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ABSTRACT

The stable central limit theorem for properly normalized local martingales with bounded jumps is proved. Instead
of the usual characteristic function-type methods we use an embedding technique in combination with a result on
nested Brownian motions. In this approach, the stability of the CLT is explained by the fact that nested Brownian
motions are asymptotically independent of any other random element. As was previously shown in the special
case of continuous local martingales, the embedding technique leads to short and transparent arguments. In the
conclusion we discuss the direction in which further research is needed to make the embedding method applicable
in an even larger number of situations.

1991 Mathematics Subject Classi�cation: 60F05, 60G44.
Keywords and Phrases: Central limit theorem, martingales in continuous time, Skorohod embedding, stable
convergence.
Note: Work carried out under project PNA3.3 `Stochastic Processes and Applications'.

1 Introduction

In this paper we study the weak convergence of a normalized local martingale M with bounded

jumps as `time' tends to in�nity. We suppose that there exist positive numbers ct increasing to

in�nity such that hMit =ct ! � in probability as t ! 1, where � is some nonnegative random

variable. We prove that for any random element X on the same probability space asM and with

values in an arbitrary Polish space X , we have the weak convergence (Mt=
p
ct;X)) (

p
�Z;X)

in R � X , where Z is a standard normal random variable that is independent of (�;X). In the

terminology of stable convergence (see [1]) this amounts to saying that Mt=
p
ct ) V (stably),

where V is a random variable with characteristic function u 7! E exp(�1

2
�u2).

It is well-known that many martingale limit theorems are stable. See for example [1, 8]

for stable central limit theorems in discrete time and [7, 11] for continuous-time results. The

main result of this paper, theorem 4.1 below, could also be deduced from [11, theorem 5.5.3].

Rather than on the result itself however, our focus is on the methods that give us stable limit

theorems. The usual approach uses characteristic function-type methods or rather the `method

of stochastic exponentials' (see [8, 11, 7, 9]). This method is quite powerful and has lead to very

general stable limit theorems. A drawback is however the high technical level of the method,

which may somewhat obscure intuition.

In the paper [15] we proved the (multivariate) stable central limit theorem for continuous

local martingales by using the Dambis-Dubins-Schwarz time-change theorem (see e.g. [13]),
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which states that every continuous local martingale is in fact a time-changed Brownian motion.

In this approach, the stability of the central limit theorem turned out to be a consequence of the

fact that `nested' Brownian motions are asymptotically independent of any other random element

(see [15, theorem 3.1]). The purpose of this paper is to present a �rst extension of this method,

namely to the case of local martingales that have bounded jumps. The Dambis-Dubins-Schwarz

theorem can not be used in this situation, since it holds only for martingales with continuous

paths. Instead we use a general version of Skorohod's embedding theorem, developed in the

papers [12, 10, 5]. In the literature on central limit theory the Skorohod embedding theorem

has primarily been used to investigate the rate of convergence of the (functional) central limit

theorem for martingales (see [8, 10, 5, 2]). In the present paper we use it to prove a version of

the stable central limit theorem. This approach leads to short and transparent arguments.

The result that we present deals `only' with one-dimensional local martingales that have

bounded jumps. Of course, we would also like to consider for instance martingales with arbi-

trarily large jumps and higher dimensional martingales. In the concluding section we indicate

in which direction further research is needed in order to make the embedding technique also

applicable those situations.

2 Nested Brownian motions

One advantage of the embedding approach is that it gives us a nice explanation of the stability

of the martingale central limit theorem. We will get this as a consequence of the following result

that states that nested Brownian motions are asymptotically independent of any other random

element. The theorem is in fact a special case of a more general result on nested Brownian

motions that was presented in [15].

Theorem 2.1. Let W be a Brownian motion and let (ct)t�0 be a collection of positive numbers

that increase to in�nity. For every t � 0, de�ne the Brownian motion W t by putting

W t
s =

1p
ct
Wcts; s � 0: (2.1)

Then for any random element X de�ned on the same probability space as W and with values in

an arbitrary Polish space X we have the weak convergence (W t;X) ) (B;X) in C[0;1) � X ,

where B is a Brownian motion that is independent of X.

Proof. See [15, theorem 3.1].

Remark. Throughout the paper, we use the symbols ) and
P! to denote weak convergence

and convergence in probability in a Polish spaces, respectively. See [3, chapter 1] for more

information on the basic weak convergence theory that we use.
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3 Skorohod embedding

The classical Skorohod embedding theorem asserts that any random walk with steps that have

zero mean and �nite variance can be embedded in a Brownian motion (see for instance [4, section

37]). In this paper we will use the following extension of that fact.

Theorem 3.1. On a �ltered probability space (
;F ; F;P) let a square integrable martingale M

and a random element X that takes values in a Polish space X be given. Then there exists a

�ltered probability space (
0;F 0; F0 ;P0) supporting a square integrable martingaleM 0, an X -valued

random element X 0 and a c�adl�ag, adapted, increasing process � = (�t)t�0 with the following

properties:

(i) L((M; [M ];X) jP) = L((M 0; [M 0];X 0) jP0).
(ii) M 0

t =W�t , where W is a process on (
0;F 0;P0) that is a Brownian motion with respect to

its natural �ltration.

