
Fundamenta lnformaticae XIII (1990) 67-83
!OS press 67

ON DOWNWARD CLOSURE ORDINALS OF LOGIC PROGRAMS

Rajiv BAG AI,* Marc BEZEM, ** and M.H. van EMDEN*

* Dept. of Computer Science, Univeristy of Victoria
Victoria, BC V8W 2Y2, Canada '

**CW!, Kruislaan 413, 1098 SJ Amsterdam, Netherlands

Abstract

Blair has shown that for every ordinal up to and including the least non-recursive
ordinal there exists a logic program having that ordinal as downward closure ordinal.
However, given such an ordinal and Blair's proof, it is not straightforward to find a
corresponding logic program. In fact, in the literature only a few isolated, ad hoe,
examples of logic programs with downward closure ordinal greater than w can be
found. We contribute to bridging the gap between what is known abstractly and
what is known concretely by showing the connection between some of the existing
examples and the well-known concept of the order of a vertex in a graph. Using this
connection as a basis, we construct a family {Pa}a<oo of logic programs where any
member P<> has downward closure ordinal w + a.

1 Introduction

The functions or relations computed by programs are usually characterized mathemati­
cally by associating a certain mapping with each program. What is computed can then
be regarded as a fixpoint of that mapping. In logic programming such mappings and their
fixpoints play a predominant role in the semantical discussions (see for example [2] and
[6]). The fixpoints are subject to an order, so that we can distinguish the greatest and the
least fixpoints as being of particular interest. The least fixpoint characterizes the positive
information contained in a logic program; the greatest fixpoint bears some relationship to
negative information contained in the program. It is beyond the scope of this paper to
explain this latter relationship in technical terms. The interested reader is referred to the
literature mentioned above.

The least fixpoint is a limit of all finite powers of the mapping. This is not the case for
the greatest fixpoint. However, when we generalize the notion of power to include transfinite
powers, we find that the greatest fixpoint can also be characterized as a limit of powers.
In this more general setting, we call the least power for which the least (greatest) fixpoint
is reached the upward (downward) closure ordinal. The lack of symmetry between the
fixpoints that we just referred to can then be expressed by saying that the upward closure
ordinal is at most w, and that the downward closure ordinal can be greater than w for
certain logic programs. In fact, Blair has shown in [6] that for every ordinal up to and
including the least non-recursive ordinal (w)k), there is a logic program having that ordinal
as downward closure ordinal. However, given such an ordinal and Blair's proof, it is not

'Dept. of Computer Science, University of Victoria, Victoria B.C., Canada VSW 2Y2
tc.W.I., Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

1990, Polish Mathematical Society

68 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

straightforward to find a logic program having this ordinal as downward closure ordinal.
There is a painful contrast between the richness, in abstracto, assured by Blair's theorem
and the meagreness of what is known concretely: the literature presents only a few isolated
examples of logic programs with downward closure ordi.iial greater than w, presented in an
ad hoe manner. It is the purpose of our paper to soften this contrast.

The basis of our approach is provided by the well-known notion of ordering vertices
of a directed graph by assigning an ordinal number, which may or may not be finite,
to each vertex from which no infinite path starts. The connection between graphs and
logic programs is provided by a variant of Kowalski's reachability representation of graphs.
These fundamentals allow us to "explain" some of the published examples of logic programs
having downward closure ordinal exceeding w. More importantly, they suggest a family of
logic programs having as downward closure ordinals all those ordinals for which a certain
convenient notation system applies.

In Section 2 we review some of the theory on fixpoints and closure ordinals. In the
next section we explain some of the examples by relating them to known concepts in
graph theory. In Section 4 we prepare for a more general treatment by exploiting generally
applicable representations of graphs by means of logic programs. Section 5 is devoted to the
construction of a family of logic programs indexed by ordinals up to fo, the least fixpoint
of the function >.a[w0). Each member P .. of this family represents a graph, and has w + a
as downward closure ordinal.

2 Fixpoints and closure ordinals

Throughout this paper we shall assume knowledge of Lloyd (8], but for convenience of the
reader we recall some definitions and results which a.re frequently used in the sequel.

Let Bp be the Herbrand Base (the set of all variable-free atoms) corresponding to a
logic program P. The immediate-consequence function Tp : 'P(Bp)-+ 'P(Bp) associated
with P, mapping Herbra.nd interpretations I to Herbrand interpretations Tp(I), is defined
by: A E Tp(J) iff there exists a variable-free instance

of a clause in P such that {B1 , ••• , B ... } i;; I. .
As shown by van Emden a.nd Kowalski in (11) and by Apt and van Emden in [2], the

immediate-consequence function, being monotonic and continuous in the complete lattice
('P(Bp),o;;), ha.s a unique least fixpoint (denoted lfp(Tp)) and a. unique greatest fixpoint
(denoted gfp(Tp)). Approximations to one of the fixpoints are obtained by means of a,
possibly transfinite, sequence of sets having the fixpoint as limit.

Since Tp is monotonic with respect to set inclusion, the sequence 1']::(0), where n runs
through the natural numbers (i.e. the finite ordinals) is nondecrea.sing. The limit of this
sequence is its union, which is the least fixpoint of Tp.

