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ABSTRACT
For ergodic di�usions, we consider kernel-type estimators for the invariant density, its derivatives and the drift
function. Using empirical process theory for martingales, we �rst prove a theorem regarding the uniform weak
convergence of the empirical density. This result is then used to derive uniform weak convergence for the kernel
estimator of the invariant density. For kernel estimators of the derivatives of the invariant density and for a
nonparametric drift estimator that was proposed by Banon [1], we give bounds for the rate at which the uniform
distance between the estimator and the true curve vanishes. We also consider the problem of estimation from
discrete-time observations. In that case, obvious estimators can be constructed by replacing Lebesgue integrals by
Riemann sums. We show that these approximations are also uniformly consistent, provided that the bandwidths
and the time between the observations are correctly balanced.

2000 Mathematics Subject Classi�cation: 60J60, 62G05.
Keywords and Phrases: Ergodic di�usions, empirical density, nonparametric estimation, uniform convergence.
Note: Work carried out under project PNA3.3 `Stochastic Processes and Applications'.

1 Introduction

Ergodic di�usions are the continuous-time analogues of ergodic Markov chains and they occur
at various places in stochastic modeling. Well-known examples are the Wright-Fisher model in
genetics, the Ornstein-Uhlenbeck process in physics and stochastic volatility models and interest
rate models in mathematical �nance. We consider processes that solve a stochastic di�erential
equation of the form

dXt = b(Xt) dt+ �(Xt) dWt; (1.1)

where W is a standard Brownian motion and b and � are certain measurable functions. By
saying that a solution X of equation (1.1) has the ergodic property with invariant measure �
we mean that the law of large numbers holds, i.e. that

1

t

Z t

0
g(Xs) ds

as!
Z
g d� (1.2)

for every g 2 L1(�) and that we have the weak convergence Xt  � as t ! 1. In the next
section we state precise conditions on the coeÆcients b and � under which solutions of (1.1) have
the ergodic property and we recall the relation between the functions b and � and the density f
of the invariant measure �.
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In this paper we study nonparametric kernel-type estimators for the invariant density f
and its derivatives and for the drift function b. Figure 1 shows a simulated sample path of an
ergodic di�usion. It is a realisation of a mean reverting process X that solves the equation
dXt = �2(Xt � 1) dt+ dWt.
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Figure 1: Simulated sample path of the solution of the stochastic di�erential
equation dXt = �2(Xt � 1) dt+ dWt.

In �gure 2, nonparametric estimates for the invariant density f , its derivative f 0 and the drift
function b of the process are shown, based on the observation of the sample path of �gure 1.
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Figure 2: Nonparametric estimates for the invariant density f , its derivative f 0

and the drift function b. The dotted lines are the true curves.

The estimators that were used are the kernel-type estimators that we discuss in this paper.
The simulations indicate that such estimators can give very decent estimates of the curves of
interest. In particular, the pictures show that the estimators are not only pointwise close to the
real curves, but also uniform on intervals. As a result, the estimators give a nice global picture
of the real curves. The purpose of this work is to give a theoretical explanation of this fact.

Our �rst aim is to derive results regarding the uniform convergence of nonparametric esti-
mators for the invariant density f and its derivatives. Based on the observation of a trajectory
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fXs : s � tg of the di�usion, we can estimate f by the kernel estimator f̂t;h de�ned by

f̂t;h(x) =
1

ht

Z t

0
K

�
x�Xs

h

�
ds;

where K is some appropriate kernel function and h > 0 is a bandwidth. Obvious estimators for
the derivatives f (m) of f are then obtained by di�erentiating this expression. If the kernel K
has an m-th derivative K(m), we de�ne

f̂
(m)
t;h (x) =

1

hm+1t

Z t

0
K(m)

�
x�Xs

h

�
ds: (1.3)

Kernel estimators for the density f and its derivative f 0, i.e. the cases m = 0 and m = 1, were
�rst considered by Banon [1]. In the paper [1], conditions are given for pointwise consistency
of these estimators. For m = 0, uniform consistency was considered in the paper [5]. Let us
remark that in both papers, the authors work under the so-called condition G2 of Rosenblatt
[8]. As is shown in [1], suÆcient conditions for G2 can be formulated in terms of the functions
b, � and f , but the requirements are quite demanding. More recently, Kutoyants [4] studied the
pointwise properties of the kernel estimator for the density f . He proved consistency, asymptotic
normality with rate

p
t and eÆciency. Rather than working under Rosenblatt's condition G2,

he used the fact that for the di�usions that we consider, the empirical measure has a density.
In this paper we also exploit the properties of the empirical density ft in order to obtain

