
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

E.H. Blake

Introduction to aspects of object oriented graphics

Computer Science/Department of Interactive Systems Report CS-R9009 March

The Cen.tre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit ins1itution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Introduction to Aspects of Object Oriented Graphics

E.H. Blake

Centre for Mathematics and Computer Science (CWI),
Department of Interactive Systems, Kruislaan 413,

1098 SJ Amsterdam, The Netherlands.
Email: edwin@cwi.nl

Any attempt to deal with the complexity of Interactive computer graphics should have a
well founded and appropriate underlying abstraction. This report introduces the object
oriented paradigm and critically examines its suitability as a foundation for computer
graphics.

It is found to be a good basis for graphics standards and particularly useful in dynamic
graphics, that is, animation and interaction. The need for extensions to overcome some
shortcomings, such as the lack of a part-whole hierarchy, are discussed. A brief com­
parison is made with the other major abstraction for computer graphics: the functional
approach.

CR Categories and Subject Descriptors:
1.3.3 [Computer Graphics]: Methodology and Techniques - Languages
1.3.5 (Computer Graphics]: Computational Geometry and Object Modeling -
Hierarchy
D.1 [Programming Techniques]

Key Words & Phrases: animation, computer graphics, functional, interaction, object
oriented, graphics standards.

§1 Introduction.

This paper introduces and critically examines the object oriented paradigm as it applies to com­
puter graphics. Object oriented progranuning developed from simulation languages and from
projects to manage programming complexity and facilitate human-computer interaction. It has
an intuitive appeal to regard the parts of a model, interaction, or animation as independent
active objects; these actors (concurrent objects) having an internal state and communicating via
messages. This initial appeal. elaborated to become object oriented graphics, does seem to
stand up to the closer scrutiny.

It could be said that computation for graphics is complex not just in an algorithmic sense but
also in a programming sense, since quite apart from the complexity of the algorithms used
another kind of programming complexity arises due to the scale of the overall system. This is
because these systems are typically very large integrated programs making use of a wide range
of techniques. They deal with large and disparate databases. They allow concurrent interaction
with a user and between a large number of actors.

A well founded and appropriate underlying abstraction is needed to deal with the complexity of
computer graphics. The aim of any abstraction is to provide a context within which problems
can easily be solved, not replacing existing techniques but instead providing a firm basis for
thinking about them and implementing them.
Report CS-A9009
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam. The Netherlands

- 2 -

Any abstraction in graphics has to face the tradition of ad hoe approaches to computer graphics.
But this tradition has run into greater and greater difficulties as the complexity of the computer
graphics problem has compounded itself [cf. Earnshaw, 1987). Up to now, what calls there
have been for an underlying theory have been for the incorporation of the laws of physics
[Greenberg, 1988). But computer graphics is more than realistic simulation, it is also a branch
of computer science: this paper seeks to address that aspect.

We'll now explore the basic ideas of the object oriented abstraction and to see if they are an
adequate and suitable foundation for building graphics systems.

1.1 Outline.

In this brief foretaste of the paper certain terms may be unfamiliar: the reader may talce this as
encouragement to read the body of the paper.

The ideal areas of application for the object oriented paradigm seems to lie in two broad areas:
human-computer interaction and three-dimensional modelling and simulation. The connection
between the two is that in both cases users/modellers have intuitions which correspond closely
to the notion of objects within the object oriented paradigm.

Different internal data representations and algorithms often have to co-exist in graphics sys­
tems. Frequently, particularly in computer aided design (CAD) applications, multiple external
views are required on the same object. The principles of data abstraction which are embodied
by object oriented languages enable this to be done.

Another common requirement is the ability to handle time dependency and concurrency.
Graphical objects typically persist over time while changing their internal configuration or state.
Actor systems (a flavour of object oriented programming) offer a way of addressing these
issues. It can be argued that in most graphical situations this abstraction is preferable to that
offered by declarative approaches (i.e .• functional or logic programming).

In this paper we shall now review the concepts which seem to belong to the object oriented
paradigm (§2). It will become clear that there are several kinds of object oriented program­
ming. The following section (§3) is concerned with the use of object oriented prograrruning in
computer animation and interactive graphics and CAD. The issues which arise are conunon to
many graphical applications. This also serves to introduce some of the citations in the bibliog­
raphy which provide funher examples of the use of the concepts in computer graphics. We
shall not be so concerned with design methodologies for object oriented graphics systems [but
see: Cox, 1986; Meyer, 1988].

Why is object oriented programming useful, what are the limitations, how can these limitations
be overcome? What are the alternative abstractions which one might use? These questions,
which are topics of current research, are asked in §4. We shall pay particular attention to func­
tional graphics. Finally, in the conclusion (§5) the need for a usable abstraction for graphics is
stressed.

§2. The Object Oriented Paradigm.

"Object orientation" has sometimes been used rather loosely in graphics to mean nothing more
than using 3-D object models internally instead of dealing only in 2-D images. This is not what
is meant by the term here. We adopt the more conventional "definition" [Cardelli & Wegner,
1985; Rensch, 1982; Stefik & Bobrow, 1985) where object orientation is some combination of:

Data abstraction (named interfaces and hidden local state) plus object types (or
classes) plus type inheritance (attributes inherited from superclasses). Processing is
done by objects sending and replying to messages.

- 3 -

Languages need not confonn to all these characteristics to be called ''object oriented''.

Computer abstractions are expressed in languages. We can best illustrate the various object
oriented approaches by looking at languages that have realized them. This has the benefit that it
also introduces a concrete way of implementing the ideas.

Object oriented languages descend from Simula [Dahl & Hoare, 1973] and are exemplified by
Smalltalk [Goldberg & Robson, 1983]. Some established languages have also been given
object oriented features (e.g. C++ [Stroustrup, 1986], Objective-C [Cox, 1984; 1986]). In
Hewitt's actor formalism [Agha, 1986; Agha & Hewitt, 1987] greater emphasis is placed on
concurrency and message passing.. Meyer [1988] discusses general features of object oriented
programming as well as the language Eiffel.

The Dore Toolkit [Ardent, 1988; Williams, 1988 - press release] is an object based system for
interactive image synthesis. The NeWS windowing system has shown how naturally PostScript
supports object oriented programming for user interfaces [Adobe Systems, 1985; NeWS, 1987;
Densmore & Rosenthal, 1987].

A comparative survey of some languages can be found in Micallef [1988]. Views on what
object oriented programming 'really' is are variously given by Madsen & Moller-Pedersen
[1988], Nygaard [1986] and Stroustrup [1988].

