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On the Numerieal Integration of Second-Order Initial V aloe Problems with a Periodic Forcing Function. 
Runge-Kutta-Nystrom type methods and special predictor-corrector methods are constructed for the 
accurate solution of second-order differential equations of which the solution is dominated by the forced 
oscillation originating from an external, periodic forcing term- For a family of second-order explicit and 
linearly implicit Runge-Kutta-Nystri:im methods it is shown that the forced oscillation is represented 
with zero phase lag. For a family of predictor-corrector methods of fourth-order, it is shown that both 
the phase lag order and the dissipation of the forced oscillation can be made arbitrarily high. Numerical 
examples illustrate the effectiveness of our reduced phase lag methods. 
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Zur numerischen Integration von Anfan~wertanfgaben flir Differentialgleichungeo zweiter Ordnung mit 
einer periodischen Kraftfunktion. Fiir die numerische Behandlung von Differentialgleichungen zweiter 

. Ordnung, bei denen die Losung im wesentlkhen <lurch die von einer auBeren periodischen Kraft 
erzwungenen Schwingung bestimmt wird, werden Diskretisierungsmethoden vom Runge-Kutta
Nystrom Typ und spezielle Pradiktor-Korrektor Methoden konstruiert. Fiir eine Klasse expliziter und 
linear-impliziter Runge-Kutta-Nystriim Methoden der Ordung zwei zeigen wir, daJ3 die erzwungene 
Schwingung keinen Phasenfehler aufweist. Fiir eine Klasse von Priidiktor-Korrektor Methoden vierter 
Ordnung wird nachgewiesen, daB die Phasen- und Dissipationsfehlerordnung be!iebig groB gemacht 
werden kann_ Numerische Beispiele bestatigen die Wirlcsamkeit unserer Methoden mit reduziertem 
Phasenfehler. 

1. Introduction 

We shall be concerned with the special second-order differential equation 

y" = f(t, y) (Ll) 

with initial conditions y (0) = y0 and y' (0) = y0. In particular, we will consider 
problems, where it is known in advance that the solution y (t) is periodic due to some 
external forcing term. To be more precise, we aim at problems of the form 

y" (t) = M (t, y) y+ g (t, y), (1.2) 



196 P. J. van der Houwen, B. P. Sommeijer, K. Strehm.el, and R. Weiner: 

whereM is a matrix with a negative spectrum andg (t,y(t)) is a periodic function oft; 
furthermore, Mand g are slowly varying with (t, y) and y, respectively. The solution 
component representing the forced oscillation, introduced by g, will be called the 
"inhomogeneous" solution component. In our analysis it will be assumed that the 
inhomogeneous solution component dominates the solution and forces y(t) to be 
periodic with frequency ro. 

The methods to be analysed in this paper are explicit Runge-Kutta-Nystrom 
methods, the adaptive Runge-Kutta-Nystrom methods proposed in 
Strehmel/W einer [ 11], and the special predictor-corrector methods proposed in van 
der Houwen/Sommeijer [7]. Conditions will be derived for tuning these families of 
methods to the given problem, and concrete methods will be constructed that satisfy 
these conditions. The resulting methods are characterized by the property that the 
phase error of the inhomogeneous solution component is significantly smaller than 
the phase errors produced by conventional methods. Our main results are, relative 
to the usual test equation (cf. (2.1)), (i) families of second-order Runge-Kutta
Nystrom methods of explicit type and of linearly implicit type (adaptive methods) 
with zero phase lag in the inhomogeneous solution component, and (ii) a family of 
fourth-order predictor-corrector methods of arbitrarily high phase lag order and 
dissipation order. 

In a number of earlier papers (cf. e.g. Brusa/Nigro [l], Gladwell(fhomas [5], 
Thomas [12] and StrehmeljWeiner [11]), the reduction, or even the elimination, of 
the inhomogeneous phase error bas already been studied. The present paper extends 
this work, firstly, by treating the important classes of Runge-Kutta-Nystrom type 
methods and predictor-corrector methods in a systematic way, and secondly, by a 
simultaneous reduction of the inhomogeneous phase lag and dissipation error. 

Finally, we remark that the phase lag analysis of the homogeneous solution 
component (using a homogeneous test equation) has been studied in Chawla/Rao 
[2], Twizell [13], van der Houwen/Sommeijer [8, 9], and Chawla/Rao/Neta [3]. 

2. Preliminaries 

In this section we shall derive recursions for the approximate solution of the test 
equation 

y"(t)= -82 y(t)+ctt""; 02 >0; w2 ;f82 ; C,OJE~\{O} (2.1) 

when integrated by a numerical method. Here, f> and w respectively correspond to 
the dominating frequencies in homogeneous and inhomogeneous solution com
ponents of the given equation (1.1); w will be assumed to be given and o represents an 
eigenvalue of the matrix M in (1.2). Three classes of numerical methods will be 
considered, viz. Runge-Kutta-Nystrom methods, adaptive Runge-Kutta-Nystrom 
methods, and predictor-corrector type methods. 

Throughout this paper we use the notation 

Zo:= --r2 l?, Vo:='t'CO, 

where -r denotes the integration step of the numerical method. 
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2.1 Runge-Kutta-Nystrom Methods 

Consider the explicit, m-stage Runge-Kutta-Nystrom (RKN) method 

Y~0~1 = Yn• 
j-1 

Y~?.-1=Yn+µ/rJin+T2 L Ji.izf(tn+µ,-r,Y.,~1), j=l,. .. ,m, J'o=O,µ.,,=l, (2.2) 
l=O 

m-1 

Yn+t:=Y.,"21' Yn+1:=y.+T L ).f f(t,.+µ(r,y~~1), 
l=O 

where µi, li" )..f satisfy certain order conditions. For a survey of order conditions for 
RKN methods we refer to [6]. 

Suppose that not all parameters µi, ).i1 and Ji.t are used for satisfying the order 
conditions. Then, one may try to use the remaining degrees of freedom for increasing 
the accuracy when integrating the special test equation (2.1). 

1beorem 2.1: Let the polynomials A,,. (z), Bn.(z), Cm (z) be de.fined by 

J-1 
A0 (z):=l, A1(z):=l+z L Ai1A1(z), j=l, ... ,m, 

l=O 

j-1 

B0 (z):=0, B1(z):=µi+z L, A.11 B1(z), j=l, ... ,m, (2.3) 
l=O 

j-1 

C0 (z):=0, Ci(z):= L ).i1[zCi(z)+eiµzvo], j=l, ... ,m 
l=O 

and let m-1 m-1 

A!(z):=z I A.1 A1(z), B!(z):= 1 +z I A.1 B1(z), 
l=O l=O 

m-1 
(2.4) 

C,!;(z):= L A.t[zC1(z)+eiµivo], 
l=O 

4'2 (z,0:=(2-{A,,,(z)+B!(z))C + A,,,(z) B!(z)-A!(z)B,,,(z). 

