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1. Introduction 

About twenty-five years ago Garret Birkhoff (1959) indicated how pos1tmty 
arguments could be exploited in problems from nuclear reactor theory, and he 
conjectured that infinite dimensional analogues of the Perron-Frobenius theo
rem would provide the right framework for these kind of problems. Since then 
it has proved that he was right and nowadays there exists a vast amount of 
literature where methods from positive operator and semigroup theory are 
used to study problems in linear transport theory. Moreover, within a few 
years positive semigroup theory has become a new discipline in functional 
analysis. 

It is the purpose of this paper to indicate how positivity can be exploited 
succesfully in linear models from structured population dynamics. Diek
mann, Heijmans and Thieme (1984) investigate a linear model describing a 
cell population reproducing by equal fission. The spectrum of the strongly 
continuous semigroup associated with the problem is obtained (by applying a 
spectral mapping theorem) from the spectrum of the corresponding generator. 
This spectrum has been investigated in Heijmans (1985) using the positivity 
of the resolvent. 

In this paper we shall follow a different road, and use the positivity of the 
semigroup itself. The advantage of this approach is that extensions to non
autonomous situations are possible: e.g. Diekmann, Heijmans & Thieme 
(to appear). 

This paper consists of the following parts. In Sect. 2 we give a short 
introduction to positive semigroup theory and prove a very general renewal 
result. In Sect. 3 we describe a model, covering several examples in structured 
population dynamics: we shall discuss five of these examples. Then in Sect. 4 
we show how a semigroup can be associated with the problem and moreover 
we shall represent this semigroup as an infinite series. At that place we shall 
also state our main result concerning the asymptotic behaviour of solutions. In 
order to prove this main result we apply the theory discussed in Sect. 2 which 



600 HJ.AM. Heijmans 

is permitted after some positivity and compactness conditions have been veri
fied. This is successively done in Sect. 5 and Sect. 6. In Sect. 7 we make some 
final remarks. 

2. Some Results from Positive Semigroup Theory 

Let X be a Banach space and L: X --?X a closed linear operator. We denote 
by a(L), P a(L) the spectrum and point spectrum of L respectively. We let p(L) 
be the resolvent set and r(L) the spectral radius. ~(L) and .A'(L) denote the 
range and kernel of L respectively. For a bounded subset V of X the (Kurat
owski) measure of noncompactness a(V) is defined as (e.g. Nussbaum (1970)): 

a(V)=inf{d>O!there exist a finite n~mber of sets Vp···· Vn such that the 

diameter of ~ is less than d and V = i ~1 ~}. The measure of noncompactness 

!Lia of the bounded linear operator L: X --?X is by definition 

I Lla=inf{m ~ O!a(L(V)) ~m· a(V), for all bounded subsets V of X}. 

The proof of the following result can be found in Nussbaum (1970). 

Lemma 2.1. a) !Lia~ llLll for every bounded linear operator L. 
b) IL 1 +L2 1a~IL 1 1a+IL2 1a for all bounded linear operators L 1, L 2• 

c) IL+ Cla =I Lia if Lis bounded and C is compact. 

Remark 2.2. It follows that I· la induces a seminorm on the space of bounded 
linear operators on X (see Nussbaum (1970)). 

Definition. The (Browder) essential spectrum a ess(L) of L is defined by: 
A.ea ••• (L) if at least one of the following conditions holds 

(1) A. is a limit point of a(L), 

(2) ~(U -L) is not closed, 

(3) LJ .A'((U -L)k) is infinite dimensional. 
k i5; I 

Browder (1961) has proved that for a closed operator L, A.ea(L)\cr •• (L) 
implies that A is an eigenvalue of Land, moreover, A. is a pole of the resolvent 
R(A.,L)=(AJ-L)- 1 of finite rank. Such an eigenvalue is called a normal eigen
value. For a bounded operator L, r ••• (L) denotes the radius of the essential 
spectrum, i.e. r ••• (L) =sup{l.A.l IA.ecr ••• (L)}. Nussbaum (1970) proved the following 
result: 

1 

r ••• (L)= Jim IL"l~- (2.1) 
n- oo 

Let A be the generator of a strongly continuous semigroup T(t), t ~ 0 (Pazy 
(1983)). We can properly define 

w 0 =w 0 (T(t)) =Jim~ log II T(t)ll, (2.2a) 
t-oo t 
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Wess= Wess( T(t)) =Jim~· log I T(t) L,, ,_a: t 
(2.2b) 

with the convention that logO = - oo. w0 (T(t)) is called the growth bound and 
wess(T(t)) the essential growth bound. It can be proved that 

r(T(t))=ew0 ', 1~,s(T(t))=e"'m', t>O, 

where e- x' = 0. The spectral bound s(A) of the generator A is defined by 

s(A) = {Re icl),Ea(A)}, 

where s(A) = - u:.; if this set is empty. Then 

w 0 (T(t)) = max {s(A), Wess( T(t))}. 

(2.3) 

(2.4) 

(2.5) 

These results can be found in Pruss (1981) in a slightly different formulation 
(see also Webb (1985)). A standard result in semigroup theory (e.g. Webb 
(1985)) says: 

For all w>w0 there is M(w)~ l such that llT(t)ll ~M(w)ew', for all t~O. 
(2.6) 

A question which is very important in many applications is whether or 
not s(A) =w 0 (T(t)) and how the peripheral spectrum a +(A) of A, (a +(A) 
={),Ea(A)IReA.=s(A)} if s(A)> -oo and a+(A)=.0' if s(A)= -oo) looks like. 
Very precise answers to these questions are known for so-called positive semi
groups. Let us first give some definitions. For the rest of this section we 
assume that X is a Banach lattice and we let X + be the cone of positive 
elements (Schaefer (1974)). We denote by X* the dual space and by X! the 
dual cone. Finally we let (F, <P) be the duality pairing for <fJEX, FEX*. 