In this section we will now review some of the central concepts: §2.1 abstract data types, §2.2
classes and inheritance, §2.3 message passing and polymorphism, and §2.4 concurrency.
Finally in §2.5 we summarize the features which combine make up object oriented program­
ming. These features can be used to classify programming languages. Two widely available
object oriented languages are Smalltalk and C++ and they illustrate two rather different
appr-0aches to object oriented programming.

2.1 Abstract Data Types.

In object oriented programming the computing process is factored into objects. Each object is
comprised of data elements and procedure elements. Objects are typically instances of some
class, or, equivalently, objects belong to a type. The programmer is free to define new types
and their associated operations: their protocol.

Procedural abstraction means that procedures can be invoked by naming them without regard to
their internals. This forms the basis of structured, modularized, procedure oriented program­
ming.

Data abstraction is used for similar reasons in object oriented programming. The state and
implementation of an object is hidden from other objects. Instead an object possesses a proto­
col of messages which form its only interface with the outside. In order to use an object one
need only know the protocol, or equivalently, its class or type [Cardelli & Wegner, 1985; Gut­
tag, 1977; Liskov & Zilles, 1974].

The ability to define new data types (i.e., classes or prototypes - see §2.2) is implicitly present
in all object oriented languages. This takes care of one aspect of data abstraction. The other
aspect, preventing an object from being accessed except via its protocol, is referred to as the
principle of information hiding. When this principle is strictly enforced it is known as encapsu­
lation [Snyder, 1986; Micallef, 1988].

2.2 Cl~s and Inheritance.

In most object oriented languages objects belong to classes (these classes being objects in their
own right). Objects which are instances of the same class are similar in that they share the same
interface and have the same structure. Class and inheritance are based on an analogy with both
taxonomy and genetics.

-4-

Classes in object oriented languages form a hierarchy. Subclasses are specializations of their
superclasses, and they inherit all the characteristics of the superclasses [Cardelli & Wegner,
1985; Danforth & Tomlinson, 1988). Simple abstract classes characterize the higher levels of
the hierarchy while more complex behaviours, in concretely useful classes, are found at lower
levels.

The simple hierarchy of inheritance relationships can be extended to a network of relationships.
This is referred to as multiple inheritance [Cardelli, l 984; Boming & Ingalls. 1982]. In some
systems a class need not inherit all the features of a particular super class. This is even closer to
the situation in biology where traits are distributed amongst individuals in a gene pool and can
be inherited separately.

Prototypes and delegation are used in some forms of object oriented programming (e.g. actor
languages [Agha, 1986]) in preference to the notion of class and inheritance. This means that an
object's message protocol includes those messages which can be delegated to prototypes or
exemplars [Boming, l 986b; Lieberman, l 986a & b; LaLonde, Thomas & Pugh, 1986]. For
example, if we were modelling horses, the Platonic ideal horse would be a prototype and a par­
ticular horse, the nag in the field!, would delegate the responses to some of its messages to that
ideal prototype.

Although there was some controversy it does seem that the notions of inheritance and delega­
tion are essentially equivalent [Stein, 1987; Lieberman, Stein & Ungar, 1987].

Another 'controversy' concerns the way inheritance can subvert encapsulation. This happens if
the inheritance mechanism provides access to the private data of distant superclasses. The very
fact that it might be known that an object is defined via inheritance arguably removes one of the
benefits of data abstraction: the ability to change the implementation of types without global
effects [Snyder, 1'986; Micallef, 1988].

Class inheritance (or delegation) express an "IS-A" relation [Brachman, 1983]. Thus an
integer IS-A number. Inheritance can also occur in other guises. There is another kind of inher­
itance down an "IS-PART-OF" hierarchy, this is an inheritance of attributes, e.g. a table's legs
inherits its colour. This will be discussed in more detail in §4.1. There is also a kind of 'inheri­
tance' up a part hierarchy. Parts provide abilities to the whole: we see because we have eyes.

2.2.1 Using Classes or Prototypes.

Programming in an object oriented language is a question of designing and implementing
classes (or their equivalent in prototypes). A large problem is split into a number of hierarchies
of classes.

Here we can possibly make a distinction between classes and prototypes. Classes are used
when the system can be mostly designed in advance, when we can categorize most of the types
of the objects. If new types appear on the fly (perhaps in CAD or Al applications) then proto­
types are more appropriate.

If an object oriented language is to be used in situations where new objects of slightly different
types have to be created frequently then the absence of prototypes and delegation can be
regarded as a limitation* (cf. §4).

We should also distinguish between inheritance for code reuse and inheritance as a formal rela­
tionship between types. The former is an implementation issue and the latter is a behavioural
specification. When we are modelling the world, inheritance in the latter sense is a natural
consequence of the generalization and specialization of natural forms. Classification of objects

• Smalltalk. lacks delegation. However it is a flexible system and delegation via message forwarding may
be implemented easily. See §3.4 (ThingLab) and Blake & Cook (1987).

- 5 -

(e.g. atoms or animals) into related types is a fundamental scientific method.

2.3 Message Passing and Polymorphism.
Polymorphism can be used in a number of senses; rather perversely the meaning is usually that
a s~ngle external operation can be applied to a variety of underlying types. For example: con­
ventional typed programming languages allow the para.meters of functions to have only one
type. If this idea was strictly applied then addition would require a different function for each
type of number and generalized routines, like head of an arbitrary list, would be impossible.
Polymorphic languages allow for the same functions to accept many different parameter types.
This idea can be inverted in a way which is more appropriate to object oriented programming:
polymorphic types are types whose functions can be applied to many different types.
The same messages can be sent to a number of different classes and the messages can (mostly)
have any type of argument. The messages need not necessarily provide concurrent communica­
tion but may behave largely like procedure calls. Unlike procedure calls, messages sending
allows polymorphism without the requiring constant checking of parameter types [Ingalls,
1986).

The existence of class hierarchies must entail a certain polymorphism if related but distinct
classes are to understand the same messages [i nclusion polymorphism - Cardelli & Wegner,
1985). The conceptual power of inheritance hierarchies derives, at least partly, from the way in
which they allow automatic but controlled polymorphism for an subclasses. One largely knows
the behaviour of an object if one knows the behaviour of its superclass.
Having polymorphic messages makes it easy to extend a language with new types which are on
a par with existing types. Smalltalk can be said to exhibit "true" polymorphism because all
objects are unifonnly represented and can exhibit uniform behaviour. C++ restricts the use of
message lookup, but mostly new types can be incorporated just as elegantly as with Smalltalk..
Message passing affects how we view computation. In object oriented languages computation is
a process whereby the abilities of self contained objects are invoked by the exchange of mes­
sages. In other languages computation is variously regarded as a process of deduction, or of
transitions between states, or of the transformation of input data to output data.