Dually, the sequence Tp(Bp) is nonincrea.sing and the limit of this sequence is its in­
tersection, which is not necessarily a fixpoint of Tp, as the following example from (8)
shows.

Example 1 Let P be the program

p(s(X)) <- p(X);
q(O) <- p(X);

R. Bagai et al. f Downward Closure Ordinals of Logic Programs 69

follow Prolog's convention of identifiers starting with upper-case letters for variables.
:8.n be seen that for n > O,

TP(Bp) = {q(O)} U {p(sm(O))lm?: n}.

e intersection ofTp(Bp) for all finite n is { q(O) }. This is not a. fixpoint, since Tp({ q(O)})

~-

Chis apparent breakdown of duality is puzzling. To better understand what is going on,
sequences 1'.P(0) and Tf!(Bp) are generalized according to the following definition of
ordinal powers of Tp:

~ally,

Tp i 0 0,
Tpja:::: Tp(Tpj(a-1)),

LJ{Tp j .81.8 < a},

Tp l O Bp,

Tp 1 a Tp(Tp 1 (a - 1)),
== n{Tp 1.81.8 < a},

if a Ja a successor ordinal;

if a is a. limit ordinal.

if a is a successor ordinal;

if a is a limit ordinal.

>te that for finite ordinals n, Tp in:::: 1'.P(0) and Tp 1 n = Tp(Bp).

ennition The upward closure ordinal of Tp is the least ordinal a such that Tp i a =
>(Tp); the downward closure ordinal of Tp, denoted dco(Tp), is the least ordinal a such
a.t Tp 1 a = gfp(Tp).

As shown in [2], both the upward and downward closure ordinals of Tp exist for any logic
·ogram P. Moreover, the upward closure ordinal is at most w (which follows essentially
::>m the fact that the right hand sides of clauses in a. logic program a.re finite). The
·st published example of a logic program whose downward closure ordinal exceeds w
reproduced a.s Example 3 below. It was published in (2] and has been attributed in pa.rt

• K.L. Clark and in part to H. Andreka. and I. Nemeti. For the program of Example 1,
Le downward closure ordinal is w + l. On the other hand, certain classes of programs
:i.ve downward closure ordinals of at most w; for example, if in every clause the conclusion
>ntains all variables that occur in the clause.

For any program P, it is the case that Tp i a~ Tp 1 /3, for a.11 a and ,8. An important
a.ss is that of determinate programs as defined in Blair (6]:

•efinition A program P is determinate if Tp j w = Tp 1 w.

'roposition 1 If P is determinate, then dco(Tp) :$ w.

'roof For any P, we have that Tp j w = lfp(Tp) ~ gfp(Tp) ~ Tp 1 w. Thus determinacy
nplies that Tp 1 w is a (in fact, the only) fixpoint. The proposition then follows from the
e:finition of dco. D

Determinacy of a program is a fixpoint-theoretic property. Using the notion of SLD­
.eriva.tion we define a stronger, proof-theoretic, property of programs, which serves as an
'.l.termediate step towards a convenient sufficient condition for determinacy.

70 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

Definition A program is terminating if no infinite SLD-derivation starts from a variable­
free goal.

Proposition 2 Every terminating program is determinate.

Proof Let P be a terminating program and A E Bp, i.e. A is any variable-free atom.
Since any SLD-derivation starting from the goal +- A is finite, any SLD-tree with +- A as
the root is either finitely failed or contains a successful derivation. That is, A is either in
the finite-failure set (equal to Bp \ Tp l w, see [2]) or in the success set (equal to Tp T w,
see [2]). Therefore, Tp j w = Tp l w. 0

As it is possible for a variable-free negative clause +- A to begin a successful as well
as an infinite SLD-derivation, the converse of Proposition 2 does not hold in general. For
example, consider the program P:

q;
q <- q;

This program is determinate because

Tp j w = { q} = Tp l w.

However, P is not terminating since the variable-free clause <- q heads an infinite SLD­
derivation, namely

<- q,<- q,<- q,

The following result, combined with Proposition 2, yields the desired sufficient condition
for determinacy. This result may be seen as a precursor of Theorem 2.8 from Bezem [4].

Proposition 3 Let P be a logic program such that all its predicate symbols have non-zero
arity and every term occurring in the body of any of its clauses is a proper subterm of a
term occurring in the head of the same clause. Then P is terminating.

Proof Straightforward by structural induction on the terms occurring in any variable-free
goal. D

The relation between a program's structure and its downward closure ordinal is not well
understood. In the literature, a few isolated examples are exhibited as curiosities to show
that the value of this function can exceed w. Let us discuss some other examples found in
Lloyd [8].