the desired results regarding uniform convergence of the kernel estimators. Our starting point
is the result of [11] that states that under mild conditions, we have the convergence

sup
x2I

jft(x)=f(x)� 1j P! 0

for every compact subinterval I of the state space of the process X. Using the empirical process-
type techniques of Nishiyama [6] we then derive a uniform weak convergence theorem for the
normalized di�erence

p
t(ft=f � 1) (see theorem 3.2). With this powerful tool in hand we prove

that for every m � 0

sup
x2I

���f̂ (m)
t;ht

(x)� f (m)(x)
��� = OP

�
1

hmt
p
t

�
(1.4)

for every compact subinterval I of the state space of the process, provided that the bandwidths
ht converge to 0 at the right speed. For m = 0, the rate t1=2 is the exact rate and we �nd in fact
a uniform weak convergence theorem for the random map

p
t(f̂t;ht � f) (see theorem 3.4). For

m � 1, the rate is not exact and the big OP is actually a small oP (see theorem 3.5). It seems
that in this case, the exact rate is (h2m�1t t)1=2, but that the convergence is not uniform at this
rate. We investigate this problem in the forthcoming paper [12].

Now suppose that the di�usion coeÆcient � is known and a nonparametric estimate for b
is needed. Based on the relation (3.4) between the functions b, �, f and f 0, Banon [1] proposed
the estimator

b̂t =
1
2�

2
f̂
(1)
t;ht

f̂t;ht
+ ��0 (1.5)
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for the drift function b, provided of course that � is di�erentiable. It is shown in [1] that this
estimator is pointwise consistent under certain regularity conditions. By the in�nite dimensional
delta-method, our results for the estimators of f and f 0 imply that

sup
x2I

���b̂t(x)� b(x)
��� = oP

�
1

ht
p
t

�
(1.6)

for every compact subinterval I of the state space ofX, provided that the bandwidths ht converge
to 0 at the right speed (see theorem 3.6).

In a real life situation, we can of course not observe a process continuously. Therefore, we
also consider the case that we observe the di�usion at discrete time instants 0;�; 2�; : : : ; n�.
In this case, nonparametric estimators can easily be constructed by replacing the Lebesgue
integrals in (1.3) by the corresponding Riemann sums (see de�nition (3.5)). Using a maximal
inequality from empirical process theory (taken from [10]), we construct an upper bound for the
expected uniform distance between the continuous-time estimators (1.3) and their discrete-time
approximations (see theorem 3.7). Under the assumption that � = �n ! 0 and n�n ! 1,
this allows us to give results like (1.4) and (1.6) for the discrete-time estimators (see theorems
3.8 and 3.9). In particular, we show that if �n � n�� for some � 2 (0; 1), then the bandwidths
hn can always be chosen in such a way that we get uniformly consistent discrete-time estimators
for f and its derivatives and for b.

2 Model assumptions

We consider the stochastic di�erential equation (1.1), where W is a standard Brownian motion
and b and � are measurable functions. We assume that the SDE has a unique strong solution
for every initial condition (see for instance [3] for conditions in terms of the coeÆcients b and
�). By (l; r) we denote the (possibly unbounded) state space of the di�usion. More precisely,
we assume that if the law of the initial random variable X0 is concentrated on (l; r), then the
whole process X takes values in this interval. Typically, this is ensured by the condition that
�(x) > 0 for all x 2 (l; r) and

�(l) = 0; b(l) > 0 if �1 < l;

�(r) = 0; b(r) < 0 if r <1

(see [2], theorem 2, p. 149). To avoid technical diÆculties, we assume that both b and � are
continuous on the state space (l; r) and that � > 0 on (l; r).

Now �x a point x0 2 (l; r). Recall that the derivative of the scale function associated to
the stochastic di�erential equation (1.1) is the function s on (l; r) de�ned by

s(x) = exp

�
�2
Z x

x0

b(y)

�2(y)
dy

�
: (2.1)

It is assumed that

s(l) = s(r) =1 and D =

Z r

l

1

�2(x)s(x)
dx <1: (2.2)
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The probability measure � on (l; r) is de�ned by �(dx) = f(x) dx, where

f(x) =
1

D�2(x)s(x)
: (2.3)

The distribution function of the measure � is denoted by F . It is well-known (see e.g. [2] or
[9]) that condition (2.2) implies that the solution X of (1.1) is ergodic in the sense that the law
of large numbers holds, i.e. that (1.2) holds for every g 2 L1(�), and that Xt  � as t ! 1.
Moreover, the solution that satis�es the initial condition L(X0) = � is stationary. Throughout
the paper, the symbol X denotes this stationary, ergodic solution of the stochastic di�erential
equation (1.1). We call � the invariant measure of the process, and f and F the invariant density
and distribution function, respectively.