Definition. The semigroup T(t) is called positive (i.e. T(t) ~ 0) if T(t) leaves the 
cone invariant for all t~O. We call T(t) irreducible if for every c/>EX +' c/>=!=O, 
FEX!, F=!=O there exists a t>O such that (F, T(t)</J) >0. 

Remark 2.3. Proposition III.8.3 of Schaefer (1974) shows that this definition is 
equivalent to Schaefer's original definition. 

The following theorem has been proved by Greiner (1981). 

Theorem 2.4. Let A be the generator of a positive irreducible semigroup T(t) and 
suppose that s(A) is a pole of the resolvent, then a+ (A)= s(A) + i a.7l for some 
real a~ 0, and every element s(A) + i ak, kEJ!. is a pole of order one of the 
resolvent, and moreover its geometric multiplicity is one. 

We can now characterize the peripheral spectrum a +(A) under an ad
ditional assumption. Compare Corollary 1.7 of Greiner (1984a). 

Theorem 2.5. Let T(t) be a positive irreducible semigroup with generator A such 
that s(A) is a pole of the resolvent. Suppose moreover that 

w0 (T(t))>wess(T(t)), (2.7) 

then there is an c: > 0 such that Rd< s(A) -c: for all }Ea(A), Jc=!= s(A). 
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Proof Since the part of the spectrum at the right of the vertical line Rd 
= w ••• (T(t)) contains only (normal) eigenvalues and therefore is "faithfull" to 
the spectrum of the semigroup (Pazy (1983)), i.e. { ei;V,eu(A), Rd.> w ••• } 
={µeu(T(t))llµl>r ••• (T(t))} it follows that it suffices to show t~at. u+(:4) 
= {s(A)}. Suppose not. Then a +(A)=s(A)+ioc.Z for some oc~O. This implies 
that the closure of the set {es<AJt eiaktlke.Z} is contained in u(T(t)). If oct/rc is 
irrational (and this is true for a.e. t> 0) then {µI lµI =e<AJt} £ a(T(t)), yielding 
that w0,,(T(t))~s(A) which contradicts w ••• (T(t))<w0(T(t)). D 

Let }'=s(A) and let t/1 0 , F0 be the associated positive eigenvector and 
adjoint eigenvector, 

(2.8) 

normalized by the conditions 

(2.9) 

Remark 2.6. If for example X = L1 (µ) for some a-finite measure space (.Q, L:, µ), 
then t/1 0 and F0 are positive a.e. (Schaefer (1974)). 

We let Pa be the one-dimensional strictly positive projection 

(2.10) 

The large time behaviour of solutions n(t) = T(t) <P of the abstract Cauchy 
problem 

dn 
dt=An, n(O)=</> (2.11) 

is characterized by the following theorem. 

Theorem 2.7. Let A be the generator of the positive, irreducible semigroup T(t) 
for which the inequality w •• ,(T(t)) holds. Then there exist constants 
e, M > 0 such that for all </> e X the following estimate holds. 

(2.12) 

where y and P0 are defined above. 

Proof. Let e>O be determined by Theorem2.5 such that y-e>wess(T(t)). If 
µ E a(T(t)), µ-:t= eY' then lµI < e<Y- •l', Let Z = PJl(eYt I - T(t)) (which does not de
pend on t) and let Tz(t) denote the restriction of T(t) to Z, then Tz(t) defines a 
strongly continuous semigroup. Since a(Tz(t)) =a( T(t))\ { eY'}, we have 
r(Tz(t))<e<i·-•l•, t>O. Therefore w 0 (Tz(t))<y-e and we get that 
II Tz(t) <P II;;;::;; M e<r-•>• 11 </>II, </J e Z for some positive constant M (see (2.6)). Now let 
cj>eX. Clearly </J=P0 </J+(l-P0 )</>,T(t)P0 </>=eytpo<f> and llT(t)(J-P0)</>ll =llT2 (t) 
(I -P0) </JI!~ M elr- •>• ll(l -P0)</>ll;;;::;; M e<r-•l 1 ll4>ll. This yields the result. D 

In the subsequent sections we shall apply these results to a concrete prob
lem in structured population dynamics. 



Structured Populations, Linear Semigroups and Positivity 603 

3. The Model and Some Examples 

Consider a biological population whose individuals are completely character
ized by the one- dimensional quantity x. We say that x is the state of the 
individual and we assume that [O, 1] is the state space of the population: this 
means among others that indeed all states 0 ~x ~ 1 (with the possible exception 
of 0 and 1) can be reached eventually by some individual. We assume that 
individuals with state x ~Lt can jump instanteneously to some lower state x - L1 
where 0 < L1<1 is a fixed parameter. 