Example 2 Let P be the program

p(f(X)) <- p(X);
q(a) <- p(X);
q(f(X)) <- q(X);
r(a) <- q(X);
r(f(X)) <- r(X);
s(a) <- r(X);
s(f(X)) <- s(X);
t(a) <- s(X);
t(f(X)) <- t(X);

R. Bagai et al. I Downward Closure Ordinals of Logic Programs

Then we have

Tp l O

Tp l w

Tp l w2

Tp l. w3

Tp l. w4

Tp l w5

Bp,

Tp l 0 \ {p(fk(a))ik < w},
Tp l w \ {qCf"(a))ik < w},
Tp l w2 \ {r(fk(a))ik < w},
Tp l w3 \ {s(fk(a))ik < w},
Tp l w4 \ {t(fk(a))ik < w},
0,
gfp(Tp).

Thus dco(Tp) is w5, since that is the least ordinal a such that Tp l a = gfp(Tp).

Example 3 Let P be the program

p(a) <- p(X) & q(X);
p(f(X)) <- p(X);
q(b);
q(f(X)) <- q(X);

Then we have

Tp l n

Tp l w

Tpl(w+n)

Tp l w2

{p(fk(a))ik < w} U {p(fk(b))ln ~ k < w} U

{q(fk(a))in ~ k < w} U {q(fk(b))ik < w}, for n < w,

{p(fk(a))ik < w} U {q(fk(b))ik < w},
{p(f•(a))ln ~ k < w} U {q(fk(b))ik < w}, for n < w,

{q(fk(b))ik < w},
gfp(Tp).

The above shows that dco(Tp) is w2.

Example 4 Let P be the program

p(a) <- p(X);
p(f (X)) <- p(X);
q(b);
q(f(X)) <- q(X);
r(c) <- r(X) & q(X);
r(f(X)) <- r(X);

71

Then dco(Tp) is easily shown to be w2. Lloyd [8] is really scraping the bottom of the barrel
here: if we remove the clauses for the predicate symbol p, which do not affect dco(Tp), then
we obtain the program of Example 3, up to renaming of symbols.

3 Graphs associated with uniconditional logic pro­
grams

We have seen some examples of programs with downward closure ordinal greater than w.
With these in mind one can, with a bit of tinkering, produce more. But that exercise may

72 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

p(O) p(s(O)) p(s(s(O)))

Figure 1: Graph of Example 1

not make clear what the mechanism is; why the examples work. In this section we show
that uniconditional logic programs, that is, those where every clause has one condition,
can be associated with directed graphs in a natural way. From graph theory we know how
to assign ordinals to vertices of a directed graph. A direct relationship will be established
between the downward closure ordinal of the logic program and (the dual of) this ordinal
assignment. As it is easier to construct graphs in such a way that all successive ordinals
up to a certain transfinite bound are assigned to some vertex, this result suggests a way to
construct ad libitum examples of logic programs with downward closure ordinal beyond w.

Of course, we do not suggest that this be actually done. We present this result because it
substantiates our claim that we now understand some of the published examples. Better still
is to have a parameterized family of logic programs with a downward closure ordinal closely
related to the parameter. This parameter is given as a term encoding ordinal numbers up
to a certain bound. That will be the topic of the next two sections.

The graph associated with a uniconditional logic program has as vertices elements of
the Herbrand base, that is, ground atomic formulas constructed with symbols occurring in

the program. There is an arc from A to B iff B <- A is a variable-free instance of a clause
in the program. In Figure 1 we show the graph associated with Example 1 discussed in the
previous section. We will now review known concepts in graph theory that relate directly
to the downward closure ordinal of a uniconditional program.

Let G = (V, E) be a directed graph, where V is a (possibly infinite) set of vertices and
E s;; V x V is a set of edges. The inverse graph of G, denoted a-1 is the graph G with all
edges reversed, i.e. c-1 = (V, E-1).

Let RG : P(V) -+ 1'(V) be defined as

Ra(X) == {vl3u EX: (u,v) EE}.

We call Ra the reachability function of G, because Ro(X) is the set of vertices reachable in
one step from a vertex in X. Clearly, Ro is monotonic and we have the following proposition.

Proposition 4 If G is the graph associated with a uniconditional logic program P, then
Ra is the immediate-consequence function Tp.

R. Bagai et al. I Downward Closure Ordinals of Logic Programs 73

Definition The upward ordinal function Xe for the graph G maps ordinals to sets of
vertices of G as follows:

Xe(O)

Xe(a)

©,

{ xlRc({ x}) ~ Xe(a - 1)}, if a is a successor ordinal;

LJ{ Xe(,B) l,B < a}, if a is a limit ordinal.

A similar function is defined in Berge [3], where it is called "ordinal function". Recall

that a well-founded partial ordering is an irreflexive, transitive relation allowing no infinite

descending sequences. Informally, Xe gives a transfinite construction for the largest well­

founded partial ordering which can be embedded in the transitive closure of G.
We find it useful to define the dual of Berge's upward ordinal function:

Definition The downward ordinal function Ye for the graph G = (V, E) is defined as
follows:

Ye(O)

Ye(a)

v,
Rc(Ye(a - 1)),
n{Ye(,B)l,6 <a},

if a is a successor ordinal;

if a is a limit ordinal.

The following two propositions are straightforward.

Proposition 5 For all a, Ye(a) = V \ Xc-i(a).