3 Main results

Let us begin with formulating two important integrability conditions that we shall use in the
sequel.

C1 :

Z
�2 d� <1 and there exists an " > 0 such thatZ
jbj1+" d� <1 and

Z
jxj1+"�(dx) <1:

C2 :

Z �
F (1 � F )

�f

�2

d� <1:

Very often, linear growth conditions are imposed on the functions b and �. In that case, con-
dition C1 reduces to the requirement that the invariant measure � has a �nite second moment.
Condition C2 assures the existence of the limiting covariances that we will �nd in the results
below.

The process X is a continuous semimartingale, so its semimartingale local time fLt(x) :
t � 0; x 2 (l; r)g is well-de�ned (see for instance [3] or [7]). In particular, the empirical measure
of the process has a density. Indeed, if for t > 0 we denote by �t the empirical measure

�t(B) =
1

t

Z t

0
1B(Xs) ds;

then we have the relation �t(dx) = ft(x) dx, where ft is given by

ft(x) =
2Lt(x)

t�2(x)
: (3.1)

The random function ft is therefore called the empirical density. The ergodic property of X
implies that if t grows, then the empirical density ft behaves more and more like the invariant
density f . Indeed, using (3.1), the Tanaka-Meyer formula, the ergodic property (1.2) and the

5



law of large numbers for martingales, it is easy to prove that for every x 2 (l; r) we almost surely
have ft(x)=f(x)! 1 as t!1, provided that

R jbj d� <1 and
R
�2 d� <1. In the paper [11]

we showed that under slightly more restrictive integrability conditions, the convergence of ft to
f is in fact uniform on compact intervals. The exact formulation is as follows.

Theorem 3.1. Suppose that C1 holds. Then for every compact interval I � (l; r) we have

sup
x2I

jft(x)=f(x)� 1j P! 0

as t!1.

The proof of this theorem can be found in the paper [11]. Note however that the integrability
conditions of the theorem above are somewhat weaker than those needed in [11]. It is easily
seen that this improvement can be achieved by reasoning slightly more careful than in section
3.1 of [11].

The following step is a convergence result for the normalized di�erence
p
t(ft=f � 1). It

turns out that for every compact interval I � (l; r), this random map converges weakly in
the space `1(I) of bounded functions on I (see the book [10] for the general theory of weak
convergence in such spaces). The limiting covariances are inner products of the functions �x
given by

�x = 2
1(x;r) � F

�f
: (3.2)

It is easily seen that for every x 2 (l; r), the �-square integrability of the function �x is equivalent
to condition C2.

Theorem 3.2. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Then

as t ! 1, the random maps
p
t(ft=f � 1) converge weakly in `1(I) to a zero-mean Gaussian

random map G with covariance function

EG(x)G(y) = h�x; �yiL2(�) :

The proof of this theorem relies on theorem 3.1 and can be found in section 4.1. An application of
the continuous mapping theorem gives us the following corollary for the random maps

p
t(ft�f).

Under special conditions on b and �, a similar result was already obtained in the paper [4].

Corollary 3.3. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Then as

t!1, the random maps
p
t(ft�f) converge weakly in `1(I) to a zero-mean Gaussian random

map H with covariance function

EH(x)H(y) = f(x)f(y) h�x; �yiL2(�) : (3.3)

6



Proof. By assumption, the function � is continuous on (l; r). The invariant density f is therefore
also continuous (see (2.3)), so kfk1 = supx2I jf(x)j < 1. It follows in particular that the
map � : `1(I) ! `1(I) given by �(g) = fg is well-de�ned. Clearly, k�(g1) � �(g2)k1 �
kfk1kg1 � g2k1, so the map � is continuous. By theorem 3.2 and the continuous mapping
theorem we thus have

p
t(ft � f) = �(

p
t(ft=f � 1)) �(G) = H;

which completes the proof.

The result of corollary 3.3 is interesting in itself, but is also the main ingredient in the proof
of the following two results that we have obtained for the kernel estimators (1.3). The kernel K
is understood to be a symmetric probability density with compact support. See section 4.2 for
the proof of the theorems.

Theorem 3.4. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose

that f is twice continuously di�erentiable, that the kernel K is continuous and that h2t
p
t ! 0.

Then as t ! 1, the random maps
p
t(f̂t;ht � f) converge weakly in `1(I) to a zero-mean

Gaussian random map H with covariance function (3.3).