Let n (t, x) be the function representing the distribution of the individuals 

over all individual states x E [O, 1] at time t, i.e. J n (t, x)dx is the number of 
x, 

individuals with state between x 1 and x 2 at time t. Let rp(x) denote the state 
distribution at time t = 0, then n(t, x) can be computed from: 

on a 
-;-(t, x) +~ (g(x) n(t, x)) = O"(x) n (t, x) -b(x) n(t, x) + b(x +LI) n(t, x +Lt), (3.1 a) 
ut OX 

where one should read b(x + Ll) n(t, x + Ll) = 0 if x +LI> 1, 

1 

g(O) n(t, 0) = f h(x) n(t, x) d x, (3.1 b) 
0 

n(O, x) = rp(x). (3.1 c) 

Here g(x) denotes the growth rate accounting for the fact that between two 
jumps the state of an individual increases continuously according to the or
dinary differential equation 

dx 
-=g(x). 
dt 

(3.2) 

O"(x) denotes the entrance (if O"(x) ~ 0) - disappearance (if a(x) < 0) rate; a very 
well known example of disappearance is provided by death. b(x) is the jump 
rate and h(x) the reproduction rate. The boundary condition (3.1 b) expresses 
the fact that all newborns obtain the state x = 0 at birth. We refer to the lecture 
notes edited by Metz and Diekmann (in prep.) where it is explained in great 
detail how to derive balance equations constituting structured population 
models. 

We define X (t, x) as the state of an individual at time t given that its state 
at time zero was x and no jumps have occurred meanwhile. Then X (t, x) is the 
solution of the ordinary differential equation 

dX 
dt=g(X), X(O, x)=x. 

The curves tr--.(t, X (t, x)), where 0 ~ x < 1, are the characteristic curves of (3.1 a). 
We shall study the initial value problem (3.1) in L1 [O,1], which seems to be 

the most natural choice. So we assume that cjJ EL1 [O, 1]. Let n(t) be given by 
n(t)(x)= n(t, x), x E [O, 1]. We call n(t, x) a solution of (3.1) if and only if 
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(1) n(t)EL1 [O, !], t~O and t1-->n(t) is continuous as a mapping from lR+ 
into L1[O,1]. 

(2) n is differentiable along the characteristics of (3.1 a), i.e. for all t > 0 and 
O<x<l 

. [g(X(h,x))n(t+h,X(h,x))-g(x)n(t,x)J exists. 
(D n)(t, x) = lim h 

h-0 

(3) For all t>O and O<x< 1 

1 
- . (D n)(t, x) = <I(x) n(t, x)-b(x) n(t, x) + b(x + L1) n(t, x + L1), 
g(x) 

1 

n(t,O)=Jh(x)n(t,x)dx, t>O, 
0 

n(O, x)=rp(x), O~x ;£ 1. 

Remark 3.1. In the probability-theoretic literature (3.1 a)-(3.1 b) is called the 
forward equation. In some problems it seems biologically more relevant and/or 
mathematically easier to study the associated backward equation (for instance 
in the space of continuous functions). For an example we refer to Heijmans 
(1984b) where we study the "backward formulation" of the problem described 
in Example 3.9. 

In order to obtain a well-defined mathematical problem we have to make 
some assumptions, which fortunately do hardly !imitate the applicability to 
biological models. 

Assumption 3.2. <I, h, b and g are continuously differentiable on [O, 1]. More
over h, b and g are nonnegative. 

Smoothness is assumed to keep the forthcoming analysis surveyable. With
out doubt it can be weakened without yielding essentially new biological 
phenomena (see Sect. 7). Positivity of h, b and g follows immediately from the 
biological interpretation. 

Assumption 3.3 a) g(x)>O, XE [O, 1), g(l)=O and g'(l)=i=O. 
b) g(x+Ll)<g(x), O~x~l-LI. 

This is our most important and also most restrictive assumption. A biologi
cal implication is that an individual can never reach state x = 1; a generation 
(see Sect. 4 for a precise definition) never becomes extinct, and this has some 
very important mathematical consequences. Observe that assumption 3.3a im
plies that assumption 3.3 b is satisfied in a neighbourhood of x = 1 -LI. Biologi
cally, assumption 3.3 b means the following. Consider two individuals, both 
with state x>LI at time t=O. The first individual jumps immediately to state x 
-LI and finally reaches state x 1 =X(t, x-LI) at time t. The second individual 
starts growing first, and subsequently jumps back to state x 2 =X(t,x)-L1 at 
time t. If g(x+Ll)=l=g(x) for all x then x 1 =l=x 2 . This implies that the jump 
process provides a dispersion mechanism, separating individuals of one cohort. 
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Before stating our third assumption we have to give some definitions. Let 
ahE[O, 1] be the smallest value such that: h(x)=O, xE(ah, 1]. Let abE[LI, 1] be 
given by ab=min{ah+LI, 1}. 

Assumption 3.4. If a,,< 1 then b(x) > 0 on [ah, 1] n (LI, 1]. 

If b(l)=O then f h(x) exp (-J b(()-a(()-v d()dx>l, 
where v=b(l)-a(l). 0 g(x) 0 g(() 

The first part of assumption 3.4 says that every individual without regard 
to its state has the possibility to reproduce at some future time instant 
(perhaps after one or more jumps) or to reach a state arbitrarily close to zero. 
In other words: every state between 0 and 1 is reachable for an individual or 
its progeny. This implies that we have to do our bookkeeping on the whole 
individual state space [O, 1] if we are interested in the time dependent develop
ment of the population. The second part of assumption 3.4 is rather technical; 
it is needed to settle estimate (2.7). It is easily seen that this last assumption is 
fulfilled if b(l)+h(l)>O. 

We shall now describe five examples from structured population dynamics 
which can be reduced to system (3.1) by choosing a suitable new state de
scription. Only in the first example we shall indicate how the assumptions 3.2-
3.4 are carried over to the new situation. In the other examples this is left to 
the reader. 