Proposition 6 Ye is non-increasing, i.e. if a::; ,B, then Ye(,6) ~Ye(a).

Proposition 7 Let S ~ V be such that S ~ Re(S). Then S ~Ye(a), for all a.

Proof Clearly S ~ Ye(O). Now suppose S ~ Ye(,B), for all f3 < a. If a is a successor

ordinal then by the assumption on S and monotonicity of Rc we have S ~ Rc(S) ~

Ra(Ye(a - 1)) = Ye(a). If a is a limit ordinal, the result follows from the definition of

Ya(a). D

Corollary If a vertex x occurs in a cycle, then x E Ye(a), for all a.

Proof For any cycle Sin V we have S ~ Re(S). D

Definition The upward order of a vertex x is defined in Berge [3] as the smallest ordinal

a such that x E Xe(a), provided that there exists such a.

The above definition assigns an order to vertices from which no infinite path starts (cf.

[3, p. 21]). Note that upward orders can only be successor ordinals.

Before we can develop a notion dual to the upward order, we need the following result:

Proposition 8 For any x E V, if there is an ordinal a such that x r/. Ya(a), then there is

a greatest ordinal ,B such that x E Ye(f3).

74
R. Bagai et al. I Downward Closure Ordinals of Logic Programs

P f If d y; (a) then by the well-ordering property of ordinals there exists a least
roo x lZ' G 1 ...1. 0 . v (O) v 1

ordinal a' such that x ~ Ya(a'). We know that a T" smce ra = . ; so a must be
"th or a Jimi"t ordinal The latter case can be excluded smce then by the e1 er a successor · , . .

definition Ya(a')= n{Ya(.8)1.B <a'}, we have that x ~Ya(a) in:iphes x r/. Ya(.B) for some
,8 < a', contradicting the minimality ~f a1• Th~s the onl.y possible case turns out to be
a'= ,B + 1 for some ,8, which is the desired maximal solution of x E Ya(,8). D

Definition The downward order of a vertex x is the greatest ordinal (3 such that x E
Ya(.B), provided that there is an a such that x ~Ya(a).

Proposition 9 Let D(x) be the downward order of x in G and U (x) be the upward order
ofx in a-1. Then U(x):::: D(x) + 1 for every x E V such that x r/. Ya(a) for some a.

Proof Follows from Proposition 5. D

In the remaining part of the paper, by order we mean the downward order of a vertex.
We also denote this value by Order(x), for any vertex x having a downward order.

For certain graphs, Order fails to be a total function; for instance it is not defined for
vertices in a cycle since such vertices occur in Ya(a), for all ordinals a. Moreover, the range
of Order is an initial segment of the ordinals, i.e. for any ordinal a if there is a vertex
u E V such that Order(u) =a, then for every ordinal ,8 < a there is a vertex v E V such
that Order(v):;::: /).

Definition For any vertex x of G, let x- be the set of all vertices from which there is an
edge to x.

The following proposition is a simple consequence of the definitions.

Proposition 10 If all vertices in x- have an order, then the order of x is the least ordinal
greater than all orders of vertices in x-.

Definition A finitary path in a graph is a path on which every vertex occurs at most a
finite number of times. A graph G is finitarily anti-founded if c- 1 does not contain any
infinite finitary paths.

Proposition 11 For any vertex x of a finitarily anti-founded graph, Order(x) is defined
iff there is no vertex y such that y occurs in a cycle and there is a path from y to x.

Proof (=>) Suppose such a vertex y exists. Then there is a. cycle C containing y and a.
path P from y to x. Clearly, x E Ou P ~ Ra(Cu P). By Proposition 7, x E Ya(a), for a.II
a. Thus Order(x) is not defined.

(<=) Suppose Order(x) is not defined. We have to show that there exists a vertex y such
that Y occurs in a cycle and there is a path from y to x. Let y0 be x. By Proposition 10, there
is a vertex Y1 E Yo such that Order(yi) is not defined. By iterating the same argument
we get an infinite path (Yo, Y1, Y2, · · ·) in a-1 such that Yo is x a.nd for all i, Order(y,) is
not defined. If all the y(s were distinct, they would constitute an infinite finitary path in
G-1, thereby contradicting that G is finita.rily anti-founded. Therefore, there exist m a.nd
n such that m < n and Ym = Yn· Now take y = Ym· D

Proposition 12 If a is any ordinal greater than all orders of vertices in G then for all
,8 ~a, Ya(,6) =Ya(a). '

R. Bagai et al. I Downward Closure Ordinals of Logic Programs

,,. ,,... - Tp-1.I
,,.

r·~----.-_-_-_-_-_·::.-.:-.·.:1·x~~("1f::.._...:: 1 Xa .• (2) .,... - - - - - - - - - - - - - - Tp-1.2

j \ p(O) \ " p(s(O)) j / ~ p(s(s(O)))

................ 1 ! ,,."j . ~
t_L_-~--:;_"'.'."_ -_-:_-_-_-:_-} ____ :.;-"'· ---- _________ j

,,. . ,,.
'<'

" '---·-·---_,- -----------·-·----- ·---·-····-··-··-···----··-·--···-·----·- -···--·--·- X G-•(Cll)

I
I
I
I I

L - - - - - _J Tp-1.(J)

Figure 2: Ordinal powers of Tp compared with Berge's ordinal function

Proof Let a be greater than all orders of vertices in G.

