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In a previous paper it was shown that for a class of semi-linear problems many high order 
Runge-Kutta methods have order of optimal B-convergence one higher than the stage order. In 
this paper we show that for the more general class of nonlinear dissipative problems such a 
result holds only for a small class of Runge-Kutta methods and that such methods have at most 
classical order 3. 
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I. Introduction. 

Consider the numerical solution of a stiff initial value problem 

(Ll) U'(t) = f (t, U(t)) (t ~ 0), U(O) = u0 , 

by the Runge-Kutta method 

s 

(1.2a) Un+!= u.+h I bJ(t.+cih,y;}, 
i=l 

(l.2b) Yi= u.+h I a;J(t.+c)1,yi) ( 1 :::;; i :::;; s ), 
j= 1 

Here f: rR x ~m -+ [Rm and u0 E [Rm are given, the real parameters aii• b;, c; 

determine the method, s is its number of stages and h > O is the stepsize. 
The vectors u. approximate U(t) at t" = nh (n ~ 1). 

Let I· I represent some norm on rRm. In this paper we will be concerned with 
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bounds for the global error of the form 

(1.3) (for n ~ 1, 0 ~ h ::; II) 

where llUll!~l = max{IU(j)l(t)i: 0 ~ t ~ t", 1 ~ j ~ p}, and where p e N, 
II> 0 and y:(O, oo) ~ (0, oo) are not affected by stiffness (see (13] and (16]). 
Let f!J> be a class of initial value problems given by (1.1). A Runge-Kutta 
method given by (1.2) is said to be convergent of order p on fJ> if there 
exist p e N, II > 0 and y : (0, oo) ~ (0, oo) such that ( 1.3) holds whenever 
U e C<iil([O, oo )) is a solution of a problem in &> and the u" are computed from 
(1.2). Here it is essential that (1.3) should hold uniformly on the class &>, 
not only for each problem individually. The order of convergence of method 
(1.2) on a given class t!J is, by definition, the largest number p such that this 
method is convergent of order p on [!). 

Usually a method is said to have order p if the bound (1.3) holds individually 
for each problem where f is smooth and satisfies a Lipschitz condition. We will 
refer to this as the classical order. 

In this note we consider the class of dissipative problems given by (1.l) where 
me N, the norm I · I on !Rm is generated by an inner product < ·, · >, 
u0 e !Rm and f: IR x !Rm ~ !Rm is a continuous function satisfying 

(1.4) <f(t,ii)-f(t,u),ii-u> ~ 0 (for all t e IR and ii, u e IR"'). 

As in [13] convergence on this class of problems will be called B-convergence. 

REMARK 1.1. Most well-known Runge-Kutta methods satisfy ci e[O, 1] (for 
i = 1, 2, .. ., s ). For those methods which have some abscissas outside [O, 1] 
the above definition of convergence on classes of problems should be slightly 
modified by taking in (1.3) llUJWl equal to max{JUW(t)i :eh~ t ~ tn-t +eh, 
1 ~ j ~ .P}, wherec = min{O,ci.c2 : .. .,c,} andc = max{l,ci.~2 ... .,c,}. If one the 
ci is negative we thus assume that the solution U of (1.1) can be extended 
in a smooth way on a small interval to the left of the origin. 

It is well known (see [4], [9], for example) that stability of the Runge-Kutta 
method for all dissipative problems is guaranteed by algebraic stability 

(1.5) 

where A = (aii) and B = diag (bi. b2,. • ., b,) are s x s matrices, b = (bi. b2,. • ., b,f, 
and > O (~ 0) refers to positive (semi-) definiteness. Furthermore, if there exists a 
diagonal matrix D > 0 such that 

(1.6) 
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then the scheme given by (1.2) is not too sensitive for perturbations on the 
internal stages (l.2b) and the internal vectors Y; are uniquely determined by 
(l.2b) (see [8], [10] and [12]). 

It is now well known that stiffness has a significant impact on the accuracy of a 
Runge-Kutta method. In their fundamental paper [13] Frank, Schneid and 
Ueberhuber proved B-convergence with order q for those methods satisfying the 
stability conditions (1.5), (1.6), where q is the stage order of the method, which 
is the largest integer such that the following two simplifying order conditions 
hold, 

B(q): bTci-l = 1/j 

C(q): Aci-l = ci/ j 

(j = 1, 2, ... , q), 

(j = 1, 2, ... , q) 

with ci = (c{, d .... , cDT. The stage order can be interpreted as the minimum of 
the orders of all stages in (1.2) in terms of the associated quadrature rules. For 
many methods it is considerably lower than the classical order (see [10, pp. 204, 
205] for more details). 