Then the numerical solution of (2.1) satisfies the recursion 

4'2 (zo,E) Yn=C '1:2 [Cm(Zo)eivo+ Bm (zo) C! (zo)-B!(zo) C,,,(zo)J einvo, (2.5) 

where E is the forward shift operator. 

Proof: Application of the RKN method to (2.1) yields 

Y11+l =AmYn+-r BmYn+-r2 Cm C ein~o, 

't Yn+l =A:!;y,.+-r B!yn+-r2 C! ct"va, 
(2.6) 

where the polynomials are evaluated at z0 • Elimination of Yn+t•Yn•""" from the 
recursion (2.6) leads to the recursion (2.5). D 

It should be remarked that the polynomials Cm and c::; depend on the value ofv0 • In 
fact, as we shall see later, the coefficients of the polynomials Am, A!, B.,, and B! will 
also depend on v0 and, in a few cases, on z0 • 
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2.2 Adaptive Runge-Kutta-Nystrom Methods 

We consider them-stage adaptive Runge-Kutta-Nystrom method (ARKN method) 

Yn°i1 = Y11+ µo 't Yn• 
J-1 

Y~l1 = Vo((µ1 1:)2 Ijyn+µ/r V1 ((µj't)2 T).Yn+'t2 L A11g,, j=l, ... ,m, (2.7a) 
l=O 

where the functions Vi (z) are defined by 

1 11 ,c 1 ;: 1 R0 cVz) - Ro ( -Vz) 
V0 (z):=-[R0 w z)+R0 (-v z)], Vi(z):=- 1 ;: , 

2 2 vz 

1 R1Wz)-R1(-Vz) 
Vi+i(z): 1 ;-:z , l=l,2, .... 

2(1-1)! vz 

(2.7b) 

The rational function R0 (z) is an approximation to exp(z). The rational functions 
R1 (z), l = 1, 2, ... are recursively given by 

R0 (z)-1 l R1(z)-1 
R1 (z): , R1+dz):= , Z:::::l,2,... (2.7c) 

z z 

and the functions Ai1 and B1 are defined by 

P· p 

Ai1(z):= fat/I Vi+ 2 (z), B1:= L ')1,1 Vz+ 1 (z), (2.7d) 
s=O s=O 

where rx.~1 , Ysi are parameters which determine the method, Tisa constant matrix on 
[tn, t11 +-r], usually an approximation to the Jacobian matrix of the system. The 
values g1 are given by 

g,:=f(tn+µ,r:, Y~~1)-Ty~~1· 

For T=O we obtain a classical explicit RKN method. A detailed description of 
ARKN methods (with JLo=O) can be found in [11]. 

Theorem 2.2: Let the rational functions cm (z), c: (z) be defined by 

and let 

m-1 
C (z)·= ~ A eiµzvo 

m · ~ ml ' 
1=0 

m-1 

C;!;(z):= L B1e1Pz•o, 

1~0 

<P2 (z,0: = (2-2 V0 (z) C + V~ (z)-z vr (z). 

Then the numerical solution, when integrating the test equation (2.1), satisfies the 
recursion 
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Proof: Application of the adaptive RKN method to (2.1) yields 

Yn+l = VoYn+< V1 Yn+i-2 c cm t-nvo, 

0 Yn+1 =zVi Yn+<V0Pn+<2 cC! einvo. 

Elimination of Yn+ 1 , y11 , • •• from these recursions leads to the recursion (2.8). D 

2.3 Predictor-Corrector Methods 

The predictor-corrector method, as defined in [7, 9], is an iteration scheme for 
approximating the solution of the implicit linear k*-step method 

(2.9) 

The initial approximation to Yn+k" is denoted by Y,,0Jk" and is assumed to be provided 
by an explicit linear Ii-step method with characteristic polynomials {p, a}. It will be 
assumed that the coefficients at and bt of,,.. in p* and u* are respectively 1 and i= 0. 
If the corrector equation (2.9) is written in the form 

(2.9') 

where 'En represents the back values in (2.9), then the successive iterates in the 
iteration scheme are defined by 

j 

Y~~1 = L [µjif~+t>+µjl't"l fn~-p]+A.jEn, j=l, ... ,m, (2.lOa) 
1=1 

where the parameters µiz, ji.i1 and li are assumed to satisfy the compatibility 
conditions 

j j r µ11= 1-A.j, r ilj1=b~ ;.1, j= 1, ... ,m. (2.10b) 
l=l l=l 

The iterate y~"2 1 will be adopted as the final approximation to the solution of (2.9) 
and is therefore denoted by Yn+1· 

In the analysis of the method (2.10) the iteration polynomial Pm (z), recursively 
defmed by 

j 

P0 (z)=l, P1(z)= L [µj1+jii1z]P1_i(z), j=l, ... ,m, (2.11) 
l=l 

plays a central role. It governs both the accuracy and the stability of the method. In 
the present paper, the parameters µ11 and ji.il• and therefore the coefficients of Pm (z), 
are allowed to depend on -r. Notice that (2.lOb) implies that Pm (1/b3')= 1. 

Theorem 2.3: Let the predictor {p, 8} and the corrector {p*, O"*} be of order p and p*, 
respectively, and let Pm (-r2) =0 (r8) as r--+0. Then the predictor~corrector method (2.10) 
is of order p=min {p*,p+s,4+2 p}. 

Proof: Cf. [7]. D 
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We see that, by specifying the LM methods {p,d'} and {p*, a*}, and the iteration 
polynomial, the order of the method is completely determined. In the choice of the 
LM methods and Pm (z) we shall be led by our wish to minimize the (global) error 
that arises when the test equation (2.1) is integrated. 

Theorem 2.4: Let {p"', o-*} and {p, 8'} be normalized in the sense that a6=ii.a=1, and 
let 

(1- b* z) P (z) 
R(z,():=p*(() Pmo(z)-~ p(O(k•-fi, 

(l-b6z)Pm(z) _ k• r 

S(z,():=o-*(() Pm(z)-1 a(()( --, (2.12) 

iJ>k(z, (): =R(z, ()-z S(z, (). 

Then the solution, when integrating the test equation (2.1), satisfies the recursion 

{2.13) 

Proof: Application of the predictor-corrector method {2.10) to the test equation (2.1) 
yields 

Y~~l =Pj(zo)Y~0./.1 +Qj(zo)l:n+Qf{z0)c~(n+l)vo, (2.14) 

where Pi is defined in (2.11), and Qi and Qf respectively satisfy the recursion 

j 

Q0 (z)=O, Q/z)=A.i+ L [µi1+µi 1 z]Q1_ 1 (z), 
/; 1 

j 

Q6{z)=O, Qj(z)=b6A./t2 + L [µi 1+J.li1z]Q1- 1 (z). 
1=1 

By virtue of(2.10b) it can be verified that Qi and Qf are related to Pi according to 

Q'!' (z)= b* ,2 Q. (z) = b* "2 1-Pi(z) 
J 0 J 0 1-b6 . 