75

(~) Since Ya is monotonically non-increasing, we have that for all /3 ::?: a, Yc(.6) ~
Ya(a).

(2) Let x (j. Ya(,6), for some /3 2: a. Then by Proposition 8, there is a maximum
ordinal 6 such that x E Ya(6). By definition of order, 6 is the order of x. As 6 < a, by the
assumption on a we have that x ~ Ya (a). Therefore, Ye(a) <;;; Yc(/3). O

Theorem 1 If P is a uniconditional program and G is its associated graph, then for all
a, Tp la= Ya(a)= V \ Xa-1(a).

Proof By Proposition 4 and Proposition 5. O

See Figure 2 for an example.

Corollary If G is the graph associated with a uniconditional program P, then dco(Tp)
is the least ordinal greater than all orders of vertices in G.

We feel we have now unveiled the secret of some of the examples found in the literature
where the downward closure ordinal is greater than w. Specifically, here is a method to

follow if another example is required. Take a directed graph G with at least one vertex
of transfinite order, say, a. Name the nodes of G by variable-free atomic formulas. Any

uniconditional (possibly infinite) program P of which G is the associated graph then has

a downward closure ordinal greater than a. Of course, since logic programs must be finite,

this only works properly if P has a finite number of clauses.
Although we have an improvement over the existing situation, where only a few isolated

examples of programs with downward closure ordinal exceeding w were published, the above

"method" is hardly satisfactory. It does not specify how to get from an infinite graph G

76 R. Bagai et al. f Downward Closure Ordinals of Logic Programs

to a finite, preferably small, logic program having G as associated graph. This problem is
addressed in the next section.

4 Graph representations

In this section we consider representations of graphs by logic programs. When G is the graph
associated with a uniconditional program P, P is very similar to a graph representation
due to Kowalski [7] that we call the unary representation of G. According to it, given a
graph G whose vertices are labelled by variable-free terms, the clause

r(u) +- r(r)

is in the unary representation P of G if and only if G has an edge directed from the vertex
labelled by r to the vertex labelled by u. Note that since there is a one-one correspondence
between the edges in G and the clauses in P, P can be infinite. The following proposition
follows immediately from the corollary to Theorem 1:

Proposition 13 The downward closure ordinal of the unary representation of a graph is
the least ordinal greater than all orders of vertices in the graph.

Kowalski also uses what we call the binary representation of a graph, where a variable­
free atom arc(r, a) is interpreted as saying that the graph contains an edge directed from
the vertex labelled by r to the vertex labelled by CJ. A binary representation P of a graph
G is an axiomatization in Horn clauses of the arc relation. The clauses in P can either be
all variable-free or, more interestingly, they may contain variables, in which case P can be
finite as long as the edge set of G is recursively enumerable. In its general form, P is a
binary representation of a graph when

arc(r,u) E Tp T w

if and only if the graph contains an edge directed from r to a.
Unfortunately, we do not have a result equivalent to Proposition 13 for a binary repre­

sentation of a graph. This is due to the fact that, unlike the unary representation, a graph
may have many binary representations, which have different downward closure ordinals.
On one extreme, if the binary representation contains only variable-free unit clauses for the
arc predicate, its downward closure ordinal is 1; on the other extreme, however, there exist
binary representations of the empty graph having a transfinite downward closure ordinal.
In order to relate downward closure ordinals of logic programs with the least ordinal greater
than all orders of vertices of a graph we find it useful to combine Kowalski's two graph
representations. This approach has also been followed by Blair in [6] and by Apt in [l].

A combined representation is obtained by adding clauses Cl , C2, C3 to a binary repre­
sentation.

Cl: r(X) <- r(Y) & arc(Y,X)

(assuming that the predicate symbol r does not occur in the binary representation). The
intuition behind the clause Cl of the combined representation is that if a vertex Y is
reachable and there is an edge from Y to a vertex X, then X is reachable.

Let ARC be a binary representation of a graph G. Note that the edge set of G is deter­
mined by the least fixpoint ofTARC, which may not be equal to the greatest fixpoint yielded
by the downward closing procedure. This difficulty is overcome by restricting ourselves to
determinate binary representations, which have a unique fixpoint yielded by at most w steps

R. Bagai et al. I Downward Closure Ordinals of Logic Programs 77

of the downward closing procedure. This is not too restrictive: due to a result of Blair [5]
every recursive relation can be computed by a determinate program. The idea behind Cl is
that it transforms a binary representation of a graph into a unary representation. However,
even with a determinate program ARC it takes w steps in the downward closing procedure
before arc properly defines the edge set of G. It is clearly undesirable that the unary rep­
resentation using r is untimely affected during the first w steps of the closing procedure.
Therefore we add to ARC not only Cl, but also the following two clauses, which ensure
that all variable-free r-atoms 'survive' the initial w steps of the closing procedure.

