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ABSTRACT 

A queue model is studied in which the arrival stream depends on the 
type of the customer being served. A priority ordering of the types is de­

fined, and the service policy it generates is proved optimal. This note 

surveys and generalizes the work of BRUNO, KLIMOV, and MEILIJSON and WEISS. 
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I. INTRODUCTION 

KLIMOV [2] dealt with an MIGII I queue model with several types of cus­

tomers, in which a customer of type i, upon leaving the server, rejoins the 

queue as a customer of type j with probability Q(i,j) and leaves the facil-

ity with probability - Ej Q(i,j). He defined an ordering of the types of 

customers and proved the priority rule it generates to minimize expected 

rates of cost under steady state. The ordering depends on expected service 

lengths, on holding costs and on the matrix Q but not on the intensities 

of the Poisson streams. The priority rule agrees with the so called "cµ" 

priority rule when Q(i,j) = 0. 

BRUNO [I] and MEILIJSON & WEISS [3] proved Klimov's rule to be optimal 

for the service of a batch of customers. 

These models may be unified and generalized as follows. Let the non­

negative random variables v., c., n .. be the length of service of a customer 
1. 1. 1.J 

of type i, its holding cost per unit time and the number of customers of 

type j that arrived during its service. Assume that, given the types of the 

customers, the vectors (v.; c.; n. 1, n. 2 , ... ,n. ) corresponding to differ-
1. i i i ir 

ent customers are independent, and those corresponding to customers of the 

same type are, in addition, identically distributed. 

The server's problem is to find a service policy that will minimize 

the expected total cost during the current busy period. 

The purpose of this note is to define an ordering of the types 

* Research conducted during the author's stay at the Mathematisch Centrum, 
Amsterdam, in the Sunnner of 1975. 
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for the model defined above, to prove the priority rule it generates to be 

an optimal service policy, and to prove that the ordering is unaffected by 

time-homogeneous modifications of the stream. 

2. ASSUMPTIONS AND RESULTS. 

(i) v(i) = E(v.) and c(i) = E(c.) are positive and finite, n(i,j) = E(n .. ) 
1 1 1J 

are non-negative and finite. 

(ii) All eigenvalues of ((n(i,j))) are strictly less than 1 in absolute 

value. 

(iii) The length of a busy period and the number of customers served during 

it possess finite second moments. 

REMARK. Assumption (iii) deals with variables that do not depend on service 

policy. 

Let r be the number of types of customers and denote R = {1, 2, .•• ,r}. 

For a matrix M on R x R and sets A ~ B ~ R, the matrix MA on A x A has 

MA(i,j) = M(i,j) and the matrix MA,B on Ax B has MA,B(i,j) = M(i,j) ~B-A(j), 

where ~K is the indicator function of the set K. 

For a vector won Rand sets A~ B ~ R, the vector wA on A has wA(i) = w(i) 

and the vector wA,B on B has wA,B(i) = w(i) ~B-A(i). The direct product 

w1 * w2 of the vectors w1 and w2 on R is the vector on R with w1 * w2(i) 

= w1(i) w2(i), and their direct ratio w1 ! w2 is the vector on R with 

w1 ! w2(i) = w1(i)/w2(i) if w2(i) # 0, = 0 if w2(i) = O. 

The vector with coordinates v(i) (c(i)) is v(c). The matrix with coordinates 

n(i,j) is N. The vector all of whose coordinates are l is 1. Vectors are 

column vectors unless transposed by ('). 

(I) 

(2) 

For a non-empty subset A of R, define the following vectors on A. 

d(A) 

y(A) 

-1 
= cA - (IA - NA) 

= (IA - NA)-1 vA 

(3) H(A) = d(A) ! y(A) 

Define a vector H on R by 

(4) H(i) = max H(Au{i}) (i) 
A,::.R 



(5) 

(6) 
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A service policy is H-monotone if at every decision moment it chooses 

almost surely to serve one of the customers whose type has the highest 

value of H(i) among those in the queue. 

THEOREM I. A service policy minimizes the expected total cost du.ring a 

whole busy period if and only if it is H-monotone. 