Example 3.5. Size Dependent Cell Growth. Consider a population of unicellular 
organisms whose members are characterized by their size s. The population 
reproduces by fission into two equal parts and the rate at which cells with size 
s divide is given by f3(s). We assume that f3 is C 1, f3(s) = 0 if s ;£a (where 
0<a<1) and f3(s)>0 if s>a. Then the minimum possible size is ta. Let 
individual cell growth be governed by 

where y is a C 1-function, y(s)>O if1a;£s<l, }'(1)=0 and }"(l)=j::O. 
Finally we assume that the mortality rate µ = µ(s) is a non-negative C1-

function. Let N 0 (s), N(t, s) be the size distribution at time zero and time t 

respectively: 

i',N D 
-·-- (t, s)+-;;-:- (}'(s) N (t, s)) = - µ(s) N (t, s)- f3(s) N (t, s) +4 /3(2 s) N (t, 2s) (3.3 a) 
Dt us 

N(t, ~a)=O, 

N (0, s) = N0 (s). 

We define the state variable x by 

Joas 
x=x(s)= l--0-. 

loda 

(3.3b) 

(3.3 c) 
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The inverse function s = S (x) is given by 

s=S(x)=2-(1:Jx )' 

log2 
where Ll = ---->0. If we put 

logia 

n(t, x) =S'(x) · S(x) · N(t, S(x)), 

then (3.3) transforms into 

() 11 () 

(3.4) 

T (t, x) +-~ (g{x) n(t, x)) = rr(x) n(t, x) - b(x) n(t, x) + b(x + Ll) n(t, x +LI), (3.5 a) 
et (}X 

n(t, 0)=0, (3.5b) 

n(O,x)=tf>(x), (3.5c) 

y(S(x)) . . y(S(x)) 
where g(x)= S'(x) , O"(x)= -µ(S(x))+S(X) and b(x)=/J(S(x)), and where we 

have used that S'(x+Ll)=2S'(x). Therefore this model fits into our framework. 

Remark 3.6. a) Observe that J n(t, x)dx is not a number, but a biomass since it 
x2 x 1 s2 

follows from (3.4) that J n(t, x)dx= J sN(t, s)ds, where S;=S(xJ, i= 1, 2. 
Xt S1 

b) The cell division problem (3.3) has been extensively investigated by 
Diekmann et al. (1984) for the case that growth remains bounded away from 
zero in a neighbourhood of 1, but instead the rate /J(s) becomes infinite in such 

1 

a way that J /J(s)ds=oo. In that case the cell cycle time is finite for all cells, 
a 

whereas this is not true in the model under consideration. 

Example 3.7. Reproduction Causing a Decrease in Weight. Consider a popula
tion whose individuals are characterized by their weight w which varies be
tween w0 and w1 . An adult having weight w~(r+ l)w 0 (where r is fixed and 
(r + 1) w 0 < w 1) can give birth to r offspring (for instance eggs) all having the 
same weight w0 , thereby reducing its own weight to w-r·w0 . Let /J=/J(w) be 
the reproduction rate which is identically zero on [w 0 ,(r+l)w0], and let 
µ, y, N 0 and N have the same interpretation as in the previous example. 
The following equations hold: 

DN a 
- (t, w) +- (y(w) N (t, w)) = - µ(w) N(t, w)-{3(w) N (t, w) 
Dt rJW 

y(w 0 ) N(t, w0 ) =r S /J(w) N(t, w)dw, 
(r+ l)wo 

N(O, w) =N0 (w). 
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w-w 
If we define the new state x as: x = 0 then this model provides a 

W1 -wo' 
second example if /3, µ and y obey the conditions associated with assumptions 
3.2-3.4. 

Example 3.8. Populations Subject to Random Catastrophes. Consider a collec
tion of populations. We assume that an individual (in our terminology this is a 
population which is a member of the collection) is characterized by the 
quantity s, denoting the size of the population. Furthermore we assume that 
every individual is subject to growth, 

ds 
dt =y(s), 

and to random catastrophes, which reduce the population size from s to p · s 
where p E(O, 1) is fixed. We denote by j3(s) the rate at which catastrophes occur 
and we assume that there exists a number aE(O, 1) such that f3(s)>O, s>a and 
f3(s) = 0 elsewhere. With respect to y we make the meanwhile well-known 
assumptions: 

yEC 1, y(s)>O if s<l, y(l)=O, y'(l)=!=O. 

Let N(t, s) be the size distribution then N obeys 

DN (t,s)+~ (y(s)N(t,s))= -f3(s)N(t,s)+~/3 (:) N (t,:), 
Dt us P p P 

N(t, pa)=O, 

N(O, s) = N0 (s), 

where N0 is the initial size distribution. A similar transformation as in Exam
ple 3.5 carries the problem over into (3.1). We refer to Gripenberg (1983) for a 
different approach. 

Example 3.9. Holling's Hungry Mantid Model. A fourth example is given by 
the equation describing the probability distribution N (t, s) of the satiations s of 
an invertebrate predator catching preys with fixed weight w at a rate /J(s). 

aN a at (t, s) - as (csN(t, s)) = - f3(s) N (t, s) + j3(s -w) N (t, s -w), 

N(t, Smax) =0, 

N(O, s)=N0 (s), 

(3.6a) 

(3.6b) 

(3.6c) 

where the satiation s, O~s ~smax between two catches decreases exponentially 
with time 

ds 
dt = -C·S. 
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We refer to Metz and vanBatenburg (1985) and Heijmans (1984b) for more 
details. 

s 
In this case one can define the new state x by: x= 1 --. 