C2: r(X) <- p(Y);
C3: p(s(X)) <- p(X);

For technical reasons we require that the predicate symbol p does not occur in ARC, but
that the function symbol s does.

Definition Let P be a combined representation of a graph. The clauses with the predicate
symbols r or pin their heads (i.e. Cl-3) are kernel clauses; all other clauses of Pare called
non-kernel and form a logic program denoted by P.

Definition For any Herbrand interpretation I and predicate symbol p, the p-component
of I, denoted I<> p, is {p(t1 , •.. , tn)\p(ti, ... , tn) E I}.

Proposition 14 Let P be a combined representation of a graph. Then

(a) for all a 2:: w, (Tp l a)<>p = 0,

(b) for all a, {Tp l a,(Tp l a)<>r,(Tp l a)<>p} is a disjoint partition ofTp la.

Proof (a) Straightforward as C3 is the only clause in P with the symbol pin its head.
(b) Straightforward since P i:;; P, they share the same Herbrand universe Up and the

symbols rand p do not occur in P. D

Theorem 2 Let P be a combined representation of a graph G = (V, E) such that P is
determinate. Then

(a) (Tp l w)<>arc = {arc(T,o-)\(T,17) EE},

(b) (Tp l w)<>r == {r(o-)\a E Up} 2 {r(o-)\a E V},

(c) for all a> 0, (Tp l (w +a)) <>r == {r(17)117 E Ya(a)}.

Proof (a) By proposition 14(b) and the fact that P is determinate, we have

(Tp l w) <>arc= (Tp l w) <>arc== (Tp T w) <>arc.

The result follows since P is a binary representation of G.
(b) Due to clause C3, for all n < w, (Tp l n) <> p ;/; 0. So by clause C2 we have

(Tp l w) <>r = {r(a)io- E Up} 2 {r(o-)io- E V}.
(c) See appendix. D

Theorem 3 Let P be a combined representation of a non-empty graph G such that P is
determinate. Then dco(Tp) = w +a, where a is the least ordinal greater than all orders of
vertices in G.

78 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

Proof See appendix. D

4.1 An example of combined representation

Recall that e0 is the least fixpoint of >.a[w"']. Consider any graph containing exactly one
vertex of order et, for each ordinal a < Eo a.nd no vertices without orders. It is easily
seen that a.11 such graphs have the same transitive closure, denoted by W, which has the
property that an edge directed from vertex u to v exists in W iff Order(u) < Order(v). In
this section we construct a combined representation of W.

Any combined representation of W will contain the kernel clauses:

C1: r(X) <- r(Y) t arc(Y,X);
C2: r(X) <- p(Y);
C3: p(s(X)) <- p(X);

a.long with the non-kernel clauses axiomatizing the arc relation, which depend upon the
structure of W.

Since W contains exactly one vertex of ea.eh order less than Eo, we ca.n represent vertices
by their orders. For representing natural numbers we use variable-free terms ma.de from
the constant 0 and the successor function symbol s, i.e. zero is represented by 0, one by
s(O), two by s(s(O)) and so on. For any natural number n, we let n denote such a term
representation of n. To represent ordinals we use the following well-known result of their
normal form expansions in base w (see Sierpinski [10]):

Proposition 15 Every ordinal number a, such that 0 < a < Ea, may be represented
uniquely as

et = wft1 c1 + wf'oc2 + · · · + wP"c.,,.
where n and c1, c2, ... , c.,. are non-zero natural numbers while /31, /32, ... , {3,. is a decreasing
sequence of ordinals less than et.

As every ordinal number has a unique normal form, the representation of a.ny ordinal
number a, denoted r et l, is the list of exponent-coefficient pairs appearing in the same order
as in its normal form. using the function symbol d to construct such pairs, r Q l is given by
the list

(d(f .81 l ,ci), d(f /32 l .C:i), · · ·, d(f /3,. l ,c;.)).
By convention we let fOl be the empty list {). Note that a finite number n > 0 has
different representations a.s a natural number and as an ordinal, since ii = s"(O) whereas
f nl = (d({), s"(O))); also 0 = 0 but fOl = ().

As neither addition nor multiplication among ordinals is commutative, arithmetic be­
comes rather unfamiliar. After some simplification, it can be seen for example that the
ordinal

(w + 1)2(w + 1)3(w + 1)4
has the following normal form

and is represented by the list

(d((d((), s(s(s(O))))), s(s(s(s(0))))),
d((d((), s(s(O)))}, s(s(s(O)))),

d((d((), s(o))), s(s(O))),

d((), a(O))).