On substituting into (2.14) and observing that 

y~0l1 = [E'-p(E)] Yn+1-(+ 1 2 8(E)fn+l-1'> 

Ln=[Ek* -p*(E)JYn+l-k"-'t2 [bt Ek.* -a*(E)]f,.+1-k'"Jn= -lJ2 Y.+ceinvo 

we arrive at the recursion (2.13). 0 

2.4 The Numerical Solution of the Test Equation 

We shall derive an explicit expression for the numerical solution of the test equation 
determined by the recursion (2.5), (2.8) and (2.13). These recursions are of the form 

(2.15) 
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where <P (z, O is a polynomial in C with coefficients depending on z but not on n, and 
F (z, v) is a given function of z and v, again not depending on n. By virtue of this 
special form, the following theorem holds: 

Theorem 2.S: The general solution of (2.15) assumes the form 

_ 2 F (zo, Vo) lnv0 ~ rn ~ ( ) 
Yn-C't ""( ...iVo) e +_Li .. j cm;-1 n ' 

'II' Zo,e i=l 
(2.16) 

where Ci, j=l, ... ,r, are zeros of <P(z0 ,C) of multiplicity mi and {cmrdn)} are 
polynomials inn of degree mi-1. 

Proof: By writing 

and on substitution into (2.15), we obtain the recursion 

<P(z0 ,e1v0 E)un=c-r2 F(z0 , v0). 

(2.17) 

The general solution of this recursion is given by (cf. e.g. Lambert [10, p. 8]) 

F(z V ) r 

un=c-rz ( O• t~o) + L (e-i•oe)n[cj1+C12n+c13n(n-l)+ ... 
<P zo, e i=l (2.18) 

+c1m1n(n-1) ... (n-m1+2)], 

where mi is the multiplicity of the characteristic root (1 of <P and where the constants 
ci1 are arbitrary. From (2.17) and (2.18) the assertion of the theorem readily follows. 

D 
The numerical solutions provided by the RKN type and predictor-corrector 
methods can now be obtained explicitly by substituting the corresponding 
quantities <P, F and (1 into (2.16); these quantities are given in the Theorems 2.1, 2.2 
and 2.4, respectively. 

3. Reduction of Phase Errors and Dissipation Errors 

3.1 Possible Strategies 

Having derived the numerical solution to our test equation (2.1) we are in a position 
to compare its error with respect to the exact solution of(2.l); the exact solution can 
be represented by 

-c~ . . . 
Y(t )=---e••v•+c e•nM+c e-mM 

n +2 + - ' zo Vo 
(3.1) 

where c+ and c_ are constants determined by the initial conditions. In the 
expressions (2.16), for the numerical solution, and (3.1), for the exact solution, the 
first term is called the inhomogeneous solution component and the subsequent terms 
are called the homogeneous solution components. The inhomogeneous solution 
component is one source of possible phase errors caused by a different argument of 
the expressions in front of exp (in v0 ). The homogeneous solution components give 

14 Computing 37/3 
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rise to two.sources of phase errors: firstly, the principal characteristic roots C1 and ~2 
in (2.16) may differ in phase with exp(±il/~), and secondly, the corresponding 
coefficients cm,_ 1 and cm,_ 1 may differ in phase with the coefficients c :t. The phase 
errors caused by ·the phase lag of the characteristic roots, increase linearly in time 
and was termed propagated dispersion in [8]. The two other forms of phase errors do 
not depend on t and may be considered as initial dispersion (or initial phase lag) of· 
inhomogeneous and homogeneous type, respectively. 

It should be observed that a vanishing inhomogeneous component (c=O) in the 
exact solution implies a vanishing inhomogeneous component in the numerical 
solution, and vice versa. This is not true for the homogeneous components. Thus, 
when integrating an equation whose exact solution does not contain homogeneous 
components (c+ =c_ =0), the numerical solution will generally have homogeneous 
components. In such cases, the effect of the homogeneous components on the total 
phase error is not clear, because we cannot compare the arguments of corresponding 
components. 

A second observation concerns the weight factor in front of the forced oscillation 
exp(in-r: ro). Let c be fixed in (2.1) and Jet m increase. Then, it follows from (3.1) that 
the inhomogeneous component in the exact solution is decreasing in magnitude. 
Suppose that we have no homogeneous components in the exact solution; then it 
may happen that the inhomogeneous component in the numerical solution is 
dominating for small values of the forced frequency m, but is becoming insignificant 
(with respect to the numerical homogeneous components) if w increases. Thus, when 
the method is deviced in order to represent the forced oscillation accurately, then it 
will only be effective if the inhomogeneous component is dominating in the 
numerical solution. Such methods lose their effectiveness if w increases. This 
phenomenon was observed experimentally by Thomas [12] and by 
Strehmel/Weiner [11]. 

In this paper we shall concentrate on the reduction of the inhomogeneous phase error. 
Following Brusa/Nigro [1], we estimate the magnitude of phase errors relative to 
the phase of the corresponding exact solution component. For the inhomogeneous 
phase error this leads to the following definition: 

Defmition 3.1: The inhomogeneous phase error introduced by the numerical scheme 
(2.15) is defined by 

I z
0 + v~ 11 [ F (z0 , v0) J [ -1 J \ Pinh:= --2- arg i•o) -arg ---2 . 
C'I: c1>(z0 ,e z0 +v0 

If Pin&=O(tq) as -r:-+O, then the method is said to have inhomogeneous phase lag of 
order q. D 

Similarly, we define the inhomogeneous dissipation error: 

Defmition 3.2: The dissipation error of the inhomogeneous component of the 
numerical solution determined by (2.15), is defined by 

I 2 F(zo, v0) l 
Dinh:= (zo +vo) cfl(z,eivo) -1. 
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If Dinh=O(r'), then the method is said to have dissipation of order r with respect to 
the inhomogeneous solution component. D 

In reducing the magnitude of the phase errors, there are several avenues open to us; 
for instance: 

(i) If the frequencies fJ and c:o (and therefore z0 and v0) are both precisely known, 
then one could try to determine the free parameters such that Pinh vanishes for 
the given values of z0 and v0 • 

(ii) If the frequency fJ is not precisely known, but instead, the corresponding value 
of z0 is known to be small, then one could try to maximize the phase lag order q. 