2.4 Concurrency.

Real events happen at the same time. Interacting with, or simulating, such an environment
requires concurrent execution of the objects representing elements of this environment, at least
in principle. Luckily •'time'' when applied to computer animation often means discrete steps
synchronized every twentieth of a simulated second. Thus one could simply service all objects
sequentially in each time slot. However explicit suppon for concurrency can be useful.
In real-time applications processing speed becomes critical. To avoid the 'von Neumann
bottle-neck' we have to use parallel hardware. Concurrency thus addresses both these issues:
A. Natural decomposition of complex problems.

B. Exploitation of parallel hardware for performance.
A basic abstraction for concurrent object oriented systems is provided by the actor/message
passing formalism [Agha & Hewitt, 1987). Various concurrent object oriented languages have
also been reported [e.g. Yonezawa et al., 1986). A recent ACM SIGPLAN workshop was
devoted to the topic of object based concurrent progranuning. Apart from the many more
specific papers the proceedings contain a useful survey and (somewhat partisan) view of the
basic issues in concurrent programming by Agha (1989].

-6-

2.5 Summary of Object Oriented Features.

To summarize the constellation of features which comprise object oriented progranuning. we
have [Wegner, 1987]:

• Objects.

• Message Passing.

• Classes or Prototypes.

• Inheritance or Delegation.

• Information Hiding.

• Strong Typing or Run-Time Type Checking.

• Concurrency.

The questions to be asked about these features for graphics are:

• Are they desirable?

• How important are they for graphics?

• Are they sufficient for building graphical systems or are ex.tensions needed?

• Are the chosen features consistent?

• Are they orthogonal?

Languages can be classified according to rhese features. For example one might call all
languages with objects "Object Based": e.g. Ada & Modula. Languages with objects and
classes can be called "Class Based": e.g. CLU. "Object Oriented" under this scheme would
be reserved for languages which also supported inheritance: e.g. Smalltallc. Some object
oriented languages do not support infonnarion hiding: e.g. Simula & Flavors.

Act.or languages do not have a particular mechanism for inheri'tance. They do support delega­
tion. Thus one can have actors for an object, the prototype of that object, and even the class of
that object.

§3. Object Oriented Graphics: Structuring Complex Programs and Data.

Complexity in computer graphics arises from many sources: the representation of geometric
detail, motion, interactions between actors, the user interface, and the complexity inherent in
large systems. We might want to deal with complex natural scenes. Dynamic graphics vastly
compounds the problem since it adds changes and interrelations over time.

Object oriented graphics standards (§3.1) are a way of dealing with one aspect of complexity.

Computer animati·on, the combination of simulation and 3-D graphics, gives a good example of
object oriented programming in graphics. We first abstract some basic requirements of an ani­
mation system (§3.2). We can then give a review of work in this area (§3.3). ThingLab (§3.4)
was a significant early application developed in Smalltalk, it provided a basic implementation
for a number of important features: constraints, prototypes, pare-hierarchies and! multiple views.

In the end (§3.5) it will become apparent that the basic theoretical requirements for object
oriented animation correspond rather closely to those of interactive computer graphics and
CAD. The only real difference is that a more dynamic classification system is needed.

- 7 -

3.1 Object Oriented Graphics Standards.
There has been some work on incorporating conventional graphics standards into object
oriented programming, for example, GKS [Lubinski & Hutzel, 1984] and PHIGS [Wi~kirchen,
1986).

The Dore toolkit, introduced in §2, is one of the prime examples of a new direction in graphics
standards. Future standards need to provide extensible and flexible interfaces to all the special­
ized facilities modem computing platforms provide. These include specialized hardware and
many different parallel architectures. Data abstraction to hide implementation details and local
subclassing to extend standards in a consistent way, go a long way to meet these requirements.

3.1 Animation Basics.

Animation systems often represent natural scenes and are found in aircraft simulators, in video
games and the production of special cinematic effects. Robotics also has a lot in common with
animation. There are two aspects to animation: producing computer representations which
allow movement and controlling that movement. We shall be concerned with providing an
underlying mechanism which will allow movement to be handled elegantly.
Computer animators note the need for abstraction as a way of dealing with their rather difficult
problem. Zeltzer [1985] describes different kinds of abstraction useful for character animation
(the word "motion" can be added before "abstraction" in every case).
• Structural abstraction describes the kinematic properties of the figure, i.e. the hierarchy of

jointed limbs and their possible motions.

• Procedural abstraction describes the movements in terms of the desired results rather than
the particular kinematic structure.

• Functional abstraction describes movements in terms of parameterized skills or basic
movements. For example: walking or grasping, which can be fast or slow.

At the lowest level a figure can be modelled as a tree structure of joints and parts. The parts are
embedded in a generalization lattice of attributes, this lattice being supplied by some sort of
multiple class inheritance hierarchy.

Each part of the hierarchical representation of an object has itS own changing local coordinate
system. In animation and rendering these coordinate systems have to be related to one another
and to the world coordinate system. Animated figures and robots are governed by constraints
on their allowed movements.
The complex modelled environment of an animated object has to be structured in some way
which allows rapid testing for the proximity of objects. The description of objects in terms of a
hierarchy of parts which also reflect levels of detail should go a long way towards meeting this
need.

A general abstraction is needed which incorporates the notion of " an object m~e up of active
parts which are related via constraints''. This has profound implications for the way such
objects have to be modelled (see §3.4).

3.2 Actors and Animation.
Actors are met in object oriented animation systems. This kind of actor is different from, but
related to, the strict definition of actors in Hewitt's formalism (see §2 & §2.4). Early examples
are DIRECTOR [Kahn, 1976] and ASAS [Reynolds, 1982]. A succession of animation systems
based to a greater or lesser ex.tent on the actor formalism have been developed by Magneaat­
Thalmann & Thalmann [1985].

- 8 -

Mes.sage passing actors have proved to be very appropriate for modelling 3-D animation.
Object oriented animation was influenced by Logo (Kay, 1977]. Logo is not object oriented. In
Kay's tenns Logo is a data-procedure language, whereas in Smalltalk the data and procedures
are replaced by the single idea of "activities" which belong to families. New families are
created by combining and enriching properties which are inherited as traits. This message­
activity system is inherently parallel.