5max 

Example 3.10. Age Structured Populations. Our final example is studied exten
sively in the literature (see Prliss (1981), Webb (1985). It concerns the growth of 
an age-structured population on an infinite age-interval which excludes the 
situation that the reproduction rate f3(a), where a is age, obeys {3(a) =0, a ~A. 
To reduce this problem to our formulation one can define the new state x by: 
x = 1-e-ea, where 0>0 is fixed. Then 

dx dx e ea 0(1 ) g(x)=-=-= e- = -x. 
dt da 

4. Semigroup Solution to the Problem and the Main Result 

We can rewrite (3.1) as an abstract Cauchy problem on the space L1[O,1]: 

(4.1) 

where the closed operator A is given by 

d 
(AijJ)(x)= - dx (g(x)ijJ(x))+lJ(x)ijJ(x)-b(x)ijJ(x)+b(x+Ll)i/J(x+Ll), (4.2) 

for all ijJ in the domain £0 (A) of A, 

0J(A)={i/JEL1 [0,l][g·i/J is absolutely continuous and 

g(O)ijJ(O)=~h(x)ijJ(x)dx}, (4.3) 

which is densely defined. In this section we shall prove that A generates a 
strongly continuous semigroup T(t) and we shall give a series representation of 
this semigroup. First we write A as the sum of a closed operator B, 

d 
(Bi/l)(x)= - dx (g(x)ijJ(x))+lJ(x)ijJ(x)-b(x)ijJ(x), 

having the same domain as A, and a bounded operator C given by 

( CijJ)(x) = {b(x +LI) i/J(x +LI), 
0, 

O~x~ 1 -LI, 
x>l-Ll. 

(4.4) 

(4.5) 

A straightforward computation shows that B is the generator of a strongly 
continuous semigroup, and now a standard result from semigroup theory (Pazy 
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(1983)) says that A being the sum of B and a bounded operator C, also 
generates a strongly continuous semigroup which we denote by T(t). The 
solution n(t)=T(t)cf> of(4.l) can be represented by the series 

C() 00 

n(t) = L: ni(t) ~r L ~(t) cf>, (4.6) 
i= 0 i=O 

where the n;'s are obtained from 

if i=O, and 

if i~ 1. 

on0 o(g n0 ) 
--at+ax=(u(x)-b(x)) n0 (t, x), 

g(O) n0 (t, 0) =0, 

n0 (0, x) = c/>(x), 

(4.7a) 

(4.7b) 

(4.7c) 

an. o(gn.) Jf +~=(u(x)-b(x)) ni(t, x) +b(x+LI) ni_ 1 (t, x+LI), (4.8a) 

1 

g(O) ni(t, 0) = J h(x) n;_ 1 (t, x) dx, (4.8 b) 
0 

ni(O,x)=O, (4.8c) 

Remark 4.1. Let S 0(t) be the semigroup generated by B, then a variation-of

constants formula applied to dn =Bn+ Cn, with Cn being considered as the 
dt 

inhomogeneous part of the equation, reduces the Cauchy problem (4.1) to the 
t 

integral equation n(t)=S0 (t)c/>+ J S0 (t--r) Cn(-r)d-r, from which by the method 
0 00 

of successive approximations, n(t) is found to be n(t) = L S;(t) cf>, where Si(t) 
i=O 

can be obtained from S0(t) and Si_ 1(t) by means of the formula S;(t)</J = 
t 

JS0 (t--r)CSi_ 1(-r)cf>d-r, i~l. The above expansion is different from the one 
0 

given in (4.6) in the sense that the computation of T0 (t)cf> involves the bound
ary condition g(O)n(t, 0) =0 whereas the computation of S0 (t)cf> involves 

1 

g(O)n(t, 0) = J h(x)n(t, x)dx and something similar holds for the other terms 
0 

T;(t), S/t). 
Now we shall reformulate the initial value problem (3.1) as an integral 

equation from which all terms nJt) in (4.6) can be computed. We pretend as if 
1 

the expressions b(x+Ll)n(t,x+LI) and Jh(x)n(t,x)dx in (3.1) are known a 
0 

priori, and compute the solution of the thus obtained inhomogeneous equation. 
As a result we find the following integral equation: 

E(x) {g(X( -t, x)) 1 

n(t, x)= g(x) E(X(-t,x)) cp(X(-t, x))+ ~ h(~)n(t--r(x), e)d~ 

+J g(X(--r,x)) b(X(--r,x)+Ll)n(t--r,X(--r,x)+Ll)d-r}, (4.9) 
0 E(X( --r, x)) 
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where 
x d~ 

r(x) = r g(~), 
(

x a(~)-b(~) ) 
E(x)=exp ! g(~) d~ , 

(4.10) 

(4.11) 

(i.e. r(x) is the time an individual needs to grow from state 0 to x) where one 
should read n(t, x) =0 if t < 0, and take a function of x to be zero if its argument 
is not in [O, 1]. Now ni(t,x) can be computed from the formulae 

n (t x)=E(x) · g(X(-t,x)) · <f>(X(-t x)) 
0 ' g(x) E(X(-t,x)) ' ' 

(4.12a) 

E(x) { 1 ' g(X ( -r, x)) 
ni(t,x)= g(x) ~h(~)n;_1(t-r(x),~)d~+r E(X(-r,x)) 

· b(X( -r, x)+LJ) n;_ 1 (t-r, X( -r, x) + Ll)dr }· (4.12b) 

with the same conventions as in (4.9). Observe that T0 (t) defines a strongly 
continuous semigroup. 

Each function n; has a clear biological interpretation. n0 represents the 
members of the O'th generation, i.e. those individuals present at time zero 
which have not experienced a jump yet. The i'th generation, represented by n;, 
consists of the offspring of members of the (i- l)'th generation, and those 
individuals who were members of the (i - l)'th generation at an earlier time, 
but have experienced one jump during the time elapsed. Observe from (4.12) 
that a generation, once it has come into existence never goes extinct anymore. 