Theorem 3.5. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose
that f is m + 2 times continuously di�erentiable, that the kernel K is m times continuously

di�erentiable and that the bandwidths ht # 0, but such that hmt
p
t remains bounded away from

0. Then
sup
x2I

���f̂ (m)
t;ht

(x)� f (m)(x)
��� P! 0

as t!1. Moreover, if m � 1 and hm+2
t

p
t

P! 0, then

sup
x2I

���f̂ (m)
t;ht

(x)� f (m)(x)
��� = oP

�
1

hmt
p
t

�

as t!1.

Having established these uniform convergence results for the kernel estimators for f and its
derivatives, we can use the in�nite dimensional delta-method to investigate functionals of the
estimators. An interesting case is the estimator that Banon [1] proposed for the drift function b.
Suppose that the function � is known and continuously di�erentiable on (l; r). Then de�nitions
(2.1) and (2.3) give the relation

b(x) = 1
2�

2(x)
f 0(x)

f(x)
+ �(x)�0(x) (3.4)

for every x 2 (l; r). An obvious nonparametric estimator for the function b is obtained by
replacing f 0 and f in this expression by their kernel estimators. We pick a symmetric, compactly

7



supported, continuously di�erentiable probability density K, bandwidths ht # 0 and we de�ne
the estimator b̂t by (1.5). Using the delta-method, we obtain the following theorem (see section
4.3).

Theorem 3.6. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Sup-

pose that f is 3 times continuously di�erentiable, that the kernel K is 2 times continuously

di�erentiable and that the bandwidths ht # 0, but such that ht
p
t remains bounded away from 0.

Then

sup
x2I

���b̂t(x)� b(x)
��� P! 0

as t!1. Moreover, if h3t
p
t! 0, then

sup
x2I

���b̂t(x)� b(x)
��� = oP

�
1

ht
p
t

�

as t!1.

Now suppose that we observe the di�usion X at discrete instants in time, say at times
0;�; 2�; : : : ; n� = t. Then obvious approximations of the kernel estimators (1.3) can be ob-
tained by replacing the Lebesgue integrals by the corresponding Riemann-sums. For m � 0,
n 2 N and �; h > 0 we therefore introduce the discrete-time estimators

~f
(m)
n;h;�(x) =

1

hm+1n

nX
i=1

K(m)

�
x�X(i�1)�

h

�
: (3.5)

In section 4.4 we prove the following estimate for the uniform distance between the continuous-
time and discrete-time estimators.

Theorem 3.7. Let a compact interval I � (l; r) and m � 0 be given. Suppose that the kernel
K is m + 2 times continuously di�erentiable, that

R jbj d� < 1 and
R
�2 d� < 1. Then there

exists a constant C > 0 such that

E sup
x2I

���f̂ (m)
n�;h(x)� ~f

(m)
n;h;�(x)

��� � C

p
�

hm+3

for all n 2 N and h;� > 0 small enough.

Once we have this bound, the following two theorems follow easily from their continuous-time
counter parts.

Theorem 3.8. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose

moreover that f and K are twice continuously di�erentiable. Then if n�n !1, h2n
p
n�n ! 0

and �n
p
n=h3n ! 0 as n!1, the random maps

p
n�n( ~fn;hn;�n

� f) converge weakly in `1(I)
to a zero-mean Gaussian random map H with covariance function (3.3).
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Theorem 3.9. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose

moreover that f and K are m+2 times continuously di�erentiable. Then if n�n !1, hn ! 0,
hmn

p
n�n is bounded away from zero and

p
�n=h

m+3
n ! 0 we have

sup
x2I

��� ~f (m)
n;hn;�n

(x)� f (m)(x)
��� P! 0

as n!1. Moreover, if m � 1, hm+2
n

p
n�n ! 0 and �n

p
n=h3n ! 0, then

sup
x2I

��� ~f (m)
n;hn;�n

(x)� f (m)(x)
��� = oP

�
1

hmn
p
n�n

�

as n!1.

Remark 3.10. It should be noted that for given �n, it may be impossible to �nd bandwidths
hn that satisfy all the conditions of theorem 3.9. Suppose however that �n = n�� for some
0 < � < 1 and that we want to �nd bandwidths hn of the form hn = n��, with � > 0, such
that the conditions of the theorem are satis�ed. In terms of � and �, the conditions for uniform
consistency are � < �=6 in the case m = 0 and � < minf�=2(m+3); 1=2m��=2mg in the case
m > 0. Note that such a � can be found for every � 2 (0; 1). The additional conditions for the
second assertion of the theorem in this case translate to 1=2(m+2)��=2(m+2) < � < �=3�1=6.
This extra requirement can be met if and only if (m+ 5)=(2m + 7) < � < 1.