However, in recent numerical experiments (see [10], [17]) the order of B
convergence appeared to be q + 1, rather than q. This phenomenon has been 
analyzed in [6] for semi-linear problems U'(t) = QU(t)+g(t, U(t)) where the 
stiffness is contained in the linear part and g satisfies a Lipschitz condition w.r.t. 
its second argument. (As we recently discovered, similar results were already 
given in [7] for some linear problems). For many methods, with notable 
exception of the Gauss methods with s ~ 2 (see [11] and [15]), the order of 
convergence on this class of semi-linear problems can be shown to be q + 1. This 
is due to cancellation and damping out of the local errors which are of order 
q + 1 themselves (uniformly in the stiffness). 

In this note we prove that for the more general class of nonlinear, dissipative 
problems such an order q + 1 result for the global error only holds for some 
special methods, and that the order of B-convergence is usually equal to the 
stage order. The counterexample which will be used to prove this result has a 
Jacobian Duf (t, u) whose eigenvalues are not only very large in modulus, but are 
also extremely rapidly varying along the solution U(t). This is the cause for the 
discrepancy between our results and the before-mentioned numerical experi
ments, which were performed on problems with smoothly varying eigenvalues. 

2. Bounds for the order of B-convergence. 

2.1. The convergence results. 

In this section we consider a fixed Runge-Kutta method (1.2) which satisfies 
(1.5), (1.6), and we let q be its stage order. Let d = (di. d2 , •• • , d,)T e ~· and 
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d0 e 1R be defined by 

We state the following results, which will be proved in the next section. 

THEOREM 2.1. Assume C;-ci is not an integer for 1 ~ i < j ~ s, and the order of 
B-convergence of method (l.2) is q+ 1. Then d0 = 0 and all components of dare 
equal. 

THEOREM 2.2. Assume d0 = 0 and all components of dare equal. Then method (1.2) 

(satisfying ( 1.5 ), t 1.6)) is B-convergent with order q + 1. 

Since we know from [13] that the order of B-convergence equals at least the 
stage order, these theorems provide us with an if and only if result in case 
ci -ci rt "11. (for i =f j). This latter condition does not hold for the methods 
based for example on Lobatto quadrature. For such methods c5 -c1 = 1, and the 
situation seems to be more complicated. 

2.2. Proof of the convergence results. 

Let e = (1, 1, ... , l)r e 1R• and 

(2.2) 

(2.3) 

K(Z) = 1+bTZ(l-Azr 1e, 

L(Z) = do+bTZ(l-Azr 1d 

for z = diag(( 1, ( 2 , ..• , (.) with (; E C. It is known (see, for example [ 4], l9J), 
that (1.5) holds iff IK(Z)I ~ l for all Z = diag((i) with Re(i ~ 0 (1 ~ j ~ s). 

Further we have 

LEMMA 2.3. (1-K(ZW 1L(Z) is uniformly bounded for Z=diag((i) with 

Re (i ~ O (1 ~ j ~ s) if! d0 = 0 and d = ve for some v e IR. 

PROOF. Let (J be a small positive parameter, and assume that !(ii ~ J, 
Re (i ~ 0 (for j = 1, 2, ... , s). Then 

1-K(Z) = -brze+O((J2), 

L(Z) = d0 +brzd+O{(J2). 

Obviously, do = O is necessary for (1- K(ZW 1 L(Z) to remain bounded if 
(Ji o. Assume 1 ~ j < k ~ s and consider the choice (1 = 0 (for I =F j, k ), 
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and since (1.5) implies bibk > 0 the necessity of di = dk also follows. 
On the other hand, if d0 = 0 and d = ve we have, in view of (2.2) and (2.3), 

(l-K(Z)t 1L(Z) = -v. • 
We now consider the test problem 

(2.4) U'(t) = /c(t)[U(t)-g(t)] +g'(t), U(O) = g(O) 

where g: ~ -+ C and le: ~ -+ C is such that Rd(t) :::;; 0 (for all t ). This complex 
scalar problem can be converted to a real, dissipative problem by identifying C 
with IR2 in the usual way. The solution of (2.4) is U(t) = g(t) (for all t). 

