs contains all basic relations b such that whenever IbJ for interval variables
I and J, then I~ > J~ has to hold in any model and, symmetrically, r. is equivalent to
It < Jt holding in any model.
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{b,b='} Cr

{b} Cr CreU{= finishes, finished — by}
{b=1} Cr Cr;tU{=, finishes, finished — by}
r C r.{=, finishes, finished — by}

Let’s now define the set S* as made up of relations r satisfying the following
conditions.

{=, finishes, finished — by} C r

{finishes, finished — by} Cr CrsUr;!

{=, finishes} C r Cry U {starts, started — by}

{=, finished — by} C r C r; ' U {starts, started — by}

{finishes} Cr Cry

{finished — by} Cr Cr;t

{=} Cr C{=, starts, started — by}

r =

Symmetrically, replacing finishes by starts and so their inverses,
{=, starts, started — by} by {= , finishes, finished — by} and rs by r. we get
the subset E*.

The main results concerning these eight new sets are collected in this propo-
sition; for a proof, cf. [15].

PROPOSITION 2.15. S(b) and S* are starting point algebras; E(b) and E* are
ending point algebras.

The siz algebras S(b) and E(b) contain 2312 elements, while S* and E* con-
tain 1445 each; the basic relations contained in S(b) are =, r, r—1, starts
and started — by, while those contained in E(b) are =, r, r—1, finishes and
finished — by.

In all these algebras there are relations which are not expressible as HORN
DLRs.

The last fact is easily proved observing that the point relations induced by
Allen relations
{ before , after },
{ during , includes },
{ overlaps , overlapped_by ,}
{ after , finished_by },
{ before , starts },
are not Horn DLRs.
The first result allows using their algorithm in order to check satisfiability
for these eight new subalgebras of IA, so they are tractable algebras.
By running the utility atry, we see that these eight algebras are maximal
tractable subalgebras of TA.

PROPOSITION 2.16. The algebras S(b), E(b), S* and E* are mazimal tractable.
The classification In [16], Drakengren and Jonsson present a more general clas-

sification of maximal tractable subclasses of Allen’s algebra.
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Let R a set equipped with an operator Cr : P(R) — P(R); let’s suppose
that for each R C R a problem of satisfiability SAT(R;R) can be defined
satisfying the following;:

1. if SAT(C(R); R) is NP—complete, then SAT(R;R) is NP—complete;

2. if SAT(R; R) is NP—complete, then SAT(S;R) is NP-complete for any S
containing R;

3. if SAT(R;R) is polynomial, then SAT(R;R) is polynomial for all S C R.

Let Rp, Ryp subsets of P(R) and B C R such that SAT(S;R) is poly-
nomial for each S € Rp and NP—complete for each S € Ryp; furthermore
B CS, for each S € Rp.

THEOREM 2.16. If each subset T of R of cardinality less than that of Rp
satisfies

either that T C S for some S € Rp,
or that S C Cr(T' U B), for some S € Ryp,

then, for any S containing B, SAT(S;R) is polynomial iff S is a subset of
some set in Rp, otherwise it is NP-complete.

Proor. Cf. [16], pg. 1468.

Allen’s algebra satisfies the hypotheses of this theorem. Since the satisfiability
problem for Allen’s algebra is NP-hard and the set B of basic relations is in
Cra({meets})®, we get the following result.

PROPOSITION 2.17. If A is a subset of IA and meets is one of its relations,
then either A is a subset of the ORD—Horn algebra or its satisfiability problem
1s NP—complete.

As applications of theorem 2.16, we get the following three propositions.

PROPOSITION 2.18. If A is a subset of IA and before is one of its relations,
then either A is a subset of the NB algebra, A C S(before), A C E(before) or
its satisfiability problem is NP—complete.

This result reduces the number of basic relations allowed in a maximal
tractable subalgebra of TA not included in the NB algebra or in any S(b) or
E(b), b € {before, during, overlaps}, to at most 9; let’s call T' this class of
algebras.

PROPOSITION 2.19. If A is a subset of IA, during and overlaps or starts and
finishes are among its basic relations, then either A is a subset of the NB
algebra or its satisfiability problem is NP—complete.

60 Running the utility aclose.
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This result and the remaining proposition reduce the number of basic rela-
tions allowed in 7' to at most 3.

PROPOSITION 2.20. If A is a subset of IA, starts and during are among its
basic relations, then either A is a subset of the NB algebra, A is a subset of
S(during) or its satisfiability problem is NP—complete.

If A is a subset of IA, starts and overlaps are among its basic relations, then
either A is a subset of the NB algebra, A is a subset of S(overlaps) or its
satisfiability problem is NP—complete.