Based on the observations of X at the instants 0;�n; : : : ; n�n, we can of course also de�ne
the estimator ~bn of b by putting

~bn(x) =
1
2�

2(x)
~f
(1)
n;hn;�n

(x)

~fn;hn;�n
(x)

+ �(x)�0(x);

where the hn are suitably chosen bandwidths. As in the proof of theorem 3.6, the delta-method
can be used to derive the following result from theorems 3.8 and 3.9.

Theorem 3.11. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose

moreover that f and K are 3 times continuously di�erentiable. Then if n�n ! 1, hn ! 0,p
�n=h

4
n ! 0 and hn

p
n�n remains bounded away from 0, we have

sup
x2I

���~bn(x)� b(x)
��� P! 0

as n!1. Moreover, if h2n
p
n�n ! 0 and �n

p
n=h3n ! 0, then

sup
x2I

���~bt(x)� b(x)
��� = oP

�
1

hn
p
n�n

�

as t!1.

9



4 Proofs

4.1 Proof of theorem 3.2

We �rst write ft=f�1 in a convenient form. If we combine (3.1) with the Tanaka-Meyer formula
for the local time Lt(x) we �nd that for every x 2 (l; r)

ft(x)� f(x) =
jXt � xj � jX0 � xj

t�2(x)

+
1

t�2(x)

Z t

0
sgn(x�Xs)�(Xs) dWs

+
1

t

Z t

0

�
sgn(x�Xs)b(Xs)

�2(x)
� f(x)

�
ds:

(4.1)

Next, we use the generalized Itô formula and de�nition (2.3) of the invariant density f to rewrite
the Lebesgue integral in (4.1). Recall that we �xed a point x0 2 (l; r) and de�ne

�x = 2
1(x;r) � F

�2f
; �x(y) =

Z y

x0

�x(z) dz: (4.2)

Note that we have the relation �x = ��x (see de�nition (3.2)). From Itô's formula we getZ t

0

�sgn(x�Xs)b(Xs)

�2(x)
� f(x)

�
ds =

f(x)(�x(Xt)��x(X0))

� jXt � xj � jX0 � xj
�2(x)

� 1

�2(x)

Z t

0
sgn(x�Xs)�(Xs) dWs

� f(x)

Z t

0
�x(Xs) dWs:

(4.3)

Combination of equations (4.1) and (4.3) gives

ft(x)

f(x)
� 1 =

1

t
(�x(Xt)��x(X0))� 1

t

Z t

0
�x(Xs) dWs; (4.4)

which is the representation that we need.
We begin with considering the �rst term on the right hand side of (4.4). From the de�nitions

(4.2) it is easily seen that the functions �x can be bounded by a function � that does not depend
on the parameter x. Indeed, we have for every x; y 2 (l; r)

j�x(y)j �
����
Z y

x0

�x(z) dz

���� �
����
Z y

x0

2
1� F (z)

�2(z)f(z)
dz

����+
����
Z y

x0

2
F (z)

�2(z)f(z)
dz

���� =: �(y):

10



Using the triangle inequality and the stationarity of the process X we then �nd that for every
" > 0

P

 
sup

x2(l;r)
j�x(Xt)��x(X0)j > "

p
t

!
� 2P

 
sup

x2(l;r)
j�x(X0)j > "

p
t

!

� 2P (�(X0) > "
p
t)! 0:

This shows that

sup
x2(l;r)

1p
t
(�x(Xt)��x(X0))

P! 0:

By Slutsky's lemma and (4.4), it thus remains to show that the random maps

x 7! 1p
t

Z t

0
�x(Xs) dWs (4.5)

converge weakly to G in `1(I). The desired �nite dimensional convergence follows easily from
the ergodic property (1.2) and the central limit theorem for martingales. To prove asymptotic
tightness we view the random maps (4.5) as collections of endpoints of continuous martingales,
so that we can apply the results of Nishiyama [6]. For every x 2 (l; r) and t > 0, de�ne the
martingale M t;x by

M t;x
s =

1p
t

Z st

0
�x(Xu) dWu:

Then obviously we have
1p
t

Z t

0
�x(Xs) dWs =M t;x

1

for every x. An important quantity related to the family M = fM t;x
1 : x 2 Ig is the quadratic

modulus (in this case with respect to the metric d(x; y) =
p
jx� yj)

kMkt = sup
x;y2I

phM t;x �M t;yi1pjx� yj

= sup
x;y2I

q
1
t

R t
0 (�x � �y)2(Xs) dsp

jx� yj :

(4.6)

It follows from [6], theorem 3.4.2, that the random maps (4.5) are asymptotically tight if kMkt
is asymptotically tight for t!1. To prove that this is indeed the case, observe that for x � y

11



and x; y 2 I we have

1

t

Z t

0
(�x � �y)