(iii) [M 0]� � is a martingale.

(iv) If E sups�t jMsj4 <1 for all t � 0, then the process

0
@X

s�t

�
4(�M 0

s)
4 � (��s)

2
�1A

t�0

is a submartingale.

We refer to Monroe [12], Kubilius [10] and Coquet et al. [5] for the explicit construction and the

proof of the properties (i)-(iv). A di�erence between theorem 3.1 and the embedding theorem

presented in [5] is that we also `copy' a random element X to the new probability space. This

calls for a straightforward adaptation of the construction given in the cited papers and presents

no diÆculties.

Let us remark that there exists a �ltration G on (
0;F 0;P0), that is in general larger

than the natural �ltration of the Brownian motion W , such that W is still a Brownian motion

with respect to G and that each �t is a G -stopping time (see [12, theorem 11 and the remark

thereafter]). We also note that statement (iv) has higher order analogues where the powers

4 and 2 are replaced by 2p and p, for arbitrary p � 1 (see [5]). These facts are however not

important for our purpose.

4 Main result

The following theorem is the main result of the paper.
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Theorem 4.1. Let M be a local martingale with bounded jumps. Suppose that (ct)t�0 is a

collection of positive numbers increasing to in�nity and such that for some nonnegative random

variable �
hMit
ct

P! � (4.1)

as t!1. Then for any random element X de�ned on the same probability space as M and with

values in an arbitrary Polish space X we have the weak convergence (Mt=
p
ct;X) ) (

p
�Z;X)

in R �X , where Z is a standard normal random variable that is independent of (�;X).

The proof of the theorem is split in two parts, see subsections 4.1 and 4.2 below. In the �rst

part, we work under the additional assumption thatM is a martingale satisfying condition (4.2).

This allows us to use statement (iv) of theorem 3.1. In the second part we provide the arguments

that allow the extra condition (4.2) to be removed.

4.1 Proof of theorem 4.1, part 1

In addition to the conditions of the theorem, we assume for the moment that

E sup
s�t

jMsj4 <1 (4.2)

for all t � 0. This extra moment condition will be removed in the next subsection. Let a be a

bound for the jumps of M , thus j�M j � a. Denote by (M 0; �0;X 0) the `copy' of (M;�;X) on

the �ltered probability space (
0;F 0; F0 ;P0) constructed in theorem 3.1. Part (ii) of theorem 3.1

states that M 0
t =W�t , where W is a Brownian motion, and therefore

1p
ct
M 0

t =W t
�t=ct

;

where W t is given by formula (2.1). So we see that for Mt=
p
ct to have a weak limit, we need

to control the behaviour of �t=ct as t!1.

Since the jumps of M are bounded, it follows from Lenglart's inequality that (4.1) also

holds with [M ] in the place of hMi, i.e.
[M ]t
ct

P! �: (4.3)

By part (i) of theorem 3.1 we have L(([M 0]; �0) jP0) = L(([M ]; �) jP) so it follows from (4.3) that

[M 0]t
ct

P0! �0: (4.4)

Let us show that (4.4) implies the convergence

�t
ct

P0! �0: (4.5)
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Consider the martingale Z = [M 0]� � (cf. part (iii) of theorem 3.1). Clearly, it suÆces to

show that
Zt

ct

P0! 0: (4.6)

Observe that

�Zt = �[M 0]t ���t = (�M 0
t)
2 ���t:

So for the quadratic variation of Z we have

[Z]t =
X
s�t

(�Zs)
2 =

X
s�t

((�M 0
s)
2 ���s)

2 � 2
X
s�t

((�M 0
s)
4 + (��s)

2):

Using the fact that Z2 � [Z] is a martingale we thus �nd that Z2 is Lenglart dominated by the

process 2
P

s��((�M
0
s)
4 + (��s)

2). In view of assumption (4.2) we may conclude from part (iv)

of theorem 3.1 that the process
P

s��(��s)
2 is Lenglart dominated by 4

P
s��(�M

0
s)
4. It follows

that Z2 is Lenglart dominated by

10
X
s��

(�M 0
s)
4 � 10a2[M 0]:

So by Lenglart's inequality (see e.g. [9, lemma I.3.30]) and the fact that j�M j � a we have

P0
�
Z2
t � "

� � Æ

"
+
10a4

"
+ P0

�
10a2[M 0]t � Æ

�
(4.7)

for all "; Æ; t > 0. For given �; t > 0 take Æ = �ct
p
ct and " = �c2t in (4.7) to �nd that

P0
�
Z2
t

c2t
� �

�
� 1p

ct
+
10a4

�c2t
+ P0

�
10a2

[M 0]t
ct
p
ct
� �

�
:

Then it follows from (4.4) that we indeed have (4.6), which completes the proof of (4.5).