(iii) If the frequency [) is known to lie in an interval [§, b], then one could try to 
minimize Pinh over the corresponding interval on the z-axis. 

In a similar way, one can reduce the dissipation error Dinh• or if desired, one can 
reduce Pinh and Dinh simultaneously. In fact, this approach is to be preferred. Firstly, 
because the reduction of the phase error alone leads to complicated formulas 
defining the parameters of the methods, resulting in difficult computer implemen
tations, and secondly, because the dissipation error may decrease the accuracy of the 
method to such an extent that the advantage of a small phase lag is completely lost. 

In the subsequent Sections 3.2- 3.4 we discuss the explicit RKN methods, the 
ARKN methods and the predictor-corrector methods. 

3.2 Runge-Kutta-Nystrom Methods 

For the RKN method (2.2) we obtain 

F(z, v) Bm C!-B! Cm+Cme;. 

~ (z, ei") 4>2 (z, e1") 
(3.2) 

where ~2 is defined in (2.4). In order to simplify the method and, at the same time, to 
guarantee that the method has a nonempty interval of periodicity, we will require 
that 

for all values of z. Inserting (3.3) into (3.2) yields 

Theorem 3.1: Let 

F(z,v) 

cP (z, e1") 

e-iv [Brn C!-B~ CmJ +Cm 

2cos(v)-(Am+B:) 

e-iv [Bm C! - B;: CmJ +Cm 1 
c:(z, v):= 2 () (A B!) +--2. cos v - m+ z+v 

(3.3) 

(3.2') 

(3.4) 

If e=O('tY) then the phase lag order and dissipation order are both greater than or 
equal to y + 2. 

14* 
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Proof: From (3.4) and the definition of Pinh and Dinh it follows that 

I (zo + v~) l I (z0 + v~) Im (e (z0 , v0 )) I 
Pinh = 2 • arctan ----2-----

C T 1-(z0 +v0 )Re(e(z0 , v0)) 

=I (zo + ~~)2 I · I Im(~ (zo, vo)) I+ O('r4+31J, 
c -r 1-(z0 + v0) Re (e (z0 , v0 )) 

Dinh= 11-e(zo, v0)(z0 +v~)l-1. 

The assertion of the theorem is now immediate. 0 

We shall restrict our discussion to the RKN methods considered in [8]. These 
methods are generated by the array 

µm-1 =! 0 ... 0 Am-1,m-2 

J.Lm = 1 0 0 l ' 
z="-m,m-1 

0 0 l=A.:-1 

and are second-order accurate for all values of A.1,1_ 1, j = 2, ... , m -1. In addition, 
they satisfy condition (3.3) so that, for z0 lying in the periodicity interval, the 
homogeneous solution component is presented by the method without dissipation 
error. 

When we calculate e, as defined by (3.4), then it turns out that e is the real-valued 
function 

cos(tv)(Sm(z)-2)/z 1 
e(z,v) +--2 , 

2cos{v)-Sm(z) z+v 
(3.4') 

where Sm (z) is the polynomial 

Sm(z)=Am(z)+B!(z)=2+z+a2 z2 + ... +O"m-1 ~- 1 , 

Since e is real, it follows that P1nh==O for all z0 and v0 • The (inhomogeneous) 
dissipation error is given by 
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provided that z0 and v0 are sufficiently small. This expression reveals that the free 
parameters in the polynomial S.,,. (z) can only be exploited for the reduction of D;,.h if 
we know both o and w. For instance, if we choose 

O'z =_!__ (i -~) 8 3<52 , 

then D1nh=0(1:4) (of course, we can do better bysettingD1nh=O for the given values of 
z0 = -r2 lJ2 and v0 = w•,see Example 3.1). If o is not known, or if several frequencies 
o are involved, then it is not clear how we can choose S,,. (z) such that the dissipation 
of the inhomogeneous solution component is reduced so that the dissipation order 
exceeds r = 2. In such cases, we propose to use the polynomial S,,. (z) to reduce the 
phase error of the homogeneous solution component. This has been investigated in 
[8] where it was pointed out that choosing 

2 
<Ji=-( :\ 1 ,j=l, ... ,m-1 

2],. 
(3.5) 

leads to the maximal attainable phase lag order 2 m - 2 for the homogeneous 
solution. 

Example 3.1 : Consider the method 

l 0 2 
1 0 <lz p=2, q=oo, r2::2 2 

0 0 1. 
2 

(3.6a) 

0 0 1 

with (inhomogeneous) dissipation error 

( 2) cos (t v0 ) (1 +a 2 z0 ) 
Dinh= - 1- zo +Vo 2 . 

2(cos(v0)-1)-zo-cr2 z0 

Setting D1nh = 0 yields 

a,~__:__ (1-cos ( T)) z, -cos ( T) vH (cos(v0)- l) .,_!_ (i - w' ) 

Zo cos ( v; ) v~ -( 1 - cos ( ~ ) ) z0 8 H
2 

• 

(3.6b) 

The resulting method has zero phase lag and zero dissipation. 0 

3.3 Adaptive Runge-Kutta Methods 

For the ARKN methods (2.7) we obtain 

F(z,v} V1 C!-V0 C,,.+Cmeiv 

!P (z, el") !Pz (z, eiv) 



206 P. J. van der Houwen, B. P. Sommeijer, K. Strebmel, and R. Weiner: 

where 4>2 (z, eiv) is defmed in (2.8). In order to simplify these methods we require that 
the rational function R0 (z) satisfies the condition 

\R0 (ix)\=1 for all xE~- (3.7) 

This condition guarantees that the ARKN-method possesses an infinite interval of 
periodicity, Le. the method is P-stable, and that the dissipation error of the 
homogeneous solution components is zero. The propagated phase lag order is equal 
to the approximation order of R0 (z), so that a reduction of the propagated phase 
error is always possible without difficulty. From the definition of the rational 
functions V0 (z) and V1 (z) and with condition (3.7) we obtain the relation 

V5(z)-zJ?i(z)=l forallzEC. 
Thus we get 

F(z,v) e-iv[V1 C!-V0 C,,J+Cm 

cf>(z,dv) 2(cos(v0)-V0 ) 

In analogy to Theorem 3.1 we obtain 

Theorem. 3.2: Let 

( } e-iv0 [V1 C;!-V0 C,J+Cm 1 
8 zo, Vo: 2(cos(v0)-V0) + z0 +v~ · (3.8) 

If e = 0 ( i;Y) then the phase lag order and the dissipation order are greater than or equal 
to y+2. 0 

Example 3.2: We consider the one-stage ARKN method 

Y~0i1 = Y,. +tr j;,., 
Yn+t = Vo(t2 T)y,,+-r Vi (i-2 1).Y .. +i-2 V2(r2 T)g(t,.+rr,y~0~1), (3.9) 