A similar strong influence of Logo is apparent in Kahn's [Kahn, 1976; Magnenat-Thalrnann &
Thalmann, 1985] Director language. Like Kay he emphasizes that a computer language should
reflect both the structure of its applications and the intuitions of its users. For animation this
means that each entity should be a "little person" who communicates with others by means of
messages. An animation as a whole is then produced by a number of parallel cooperating
processes.

Kahn's animation system is a practical approximation to this ideal. There is a Universe which
holds the actors. Each actor remembers its own actions and the Universe (the scheduler) merely
sends a 'tick' message to them. At each tick an actor performs its actions and interactions for
that time increment. The display messages are sent to a screen actor and these messages can
also be remembered to make a movie.

Two problems addressed in §4. part-whole relations and different ways of regarding an object,
are mentioned as future research goals by the previous authors. Kahn mentions the need for
better primitives for dealing with composite objects and for constructing objects out of parts.
Kay advocates the development of an "observer language" by which he means a language
which allows objects to be regarded from different viewpoints with respect to what they are said
to be composed of.

Both Kay and Kahn produced rather simple two-dimensional images. In ASAS [Reynolds,
1982] we get much more realistic three-dimensional graphics.

Reynolds [1987] described a notable new system, and many other object oriented approaches to
animation have appeared [e.g. Uchiki et al., 1983; Blake 1987; Breen et al., 1987; Fiume et al.,
1987]. An object oriented language for video game design has been developed [Larrabee &
Mitchell, 1984], while a physical simulation system based on actors has been described by Hau­
mann & Parent [1988].

3.3 ThingLab

ThingLab [Boming, 1979; 1981; 1986a; Borning et al., 1987] is a system for simulating physi­
cal objects (e.g .• geometric shapes, bridges, electrical circuits, documents, calculators). In
ThingLab, objects consist of pans. Multiple class inheritance hierarchies, and part-whole
hierarchies are used to describe the objects and their interrelations. Parts are referred to sym­
bolilcally by means of paths that name the nodes to be visited in proceeding down the part
hierarchy.

In ThingLab the superclasses of an object are a part of the object: an object contains an instance
of its superclass (in the type theoretic sense) as sub-part (in the sense of part versus whole
objects). The class which describes such a superclass part is a subclass of the normal part
description class. Apart from this notion of multiple superclasses ThingLab also employs pro­
totypes to provide initialized instances of objectS.

The major contribution of ThingLab is a system for representing and satisfying constraints
which exist between the parts. However, when it comes to providing a tool for modelling com­
plex objects confusion can arise. In particular we should draw a clearer distinction between
class hierarchies and part hierarchies. When classes are available it is also possible to dispense
with prototypes, not that classes are necessarily preferable to prototypes.

- 9 -

3.4 Interactive Object Oriented Graphics.
Object oriented approaches are fundamentally procedural. The messages invoke procedures
with side-effects. These side-effects are contained to a greater or lesser extent by the data
encapsulation. However it is relatively easy to ensure that cenain relationships are maintained
between objects. Constraint based approaches are very useful in making user interfaces [Bom­
ing & Duisberg, 1986].

In object oriented implementations, particularly those based on prototypes, it is easy to make
incremental changes to the behaviour of objects. This is useful in CAD applications. However
since the operations on the object, or its type, can be altered very freely, it can be difficult to
reason about relations between objects and to transform relations (Beynon, 1988].
Object oriented methods have been used for user interfaces since the earliest days [Kay, 1977).
Characteristic features of such interfaces were: what you see is what you get, visibility (no
obscure modes or key combinations) and a physical metaphor [e.g., Lipkie et al., 1982]. This
combination of features enables the display to reflect the user's model of the application
directly. Ideally this gives the user the feeling that he is manipulating aspects of the application
without the mediation of a computer [Anson, 1982]. Object oriented approaches are well suited
to building direct manipulation interfaces [Shneiderman, 1983; Hartson, 1989].
Smalltalk provides the Model-View-Controller method of building user interfac.es [Krasner &
Schmidt, 1989]. The model (or application) is created independently of the user interface. The
model has to provide methods for interrogating its state and only has to broadcast a general
message to all dependent objects when this state changes. The view and controller present the
model to the user and translate user actions into operations on the model. Depending on the
user. there may be multiple views on the same model.
CAD systems have also used the object oriented paradigm [e.g., Girczyc & Ly, 1987]. Myers
(1989] gives a compact survey of user interface tools which contrasts object oriented
approaches with the alternatives.

In user interface design and CAD there is also a strong requirement for a system which allows
one to express the constraints which govern the behaviour of parts. The Animus system {Duis­
berg. 1986] extended the constraint methods of ThingLab to allow constraints involving time.
This removed the essentially static nature of TlringLab constraints and allowed the description
of evolving structures and animations.

A system to build graphical interfaces based on icons and windows is described by Barth [1987]
and a Unix* specific one by Budd [1989). The use of a part hierarchy in user interfaces is dis-
cussed by Wi(3kirchen [I 988]. ·

§4. Limitations and Extensions.

From §3 it can be seen that there are two salient features of an animated figure which we must
capture: (a) it is composed of parts which depend on each other, and (b), these parts can move
subject to various constraints. These same requirements arose again in the discussion of
interactive graphics [see also Tomiyama, 1989]. Here we first consider how object oriented
languages ought to be extended if we want to model the pan-hierarchy of real physical objects
and still retain all the conceptual and programming advantages of object oriented progranuning
(§4.1). The provision of constraints between objects is discussed in the next section (§4.2). Sec­
tion §4.3 mentions possible extensions to allow multiple views of the same object. Section §4.4
introduces encapsulators which are useful for dealing with incomplete objects. Finally (§4.5)

• Unix is a ttademark of AT&T.

-10-

we briefly review logic and functional progranuning as alternative abstractions to object
oriented graphics.

In §2.2. l we first saw how necessary prototypes and delegation can be if numerous changes in
the type of an object has to be made. The lack of such features in a system intended for interac­
tive modelling may also be regarded as a limitation.