Let Zn = diag(z\n>, z~>, .. ., zinl), zlnl = h?c(t. +c;h) (1 ~ i ~ s, n ~ 0). Besides 
( 1.2) we consider 

s 

(2.5a) U(tn+d = U(tn)+h L b;f(tn+cih, Y;)+l!n• 
i =I 

• 
(2.5b) Y; = U(tn)+h L aiif(tn+cih, Yj)+rl•) (l:::;;i:::;;s) 

j= 1 

with Y; = V(t.+c;h). The g. and rlnl are local (residual) errors. Subtraction of 
(1.2) from (2.5) leads to the following recursion for the global errors 
en= U(tn)-u. 

(2.6) 

where rn = (r~>, r~>, .. ., rinl)r. By a Taylor series expansion it follows that 

(2.7a) 

(2.7b) 

where Rn = (R~l, R~>, .. . , Ri•l)T E c· and IRl")I :::;; c max I u<q + 2 l(t. + Oc;h )I 
0,;;; 8,;;; I 

(0 ~ i ~ s; c0 : = 1) for some c > 0 which only depends on the coefficients of the 
method. With these relations we now can prove the theorems of section 2.1. 

Proof of theorem 2.1. Assume either d0 ::f 0 or some components of d differ. Then, 
in view of lemma 2.3, we can choose for any C > 0 a matrix Z = diag(( 1 , ( 2 ,. • ., (.) 

with Re(1 <0 (l~j:::;;s) and l(l-K(Z)t 1L(Z)l>C. By the algebraic 
stability condition we know IK (Z)I < 1. 



THE ORDER OF B-CONVERGENCE OF ALGEBRAICALLY STABLE... 67 

Leth > 0 be a stepsize. Consider testproblem (2.4) withg(t) = tq+ 1/(q + l)! and 
A.: ~-+ C such that Rd(t) :::;; 0 (for all t) and hA.(t. +c;h) = '; (for l :::;; i :::;; s 
and all n ~ 0) with the '; as above. (The problem thus depends on the step
size ). Note that the assumption c;-cd"ll.. (if i ":/= j) implies that all points 
t. + c;h (1 :::;; i :s;;; s, n ~ 0) are different from each other. From (2.6), (2.7) it follows 
that the global errors satisfy 

from which we obtain 

e.= (l-K(Z)")(l-K(ZW 1L(Z)h4 + 1• 

Now let h.1.0 while t. = nh and the 'i are fixed. Then 

h-<q+ l>le.I -+ 1(1-K(ZW 1 L(Z)I > C. 

Since C can be taken arbitrarily large, the order is not q + 1. • 

Proof of theorem 2.2. This proof is a rather straightforward generalization of an 
idea used by Kraaijevanger [15] for the implicit midpoint rule. We only present 
the proof for the testproblem (2.4) which contains already all essential difficulties. 

Assume d0 = 0 and d = ve for some v e ~- By (2.6), (2.7) we have 

where 

u. = h4 + 2(brZ.(l-AZ.)- 1R.+R~>). 

From (1.6) we can conclude that all elements of the transposed vector 
bTZ(l-AZ)- 1 are uniformly bounded for Z = diag(U, Re';:::;; 0 (BS-stability 

[12], [14; lemma 2.4.3]). Therefore 

lu.I :::;; i'1h4 + 2 11u11};.~ 2 > 

for some y 1 > 0 which only depends on the coefficients of the method. Define 

for all n ~ 0 

Since, by our assumption, L(Z.) = -v(l-K(Z.)) it follows that 

e.+i = K(Z.)e.+8. with 

a.= u.+vh4 +1(u<4 +1>(t.+1)-V<q+ll(t.)), 

18.I :::;; i'2h4 + 2 11v11!~.~ 2> 
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for some y2 > 0, again only depending on the coefficients of the method. By using 
IK(Z.)I ~ 1 we obtain in a standard way 

(for all n ;;;:: 0), 

and since 18.-e.I ~ lvllrq+tllUlll;+ 1> (for all n) the order q + 1 result 
follows. • 

3. Examples. 

In this section we examine those Runge-Kutta methods satisfying (1.5) and 
(1.6) which have an order of B-convergence one more than the stage order q. 

In view of section 2 we consider methods satisfying C(q) and B(q + 1) with 

(3.1) v + 0. 