Now that (4.5) has been established, we can �nish this part of the proof of theorem 4.1. It

follows from theorem 2.1 and (4.5) that we have the weak convergence

(W t; �t=ct;X
0)) (B; �0;X 0) (4.8)

in C[0;1) � R � X , where B is a Brownian motion that is independent of (�0;X 0). De�ne the
map � : C[0;1)� R �X ! R �X by �(f; t; x) = (f(t); x). This map is continuous, so by part

(ii) of theorem 3.1 and the continuous mapping theorem

(M 0
t=
p
ct;X

0) = �(W t; �t=ct;X
0)) �(B; �0;X 0) = (B�0 ;X 0):

in R�X . Using part (i) of theorem 3.1 and noting that (B�0 ;X 0) has the same law as (
p
�Z;X),

where Z is a standard normal random variable that is independent of (�;X) we �nd that we

indeed have the desired weak convergence of (M=
p
ct;X). So under the additional assumption

that (4.2) holds for all t � 0, we have proved theorem 4.1.
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4.2 Proof of theorem 4.1, part 2

In this subsection the moment condition (4.2) is removed. The crucial point is that by Bernstein's

inequality, the process M� = sups�� jMsj can only grow at the rate
p
ct if hMi grows at the rate

ct.

Lemma 4.2. Let M be a local martingale with bounded jumps. If (ct)t�0 is a collection of

positive numbers increasing to in�nity such that hMit = OP (ct) then M�
t = OP (

p
ct) as t!1.

Proof. Let a be a bound for the jumps of M , thus j�M j � a. The Bernstein inequality for

local martingales with bounded jumps (see [14, p. 899] and also [6] for further references) states

that

P (M�
t � x ; hMit � y) � 2e

�1

2

x2

ax+y

for all t; x; y > 0. It follows that

P

�
1p
ct
M�

t � K

�
� 2e

�1

2

K2

aK+L + P

�hMit
ct

> L

�
(4.9)

for all K;L > 0 and t large enough. Let " > 0 be given. By assumption, we can choose L large

enough to ensure that the probability on the right hand side of (4.9) is less than "=2 for all t large

enough. ChoosingK so large that 2 exp(�1

2

K2

aK+L) � "=2 then implies that P
�

1p
ct
M�

t � K
�
� "

for t large enough, which proves the lemma.

With the help of lemma 4.2 we can construct a very useful localizing sequence (Tn) for the

local martingale M . We de�ne

Tn = infft :M�
t > n

p
ctg:

Clearly, T1 � T2 � � � � . It follows from lemma 4.2 that under (4.1) it holds that Tn ! 1 in

probability (and therefore also almost surely, since (Tn) is increasing) . This implies that we

can �nd a collection (nt)t�0 of positive integers that increase to in�nity and such that

P(Tnt � t)! 0 (4.10)

as t!1. De�ne the process N and the �ltration G = (Gt)t�0 by putting

Nt =MTnt^t; Gt = FTnt^t

for all t � 0. Then it follows from the optional sampling theorem (see e.g. [11, theorem 1.4.1])

that N is a martingale with respect to G and

hNit = hMiTnt^t :
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Using (4.10) it is easily seen that (4.1) implies that

hNit
ct

P! �: (4.11)

Indeed, simply note that for all " > 0

P

�����hMit
ct

� hNit
ct

���� > "

�
� P(Tnt � t)! 0

as t ! 1, which yields (4.11). Also note that by de�nition of the stopping times Tn and the

fact that j�M j � a, it holds that

N�
t =M�

Tnt^t � nt
p
ct + j�MTnt^tj � nt

p
ct + a:

In particular we have

E sup
s�t

jNsj4 <1

for all t � 0. We may thus conclude from the preceding subsection that (Nt=
p
ct;X)) (

p
�Z;X)

in R � X , where Z is a standard normal random variable that is independent of (�;X). Using

(4.10) again we see that the di�erence Nt=
p
ct�Mt=

p
ct converges to 0 in probability as t!1.

Therefore, (Mt=
p
ct;X) has the same weak limit as (Nt=

p
ct;X). This concludes the proof of

theorem 4.1.

5 Conclusion

For one-dimensional local martingales with bounded jumps the embedding method proves to

be an elegant and very direct method for obtaining the stable central limit theorem. To be

able to handle more general cases, such as martingales with arbitrarily large jumps and higher

dimensional martingales, further research is needed. Inspection of the proofs indicates that the

embedding method can also be used to prove that the statement of theorem 4.1 holds if M is a

locally square integrable martingale such that

1p
ct

sup
s�t

j�Msj L4�! 0 and
[M ]t
ct

P! �:

To relax the conditions on the jumps of M further and to handle d-dimensional martingales it

seems necessary to treat sequences of nested local martingales (triangular array scheme). In the

case of continuous local martingales, this has been carried out successfully (see [15]). The key

point is to relate the nesting property of a sequence of martingales to a nesting property of the

Brownian motions in which they are embedded. In the continuous case this was pretty straight-

forward because the Dambis-Dubins-Schwarz time-change theorem embeds nested continuous

local martingales in nested Brownian motions. For the Skorohod theorem this is not the case,

at least not for the construction given in [12, 10, 5]. Further research should make clear whether

or not a di�erent construction is possible that allows us to treat nested martingales.
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