4.1 Representing Physical Objects: The part hierarchy.
Things are often described in terms of parts and wholes; the way the division into parts is made
depends on the purpose of the analysis. A part is a part by virtue of its being included in a
larger whole. A part can become a whole in itself, which can then be split into further parts. In
this way we build up a hierarchy of parts and wholes, which we have called the part hierarchy.
We distinguish between a mere collection, or additive whole, or heap, (e.g., a bag of marbles, a
pile of electronic components) and a more structured whole (e.g .. an animal, a wired-up elec­
tronic circuit). To the former we apply set theory, to the latter a part hierarchy. (See Smith
[1982) for a formal description of part-whole relations).
Ideally information should be stored in the part hierarchy at its corresponding logical level.
Information about the whole is not to be stored in the parts, while information about the pans,
independent of the whole, remains with the parts. Ideally the whole knows the parts but the
parts do not know of the whole.

Part-whole analysis is crucial in engineering and technology (assemblies and subassemblies).
Parts are also met in those branches of computation where physical objects are represented, for
example, model-based computer vision and computer graphics. For example, in Foley & van
Dam [1982] there is reference to the object hierarchy. The graphics standard PIDGS
(Programmer's Hierarchical Interactive Graphics System) [I986] organizes objects in a struc­
ture hierarchy. Both structure hierarchy and object hierarchy,, are synonyms for part hierarchy.
PHIGS also has the concept of inheritance on a part hierarchy where attributes of the whole are
inherited by the parts. E.g., the legs of the table could inherit the colour of the whole. The
requirement is not quite as general as it at first appears. This .. inheritance" is only used when
the structure is traversed. The object based graphics toolkit Dore (see §2) uses groups in a simi­
lar manner.

Frame-based representation [Fikes & Kehler, 1985) has similarities to the object oriented
approach. Frames describe parts and attributes by means of slots. Composite objects are pro­
vided in Loops [Stefik & Bobrow, 1985], but Smalltalk and most other object oriented
languages fail to provide the facility to describe objects in terms of their parts. Or more accu­
rately, when we want to model objects consisting of parts we are confronted with a dilemma:
either sacrifice the data encapsulation properties of the language or utterly flatten the part-whole
hierarchy [Blake & Cook, 1987].

4.2 Constraints.

Constraints specify relations between objects which must be maintained. When a change occurs
in the system it has to adjust all affected objects such that all the constraints remain satisfied.
There are therefore two aspects to constraints:
Descriptions.

Constraints specify the relations which obtain between objects, particularly between parts
and sub-parts. This is the declarative aspect of a constraint, it is a rule.

Methods.
In order to satisfy the constraints methods of constraint satisfaction have to be given. Thls
is the procedural aspect of constraints.

- 11 -

Once the methods for satisfying constraints have been defined constraint based programming
acquires a declarative feel, that is, the programs become largely static specifications of the rela­
tions which have to obtain between objects [but see, Duisberg, 1986]. It must be borne in mind
that implementing effective constraint satisfaction techniques is a difficult task.

The basis for object oriented constraint satisfaction was laid by ThingLab (§3.4}. It is argued
that the locality of reference afforded by data encapsulation is vital in reducing the scope of an
alteration to the system. This reduces the number of objects which have to be involved in satis­
fying a constraint. Furthermore the generality of methods allowed in object oriented program­
ming allows many constraint satisfaction techniques to be employed (including, for example,
those found in logic programming}. There are systems which combine logic and object oriented
programming (see §4.5.1).

Constraints based programming has not been seen as an integral part of object oriented pro­
gramming. However it must be viewed as an integral part of interactive computer graphics and
of computer animation. Constraint satisfaction techniques often have a pleasing generality,
however domain specific knowledge will also be required. Thus the technique cannot be pro­
vided independently of the intended application.

4.3 Multiple Views.

In object oriented systems with data encapsulation a whole can pretend to have parts which are
not actually stored as such [Boming 1979, "vinual parts"]. Since access to the parts is only via
messages the responses to these messages can be generated on the fly, rather than stored. A rec­
tangle can be stored in terms of a top-left and bottom-right comer, but it can equally well pre­
tend to have a centre which can be read or modified.

This allows one to have multiple views of the same object. A complex number can be accessed
as a real and imaginary number or as a radius and angle, without regard to the •true' underlying
representation.

It is apparent that doing this would have been impossible if we had sacrificed data encapsula­
tion. These different names (like .. phantom", or "imaginary", or .. virtual") for such parts
refer purely to an implementation issue: to the outside of the object the distinction does not
exist.

4.4 Encapsulators.

An encapsulator provides a transparent, often temporary, interface to an object. The object is
surrounded by an encapsulator so diat all messages to the object and all replies from the object
are intercepted by the encapsulator. This allows pre- and post-processing of messages while the
encapsulated object remains externally identical to the enclosed object [Pascoe, 1986]. Encap­
sulators are another step in the direction of control over side-effects which we have seen
developing out of the original idea of data abstraction, progressing through information hiding
and encapsulation (§ 2.1 }.

Encapsulators can be used to implement Futures to manage concurrent synchronization and
Delays to provide lazy evaluation [Halstead, 1985]*. A Future is an encapsulator which
encloses the result of a child process which has not yet completed execution, messages to this as
yet non-existent object are held until execution is completed. In the meantime a Future can be
passed around as if it is the result. Lazy evaluation is used where objects are created only if
there is a demand for them, this can provide (conceptually) infinite data structures.

* Encapsulators, Futures and Delays are easily implemented in Smalltalk. The essential idea is that an en­
capsulator understands no messages and thus all messages can be intercepted by the "not understood"
method.

- 12 -

In graphics and particularly CAD incomplete objects are often created. Encapsulators seem to
be an ideal way of managing such objects.

4.5 Alternatives to Object Oriented Graphics: Declarative Languages.
The complexity of graphical computation can also be ameliorated by declarative methods. The
principal benefit of declarative languages is that they shift the burden of deciding how a thing
has to be done from the prograrruner to the architecture. Both functional and logic languages
are declarative. The need for declarative progranuning has already been explored in §4.2 on
constraints.

Pure declarative languages employ no side-effects whatsoever and assignment of values to vari­
ables is impossible. In object oriented tenns one could say that data is always completely
encapsulated. In fact, declarative languages lack a notion of 'state of computation'. This is in
direct opposition to the idea of self contained objects which persist over time while their inter­
nal configuration changes. This seems to lead to conceptual difficulties when we consider
interactive graphics and computer animation.

4.5.l Logic Programming.

The main tenet of logic programming [Kowalski, 1979] is that an algorithm consists of logic
and control. The logic, that is, properties of the problem and its solution, are supplied by the
programmer. The machine is responsible for the control, that is, how the solution is computed.
This ideal is not yet achieved. Computers generally implement a subset of first order predicate
calculus (e.g. Prolog).