R. Bagai et al. I Downward Closure Ordinals of Logic Programs 79

We allow lists to be nested to any finite depth. It may be verified that, with one level of
nesting this provides a representation for all ordinals up to (but not including) w; with two
levels of nesting, up to w"'; and so on. Thus, in the general case, we have a representation
for all ordinals smaller than €0•

W contains an edge from vertex u to vertex v iff Order(u) < Order(v). This gives rise
to the following Horn clause C4 for the arc relation:

C4: arc(X,Y) <- ord(X) & ord(Y) & lto(X,Y);

The predicate ord is true of all lists that are representations of ordinals. The predicate lto
specifies the less-than relation on ordinals: 1 to(X, Y) is true if the ordinal represented by
X is less than that represented by Y. Representing lists as terms made up in the usual way
from the constant nil and the binary functor'.', we can axiomatize ord as follows:

C5: ord(nil);
C6: ord(d(B,s(N)).nil) <- ord(B) & int(N);
C7: ord(d(B1,s(N1)).d(B2,s(N2)).Rest) <-

CS: int(O);

ord(B1) & int(N1) &
ord(d(B2,s(N2)).Rest) &
lto(B2,B1);

C9: int(s(X)) <- int(X);

Note that ord requires the coefficient fields to be non-zero and the pairs in the lists to be
sorted in decreasing order of their exponent fields.

The < relation on the ordinals induces a < relation on their list representations such
that r °' l < r /31 iff Q < /3, for any ordinals °'• /3 < Ea. We have

(d(f /31 l ,c1), ... , d(r /3m l ,<;,,)) < (d(f 61 l ,d1), ... 'd(i6n l ,dn))

if one of the following (mutually exclusive) cases hold:

• m = O,n > O;

• m, n > 0 and /31 < 61;

• m, n > 0 and /31 = 61 and c1 < di;

• m, n > 0 and /31 = 61 and c1 = d1 and
(d(f /32 l Ai),···, d(f /3m l ,<;,,)) < (d(l62 l ,d2), · · ·, d(f 6n l ,Jn)).

These cases are directly translated to the following axioms for the 1 to predicate:

C10: lto(nil,X.Rest);
C11: lto(d(B1,Nl).Rest1,d(B2,N2).Rest2) <- lto(B1,B2);
C12: lto(d(B,N1).Rest1,d(B,N2).Rest2) <- ltn(N1,N2);
C13: lto(d(B,N).Rest1,d(B,N).Rest2) <- lto(Rest1,Rest2);

The predicate ltn specifies the less-than ordering on natural numbers: ltn(X, Y) is true if
the natural number X is less than the natural number Y. It is defined as:

C14: ltn(O,s(X));
C15: ltn(s(X),s(Y)) <- ltn(X,Y);

This concludes the combined representation of the graph W. Clauses C1-C3 are the kernel
clauses and clauses C4-C15 are non-kernel.

80 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

5 A family of logic programs

In this section we construct a family {Po.}a«o of logic programs, such that dco(Tp,.) is w+O!.
The members of this family are combined representations of graphs containing vertices with
transfinite order.

As a basis for this family we consider the graph W introduced in the previous section,
which contains exactly one vertex of each order less than co and has the property that from
any vertex there are edges to all vertices with higher orders. Let W" be the graph obtained
by adding, in W, an edge from the vertex with order a: to itself. This extra edge introduces
a cycle containing only that vertex, thereby causing that vertex, and vertices which in W
had a higher order, not to have an order. Thus W,, is, as opposed to W, not acyclic, but
W" is certainly finitarily anti-founded. The program P,, is the combined representation of
W", containing, in addition to the clauses C1-C15 given in Section 4.1 for the combined
representation of W, the non-kernel clause

C16 : arc(fa! l, fa: l);

Theorem 4 For a: > 0, dco(Tp,.) == w +a:.

Proof {CS, ... , C16} can be verified to meet the conditions of Proposition 3. Thus by
Proposition 2, these clauses form a determinate program. Since C4 simply defines the arc
relation in terms of ord and 1 to, it follows that Po. == { C4, ... , C16} is determinate. Propo­
sition 11 tells us that a vertex has an order in W" iff the corresponding vertex has an order
< a: in W. So a: is the least ordinal greater than all orders of vertices in W"'. The result
follows from Theorem 3. 0

6 Conclusions

We have presented a systematic way of constructing logic programs with downward closure
ordinals up to co, the least fixpoint of >.o:[w"]. Given Blair's result that there exist programs
with downward closure ordinals up to and including the least non-recursive ordinal (w]""), it
is quite tempting to go beyond €0 . Even though we have not considered that in this paper,
it seems to be a simple matter to arrive at closer approximations to wf.k. Note that our
representation of ordinals must be recursive (since the least fixpoint of the Tp function of a
determinate program P can easily seen to be recursive), so that our method will never yield
wj'k. The problem is essentially that of denoting ordinals by logic terms. We have presented
a method to construct notations fa: l for a: < €0 given some notations n for n < w. This step
can be iterated and increasingly large initial segments of ordinals can be assigned notations
by enlarging the base of their normal form expansions. For example, instead of w, using
€0 as the base yields a notation for all ordinals less than the least fixpoint of the function
,\o:[c0]. Rogers [9] gives notation systems to go beyond even this value as follows. Let

'Yo €0,

"Yn+l least ordinal not expressible as

a polynomial of 'Yn.