The same result holds replacing finishes by starts, using E instead of S.

In synthesis: the maximal tractable subalgebras of IA which are included
neither in the NB algebra, in S(b) nor in E(b) for b € {before, during, overlaps},
can only contain at most 3 among the basic relations =, during, overlaps, starts,
finishes.

Finally, if {before, after} is among the relations of a subalgebra we get this
last classification result.

PROPOSITION 2.21. If A is a subset of IA, {before, after} is among its rela-
tions, then either A C S(before) or its satisfiability problem is NP—complete.

2.2.4. The main techniques to find a solution to the general problem

Path—consistency Path—consistency can be used by itself as a heuristic test
for consistency or in a backtracking search for consistencies in which it can be
applied as a preprocessing algorithm or interleaved with the other techniques.
We have already discussed about it in Section 2.2.2, since it was the first
technique proposed to approximate solutions in IA.

Backtracking algorithms Backtracking for finding a solution proceeds by
instantiating one variable per time; if no consistent instantiation is found for the
variable under examination, the search backs up. The order in which variables
are instantiated and values chosen in the domains turns out to be important
for speeding up backtracking algorithms.

The idea behind wvariable ordering heuristics is to instantiate variables first
that will constraint the instantiation of the other variables the most; this way it
is more likely that a possible backtracking search is executed at the beginning
and is not delayed.

Value ordering heuristics aim at ordering those values which constraint the
choices for other variables the least, because such values are the most likely to
be part of a possible solution.

Subalgebras of IA One can also restrict the search to tractable subproblems

of TA to find a solution\all solutions for the given IA problem: first splitting
the TA problem in some\all tractable ones we have chosen to deal with (either

203



CSIA(C)

1. Find a consistent SA constraint subproblem, S, of C'; use backtrack search
every time an inconsistent S is detected; if no such an SA problem is found,
return “inconsistent”;

2. translate S into a PA constraint problem P;

3. run CSPAN(P).

TABLE 11. CSIA algorithm

PA or NB etc.) and trying to find a consistent instantiation for them; then
“assembling” a solution\all solutions for the general TA problem.
In particular, choosing PA (NB as well), we can follow this procedure®!.

One) First one can look for a subproblem SA of the given IA, selecting from
each of its constraint {b1,...,b,}5% a subset of allowed relations to get an
SA problem; then one can either translate the SA problem into a PA one
and check consistency applying CSPAN(PA) till the seventh line or apply a
path—consistency algorithm; finally, if not already done before, one should
translate the SA problem into a PA one and pass it to the whole CSPAN
algorithm to find a consistent instantiation®?; see table 11.

All) The idea behind this algorithm is similar to the previous one, namely split-
ting the TA problem in “all” the possible consistent SA ones and then
applying to each of them FEASIBLE; the solution of the TA problem is the
union of all these solutions.

The first procedure turns out to be useful; it can be improved interleaving
it with backtracking algorithms: for instance, after a solution for a particu-
lar subclass is found, one can apply a variable ordering heuristic to speed up
the search. The second procedure is practical only for small instances of the
problem.

Since NB is path—consistent, in [42], Nebel himself modifies Ladkin and
Reinefeld’s algorithm to gain a path—consistent problem so that it works with
every subalgebra of TA for which path—consistency is equivalent to consistency:
first they prune the search space reducing the given CP to a path—consistent
one; then they choose an unprocessed constraint and select from it a subset of
the Allen relations which belongs to the subalgebra chosen (for instance NB)
and re-run the path-consistency algorithm; they instantiate the chosen con-
straint with each one of this relation, every time running the path—consistency
algorithm on the new CP so obtained.

61 Cf. [53].
62 p1,...,b, are some of the Allen atoms.
63 Cf. table 7.
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2.3. Relations among the qualitative and the quantitative approaches

2.3.1. Metric constraints between points and qualitative constraints between in-
tervals In [28], there is the first attempt to mix the qualitative interval-based
approach and the quantitative point—based one in a logical framework able to
capture the expressive power of both languages; the complexity results are not
optimal, but the general framework has been introductory to further develop-
ments.

A first—order two—sorted language, L, is introduced to formalize Allen’s
relation algebra and STCPs of Detcher, Meiri and Pearl®® enriched to deal
with strict inequalities t00%%; there are two types, one for points and one for
intervals.