Logic programming can be used for graphics and CAD systems [Swinson, 1983). There are
also CAD systems which combine logic programming with object oriented programming
[Arbab, 1989). This is part of a broader effort to unify object oriented and logic programming
[Goguen & Mesguer, 1987; Newton & Watkins. 1988]. This can produce an impure hybrid
language which provides the benefits of both. It is an open question whether logic is the best
way to express the relations which exist between graphical objects.

4.5.2 Functional Programming.

Functional programming also provides an abstraction for computer graphics [Arya, 1986; Bur­
ton & Kollias, 1989; Henderson, 1982; Salmon & Slater 1987]. A few points of contrast and
similarity with object oriented graphics will be given.

Functional programming derives its power from giving functions first class status [see e.g.
Hughes, 1989]. Functions can be combined and manipulated just like any other object. Data
structures are defined by means of constructor functions which make abstract data objects.
Access is only via the operations defined on the data objects. The usefulness of data abstraction
has already been mentioned. Polymorphism is also emphasized and functional languages are
well suited to programming concurrency [Peyton Jones, 1989].
Pure functional programs are static objects. The meaning of an expression does not change as
computation proceeds. Real objects persist while their configurations and attributes change
over time. Animation, as the mimicking of three-dimensional physical objects, depends on a
notion of state. We have seen that this meshes rather well with the concept of actors and
objects in object oriented programming. In functional graphics the emphasis is shifted to deal­
ing with a sequence of different objects related by a sequence of transformations. This model of
computation is found in key frame animation, which is mainly used for two-dimensional pic­
tures. Slater also discusses the fact that difficulties arise when using functional languages for
programming interaction and when using attributes [Salmon & Slater, 1987, pp. 290-291].

- 13 -

This does not prevent functional programming from being used in practice in time dependent
situations. Generally it is possible to "abstract away" the notion of time, and replace it with
some idea of sequences over infinite lists [Arya, 1986]. Lazy evaluation (cf §4.4) is an elegant
way of coping with such infinite structures [Jones & Sinclair, I 989]. To discover the relation
between the figures. in the list one refers to the functions which constructed them. But the con­
ceptual advantages of functional programs remain limited precisely because such programs
describe a dynamically changing world as a (conceptually) frozen system of infinite sequences.

Functional programming is evolving, and the final conclusions regarding functional versus
object oriented approaches to computer animation cannot yet be drawn. The extent to which a
(possibly impure [e.g., Halstead. 1985]) functional approach can be elaborated for three­
dimensional animation needs further investigation. On the other hand, object oriented anima­
tion already seems well suited to modelling changing objects executing concurrently.

§5. Conclusion.

We have tried to review some of the issues in object oriented graphics. Other general discus­
sions of (aspects of) object oriented graphics include: Barth (1986 - user-interfaces],
Magnenat-Thalmann & Thalmann (1985 - computer animation], Myers [1989 - a general
discussion of user-interface tools], Tomiyama [1989 - CAD] .and Wij3kirchen & Rome [1988
- tutorial].

It was apparent that object oriented programming has many aspects whose importance varies
with the intended application. Thus we saw that with CAD, where objects change incremen­
tally, delegation rather than inheritance might be preferable.

In §4 we mentioned where further research is needed in order to adapt object oriented program­
ming for interactive graphics and animation. The need for a part hierarchy as an integral part of
any language for representing physical objects has been identified. It is also apparent that the
complexity of specifying interactions and computer animated sequences means that a constraint
based declarative approach to programming is also needed. This will allow a user to specify
what has to happen on the assumption that the basic details of how something has to be done
has been solved previously. The brief mention of alternate views on objects does not indicate
the unimportance of the topic for research, on the contrary.

It does seem that on the whole the object oriented approach offers more promise as a basic
abstraction for computer graphics than its alternatives (functional or logic programming).

§5.1 A Note for Some Practitioners.

In a flexible approach to introducing object oriented methods to graphics one should beware of
being too easy going. It is all too easy, but lazy, to regard the discipline of information hiding
and type hierarchies (for example) as restrictive, instead of regarding them as elegant ways of
building complex systems. When problems arise they should be sunnounte4 by means of
extensions to the object oriented method which fit in with the general thrust of the approach.
Examples of such extensions are the part hierarchies and encapsulators.

Acknowledgements.

I would like to thank my colleagues Kees Blom, Ravic Pieters Kwiers and Jan Rogier for their
helpful comments on the first draft of this paper.

- 14 -

Bibliography.

Adobe Systems (1985) PostScript Language Reference Manual. Addison-Wesley, Reading,
MA.

Agha, G. (1986) SIGPLAN Notices 21, 10 58-67
''An overview of actor languages.''

Agha, G. (1989) SJGPLAN Notices 24, 4 60-65
•'Foundational issues in concurrent programming.''
Proc. ACM SIGPLAN Workshop on Object-Based Concurrent Progranuning. San Diego,
Sept. 26-27, 1988.

Agha, G. & Hewitt, C. (1987) in: Shriver, B. & Wegner, P. (ed) Research Directions in
Object-Oriented Programming. The MIT Press, Cambridge, Massachusetts. 49-74.
··Actors: a conceptual foundation for concurrent object-oriented programming."

Anson, E. (1982) SIGGRAPH'82: Computer Graphics 16, 3 107-114
•'The device model of interaction.''

Arbab, F. (1989) in: Akman, V., ten Hagen, P.J.W. & Veerkamp, P.J. (ed) /ruelligent CAD
Systems II: Tmplementation Issues. EurographicSeminars Series. Springer-Verlag, Berlin.
32-57.
·'Examples of Geometric Reasoning in OAR.''

Ardent Computer Corporation (1988) Dore Programmers' Guide.
Arya, K. (1986) Computer Graphics Forum 5, 4 297-311

''A functional approach to animation.''

Barth, P.S. (1986) ACM Trans.Graphics 5, 2 142-172
··An object-oriented approach to graphical interfaces.''

Beynon, M. (1988) in: Earnshaw, RA. (ed) ProcNATO AS/: Theoretical Foundations of
Computer Graphics and CAD. 1083-1097.
''Definitive principles for interactive graphks.''

Blake, E.H. (1987) Eurographics' 87. Elsevier, Amsterdam. 295-307
''A metric for computing adaptive detail in animated scenes using object-oriented pro­
gramming."