Yn+t = Vo(t2 T)Ji,,+-r [TV, (t2 T) Yn+ Vi (t2 T)g (tn +h,y~0i1n · 
This method possesses the (algebraic) order 2 if the approximation order of R0 (z) is 
greater than or equal to 2. For e we obtain 

[ Vf(zo)- Vo (z0 ) V2 (z0)] e- lvo/2 + V2 (z0) e'"ol2 1 
e(z0 , v0)== ( ) +--2 • 2 cos(v0)- V0 (z0 ) zo+vo 

From (2.7b) it follows 
Vf (z)= V2 (z)(l+ V0 (z)) for all zeC. (3.10) 

Hence 
V2 (zo) 1 1 

e(z0 , v0) cos(zv0)+--2 . 
cos(v0}-V0 (z0 ) zo+vo 

Since e is real we obtain Pinh =0 for all z0 and v0 • The dissipation error is given by 

2 V2(zo) i ) 
Dinh.= - 1 - (z0 + v0 ) ( ) V, ( ) cos (2 v0 • cos v0 - 0 z0 

Let us assume that 

R0 (z)-exp(z)=O(z") as z-O with k'?:::.2, 
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then we obtain for V0 (z) and V2 (z) the asymptotic expansions 

Vo (z0)= 1 +tzo + d0 z~ + 0 (z~), 

V2 (z0 )=t+d2 z0 +0(z5) 

with d0 , d2 E ~; therefore we get 

__ 2 2(d0 -d2 )64 +hm4 -(t-2d2 )ai282 O( 4 ) 
Dinh - r 2 ~2 + r . 

0) -u 

Finally, we show that an m-stage ARKN method with a phase lag order q = oo 
possesses the maximal (algebraic) order 2. The following holds: 

Theorem 3.3: Letck,k=O, 1, ... ,M-1,bethedistinctnodesµz,l=O, 1, ... ,m-1 with 
mC.M, of an m-stage ARKN method. Then the ARKN method 

µl a10 Vz 

µz azo V2 a21 V2 

µm-l am-1.0 Vz 

ao V2 

ho vl 

possesses the phase lag order q = oo if and only if 

L: bj= L aj; L bj= L aj (3.12) 
µ'i=ck 

for all k=0,1, ... ,M-1. 

Proof: From (3.8) it follows that 

With (3.10) we obtain 

V m-l . . . 1 
t:(zo, vo)= 2 L [h1e'vo(µ,-ll+a1eivol'1+ Vo(h1-a1)e'vo(l'1-ll] +-·2· 

2(cos(v0)-V0) 1"' 0 z0 +v0 

e (z0 , v0 ) is real if and only if the conditions (3.12) are fulfilled which is what we 
wanted to show. D 

Theorem3.4: An m-stage ARKN method (3.11) with q=co possesses the maximal 
(algebraic) order 2. 

Proof: By application of Theorem 3.3, it follows from (3.12) that 
m-l M-1 M-l m-1 

L a1µ1= L ck L a1= L L bi= L h1µ1. 
l=O k=l µ 1=ck k=l µ1=ck l=O 



208 P. J. van der Houwen, B. P. Sommeijer, K. Strehmel, and R. Weiner: 

The condition 
m-1 

I b1µ1=t 
l=O 

for algebraic order two yields 
m-1 

I a1µ1==t. (3.13) 
l=O 

For an ARKN method of order p ~ 3 we have the consistency condition 
m-1 

L V2 (O)a1µ1=k. 
l=O 

Because of V2 (O)=t, it follows that 
m-1 

I a1µ1=t. 
l=O 

Thus we have a contradiction to (3.13) and the theorem is proved. 0 

3.4 Predictor-Corrector Methods 

For predictor-corrector methods of type (2.10) we find 

F(z,v) -1 

4'>(z,eiv) R . ' 
z-S(z,e") 

(3.14) 

where R and Sare defined in (2.12). The analogue of the Theorems 3.1 and 3.2 reads: 

Theorem 3.5: Let 

<P* (v): = p* (ei") + v2 a* (ei"), iP (v): = p(e1") + v2 a (eiv) 
and define 

4'* (v) 
e(z, v):=P.,,(z) 4>*(v)-(1-bt z)(fi(v)e'(k•-/2Jv. (3.15) 

If e=O('r:Y), Pm (O)=f: 1 and S (0, l)::pO, then the phase lag order and the dissipation order 
are both greater than or equal to y+min {p*, p}, where p* and pare the orders of the 
corrector and the predictor, respectively. 

Proof: We first express the function R/Sin tenns of the functions P .,,(z), e(z, v), ci;* (v) 
and $(v). From (2.12) and (3.15) we derive the relation 

R iv_ 2 4>*(v)-(1-b~z)$(v)ei(k•-l<'Jv 
S(z,e )--v +s(z,v) (Pm(z)-l)S(z,ei") (3.16) 

Since If>* =0(tP*+2) and ifi (v)= O(tP+2)it follows from theassumptionsofthetheorem 
that 

(3.16') 
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The phase lag P;nh is now given by (cf. Definition 3.1): 

l z0 +v~11 ( -1 ) ( -1 )I 
pinh= ~ arg Zo-R/S -arg Zo+v~ 

=I Zoe::~ j 1 arg(z0 + v~)-arg(z0 -R/S)I 

=I Zo + v~ 11 arctan Im (R/S) I 
cr2 z0 -Re(R/S) ' 

where R and S are evaluated at (z0 , eivo). Similarly, we find 

I zo+~ I Dinh= Zo-R/S -1. 

Substitution of (3.16') leads to 

l
-f>2+0J2 I (O(rP*+y+2+rP+Y+~) • -

P- = arctan =0(-r:P +Y+rP+11 
•nh C O(r2) J 

and 

I z0 +v~ I . _ 
Dinh= zo+v~+O('t'p•+y+2+'t'ii+1+~ -1 =O(rP +1+'t'P+1, 

proving the theorem. 

(3.17) 

(3.18) 

D 
Before discussing the maximization of the order y of e as -C--?0, we consider the case 
where (z, v) assumes a fixed value (z0 , v0 ). Then, by choosing Pm (z) such that (3.15) is 
satisfied for (z, v,e)=(z0 , v0 ,0), it follows from (3.16) that 

R . 2 S(Zo, e•vo)= -Vo, 

and from (3.17) and (3.18) we obtain Pinh = Dl.nh = 0. Thus, for given (z0 , v0} there is no 
phase lag and no dissipation. 

Example 3.3: Consider the Stormer predictor 

(ft, O')=((C-1)2 , C) 
and the Numerov corrector 

(p*, a*)= (((-1)2, AW+ 10 C +I)). 
Then 

$=2 eiv [cos(v)-1 +tv2], <P* =2 e1v [(1 +hv2)cos(v)-1 + i52 v2]. 