* * * . . . Let the non-empty sets R1, R2 , ••• ,R£ be the partition of R with 

(i,j) E ~,.. H(i) = H(j) and i E ~' j E ~+I,.. H(i) < H(j). (R7, ... ,~) 
is called the optimal priority partition of R. To compute it it is not 

necessary to perform the maximizations in (4): 

THEOREM 2. R7 = {i E RJ H(R)(i) =~in H(R)(j)}. Let R2 = R - R7. 
JER 

If R2 = 0 then£ I. Otherwise, 

= 1?in H(I\)(j)}. Let I\+l = Rk 
JEk-

inductively, ~ = {i E 1\1 H(I\)(i) = 

* I\· If I\+i = 0 then£= k. 

THEOREM 3. Assume that for some non-negative matrix M on RxR and some 
non-negative vector A on R, N = M + v A'. Denote by H(M), i(M~ ~(M) 
the corresponding expressions missing (M) computed as if N was M. Then, 

(i) For every non-empty subset A of R, 

(H(M)(A) - (A' c - AA d(A))IA) 
+ A1 y(A) 

H(A) = -----

A 

(ii) £(M) = £and for each I $ k $ £, R*(M) - R* k - -1<. 

REMARK. v A' is a time homogeneous factor to the stream. 

A word about d, y and H. 

By ([4], theorem I.I) assumption (ii) implies that IA-NA is non-singular 
I co k for every non-empty subset A of R. Express (IA-NA)- = Ik=O NA to infer 

that (IA-NA)- 1vA(i) is the expected time it will take to serve custom­

ers to exhaustion, when there is originally one customer only, its type 

is i, and only customers whose types belong to A are provided service. 

At the conclusion of that time, the expected number of customers of 
-I 

type j in the queue is (IA-NA) NA,R(i,j). 
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Imagine John and Bob are the only customers in the queue, John's type 

is i and Bob's ty~e is J· Let 1 EA s R, j E B s R. Under the policy JB 

start by serving John, then serve to exhaustion customers with types in A 

but do not serve Bob. Now serve Bob, then serve to exhaustion customers 

with types in B but do not serve those in the queue at the moment Bob's 

service started. Proceed in some arbitrary manner II. Define a policy BJ 1n 

the same way, using the same II as before. To compare the performances of JB 

and BJ we may disregard the common tail II. The relevant waiting costs to 

compare are, then, 

(7) 

c(j) y(A)(i) + (IA-NA)-l NA,R c(i) y(B)(j) 

and 
-1 . c(i) y(B) (j) + (IB-NB) NB R c(J) y(A)(i) . 

• 
In other words, H(B)(j) and H(A)(i) are to be compared. If H(i) > H(j) 

then for some set A containing i and all sets B containing j, we would 

rather use JB than BJ. This is an intuitive reason why the customer 

of type i should be preferred. 

3. PROOFS 

We will prove below formula (12), which is the same as ([3], formula 

(7)), for the present more general H. Beyond that, there is nothing 

else to prove to obtain theorems l and 2. We will just point out how 

does everything follow from results in [3]. Theorem 2 follows from (12) 

just as ([3], theorems l and 2) follow from ([3], (7)). To obtain 

theorem 1, observe that Has defined in (4) is already the H corre­

sponding to vector customers in ([3], section 6), and that the lexico­

graphic order on the vector stages as defined in ([31, section 6) 

applied to the present set-up makes H monotone, so ([3], assumption 2) 

is satisfied and every H-monotone policy is excessive. Assumption (iii), 

which corresponds to ([3], assumption 4(ii)), permits us, then, to 

infer optimality from excessivity. 

LEMMA 1. For i Es s B c R, 

-1 
d(B)(i) - d(S)(i) = (Is-Ns) NS,B d(B)(i) 

and 



(9) 

(10) 

( 11 ) 

PROOF. Use the probabilistic interpretation of dandy following (6) 

to express, for i ES, j E B, 

and for i E S, J E B, 

So, combining (9) and (10), 

d(B)(i) - d(S)(i) 

thus proving (7). (8) is immediate. ~ 

Define a vector HS(B) on S by 

H8 (B) is a convex combination of the values of H(B) (j) for j E B-S. 

The following expression, (12), follows immediately from Lemma 1. 

For i E S S B S R, 

5 

(12) H(B)(i) = (y(S)(i) / y(B)(i)) H(S)(i) + (1-(y(S)(i) I y(B)(i))) H8(B)(i). 

Proof of theorem 3. 

Check that for every vector w on A, 



Substitute N c as win (13) to express A,R -

Substitute vA for w in (13) to express 

The direct ratio of (14) and (15) yields (6). (ii) follows easily 

from (i), using theorem 2. D 
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