Blake, E.H. & Cook, S. (1987) in: Bezivin, J .• Hullot, J.-M. Cointe, P. & Lieberman, H. (ed)
Lecture Notes in Computer Science, no276. ECOOP'87: European Conference on
Object-Oriented Programming. Springer-Verlag, Berlin. 41-50
"On including part hierarchies in object-oriented languages, with an implementation in
Smalltal.k."
Paris, France, June 15-17, 1987

Boming, A.H. (1979) Xerox Palo Alto Research Center report SSL-79-3
"ThingLab: A constraint-oriented simulation laboratory."
a revised version of: Stanford University PhD. thesis, Stanford Computer Science
Department Report STAN-CS-79-746

Boming, A.H. (1981) ACM Trans.Programming Languages and Systems 3, 4 353-387
·'The programming language aspects of ThingLab, a constraint-oriented simulation
laboratory.' '

Borning, A.H. (1986a) IEEE/ACM Fall Joint Computer Conf. 36-40
·'Classes versus prototypes in object-oriented languages.''
Dallas, Texas, Nov 1986.

- 15 -

Borning,A.H. (1986b) ACMCH/'86Proceedings.131-143
''Defining constraints graphically.''

Borning, A.H. & Duisberg, R.A. (1986) ACM Trans.Graphics 5, 4 345-374
''Constraint-based tools for building user interfaces.''

Boming, A.H., Duisberg, R.A., Freeman-Benson, B., Kramer, A. & Woolf, M. (1987)
OOPSLA'87: SIGPLAN Notices 22, 12 48-60

•'Constraint hierarchies.''

Boming, A.H. & Ingalls, D.H.H. (1982) ProcNat.Conf Artificial Intelligence 234-237
"Multiple inheritance in Smalltalk-80."
Pittsburgh, PA.

Brachman, R.J. (1983) Computer 16, 10 30-36
"What IS-A is and isn't: an analysis of taxonomic links in semantic networks."

Breen, D.E., Getto, P.H., Apodaca, A.A., Schmidt, D.G. & Sarachan, B.D. (1987) Euro­
graphics' 87. Elsevier, Amsterdam. 275-282
''The Clockworks: An object-oriented computer animation system.''

Budd, T.A. (1989) Software Practice & Experience 19, 1 35-51
·'The design of an object-oriented conunand interpreter."

Burton, F.W. & Kollias, Y.G. (1989) IEEE Software 6, 1 90-97
''Functional programming with quadtrees. •'

Cardelli, L . (1984) in: Kahn, MacQueen & Plotkin (ed) Lecture Notes in Computer Science,

no 173. Semantics of Data Types. Springer Verlag. 51-67
•'A semantics of multiple inheritance.''

Cardelli, L. & Wegner, P. (1985) Computing Surveys 17, 4 471-522
''On understanding types, data abstraction, and polymorphism.''

Cox, B.J. (1984) IEEE Software 1, 1 50-61
"Message/Object programming: an evolutionary change in programming technology."

Cox, B.J . (1986) Object-Oriented Programming: An Evolutionary Approach. Addison­
Wesley. , Reading, Massachusetts.

Dahl, 0.-J. & Hoare, C.A.R. (1973) in: Dahl, 0.-J., Dijkstra, E.W. & Hoare, C.A.R. (ed)

Structured Programming. Academic Press. London. 175-220
'·Hierarchical program structures.''

Danforth, S. & Tomlinson. C. (1988) ACM Comp.Surveys 20, l 29-72.
''Type theories and object-oriented programming.''

Densmore, O.M. & Rosenthal, D.S.H. (1987) Computer Graphics Forum 6, 3 171-180
"A user-interface toolkit in object-oriented PostScript."

Duisberg, R.A. (1986) ACM CHI' 86 Proceedings 131-136
''Animated graphical interfaces using temporal constraints.''

Earnshaw, R.A., Bresenham, J.E., Dobkin, D.P., Forrest, A.R. & Guibas, L.J. (1987) SIG­
GRAPH' 87: Computer Graphics 21, 4 345
" Panel: ' Pretty pictures aren't so pretty anymore: A call for better theoretical founda­

tions.·.''

Fikes, R. &. Kehler, T. (1985) CommACM 28 904-920
•'The role of frame-based representation in reasoning.''

- 16 -

Fiume, E., Tsichritzis, D. & Dami, L. (1987) Eurographics' 87. Elsevier, Amsterdam.
283-294
'•A temporal scripting language for object-oriented animation.''

Foley, J.D. & van Dam, A. (1982) Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Massachusetts.

Girczyc, E.F. & Tai Ly (1987) 24th ACM/IEEE Design Automation Conference. 757-763.
"STEM: an IC design environment based on the Smalltalk Model-View- Controller con­
struct."

Goguen, J.A. & Mesguer, J. (1987) in: Shriver, B. & Wegner, P. (ed) Research Directions in
Object-Oriented Programming. The MIT Press, Cambridge, Massachusetts. 417-477
"Unifying functional, object-oriented and relational programming with logical seman­
tics.''

Goldberg, A. & Robson, D. (1983) Smal/ralk-80: the language and its implementation.
Addison-Wesley, Reading, Massachusetts.

Greenberg, D.P. (1988) CommACM 31 123-129,151
"Coons award lecture."

Guttag, J. (1977) CommACM 20, 6 396-202
''Abstract data types and the development of data structures.''

Halstead, R.H. (1985) ACM Trans.Programming Languages and Systems 7, 4 501-538
''Multi lisp: A language for concurrent symbolic computation.''

Hartson, R. (1989) IEEE Software 6, 1 62-70
''User-interface management control and communicati.on.' •

Haumann, D.R. & Parent, R.E. (1988) The Visual Computer 4 332-347
"The behavioral test-bed: obtaining complex behavior from simple rules.••

Henderson, P. (1982) Symposium on Lisp & Functional Programming. ACM. 179-187
"Functional geometry."

Hughes, J. (1989) The Computer Journal 32, 2 98-107
''Why functional programming matters.''

Ingalls, D.H.H. (1986) OOPSLA' 86: SIGPLAN Notices 21, 11 347-349
''A simple technique for handling multiple polymorphism.••

Jones, S.B. & Sinclair, A.F. (1989) The Computer Journal 32, 2 162-174
"Functional programming and operating systems."

Kahn, K.M. (1976) User-oriented design of interactive graphics systems (ACM/SIGGRAPH
workshop). 37-43
·'An actor-based computer animation language."

Kay, A.C. (1977) Scientific American 237, September 230-244
"Microelectronics and the personal computer."