The two following sections are concerned with the verification of the 
conditions of Theorem 2. 7: 

i) T(t) is a positive, irreducible semigroup. 

ii) w ••• (T(t)) <Wo(T(t)). 

We can state our main result now. 

Theorem 4.2. There exists a constant y E IR., a strictly positive projection P0 of 
rank 1 and positive constants M,e>O such that for all ct>eL1 [0, 1] 

l[e- 11 T(t)</J-P0 </>ll ~Me-•• 11</>ll, t>O. 

Moreover P0 can be represented as P0 = F0 ® l/t 0 , where F0 EL 00 [O, 1] and 
l/t 0 E L1 [O, 1] are positive a. e. 

This (renewal) theorem says that the population grows or decays exponen
tially (depending on the sign of y) and the x-distribution becomes stationary if 
t-+ oo. At t = oo the dependence on the initial data is only reflected by the 
constant (F0 , </>). 
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5. Irreducibility of the Semigroup 

In this section we shall establish irreducibility of T(t) with respect to the cone 
L1+ [O, l], consisting of all nonnegative functions of L1 [O, 1]. Actually we shall 
prove a much stronger result here. Let X (t, x) be as in Sect. 3. 

Theorem 5.1. There is a t* > 0 such that n(t, x) > 0, 0 <x < X(t -t*, 0), t > t*. 

The rest of this section is devoted to the proof of this result. Let us assume 
for simplicity that the initial function <P is continuous and <fi(x) > 0, x E (~ 0', ~t), 
where 0 < ~ 0 < ~ t < 1. This assumption does not mean a restriction of generali
ty since one can easily see from ( 4.12) that n 1 (t, x) indeed obeys this assump
tion if t is large enough. Let ~-(t)=X(t, ~0 ) and ~+(t)=X(t, ~t) and we define 
T(x, y) as the time which an individual needs to grow from x to y, i.e. T(x, y) 
=-r(y)--r(x) where T is given by (4.10). 

LemmaS.2. n0 (t,x)>0, ~-(t)<x<~+(t), t>O. 

This result follows immediately from (4.12a). 

Lemma 5.3. If n(t,x)>O, x 1 <x<x2 , where ab<x 1 <x 2 <1, then n(t,x)>O, 
x 1 -A <x<x2 -A. 

This result can easily be verified, using integral equation ( 4.9). 

LemmaS.4. If ah<l then there exists a t 0 >0 such that n(t, 1-.1)>0 if t>t0 . 

Proof. It follows from assumption 3.4 that b(x)>O on (1-e, l] for some c:>O. 
We choose t~~O such that ~-(r~)>l-e. Let t 0 =t~+T(~-(t~)-L1, 1-.1). Since 
X(O, 1-Ll)+Ll=l>~+(t) and X(-t+t~, 1-L1)+L1<X(-t0 +t~, 1-Ll)+Ll 
=~-(t~), and from the continuity of X(., 1-.1), ~-(.)and~+(.) it follows that 
there exist -r 1 (t), -r 2 (t) for t>t0 such that: 1 

i) 0 < T 1 ( t) < T 2 ( t) ~ t - t~ 

ii) if -rE(-r 1 (t),-r 2 (t)) then X(--r, 1-Ll)+LlE(~-(t--r),~+(t--r)). 

Thus n(t, 1-Ll)~n 1 (t, 1-Ll)~ J (something positive). ~cjJ (X(-t+-r, 
<2ltl ( ) 

<tit) E 
X(--r,1-Ll)+Ll))d-r>O, t>t0 , since X(-t+-r,X(--r,l-L1)+L1)E(~ 0 ,~t) if 
TE(-r 1 (t), -r 2 (t)). This yields the result. 0 

Proof of Theorem 5.1. We have to distinguish between three cases: 
i) ah=O. Let t 0 be such that n(t, 1-Ll)>O, t>t0 • Let qElN and c'i>O be 

such that 1-Ll~q.1<1 and qLl+o<l. From the integral equation (4.9) it 
follows that n(t,x)>O if xE[l-L1,qL1+c'i) and t>t 0 +T(1-L1,qL1+o)=t*. 
Now we obtain from Lemma5.3 that n(t,x)>O if xE(O,c'i) and t>t*. Thus 
n(t,x)>O if xE(O,X(t-t*,0)), t>t*. 

ii) O <ah< 1. Using Lemma ta 5.4 and 5.3 one can easily show that there is a 
6, O<b<ah and t*>O such that n(t,x)>O, xE(ah-b,ah), t>t*. From the 
definition of ah and the integral equation (4.9) we obtain that n(t, 0)>0 if t>t* 
and therefore n(t, x) > 0, x E [O, X (t-t*, 0)), t> t*. 
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iii) ah= 1. The definition of ah yields that for t* large, h is not identically 
zero on (~-(t),~+(t)) if t>t*, and from Lemma5.2 we may conclude that 
n(t,0)>0 if t>t*. Consequently n(t,x)>O if xE(O,X(t-t*,O)), t>t*, and the 
result is proved. 0 

Corollary 5.5. T(t) is irreducible. 

Remark 5.6. It is striking that the proof of this result does not require assump
tion 3.3b. However to some extent this is an optical illusion since this assump
tion has some relation with the condition g( 1) = 0, which is heavily exploited in 
the proof. Corollary 5.5 can also be proved by using Proposition D.3 of Voigt 
(1984). 