DEFINITION 2.14. A two-sorted first order language is introduced this way:

two distinct types of variables:

— point variables, corresponding to rational numbers or co: x, y, ...
— interval variables, corresponding to rational valued intervals: i, j, ...

function and constant symbols:

— L, R from the set of interval variables to that of point variables®®;

— —, which formalizes subtraction between rational numbers, is a function
from the set of couples of point variables to the set of point variables;

— point functions to construct rational numbers;

— a constant symbol oo of type point;

two classes of relation symbols:

— two binary relation symbols, < and <, such that t1 < t2 or t; < t3 iff
t1, to and t3 are point terms and t3 can be 0o,

— 13 relation symbols corresponding to the Allen relations, including =,
holding between interval terms.

Formulas of the form

(iB1j)V...V(iB,j),
where Bi,..., B, are atoms of Allens’ algebra, are called simple Allen con-
straints and individuate a sublanguage called L 4.
Formulas of the form

(F(i) = G(7)) <n A (G() = F(i)) <m,

64 Cf. [13].
65 Cf. p. 177.
66 Tntutitively, L(i) stays for the left endpoint of ¢ and R(i) for the right one.
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where F' and G are L or R, < may be replaced by <, n and m are numerals or
00, are called simple metric constraints and individuate a sublanguage called
L.

Further Kautz and Ladkin present a series of axioms to get the intended
model of time:

— arithmetic axioms for —, <, < and for numerals; these last ones include
Vo < oo

— Vi L(i) < R(7)
— axioms for each one of the Allen atoms:

1. Vi,ji = j & L(i)— L(j) <0 A L(j) = L(i) < 0 A R(i) — R(j)
0 A R(j)—R(i) <0
Vi, ji before j <> R(i) — L(j)
Vi, ji meets j <> R(i) — L(j)
Vi, ji overlaps j <> L(i)—L(
Vi, ji starts j <> L(i) — L(j) < )
Vi,ji during j < L(j) — L(i) <0 A R(i) — R(j

IN

NGk

To compute the minimal equivalent constraint problem of a simple temporal
constraint problem with strict inequalities we use the procedure presented on
page 177, adding the constraints from £ which state that the left point of an
interval is before its right one, this for every interval variable i in the problem;
that is we add an arc (L(i), R(i)) with label (0,0) for each i.

Kautz and Ladkin present a method to compute the minimal constraint
problem representation in the case of simple temporal constraints with strict
inequalities; they use the approximation algorithms for constraints in £ 4.

Combining these two procedures they get a constraint satisfaction algorithm
for £L4 U Lps: given Allen constraints A and metric ones M, m(A) and m(M)
are separatately computed; new Allen constraints are derived from the metric
ones and added to m(A); new metric constraints are derived from the new Allen
constraints and so on till no new constraints can be derived. This procedure
is sound but not optimal: it runs in O(n?(e + n®)) where n is the number of
intervals that appear in M U A and e is the time required to compute m(A).

2.3.2. Qualitative constraints between points and intervals, quantitative con-
straints between points In [40], Meiri combines qualitative constraints between
intervals (II), between points (PP), quantitative ones between points, mixed
ones between points and intervals (PI) or intervals and points (IP).

A CP can be so stated:

— the two—sorted first order language in definition 2.14 is augmented with

new binary relation symbols for IP and PI constraint relations®7;

67 Cf. [40].
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— external constraints are unary (only the metric ones) or binary and they
can be qualitative (between two intervals or two points) or quantitative;
— internal constraints relate each interval variable i to its end points and they
68
are’®:

1. Viaz((L(i) starts i A R(i) finishes i) A (z starts i — x = L(i))A
(z finishes i — x = R(i)));
2. Vi(L®) < R(3)).

A relation of order between constraints of the same type is estabilished as
usual; this relation is extended to CPs saying that CP1 C C P2 if whenever C
is a constraint in C'P1 on the set of variables s, for any C/ constraint in C'P2
on s, Cs C (/. Since equivalent CPs are closed under intersection, there exists
and is unique the minimal CP equivalent to a given one.

The constraint tecniques adopted serve different purposes:

1. some of them aim at finding a solution to the given CP decomposing it into
singleton constraint subproblems which are solvable in polynomial time;
sometimes backtracking algorithms are used to improve the search;

2. path—consistency tecniques can be introduced to prune the search space or
to compute an approximation to the minimal constraint problem.

Meiri has identified two classes of tractable problems solvable in polynomial
time:

i. the first class consists of CPs composed of qualitative constraints between
points (PA) and of unary quantitative constraints between points;

i1. the second class consists of CPs for which path—consistency algorithms are
exact.

Qualitative constraints A qualitative constraint between two points (PP),
two intervals (II) or a point and an interval (PI or IP) is a disjunction like
z;Rixz; V ... V z;R,x;, where the R; are basic relations of three possible
types: II (the Allen ones), PP ({<,=,>}), PI, IP (cf. fg. 1 and table 1 on p.
346 of [40]).