Kowalski, R. (1979) CommACM 22 424-436.
"Algorithm =logic +control."

Krasner, G.E. & Pope, S.T . (1988) J.Object-Oriented Prog. I. 3 26-48
''A cookbook for using the model-view-controller user interface paradigm in Smalltalk-
80.''

LaLonde, W.R., Thomas, D.A. & Pugh, J.R. (1986) OOPSI.A' 86: SIGPLAN Notices 21, 11
322-330
''An exemplar based Small talk.' '

- 17 -

Larrabee, T. & Mitchell, C.L. (1984) IEEE Software 1, 4 28-36
''Gambit: A prototyping approach to video game design.''

Lieberman, H. (1986a) in: Bezivin, J. & Cointe P. (ed) 3eme Journees d' Etudes Langages
Orientes Objet. 79-89
"Delegation and inheritance: Two mechanisms for sharing knowledge in object-oriented
systems."

Lieberman, H. (1986b) OOPSLA'86: SIGPLAN Notices 21, 11 214-223
"Using prototypical objects to implement shared behavior in object-oriented systems."

Lieberman, H., Stein, L.A. & Ungar, D. (1987) OOPSLA'87 Addendum to the Proceedings.
43-44.
"Of types and prototypes: the treaty of Orlando."

Lipk.ie, D.E., Evans, S.R., Newlin, J.K. & Weissman, R.L. (1982) SIGGRAPH'82: Computer
Graphics 16, 3 115-124
'•Star graphics: an object-oriented implementation.''

Liskov, B. & Zilles, S. (1974) S/GPLAN Notices 9, 4 50-59
'' Progranuning with abstract data types.''

Lubinski, T. & Hutzel, I. (1984) Computer Graphics World, July 69-75
''An object-oriented graphical kernel system.''

Madsen, O.L. & MtSller-Pedersen, B. (1988) in: Gjessing, S. & Nygaard, K. (ed) Lecture
Notes in Computer Science, no.322. ECOOP' 88. Springer Verlag, Berlin. 1-20.
"What object-oriented progranuning may be - and what it does not have to be.''

Magnenat-Thalmann, N. & Thalmann, D. (1985) Computer Animation: Theory and Practice.
Springer-Verlag, Tokyo.

Meyer, B. (1988) Object-oriented software construction. Prentice-Hall, London.

Micallef, J. (1988) J.Object-Oriented Prog. 1, 1 12-36
"Encapsulation, reusability and extensibility in object-oriented programming languages.''

Myers, B.A. (1989) IEEE Software 6, 1 15-23
"User-interface tools: Introduction and survey."

NeWS (1987) Part No: 800-1498-05. Sun Microsystems, Inc, Mountain View, CA.
"NeWS Technical Overview."

Newton, M. & Watkins, J. (1988) J.Object-Oriented Prog. 1, 4 7-10
''The combination of logic and objects for knowledge representation."

Nygaai:d, K. (1986) S/GPLAN Notices 21, 10128-132
"Basic concepts in object-oriented programming."

Pascoe, G.A. (1986) OOPSLA'86: SIGPLAN Notices 21, 11 341-346
"Encapsulators: A new software paradigm in Smalltalk-80."

Peyton Jones, S.L. (1989) The Computer Journal 32, 2 175-186
"Parallel implementations of functional programming languages."

PHIGS (1986) ISO PH/GS revised working draft
"Programmer's Hierarchical Interactive Graphics System."

Rensch, T. (1982) S/GPLAN Notices 17 51-57
''Object oriented programming.''

Reynolds, C.W. (1982) SIGGRAPH' 82: Computer Graphics 16, 3 289-296
"Computer animation with scripts and actors."

- 18 -

Reynolds, C.W. (1987) SIGGRAPH'87: Computer Graphics 21, 4 25-34
''Flocks, herds and schools: A distributed behavioral model..,

Salmon, R. & Slater, M. (1987) Computer Graphics: Systems & Concepts. Addison-Wesley,
Wokingham, England.

Shneiderman, B. (1983) Computer 16, 8 57-69
''Direct manipulation: a step beyond programming languages.''

Smith, B. (1982) Parts and Moments. Studies in Logic and Formal Ontology. Philosophia
Verlag, Munchen.

Snyder, A. (1986) OOPSLA' 86: SIGPLAN Notices 21, 11 38-45
''Encapsulation and inheritance in object-oriented programming languages.••

Stefik, M. & Bobrow, D.G. (1985) The Al Magazine VI, 4 40-62
''Object-oriented programming: Themes and variations.''

Stein. L.A. (1987) OOPSLA' 87: S/GPLAN Notices 22, 12 138-146
''Delegation is inheritance.''

Stroustrup, B. (1986) S/GPLAN Notices 21, 10 7-18
"An Overview of C++."

Stroustrup, B. (1988) IEEE Software 5, 3 10-20
''What is object-oriented programming.''

Swinson, P.S.G. (1983) Computer-Aided Design 15 335-343
"Prolog: a prelude to a new generation of CAAD."

Torniyama, T. (1989) in: Akman, V., ten Hagen, P.J.W. & Veerkamp, P.J. (ed) Intelligent
CAD Systems II: Implementation Issues. EurographicSeminars Series. Springer-Verlag.
Berlin. 3-16.
''Object oriented programming paradigm for intelligent CAD systems."

Uchiki, T., Ohashi, T. & Tokoro, M. (1983) Computers & Graphics 7, 3&4 285-293
''Collision detection in motion simulation.''

Wegner, P. (1987) OOPSLA' 87: SIGPLAN Notices 22, 12 168-182
"Dimensions of object-based language design."

Williams, T. (1988) Computer Design, February 30-31
•'Graphics library aids high-level interactive visualization.''

Wi~kirchen, P. (1986) Computers & Graphics 10, 2 183-187
"Towards object-oriented graphics standards."

Wi~kirchen, P. (1988) German National Research Center for Computer Science Internal
Report GMD-F3.MMK.
''Editing Groups and Parts in a Multi-Level Graphics System."

Wi~kirchen, P. & Rome, E.L. (1988) SIGGRAPH' 88 Course Notes.
"Object-Oriented Graphics."

Yonezawa, A., Briot, J.-P. & Shibayama, E. (1986) OOPSLA'86: SIGPLAN Notices 21, 11
258-268
''Object-oriented concurrent programming in ABCL/l.''

Zeltzer, D. (1985) The Visual Computer 1 249-259
' ' Towards an integrated view of 3-D computer animation.''