2(Xs) ds =

Z
I
(�x � �y)

2(z)ft(z) dz

=

Z
I
(�x � �y)

2(z)
ft(z)

f(z)
f(z) dz

� sup
z2I

����ft(z)f(z)

����
Z
R

(�x � �y)
2(z)f(z) dz

= sup
z2I

����ft(z)f(z)

���� 4
Z y

x

1

�2(z)f(z)
dz

� 4 sup
z2I

1

�2(z)f(z)
sup
z2I

����ft(z)f(z)

���� jx� yj:

The function 1=(�2f) is equal to a constant times the function s given by (2.1) (see de�nition
(2.3)). In particular, it is continuous and therefore bounded on the compact interval I. We may
thus conclude that there exists a constant C > 0 such that

kMkt � C

�
sup
z2I

����ft(z)f(z)

����
�1=2

: (4.7)

By theorem 3.1, the quadratic modulus kMkt is therefore asymptotically tight and the proof is
�nished.

Remark 4.1. It follows from inequality (4.7) and theorem 2.4.4 of [6] that there exists a version
of the random maps (4.5) that is continuous in x. So in fact, the weak convergence of these
random maps to the limit G takes place in the space C(I) of continuous functions on the interval
I. In particular, we see that the random map G admits a continuous version. Since the invariant
density f is continuous, the same holds for the limit H of corollary 3.3. We will use this little
re�nement in the proof of lemma 4.3 below.

4.2 Proof of theorems 3.4 and 3.5

The asymptotic bias of the kernel estimators can be treated in the same manner as the bias of
a kernel estimator for the density of i.i.d. observations. We �nd that if the bandwidth h = ht
tends to 0, then the bias also tends to 0, uniformly on compact intervals.

Lemma 4.2. Let m � 0 be given. Suppose that f is m + 2 times continuously di�erentiable

and that K is m times continuously di�erentiable. Then for every compact interval I � (l; r)
we have

sup
x2I

���E f̂
(m)
t;h (x)� f (m)(x)

��� = O(h2)

for h! 0.

12



Proof. By stationarity of the process X and Fubini's theorem we have

E f̂
(m)
t;h (x) =

Z r

l

1

hm+1
K(m)

�
x� y

h

�
f(y) dy:

Say that the support of K is contained in the compact interval J . Since both K and f are m
times continuously di�erentiable, repeated partial integration and a change of variables yield

E f̂
(m)
t;h (x) =

Z
J
K(z)f (m)(x+ hz) dz

for every x 2 I and h > 0 small enough. The invariant density f is assumed to be m+ 2 times
continuously di�erentiable. So by Taylor's formula we have

f (m)(x+ hz) = f (m)(x) + hzf (m+1)(x) + h2z2
Z 1

0
(1� t)f (m+2)(x+ thz) dt:

If we plug this in the preceding display and use the fact that K is symmetric and integrates to
1 we get

E f̂
(m)
t;h (x)� f (m)(x) = h2

Z
J

Z 1

0
z2K(z)(1 � t)f (m+2)(x+ thz) dtdz:

Since we are looking for an expansion for h! 0 we can assume that the quantity x+thz appear-
ing as the argument of f (m+2) in the preceding display is contained in a compact subinterval of
(l; r). Therefore, the quantity jf (m+2)(x + thz)j is bounded and we can �nd a constant C > 0
such that

sup
x2I

jE f̂
(m)
t;h (x)� f (m)(x)j � Ch2

����
Z
R

z2K(z) dz

����
for all h small enough. This completes the proof of the lemma.

Now that we know that the kernel estimators are asymptotically unbiased, we consider the

di�erence f̂
(m)
t;h (x)�E f̂

(m)
t;h (x). Using theorem 3.2 we can prove the following lemma.

Lemma 4.3. Suppose that C1 and C2 hold and let I � (l; r) be a compact interval. Suppose

that the kernel K is m times continuously di�erentiable, and that the bandwidths ht # 0. Then

as t!1, the random maps

x 7! hmt
p
t(f̂

(m)
t;ht

(x)�E f̂
(m)
t;ht

(x))

converge weakly to Hm in `1(I), where H0 = H is the zero-mean Gaussian random map with

covariance function (3.3) and Hm = 0 for m � 1.
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Proof. Say that the support of K is contained in the compact interval J . Then we have the
relation

hmt
p
t(f̂

(m)
t;ht

(x)�E f̂
(m)
t;ht

(x))

=

Z
R

1

ht
K(m)

�
x� y

ht

�p
t(ft(y)� f(y)) dy

=

Z
J
K(m)(z)Pt(x� htz) dz

(4.8)

for every x 2 J and ht small enough, where Pt =
p
t(ft � f). For t > 0 we de�ne the function