The qualitative algebra QA is the relational algebra whose elements are the
213 Allen relations, the 2% PP relations, the 2° PI ones and the remaining 2°
IP ones. The internal operations are those of intersection, denoted by N, and
of composition, denoted by ®; they are given in tables 3-5 on pp. 347-348 of
Meiri’s paper; () corresponds to illegal combinations.

Quantitative constraints These constraints relate points and they can both
be unary or binary; in both cases a constraint is represented by a set of intervals
{I,...,I}}, open or closed in either sides, that is the relation between two
variables can be either < (>) or < (>).

68 Assuming that these variable are of different type.
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Relations between the qualitative and the quantitative constraints
The existence of a constraint C' between two points, let’s say z; and zs, of a
certain type can imply the existence of a constraint of the other type between
these two points; writing Quant(C) if the given constraint C' is quantitative,
that is a set of intervals {I1, ..., I}, and Qual(C) otherwise, that is a subset
involving {<, =, >}, we get the following implications:

1. Quant(C) — Qual(C):

if 0 € Quant(C), then “ ="¢€ Qual(C);

if there is 7 > 0 st r € Quant(C), then “ <"€ Qual(C);

if there is r < 0 st r € Quant(C), then “ >"€ Qual(C);
2. Qual(C) = Quant(C):

if “="€ Qual(C), then [0] € Quant(C);
if “<"e Qual(C), then (0,00) € Quant(C);
if “>"€ Qual(C), then (—o0,0) € Quant(C).

The operations of intersection and composition are extended to constraints
C1 of quantitative type and Cs of qualitative one this way:

— (1 N Oy, of qualitative type, is C1 N Quant(Cs);

— if C5 is of type PP, then C; ® Cs is of quantitative type and is C; ®
Quant(Cy); if Cy is of type PI, then C; ® C4 is of qualitative type and is
Qual(Cy) © Cs.

The hierarchy of qualitative constraint problems If all constraints are
II, we have an IA constraint problem; if all constraints are PP relations, then
the constraint is a PA one, in particular, if the relations do not involve #, then
we have a constraint subproblem of PA which is called convex PA, briefly CPA;
if all constraints are PI and IP relations, then the CP is called an interval-point
algebra CP, briefly an IPA constraint problem.

Let net(S) be the set of qualitative constraints that can be represented as a
CP of type S; for instance i, {starts}i> can be represented as a PA constraint
problem by L(i;) = L(is) and R(i1) < R(i2), but it is not itself a PA constraint
problem.

PROPOSITION 2.22. Let QCP the set of all qualitative constraints; then we
have the following hierarchy:

net(CPA) C net(PA) C net(IPA) C net(IA) = QCP

We already know that checking the satisfiability of IA constraint problems
is an NP—hard problem; furthermore we have the following result, of which the
proof requires the use of the internal constraints.

THEOREM 2.17. Deciding the consistency of an IPA constraint problem is NP-
hard.
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ProOF. By reduction to the betweenness problem which is so stated: given
a non empty set A and a set of ordered triplets (a, b, c) of elements of A, the
question is if there is a one—to—one function from A in itself such that, for
each triplet of distinct elements (a, b, ¢), we have either f(a) < f(b) < f(c) or

fle) < f(b) < f(o).

The first new class of tractable problems: augmented qualitative
constraint problems on points with quantitative constraints CPA or
PA constraint problems augmented with unary quantitative constraints are
considered, that is constraints on the domains of the following kinds.

1. Discrete and finite domains: {[d"],...,[d*]}; in this case, if we only deal
with CPA constraint problems, arc—consistency is enough to ensure con-
sistency; deciding the consistency of PA constraint problems over discrete
and finite domains is NP-hard.

2. Single-interval domains: {[dy,...,d,]}, from which we can exclude a finite
number of values (in this case we deal with “almost convex” single-interval
domains); a nonempty arc—consistent acyclic PA constraint problem over
almost convex single interval domains is consistent and its reduced con-
straint problem® is minimal (the algorithm given runs in time O(e(k+n)));
a nonempty arc—consistent and path—consistent PA constraint problem over
almost convex single-interval domains is consistent, its reduced is minimal
and the algorithm runs in O(n*) time for single domains, in O(n*k?) for
almost convex single—interval domains.

3. Multiple-intervals domains: {[d},...,dk],... [d},...,d%]}; anonempty arc—
consistent acyclic CPA constraint problem is consistent and minimal (Meiri
gives an algorithm which runs in O(elog(k)) time), while a cyclic one re-
quires path—consistency too in order to ensure consistency and minimality
(the algorithm takes a time in O(n*k?)).