(3.19a) 

(3.19b) 

Substitution into (3.15) with (z, v,e)=(z0 , v0 ,0) leads to the condition Pm(z0)=c0 , 

where 
(12+ v~)cos (v0)-12+5 v~ 

Co: 2 2 l 2 . (v0 +z0 ) cos(v0)-v0 -z0 +zvo z0 
(3.19c) 

For instance, form= 1 this condition reads 

Pi (zo)= Po+ /31 Zo =Co. 
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Since we should also satisfy the compatibility condition (2.lOb), we have to require 
Pm (1/b~) = 1, i.e. 

Thus, the iteration polynomial assumes the form 

12c0 -z0 +(1-c0)z 
pi (z) . 

12-z0 
(3.19d) 

The one-stage predictor-corrector method generated by (3.19 a), (3 .19 b ), (3 .19 c) and 
(3. l 9d) has zero phase lag and zero dissipation as far as the inhomogeneous solution 
component is concerned. Its (algebraic) order p can be derived from Theorem 2.3. 
Since p*=4, p=2 and, because c0 :::::J --iov~ as t-+O, s=2, it follows that p=4. O 

Finally, we consider the maximization of y, that is, the maximization of the phase lag 
and dissipation order. 

Theorem 3.6: The iteration polynomial 

m . </>* (vo) 
Pm(Z)= -~ f3iz1

; f3o:= €/>*(v )-$(v )et(k*-kl•o; 
J 0 0 0 (3.20) 

Pi== -b6(fto-l)f3i-1,j= 1, ... ,m-1; Pm:=(btr (i-~~1 
pi(bt)_i\ 

J"'O } 

satisfies the compatibility condition (2.lOb) and yields the maximal attainable phase 
lag and dissipation order q = r = 2 m + min (p*, p), while the maximal algebraic order 
p=min {p*,4+2fi}. 

Proof: First of all we impose the condition that Pm (z) satisfies the compatibility 
condition P m(l/b6)= 1. This is achieved if Pm is defined as in (3.20). The coefficients 
/30 , •• • , flm.-i are now free for maximizing the order y of e as -r-+O. It follows from 
(3.15) that y is maximized if Pm(z) is a Taylor approximation of the function 

of highest possible order. Thus, 

ldlp ldiT 
P1=71 d jm(0)=71-d J (0), j=O, ... ,m-1. 

J. z ]. z 

An elementary calculation leads to the coefficients given in (3.20). The order of e is 
evidently y=2m. 

Since P m.Cz) satisfies the condition 

pm (-r2) = 0 (,Bo)= 0 (-r"), s = max (p* - p, 0) 

it follows from Theorem 2.3 that the maximal possible algebraic order is given as in 
the theorem. O 



On the Numerical Integration of Second-Order Initial Value Problems 211 

Example 3.4: We again consider a method based on the Stormer predictor (3.19a) 
and the Numerov corrector (3.19b). Choosing m=2, the iteration polynomial 
defined by Theorem 3.6 assumes the form 

P2 (z)=/30-/2 Po(/Jo- l)z+ 1,L.({30-1)2 z2 , 

where 
(12 + v6)cos(v0)-12+ 5 v6 

/Jo= . 
v~ (cos (v0)-1) 

(3.21) 

The resulting 2-stage method has algebraic order p=4, phase lag order q=6 and 
dissipation order r=6. Notice that the value of z0 does not enter in the iteration 
polynomial. 0 

4. Numerical Examples 

4.1 Testing Strategy 

In this section we will test the RKN type method and the predictor-corrector (PC) 
methods as described in the preceding sections. 

Because the major aim of this paper is an accurate treatment of the inhomogeneous 
solution component, we will apply the methods to test examples in which the forced 
oscillation strongly dominates the homogeneous solution components. 

Jn the examples we will concentrate on the phase errors in the numerical solution. To 
measure the total phase lag at the endpoint t= T, we define 

cd (1):= - 10log( II (yN-y(1))/y' (1) II ro), N = T/r, (4.1) 

where N denotes the number of steps performed and Tisa zero of the exact solution. 
If the numerical solution YN is small at tN = T, then, by taking the slope y' (1) into 
account, this cd-value is an adequate measure for the phase lag. 

Because the number of !-evaluations per step is not the same for all methods, we 
adjusted the step sizes in such a way as to obtain an equal amount of computational 
effort (in terms of !-evaluations) over the whole range of integration. This strategy is 
only valid for comparing the efficiency of the explicit schemes. The computational 
effort of the ARKN method is determined not only by function evaluations, but also 
by the solution of linear systems of equations (including the evaluation of the 
Jacobian). If a constant stepsize is used, a substantial reduction of this effort is 
possible, in case the Jacobian is constant or if the matrix T~ fy is kept constant for 
some steps (the algebraic order is independent of 1). A new LU-decomposition is 
required only after a change of T. 

4.2 Specification of the Methods 

Now, we will discuss the methods which will be actually tested. First, we briefly 
mention the schemes and at the end of this subsection we summarize their 
characteristics. 
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RKN Methods 

To start with, from the family of Runge-Kutta-N ystrom methods we will test the two 
schemes as given by (3.6a), (3.5) and by (3.6a), (3.6b). 

ARKN Methods 

To keep the computational effort small we implemented the one-stage method (3.9). 
For R0 (z) we used the Pade-approximations P11 (ARKN1) and P22 (ARKN2). The 
choice of P 22 requires more work (matrix-by-matrix multiplication) but yields the 
propagated phase lag order 4. 

PC Methods 

Next, we implemented the one- and two-stage PC schemes based on the Sti::irmer 
predictor and Numerov corrector. The iteration polynomials, defining these 
schemes, are given in the Examples3.3 and 3.4, respectively. From these poly
nomials, the actual PC schemes are straightforwardly constructed (see also [7]). For 
both schemes we start with 

Ln=2 Yn-Yn-1+l212 (10 fn+ f.,-1), Y~021 =2Yn-Yn-1+12 fn- (4.2a) 

Now, for m=l, the final result Yn+l is obtained by 

Yn+l =[(12c0 -zo)Y~0~1 +(12'-12co)En+(l-co)-r2 fn~iJ/(12-z0), (4.2b) 

where c0 is given by (3.19c). This fourth-order scheme should only be applied when 
exact values for z0 and v0 are available. In that case the inhomogeneous solution 
component is integrated without any error. 

The two-stage scheme, which is to be used in case of small z0-values, also starts with 
(4.2a) but proceeds with 

Y~21 =/Jo Y~02t + (1- ,Bo) En+ /2 (1 -/30) i-2 fn°.21, 

Yn+ 1 =/Jo Y~oi 1 +(1- Po) En+ /2 (1- /30) 1'2 f./J.1, 

where /30 is given in (3.21). 