We first note that for any Runge-Kutta method satisfying C(q ), B(q + 1) and 
(3.1) a classical order of q + 2 is not attainable, since a necessary condition for 
a method to have order q + 2 is 

which from (3.1) is equivalent to 

This is impossible since v f 0 and bT e = 1. In addition it can be shown that, 
if s ;;;::: 2, (3.1) cannot hold for q = s so that the maximum classical order of an 
s-stage Runge-Kutta method satisfying (3.1) is s, in which case C(s - 1) and 
B(s) hold. 

Furthermore if we now require such methods to satisfy (1.5) and (1.6) we 
can obtain further restrictions on the maximum classical order. Burrage [3] has 
shown that if a Runge-Kutta method satisfying B(2) and C(q) is algebraically 
stable then its classical order must be 2q -1. Thus we can conlcude 

THEOREM 3.1. Any Runge-Kutta method satisfying (1.5), (1.6), d0 = 0, d = ve, 
v =/= 0 has classical order at most 3. 

We conclude this paper with three examples of methods which satisfy the 
conditions of Theorem 3.1. Since the maximum classical order is at most 3 we 
will study only those methods which satisfy C(s-1) and B(s) for s = 2 and 
s = 3. Furthermore, we will restrict our attention to either diagonally implicit or 
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singly-implicit methods since these methods are more important m terms of 
cheap implementation than other classes of Runge-Kutta methods. 

EXAMPLE I. It is easy to show (see Burrage [3], for example) that the family of 
algebraically stable two-stage DIRKs with classical order 2 is given by 

A.~ 1/4. 

The stage order is 1 since the first stage is obviously of first order only. If 
). = I /4 or ), = 1/2 then (3.1) holds and the order of B-convergence is 2. We 
observe that this can also be concluded from Kraaijevanger [15] since the method 
with ). = 1/2 reduces to the implicit midpoint rule and the method with .Ii. = 1/4 
can be considered as consisting of two implicit midpoint rule steps. If A. = (k + 1 )/2 
where k is a positive integer we can not apply Theorem 2.1 and so we can only 
conclude from our results that the order of B-convergence is at least one. 

EXAMl'l.I'. 2. The family of 2-stage singly-implicit methods satisfying C(l) and B(2) 

is given by (see [I]) 

l'i I [! c1] [0 -A,2] [1 c1]-l 
(3.2) 

c 2 C2 I 2A. 1 C2 
C1 :f. C2. \ ... 

"' " _, -·- -·-··-····-----------
C2 -1/2 l/2-c 1 __ ,, ______ 
C2 -C1 l'2 - C1 

From (3] and (10; sect. 5.10] it follows that (1.5), (l.6) are fulfilled iff 

A. ~ 1/4, 

If, in addition, c2 + ,. 1 = 4A. then (3.l) is satisfied with q = 1 and 

v = 3(A. 2 -). + 1/6 )/2. Thus if 

(3.3) A. ~ 1/4, 

then the family of methods given by (3.2) is algebraically stable with order of 
B-convergence 2. We note that in the case A. = (3 + J3 )/6 the stage order is 2, 

but the order of B-convergence is still only 2. 

EXAMPU! 3. The family of 3-stage singly-implicit methods of order 3 satisfying 

C(2) and 8(3) is given by (see (1 ]) 
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(3.4) 

where 
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b _ C1C3 -(C1+c3)/2+1/3 
2 - (c2 -ci)(c2-c3) ' 

From [3] and [10; sect. 5.10] it can be seen that the conditions (1.5), (1.6) hold if 

g1 = -2A.3+3A.2 -A.+1/12 ;;:::O, 

X I = 4A, 3 /3 - 3A 2 + 6A_j5-1/9 -12A 291 + 6A_g2 ;;::: 0, 

X2 = A.3-2A.2+3A./4-1/15+g2/2+3A.g1, 

B1X1 > x~, 
B2;;::: 129f +2g1 -1/180 

where 

1 

91 = f p(x)dx, 

0 

If, in addition 

I 

92 = J xp(x)dx+(c1 +c2 +c3)Bi. 

0 

then (3.1) holds with q = 2 and v = 2gif3. 

3 

p(x) = fl (ci-x). 
j= I 

Some numerical computations show that the family of methods given by (3.4) 
and (3.5) is algebraically stable with order of B-convergence 3 if 

A E [.3518, .9458]. 
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