6. The Inequality w ••• (T(t)) < OJo(T(t)) 

One cannot expect the inequality 

(J)ess(T(t)) < OJo(T(t)) (6.1) 

to be true if not some sort of compactness of T(t) can be established. We write 
CJ) 

T(t) = T0 (t) + U (t), where U (t) = I T;(t) and T;(t), i ~ 0 is defined in Sect. 4. 
i= 1 

Lemma 6.1. U (t) is compact j(;r all t ~ 0. 

Proof It suffices to show that T1 (t) is continuous with respect to the uniform 
operator topology and compact, since all the other terms T;(t) are obtained 
from T1 (t) by integration. From (4.12) we obtain that 

(T1 (t) cf;)(x) =n 1 (t, x) = E(x)) · {J h(y) E(y) · (f · c/J) (X ( -t + r(x), y)) d y 
g(x 0 g(y) E 

+S g(X(-r,x)). (b·~)(X(-r,x)+LI) 
0 E(X(-r,x)) g 

· (~·c/J)(X(-t+r,X(-r,x)+Ll))dr}, 
with the same conventions as in formula (4.9). We use an Arze!a-Ascoli-like 
theorem to prove compactness. The first term is easy. In the second term we 
substitute ~=X(-t+r,X(-r,x)+A) and a simple calculation shows that 

dr g(X( -T, x)+LI) 
d~ g(fr {g(X(-r, x)+Ll)-g(X(-T, x))} 

and this expression never becomes zero if assumption 3.3 b is satisfied. Now, 
after making some tedious but straightforward estimates, compactness and 
continuity with respect to the uniform operator topology follow. O 

We obtain from Lemma 2.1 that 

I T(t)la =I To(t)+ U (t)la =I To(t)la ~II To (t) II, 
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and from (2.2), (2.3) we get 

(!Jess (T(t)) ~ Wo (To (t)) · 

w0 (T0 (t)) is obtained from the following lemma. Let 

v=b(l)-a(l). 

Lemma 6.2. There exist constants m, M > 0 such that 

613 

(6.2) 

(6.3) 

Proof. It follows from assumptions 3.2 and 3.3a that there exist positive 
constants m1,m2 ,m 3 ,m4 such that m 1 (1-x)e-<1 ~1-X(t,x)~m2 (1-x)e-ct 

v v 

and m3(1-x)<~E(x)~m4(1-x)C, where c= -g'(l)>O. From (4.12a) we obtain 
that 

1 f1 E(x) (g ) llT0 (t)</>ll=fln0 (t,x)Jdx= -(-). -·l</>I (X(-t,x))dx 
0 X<O,tl g x E 

v v 
m - m -

where M =~- m~. Similarly II T0 (t)</>ll ;:;;me-v1 ll</>ll, where m=2·m~. D 
m3 ~ 

This result implies that w 0 (T0 (t))= -v and from (6.2) we get 

wess(T(t))~ -v, (6.4) 

(it is not difficult to show that the equality holds) and therefore we "only" 
have to prove that 

w0 (T(t)) > -v, (6.5) 

or equivalently (see (2.5)) 
s(A)> -v, (6.6) 

in order to settle (6.1). The rest of this section is concerned with the proof of 
(6.6). The reader should observe that this is the only place where the generator 
plays an essential role. 

Let feL1[0,1]. The inhomogeneous equation J..ljl-Al/J=f can be reduced 
to 

where 
(6.8) 
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As in the proof of the former lemma we can show that there exist positive 

constants i 1, l 2 such that 

(6.9) 

and these estimates yield that the separate terms at the right-hand-side of (6.7) 

only make sense (i.e. define L1-functions) if v +Rd.> 0. 
Now, for all /,E<r with v+Rd>O we define the bounded operators Ti, UA 

on L1[O,1] by 

(T;<P)(x) = ~-<(~) · n h(() <P(() d( + ~ b~-<~(~) <jl(( +LI) d (}, (6.10) 

( 6.11) 

The following result is straightforward. 

Lemma 6.3. If v +Re),> 0 then TA and U;. are compact. 

Now for .l.Ep(A), i.e. the resolvent set of A, we have (AJ-A)- 1f = 

(I -T,_)- 1 Ud and we conclude that for all Jc with v +Re).> 0 we have 

AEO"(A)<o>JcEPO"(A)-= 1 E O"(TA). 

Now suppose that Jc is real and v +Jc> 0 then T;. is positive and a famous result 

of Krein and Rutman (1948) says that the spectral radius r-< = r(T,) is an 

eigenvalue. Thus, if there exists a .l. 0 > -v such that r(T,0 ) = 1, then Jc 0 E O"(A), 
and therefore s(A)~Jc 0 > -v and in that case we are done. Since .J.->r(T,) 
is continuous and 

lim r(T,)=0, 
!c~ 00 

as one can show quite easily, it suffices to prove that 

Jim r(T,) > 1. ( 6.12) 

"' -v 

To this end we shall use the following result due to Krein and Rutman (1948). 

Lemma 6.4. If L is a positive operator and if! a positive, nonzero vector such 
that L if!~ c ·if!, for some positive constant c, then r(L) ~c. 

We shall distinguish between two cases. 

(i) b(l)>O. Let .l.EIR., v+.l.>0. Some simple estimations using (6.9) show 
that there is a positive constant C such that 

x 

(T,if!)(x)~ C(l -xiv+"- 1 S b((+Ll)t/t((+Ll)d(. ( 6.13) 
0 

From b(l)>O it follows that there is a bE(O,LI) and an 17>0 such that b(x)>ry, 
XE(l -b, 1]. 
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Now let p= v + ),E(O, 1), a=fl! · <5 and let if; PELi[O, 1] be given by 

tf;p(x)=(l-x)-l+P, XE(l-<5,l-c;), 

tf;P(x)=O, elsewhere. 