(4.2c) 

In implementing this two-step method, we need the starting value y1 . This value was 
provided by the classical Nystrom method, using an extremely small time step. 
Hence, this value can be considered as the exact starting value y(ti). 

Conventional Methods 

Finally, for reasons of comparison, we also applied two commonly-used explicit 
methods: the well-known, second-order Stormer method (cf. (3.19a)) 

(4.3) 
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will be used to compare the second-order RKN type mi.:thods with, whereas the 
classical fourth-order Nystrom scheme, given by 

t t 
0 t 
t 1 0 

(4.4) 
3 

t t t 
will serve as a reference for the fourth-order PC methods. 

In the following table we summarize the characteristics of the above methods (an 
infinite order of dissipation refers to methods for which the stepsize satisfies the 
periodicity condition): 

definition of the method (4.3) (3.6) (3.6a),(3.5) (3.9) (3.9) (4.4) 
abbreviation to be used ST RKN! RKN2 ARKNl ARKN2 NYS 

algebraic order 2 2 2 2 2 4 

·-~r-~ 
2 2 4 2 4 4 

order inhom. 2 00 00 00 ro 4 

dissipation propagated ro 00 00 CX) ro 4 
order inhom. 2 00 2 2 2 4 

number of }evaluations 
per step t 2 2 t 1 3 
periodicity interval* (0,22 ) (0,(2.85)2) (0,(3.46)') (0. <>::) (O,oo) ( 0, (2.58)2) 

• In the cases (3.6) and (4.2) this periodicity interval varies slowly with •o· 

4.3 A Mode! Problem 

As a first example we consider the model equation 

y"+lJ2 y=csin(wt), 0;5;t:'.5;; T, y(O)=O, y'(O)=OlJ 

Obviously, the solution is given by 

y (t) = ll sin (<5 t) 
c 

~2 2 sin (rot). 
-o +co 

(4.2a+b) (4.2a+c) 
PC! PC2 

4 4 

4 4 
00 6 

00 co 
co 6 

2 3 
(0,(2.44)2) (0,(2.30)2) 

we 
(4.5) 

(4.6) 

In our experiments, we selected the parameter values {J = 2, co= 1 and c = 1. By 
means of the parameter e we can adjust the influence of the homogeneous solution 
component. Let us start with B= l. As the endpoint of the integration interval we 
choose T= 100n:; additionally, we measured the dispersion after the first 5 periods. 
The results of the various schemes can be found in Table 4.1. These results clearly 
demonstrate that the propagated phase lag in the homogeneous solution component 
is the major source of phase errors, as is to be expected. The accuracies, listed in 
this table are in good agreement with the propagated phase lag orders as tabulated 
in the previous subsection, and it is clear that the PC and RKN type methods hardly 
benefit from their special features with respect to the inhomogeneous solution 
component. 
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Table 4.1. cd(I}-values for problem (4.5) with 8= 1 for several values of T 

method 't" T=27C T=41C T=6n T=Sn T=10n T=lOOn 

ST x/30 2.0 1.7 1.5 1.4 1.3 0.4 
RKNl x/15 1.8 1.5 1.4 1.2 1.2 0.4 
RKN2 x/15 3.6 3.3 3.2 3.0 2.9 1.9 

ARKNl rc/30 1.7 1.4 1.2 1.1 1.0 -0.5 
ARKN2 n/30 4.8 4.5 4.4 4.2 4.1 3.1 

NYS it/10 2.6 2.3 2.1 2.0 1.9 1.0 
PCl 7!/15 3.6 3.3 3.1 3.0 2.9 1.9 
PC2 n/10 2.8 2.5 2.4 2.2 2.1 1.1 

Next, we suppress the homogeneous solution component in the analytical solution 
by setting B=O. As pointed out in Section 3.1, this does not imply the absence of this 
component in the numerical solution; as a matter of fact, this component is 
introduced by all schemes and its phase error is propagated as the integration 
proceeds. Let us write y(t)=A sin (wt) and let the numerical solution be represented 
by Yn=Asin(<.otn+e)+i1sin(btn), where e and fJ are small. Then 

y(tn)-Yn~(A-A) sin(co t")-9'sin(8 tn)-e m Acos(mtn)-ll(b-o) tncos(8 t,.). 

The behaviour of the error heavily depends on the values of the frequencies ro and o, 
and on the points tn = T where the phase shift is estimated. For instance, in the 
present experiment (see Table4.2), o=2w and Tisa multiple of re. Hence, 

y(t.)-y.~ -e w Acos(ro t.)- ~ (b-8) t,.cos(8 t,.). 

Table 4.2. c d ( 1)-values for problem ( 4.5) with e"" 0 for several values of T 

method 't" T=2n T=4n T=611 T=8n r ... 10n T"'lOOn 

ST n/30 5.5 5.2 5.0 4.9 4.8 3.9 
RKNl n/15 4.2 3.9 3.7 3.6 3.5 2.7 
RKN2 n/15 6.3 6.0 5.8 5.7 5.6 4.6 

ARKNl it/30 4.2 3.9 3.7 3.6 3.5 3.0 
ARKN2 it/30 7.3 7.0 6.8 6.7 6.6 5.6 

NYS n/10 6.0 5.7 5.5 5.4 5.3 4.4 
PCl 7t/l5 14.0 13.3 13.0 13.0 13.1 11.5 
PC2 n/10 8.3 8.0 7.8 7.7 7.6 6.6 

If now the inhomogeneous phase error e is small with respect to lf ( S - <5) t", we will 
observe a lin~arly increasing phase error at the points T. Generally, however, when 
o is not a multiple of w, we will have an oscillating phase error. 

Apart from the parameters w and o, the values of A, e and lf do also determine the 
error behaviour. For example, both the PC 1 and RKN 1 methods do not possess an 
initial phase error of the inhomogeneous type, because they were provided with the 
exact z0-value. However, the PC! method, having a larger propagated phase lag order, 
behaves much more accurately. For the same reason, the PC2 and RKN2 methods 
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are superior to the RKN l scheme. As a consequence, these methods behave 
significantly more efficiently than the corresponding classical method of the same 
order. The Stormer method behaves slightly more accurately than ARKNl. This is 
due to the fact, that the coefficient of the main error term of the propagated phase 
error is 1/24 for ST and 1/12 for ARKN 1. Finally, we conclude from this example, 
that it is of great importance to use a method by which the numerical homogeneous 
solution components are also treated adequately, even io cases where the analytical 
solution only contains inhomogeneous components. 