Qt : I � J ! R by Qt(x; z) = x � htz. Since ht # 0 there is a t0 � 0 such that the function
Qt takes values in I1 = fx 2 (l; r) : d(x; I) � 1g for every t � t0. For t � t0 we can therefore
rewrite (4.8) as

hmt
p
t(f̂

(m)
t;ht

�E f̂
(m)
t;ht

) = �(Pt; Qt);

where � : `1(I1)� `1(I � J)! `1(I) is given by

�(P;Q)(x) =

Z
J
K(m)(z)P (Q(x; z)) dz:

It is not hard to see that the map � is continuous on the domain D � `1(I1) � `1(I � J) of
all pairs (P;Q) for which P is continuous. By corollary 3.3 we have Pt  H in `1(I1), where
the covariance function of H is given by (3.3). Moreover, by remark 4.1, the random map H is
continuous. Obviously the maps Qt converge uniformly on I � J to the map Q(x; z) = x. By
Slutsky's lemma we thus have the weak convergence (Pt; Qt)  (H;Q) in `1(I1) � `1(I � J),
and we remarked that the random element (H;Q) takes values in the domain D. Hence, it
follows from the continuous mapping theorem that

hmt
p
t(f̂

(m)
t;ht

�E f̂
(m)
t;ht

) = �(Pt; Qt) �(H;Q) =

�Z
J
K(m)(z) dz

�
H:

Since K is a probability density, the integral on the right hand side is equal to 1 for m = 0. For
m � 1 it is equal to 0, by partial integration.

Combination of lemmas 4.2 and 4.3 yields theorems 3.4 and 3.5.

4.3 Proof of theorem 3.6

Let D � `1(I)� `1(I) be the collection of all pairs (p; q) for which q is continuous and positive.
Then the map � : D ! `1(I), with

�(p; q) = 1
2�

2 p

p
+ ��0

is well-de�ned and easily seen to be continuous on D. By theorem 3.5 we have�
f̂
(1)
t;ht

; f̂t;ht

�
P! (f 0; f)
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in `1(I)� `1(I) and the pair (f 0; f) is clearly and element of D. So by the continuous mapping
theorem,

b̂t = �
�
f̂
(1)
t;ht

; f̂t;ht

�
P! �(f 0; f) = b

in `1(I), which proves the �rst part of the theorem. If h3t
p
t! 0, then by theorems 3.4 and 3.5

and Slutsky's lemma

ht
p
t
�
f̂
(1)
t;ht

� f 0; f̂t;ht � f
�
 0

in `1(I)� `1(I). Since

ht
p
t(b̂t � b) = ht

p
t
�
�
�
f̂
(1)
t;ht

; f̂t;ht

�
� �(f 0; f)

�
;

we can �nish the proof by using the in�nite dimensional delta-method (see [10], chapter 3.9).
The only thing that remains to be shown is that the map � is Hadamard-di�erentiable at the
point (f; f 0). To that end, write � as a composition of maps

(p; q) 7! (p; 1=q) 7! p=q 7! 1
2�

2p=q + ��0:

By lemma 3.9.25 of [10], the map q 7! 1=q is di�erentiable on the domain of all functions that are
bounded away from zero, which implies that the �rst map in the chain above is di�erentiable on
D. That the second map, multiplication of two functions, is Hadamard-di�erentiable is not hard
to check. The last map is aÆne and therefore di�erentiable. So by the chain rule, the map � is
Hadamard-di�erentiable and the second assertion of the theorem follows by the delta-method.

4.4 Proof of theorem 3.7

We use the usual notations D(";G; d), N(";G; d) and N[ ](";G; d) for the packing, covering and
bracketing numbers of a semimetric space (G; d) (see [10]).

Lemma 4.4. Let G be a countable collection of functions on (l; r) that is bounded in L2(�).
Then there exists a constant C > 0 such that

E sup
g2G

����
Z b

a
g(Xs) dWs

���� � C K(G)
p
b� a;

for all 0 � a � b, where

K(G) = sup
g2G

kgkL2(�) +

Z
diam G

0
D
�
";G; k � kL2(�)

�1=2
d": (4.9)

Proof. Let the random map Z on G be de�ned by

Z(g) =
1p
b� a

Z b

a
g(Xs) dWs; g 2 G:
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If we �x some g0 2 G, then clearly

E sup
g2G

����
Z b

a
g(Xs) dWs

���� �
 
E jZ(g0)j+E sup

g;h2G
jZ(g)� Z(h)j

! p
b� a: (4.10)

For the �rst expectation we have E jZ(g0)j � (E jZ(g0)j)1=2 = kg0kL2(�) � supg kgkL2(�). To
bound the second expectation, we apply corollary 2.2.5 of [10]. Clearly, we have

kZ(g)� Z(h)kL2(P ) = kg � hkL2(�)

for every g; h 2 L2(�). Hence, by the cited result of [10], we have




 supg;h2G
jZ(g)� Z(h)j







L2(P )

� B

Z diamG

0
D
�
";G; k � kL2(�)

�1=2
d"

for some constant B > 0.