From (6.13) it follows that 

(T.< if; p)(x) ~ C( 1-x)- 1+/r1'/ · (1 - x)- 1 +Pd X = C '7 ('iP If; p(x), 
1-0 2p 

and Lemma6.4 yields that r(T_v+p)~ C1J .('iP, hence limr(T"')=ro, so we have 
established ( 6.12) in this case. 2 P -" L - v 

(ii) b(l)=O. Clearly T;_tf;~S;._tf;, tj;EL1+[0,l], v+).>0, where (S,_tj;)(x) 
E;..(x) 1 

=-( -) Jh(~)tf;(~)d~. Therefore r(T;)~r(S.<)· Clearly lEa(S"') for some ..1. with 
g x o i E (x) 

v+).>0, if and only if Jh(x)-,_-dx=l. It follows from the second part of 
o g(x) 1 E (x) 

assumption 3.4 that there is a A.*> -v such that Jh(x)-;.*-dx= 1, hence 
o g(x) 

r(T;..) ~ r(S -"*) ~ 1, and this implies (6.12). Now we have proved 

Theorem 6.5. Wess(T(t)) < w 0 (T(t)). 

Remark 6.6. If b = 0 and the second part of assumption 3.4 is not fulfilled, then 
w 0 (T(t))=w 0 (T0 (t))= -v. This can be proved in the following way: suppose 
w0 (T(t))>w 0 (T0 (t)). Then there is a µE<C, lµl>e-vt such that µEa(T(t)). Since 

a(A) n PI v+ Rd> O} =0 

and the point spectrum and residual spectrum of the generator A and the semi
group T(t) are faithfull (Pazy (1983)) we may conclude that µ must be con
tained in the continuous spectrum of T(t). However this is contradicted by the 
observation that 

µI -T(t) =µI -T0 (t) - U(t) =(µI -T0 (t))(J -(µI -T0 (t))- 1 U(t)), 

and the compactness of U(t). Hence w 0 (T(t))=w 0 (T0 (t))= -v. In this case we 
may conclude from (2.6) that for all a>O there is a M(e)>O such that 

llT(t)<Pll ~M(e)e-(v-e)t ll<Pll. 

7. Final Remarks 

In their papers on linear transport theory, Greiner (1984b) and Voigt (1984) 
also exploit positivity properties of semigroups to determine their asymptotic 
behaviour, and it is worth mentioning that also in these papers (and other 
literature on linear transport theory) the inequality wess(T(t))<w 0 (T(t)) plays 
an important role. 

The equations in example 3.8 as well as in example 3.9 induce a semigroup 
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T(t) which obeys llT(t)ll = 1, r;;;:O, which says that there is conservation of 
number. (This can easily be obtained by integrating the equations over all 
values of s.) This yields that 

WesJT(t)) < 0 =W 0(T(t)). 

One can think of other situations where a similar conservation principle 
provides an easy proof of the inequality (6.1), and in such cases, positive 
semigroup theory is extra powerful. 

If generations go extinct after finite time (for instance if g(l) > O; see 
Remark 3.6b) then T0 (t)=O, t>r(l) and hence T(t) is compact, t>r(l) imply
ing that wess(T(t)) =-co, and also in this situation inequality (6.1) is a trivial 
one. Unfortunately it is now also much more involved to prove irreducibility 
of the semigroup T(t). 

If we drop the assumption that b and <J are C1 but instead impose the 
weaker condition 

J1 lb(x)-O"(x)-vl 
( ) dx<oo, 

0 g x 

then all calculations remain valid. 
We expect that the assumption 

g(x+Ll)<g(x), O<x<l-Ll, 

can be omitted, perhaps at the cost of a strengthening of the second part of 
assumption 3.4. We refer to Sect. 8 of Diekmann, Heijmans and Thieme (1984), 
where for a related problem it is shown how a weakening of such an assump
tion induces (extra) essential spectrum. 

If we allow the jump parameter L1 to take all values between Ll 1 and L1 2 

where 0<Ll1<LI 2 <1, and the probability of making a jump L1 is determined 
Ll2 

by the smooth function p(Ll), J p(Ll) d L1=1, then (3.1 a) has to be replaced by 

On iJ L12 

-0 (t,x)+-~ (g(x)n(t,x))=(<J(x)-b(x))n(t,x)+ J p(Ll)b(x+Ll)n(t,x+L1)dL1. 
t 0 X Lli 

In this case the bounded perturbation C (see Sect. 4) is given by 

Ll2 

(Ctf;)(x)= J p(Ll)b(x+Ll)tf;(x+Ll)dLl, 
Ll1 

and this defines a compact operator. In this case compactness of U(t) follows 
immediately, and does not require the assumption g(x+Ll)<g(x). We refer to 
Heijmans (1984a) for a related problem. 

Finally we think it is important to notice that we can avoid the use of 
Theorem 2.4 and prove Theorem 4.2 exploiting the fact that the semigroup 
obeys a stronger positivity-condition than irreducibility (cf. Theorem 5.1), 
namely: for all rpEL1+[0,1], rp=t-0 and FEL~[O, 1], F=t-0 there is a t=t(</>,F);;;:O 
such that (F,T(t)</>)>0 for all t;;;:t(rp,F). We shall call such a semigroup 
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nonsupporting after a concept of Sawashima (1964). Using Sawashima's result 
on nonsupporting operators we can prove Theorem 2.5, where 'irreducible' is 
replaced by 'nonsupporting', directly. We refer to Theorem 1.3 of Nussbaum 
(1984) for a related result. 
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