The second class of tractable problems: general constraint prob-
lems Two kinds of algorithms are proposed: exact but exponential ones; path—
consistency ones but incomplete.

The idea adopted is, as usual, splitting the original CSP in ones whose
constraints are of the basic types and solvable in polynomial time; then one
has to combine these partial solutions to get the whole one.

3. CONCLUSIONS

Writing this article meant, first of all, reading a great amount of literature about
Temporal Reasoning and Constraint Programming, dealing with the different
formalizations of Temporal Constraint Programming and, above all, trying to
get a homogeneous work.

69 The reduce constraint problem of a given one is obtained substituting each closed domain
[a, b] with (a,b); if the input CP was arc—consistent, its reduced one is arc—consistent too.
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We could have divided the literature about Temporal Constraint Program-
ming into two main streams: in the first one, we would have classified the
research on algorithms for solving TCPs; the other one is characterized by the
study of algebraic or logical properties of the underlying temporal constraint
frameworks.

However, this classification turned out to be too simplistic, since these two
fields are not so clearly separate; as we have seen, most of the investigation on
Allen’s subalgebras, which are the main tools for reasoning in the qualitative
approach to Temporal Constraint Programming, has been motivated by the fact
that the problem of satisfiability for this Allen’s algebra (IA) turned out to be
NP-hard™. Therefore, we have preferred to classify the different approaches
to Temporal Constraint Programming into three main branches, as we did in
Section 2.

The main two approaches we have identified are the quantitative (met-
ric), first introduced by Dechter, Meiri and Pearl, and the qualitative based
on Allen’s interval algebra.

The metric characterization shows its efficiency when dealing with temporal
problems involving metric information, like “Paulo leaves home at 9 : 10 a.m.”
or “Eyal goes to the park either at 5 : 00 or at 5 : 15 p.m.”. Allen’s approach
is instead useful if the temporal information focuses on relations between in-
tervals, like “Alessandra wakes up either before or after Raffaella does”; for
instance, the relation of disjointness between intervals (the example just pro-
posed) cannot be characterized in the metric approach with binary constraints.

In section 2.1 we have discussed the seminal work of Dechter, Meiri and
Pearl on Temporal Constraint Programming with metric information; since
the satisfiability problem for their general framework is NP-hard™, authors
have researched on what we have called simple temporal problems. We have
studied the literature concerning this approach and presented it as a useful tool
to enhance the search for solutions of general temporal constraint problems or
to approximate them.

At the end of this section (cf. p. 181), we tried to summarize the main
techniques one can use when dealing with this kind of constraint problems.

In section 2.2, we have presented the qualitative approach, focusing on
Allen’s interval algebra. As the satisfiability problem for constraint problems
based on A is NP-hard, we directed our attention to subalgebras of IA which
are tractable and expressive enough for many applications; for instance, we
introduced the PA algebra and its properties as a tool for studying IA problems.
This idea has guided us for the rest of our exposition; whenever we introduced
metric temporal problems in this section, we used them to study interesting
subalgebras of IA™2. In fact, one of the most promising direction of research aims
at classifying the maximal tractable subalgebras of IA with different expressive
power; for instance, we have seen that the algebra of Nebel and Birckert is the

70 Cf. theorem 2.10.
71 Cf. theorem 2.1.
72 Cf. p. 199.
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maximal tractable subalgebra of A that contains all of the Allen atoms, but
it cannot express the relation of sequentiality, that is given by {before, after};
however, this relation can be expressed by the 8 maximal tractable subalgebras
A(r,b) of Drakengren and Jonsson”?.

As in the metric approach, at the end of section 2.2 we have reviewed and
summarized the main techniques that Constraint Programming offers to solve
TA problems; the main one is given by path—consistency, for historical reason
and because it is enough to guarantee consistency of the tractable subalgebras
we have presented.

At the end, in section 2.3, we have briefly introduced a new line of in-
vestigation, which we called “the mixed approach”. Research is open in this
field; local consistency procedures and new classes of constraint relations are
currently under investigation™.

Temporal Constraint Programming could grow further, taking into consid-
eration event calculus™ and the systems adopted to reason about actions and
changes. In our frameworks, time is the only ontological object, as events, flu-
ents, states or actions are identified with their period of occurrence; this choice
provides a computational and logical system easy to manage and efficient. How-
ever, the creation of a new constraint—based logical system, in which events,
fluents or actions are considered as new objects of different type, represents an
attractive challenge™.
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