We can now give a bound for the uniform di�erence between Lebesgue integrals and their
approximations. The in�nitesimal operator of the di�usion X is denoted by A, i.e. for every
twice continuously di�erentiable function g on (l; r) we put Ag = bg0 + (1=2)�2g00.

Lemma 4.5. Let G be a countable collection of twice continuously di�erentiable functions on

(l; r) such that supg2G jAgj � G for some function G 2 L1(�). Then there exists a constant

C > 0 such that

E sup
g2G

����� 1

n�

Z n�

0
g(Xs) ds� 1

n

nX
i=1

g(X(i�1)�)

����� � C
�
kGkL1(�)�+K(�G0)

p
�
�

for every � > 0 and n 2 N, where �G0 = f�g0 : g 2 Gg and the constant K(�G0) is de�ned by

(4.9).

Proof. By Itô's formula we have dg(Xt) = (Ag)(Xt) dt + (�g0)(Xt) dWt. It follows that for
every a � b

E sup
g
jg(Xb)� g(Xa)j � E sup

g

����
Z b

a
(Ag)(Xs) ds

����+E sup
g

����
Z b

a
(�g0)(Xs) dWs

���� :
The �rst expectation on the right hand side is clearly bounded by the quantity (b� a)kGkL1(�).

By the preceding lemma, the second one can be bounded by a constant times K(�G0)pb� a.
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Hence,

E sup
g2G

����� 1

n�

Z n�

0
g(Xs) ds� 1

n

nX
i=1

g(X(i�1)�)

�����
= E sup

g

����� 1

�n

nX
i=1

Z i�

(i�1)�

�
g(Xs)� g(X(i�1)�)

�
ds

�����
� 1

�n

nX
i=1

Z i�

(i�1)�
E sup

g

��g(Xs)� g(X(i�1)�)
�� ds

� c kGkL1(�)�+ dK(�G0; p)
p
�

for some constants c; d > 0, which proves the assertion of the lemma.

To proof theorem 3.7 we apply lemma 4.5. For every x 2 I, de�ne the function gx by

gx(y) =
1

hm+1
K(m)

�
x� y

h

�
:

Let I� � I be a countable, dense subset and put G = fgx : x 2 I�g. The quantity that we have
to bound is then equal to

E sup
g2G

����� 1

n�

Z n�

0
g(Xs) ds� 1

n

nX
i=1

g(X(i�1)�)

����� :
It is easy to see that for every x 2 I

jAgxj � kK(m+1)k1 1

hm+2
b+ 1

2kK(m+2)k1 1

hm+3
�2 =: G

and that

kGkL1(�) � B
1

hm+3
(4.11)

for some constant B > 0 and every h small enough. Another calculation shows that there exists
a constant C > 0 such that

k�g0xkL2(�) � C
1

hm+3=2
kK(m+1)kL2(R)

for all x 2 I, so �G0 is bounded in L2(�). To bound the packing integral in K(�G0) we note that
the class �G0 is pointwise Lipschitz in the following sense:

j�g0x(z)� �g0y(z)j = �(z)
1

hm+3

����
Z y

x
K(m+2)

�
t� z

h

�
dt

����
� kK(m+2)k1 1

hm+3
jx� yj�(z):
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It follows from theorem 2.7.4 of [10] that with D = 2kK(m+2)k1k�kL2(�) and l = diam(I)

D("; �G0; k � kL2(�)) � N[ ]("; �G0; k � kL2(�)) � N(hm+3"=D; I; j � j) � D l

hm+3"
:

Hence, we �nd that there exists a constant E > 0 such that

K(�G0) � E
1

hm+3=2
(4.12)

for all h small enough. By inequalities (4.11) and (4.12) and lemma 4.5 we thus have for � and
h small enough

E sup
x2I

���f̂ (m)
n�;h(x)� ~f

(m)
n;h;�(x)

��� = E sup
g2G

����� 1

n�

Z n�

0
g(Xs) ds� 1

n

nX
i=1

g(X(i�1)�)

�����
� C

�
kGkL1(�)�+K(�G0)

p
�
�

� D

p
�

hm+3
:

This concludes the proof of theorem 3.7.
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