4.4 A Non-Linear Example 

As a second example, we consider Duffing's equation, forced by a harmonic function 
(van Dooren [ 4 ]) 

y" (t) + y (t) + y3 (t) = c cos (cot), 0 5. t 5. T, (4.7) 

with the parameter values c = 210 - 3 and w = 1.01. The initial conditions read 

y(O)=A, y'(O)=O, (4.8) 

where A is obtained from the Galerkin approximation fo, evaluated at t=O: 

"' 
YG(t)= L a2;+ 1 cos{(2i+ l)w t). (4.9a) 

i=O 

Van Dooren calculated an approximation of order 9, having the same frequency as 
the forcing term; with an absolute precision of 10- 12 , the coefficients are given by 

a 1 = .200179477536, a3 = .24694614310 -3, 
(4.9b) 

.n 
The exact solution (4.9) has its zer0s.at t =l · -, l odd. Table4.3 shows the phase 

2w 
errors produced by the various schemes at T= {l, 11, 101} - n/2 w. The methods 
PCl and RKNl, which need a a-value, were given o=l.0. 

Table 4.3. cd (1)-values for problem (4.7), (4.8) for several values ofT 

2w 7t 11; n 
method !·-- T=- T=11-- T=l01-

n 2co 2 (I) 2w 

ST 1/30 3.8 2.7 2.1 
RKNI 1/15 4.5 3.5 2.9 
RKN2 1/15 4.6 3.6 3.0 

ARKN! 1/30 3.4/3.5 2.4/2.4 1.8/1.8 
ARKN2 1/30 5.3/4.7 4.3/3.6 3.5/3.0 

NYS 1/10 5.5 4.5 3.7 
PC! 1/15 7.2 6.2 5.7 
PC2 1/10 6.8 6.8 7.4 
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The cd-values for the ARKN methods correspond to T= fy(t"' Yn)/T=constant part 
of f 1, respectively. The conclusions for this example are similar to those of the 
previous one. Again, the accumulated (homogeneous) phase errors mainly de
termine the accuracy behaviour of the method with the exception of PC2 which 
behaves different for this example. With O=l, ro=l.01 we obtain cr2 ::::::1/12 for 
RKN 1, so that RKN 1 and RKN2 are nearly equal for this example. This explains 
the good performance of RKNl for this problem. 

4.5 A Hyperbolic Equation 

As a last example, we test the wave equation (see also [8]) 

02 u a2 u 1 
- 2 =gd(x)-2 +-.A.2(x,u)u+s(t,x;ro), O:::;;x=s;;b, Os;tsT, (4.lOa) ot ax 4 

where the source terms is prescribed by 

s(t, x; ro)== A cos ( nbx) sin(ro t). (4.lOb) 

Here, d (x) is the depth function given by d = d0 [2 +cos (2 n: x/b)], g denotes the 
acceleration of gravity, and A.(x, u) is the coefficient of bottom friction defined by 
A=g\u\/C2 d with Chezy coefficient C, where ro is a parameter. The boundary 
conditions are of the type 

OU OU 
-;-(t,0)=-~ (t,b)==O 
ux ox 

(4.lOc) 

and the initial conditions are given by 

f rr:x) u(O,x)=O, ur(O,x)=Arocos ~ b . (4.lOd) 

By choosing the initial and boundary conditions consistent with the forced 
oscillation (4.lOb), we expect a solution which is dominated by the inhomogeneous 
solution component, possessing the same frequency ro. For not too large c.o-values, 
this turned out to be the case. 

In the numerical tests, we selected the parameter values 

g=9.81, b=lOO, A=0.1, C=50, d0 =10. (4.lOe) 

We semi-discretized (4.10) on an equidistant space grid with Ax=b/IO, using 
second-order symmetric differences. The resulting system of ODEs will be 
integrated over two periods in time. Results are given for the ninth component of this 
ODE, i. e. the one which approximates u (t, x) at x = 8 LI x. As we have no analytical 
solution available, we determined numerically (using an extremely small time step) 
the point Twhere this component has its fourth zero and additionally, we calculated 
y' ( 1) (cf. (4.1)). 

This test was performed for two values of the parameter w, viz. ro=0.5 and ro=0.1. 
For these co-values we found T~28.818867, y' (1)~ 1.18 and T:::::: 125.75714, 
y'(1)~0.067, respectively. The results for several step sizes are given in Table4.4; 
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Table 4.4. cd('J}va/ues for problem (4.10) with w=0.5 and c.o=O.l, for several step sizes r; r= T/N 

method 
T=28.818867; w=0.5 r,,,,125.75714; w=0.1 

N cd N cd N cd N cd N cd 

ST 120 2.1 240 2.7 300 1.0 600 1.6 1200 2.2 
RKNl 60 1.7 120 2.9 150 * 300 1.3 600 3.1 
RKN2 60 3.0 120 3.6 150 3.0 300 4.4 600 4.5 

ARKNl 120 1.8/1.8 240 2.4/2.4 300 0.7/0.7 600 1.3/1.3 1200 1.9/1.9 
ARKN2 120 3.5/3.5 240 4.1/4.l 300 4.1/4.l 600 4.4/4.4 1200 4.9/4.9 

NYS 40 3.3 80 4.5 100 * 200 2.9 400 4.1 
PCl 60 1.7 120 2.6 150 * 300 1.3 600 2.2 
PC2 40 3.4 80 5.7 100 * 200 3.0 400 4.2 

an "*" denotes an unstable behaviour. The presentation for the ARKN methods is 
analogous to Table4.3. The methods PCl and RKNl, which need a c5-value, were 
provided with c5= 10. However, because this example deals with a system of 
(coupled) ODEs, it is not clear in advance what b-value should be chosen for these 
''fitted" methods; and indeed, Table 4.4 shows a rather poor behaviour for these 
schemes. Moreover, their performance is quite sensitive to the value of b, as is clear 
from the following table, where we repeated the experiment for a.>=0.5 and N == 60: 

15-value 
cd-value for RKN 1 
cd-value for PCl 

1 5 10 15 20 
2.0 2.3 I. 7 1.6 1.5 
3.4 ~o 13 1~ 1~ 

4.6 Conclusions 

These numerical tests show, that the efficiency of our reduced phase lag methods 
essentially depends on the propagated phase lag order. It is therefore reasonable to 
exploit the free parameters of the methods in order to reduce the propagated phase 
error (a2 =1/12 for RKN2, R0 =P22 for ARKN2). We want to remark, that the 
specific advantages of the ARKN methods (unbounded interval of periodicity) 
appear only at problems possessing quickly oscillating solution components, which 
however have no or only small influence to the solution (see [11]). If stability 
requirements are not very strong, then with respect to accuracy and computational 
effort RKN2 is the best of the methods of algebraic order 2, whereas the PC methods 
are best of the fourth·order methods. 
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