Let us call a system of notations maximal if it assigns a notation to every recursive ordinal.
Then, since for all n, /n < w]'", any notation system for ordinals up to /,.. will fail to be
maximal. A system of notations is said to be recursively related if there exists an effective
procedure, which, when given any two representations in that system can tell us which

R. Bagai et al. I Downward Closure Ordinals of Logic Programs 81

one represents a smaller ordinal. A classical result by Kleene (see Rogers [9]) states that
there is no maximal recursively related system of notations. As we need our system to be
recursively related (to axiomatize the 1 to predicate), it follows that our method cannot be
generalized to a maximal family of programs.

7 Acknowledgements

We would like to thank Krzysztof Apt, Roland Bol and Gary Miller for helpful discussions.

8 Appendix

Proof of Theorem 2(c): By transfinite induction we shall prove for all a 2. 1

(Tp 1 (w +a)) or = {r(a)jcr E Yc(a)}.

By Theorem 2(b) we can only have (1) for a= 0 if V = Up.

Basis step:

(Tp l (w + 1)) <>r

= (Tp(Tp l w)) <> r
by definition of Tp l (w + 1)

{r(cr)j:l-r: r(T) E Tp l wand arc(T,cr) E Tp l w}
by the definition ofTp, clause C1 and Proposition 14(a)

= {r(cr)j(T, a) EE}
by Theorem 2(a),(b)

{r(a)ja E Yc(l)}

Induction step: Assume for some a > 0 we have for all 1 ::; {3 < a

(TPl(w+.B))<>r = {r(cr)jaEYc(.8)}.

In proving (1) we distinguish two cases.
If a is a successor ordinal then we have

(Tpl(w+a))<>r
(Tp(Tp l (w +a -1))) <>r

by definition of Tp l (w +a)

(1)

(Tp(Tp l (w + a-1) U (Tp l (w +a -1)) <>rU (Tp l (w +a - l))<>p))<>r
by Proposition l 4(b)

(Tp(Tp 1 (w +a - 1) U (Tp l (w +a - 1)) <>r)) <>r
by Proposition 14(a)

(Tp(Tp 1 w U (Tp l (w +a - 1)) <> r)) <> r

by Proposition 1 since P is determinate
= {r(cr)l:3T: arc(T,cr) E Tp l wand r(T) E (Tp l (w +a -1)) or}

by the definition of Tp, clause C1 and Proposition 14(a)

82 R. Bagai et al. I Downward Closure Ordinals of Logic Programs

{r(o")!3r: (r, a) EE and r E Yo(a - 1)}
by the induction hypothesis, Proposition 14(b) and Theorem 2(a)

{r(a)ia E Yo(a)}
by definition of Yo.

If a is a limit ordinal then

(Tpl(w+a))or
(n{Tp 1.81/3 < w +a}) <>r

by definition of Tp l (w +a)
(n{Tp l (w + /3)11 S ,8 < a}) <> r

since Tp 1 i& decreasing and a is at least w

(n{ {r(a)ja E Yo(,B)}ll S /3 <a}
by the induction hypothesis

({r(D")!a E Yo(a)}
by definition of Yo(a), since Yo is decreasing and a is at least w. D

Proof of Theorem 3: Let a be the least ordinal greater than all orders of vertices in G.
We have to prove dco(Tp) = w +a. We first prove ~, then ~-

Tpl(w+a+l)
= Tp l (w+o: + l)U(Tp 1 (w+a + l))orU (Tp l (w + o: + l))<>p

by Proposition 14(b)

Tpl(w+a+l)U(Tpl(w+a+l))<>r
by Proposition 14(a)

Tpl(w+a)U(Tpl(w+a+l))<>r
by Proposition 1

= Tp l (w +a) U {r(D")!a E Yo(o: + 1)}
by Theorem 2(c)

Tp l (w + o:) U {r(a)ja E Yo(o:)}
by Proposition 12

Tp l (w+a) u(Tp 1 (w+a))<>r
by Theorem 2(c)

Tp 1 (w + o:)
by Proposition 14.

Thus, dco(Tp) ~ w + o:.

By the condition on a, for all ,8 < o:, there is a vertex a in G such that a E Ya(,8)
and a~ Yo(a). By Theorem 2(c), r(O") E Tp l (w + (3) but r(a) rt Tp l (w + ae). Hence,
dco(Tp) ~ w +a. D

R. Bagai et al. I Downward Closure Ordinals of Logic Programs 83

References

[l) K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, North Holland Publishing Company, Amsterdam, to
appear.

[2) K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, July 1982.

[3] C. Berge. The Theory of Graphs. John Wiley and Sons, 1962.

[4] M. Bezem. Characterizing termination of logic programs with level mappings. In Pro­
ceedings of the North American Conference on Logic Programming, Cleveland, Ohio,
1989.

[5] H. A. Blair. Decidability in the herbrand base. Manuscript presented at the Workshop
on Foundations of Deductive Databases and Logic Programming, Washington, D.C.,
August 1986.

[6] H. A. Blair. The recursion-theoretic complexity of the semantics of predicate logic as
a programming language. Information and Control, July-September 1982.

[7] R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[8] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[9] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
1987.

[10] W. Sierpinski. Cardinal and Ordinal Numbers. Polish Scientific Publishers, 1965.

[11] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a program­
ming language. Journal of the ACM, 23, 1976.

