
IMA Journal of Numerical Analysis (2001) 21, 367-385

Parallel iteration of the extended backward differentiation
formulas

J.E. FRANKt

Delft University of Technology, The Netherlands

AND

P. J. VAN DER HOUWENt

CW/, Amsterdam, The Netherlands

[Received 26 March 1999 and in revised fonn 29 February 2000]

The extended backward differentiation formulas (EBDFs) and their modified form

(MEBDF) were proposed by Cash in the 1980s for solving initial value problems (IVPs) for
stiff systems of ordinary differential equations (ODEs). In a recent performance evaluation
of various !VP solvers, including a variable-step-variable-order implementation of the

MEBDF method by Cash, it turned out that the MEBDF code often performs more
efficiently than codes like RADAU5, DASSL and VODE. This motivated us to look at
possible parallel implementations of the MEBDF method. Each MEBDF step essentially
consists of successively solving three non-linear systems by means of modified Newton
iteration using the same Jacobian matrix. In a direct implementation of the MEBDF method
on a parallel computer system, the only scope for (coarse grain) parallelism consists of

a number of parallel vector updates. However, all forward-backward substitutions and
all right-hand-side evaluations have to be done in sequence. In this paper, our starting
point is the original (unmodified) EBDF method. As a consequence, two different Jacobian

matrices are involved in the modified Newton method, but on a parallel computer system,
the effective Jacobian-evaluation and the LU decomposition costs are not increased.
Furthermore, we consider the simultaneous solution, rather than the successive solution, of
the three non-linear systems, so that in each iteration the forward-backward substitutions

and the right-hand-side evaluations can be done concurrently. A mutual comparison of the
perfonnance of the parallel EBDF approach and the MEBDF approach shows that we can

expect a speed-up factor of about 2 on three processors.

Keywords: numerical analysis; iteration methods; initial value problems; extended BDFs;

parallelism.

1. Introduction

The extended backward differentiation formulas (EBDFs) were proposed by Cash (1980)
in 1980 for solving initial value problems (IVPs) for stiff systems of ordinary differential

equations (ODEs):

dy d
dt = f(y), y, j ER , t ~to. (1)

tcurrent address: CW!, Amsterdam.
*The investigations reported in this paper were partly supported by the Dutch Technology Foundation STW.

© The Institute of Mathematics and its Applications 200 I

368 J.E. FRANK AND P. J. VAN DER HOUWEN

To conserve notation we will consider the autonomous problem, but the results of
this paper can be trivially extended to derivatives with explicit dependence on time, i.e.
f == f (t, y). Each EBDF step essentially consists of successively solving three non-linear
systems by means of (modified) Newton iteration. Since two different Jacobian matrices
are involved, the method needs two different LU decompositions after each Jacobian
update, or change of step size. In order to reduce the LU costs, Cash (1983) modified
the EBDF methods (MEBDF methods) such that only one LU decomposition is required.

In a recent perfonnance evaluation (Lioen (1998)) of various IVP solvers, including a
variable-step-variable-order implementation of the MEBDF method due to Cash, it turned
out that the MEBDF code often performs more efficiently than codes like RADAU5 (Hairer
& Wanner, 1998), DASSL (Petzold, 1991) and VODE (Brown et al., 1992). This motivated
us to look at possible parallel implementations of the MEBDF method.

In a direct implementation of MEBDF on a parallel computer system, the only scope
for (coarse grain) parallelism consists of a number of parallel vector updates. However,
all forward-backward substitutions and all right-hand-side evaluations have to be done
in sequence. In this paper, our starting point is the original (unmodified) EBDF method.
As a consequence, two different Jacobian matrices are involved in the modified Newton
method, but on a parallel computer system, the effective costs of the Jacobian evaluations
and the LU decompositions are not increased. Furthermore, we consider the simultaneous
solution, rather than the successive solution, of the three non-linear systems, so that in
each iteration the forward-backward substitutions and the right-hand-side evaluations can
be done concurrently. A mutual comparison of the performance of the parallel EBDF
and MEBDF approaches shows that we can expect a speed-up factor of about 2 on three
processors.

2. The EBDF and MEBDF methods of Cash

The EBDF method of Cash (1980) is based on the formula

Yn+l = a1Yn + azYn-I + · · · + akYn-k+I + hbof(Yn+I) + hbif(Yn+2) (2)

for computing an approximation Yn+I to the exact solution y(tn+I) of (1). Here, Yn+2 is
an approximation to YCtn+2) obtained by some predictor formula and the coefficients a;
and b; are determined by imposing the conditions for order k + 1 accuracy. Cash used the
standard (implicit) BDF as a predictor,

Un+I ::: 2i1Yn + 2i2Yn-I + ... + akYn-k+I + hbof(un+d.

Un+2 == 2i1 Un+I + ii2Y11 + · · · + llkJn-k+2 + hbof (un+2), (3a)

to obtain an approximation Un+2 for the 'future' value Yn+2· Thus, Yn+I is computed from
the equation

Yn+I = a1Yn + a2Yn-I + · · · + akYn-k+I + hbof(Yn+I) + hblf(un+z). (3b)

The coefficients iii and ho are the BDF coefficients. The internal vectors un+I and Un+2
defined by (3a) have order of accuracy k and the external (or output) vector Yn+I defined
by (3b) has order of accuracy k + 1. Hence the stage orders equals k and the actual order

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 369

TABLE I
Coefficients {a;, bo} in the BDF formulas (3a)

k iii 8 ii28 ii30 a40 a5S boo 8
2 4 -1 2 3
3 18 -9 2 6 11
4 48 -36 16 -3 12 25
5 300 -300 200 -75 12 60 137

TABLE 2
Coefficients {a;, bo, bi} in the EBDF and MEBDFformulas (3b) and (Jc)

k aio azo a38 a48 as8 boo b18 s
2 28 -5 22 -4 23
3 279 -99 17 150 -18 197
4 4008 -2124 728 -111 1644 -144 2501
5 26550 -18700 9600 -2925 394 8820 -600 14919

p equals k + 1. Furthermore, (3a) and (3b) possess a considerably larger stability region
than the classical BDF method of order p = k + I. This can be explained by observing
that the underlying corrector formula (2) is much more stable than the classical BDF (for
k > 1). For future reference, the coefficients {a;, bo} and {a;, bo, bi} are given in TalJles I
and 2 fork = 2, ... , 5. The MEBDF method arises from the EBDF method (3a) and (3b)
by replacing (3b) with the formula (see (Cash, 1983; Hairer, 1996))

Yn+I =a1Yn +a2Yn-1 +···+akYn-k+I +hbof(Yn+1)

+ h(bo - bo)f(un+J) + hbif (un+2). (3c)

The advantage is that the modified Newton iteration of the subsystems (3a) and (3b) can
use the same LU decomposition. Furthermore, the order of accuracy is not affected and the
stability regions are even slightly larger than for the EBDF methods.

Note that in (3b) and (3c) each of the required derivatives j(u,,+1) and /(u 12+2) can be
computed either with an additional function evaluation or by solving the corresponding
formula (3a) for the (converged) derivative as a linear combination of back values,
whichever is cheaper (Cash (1983)).

2.1 The implicit relations

The EBDF and MEBDF methods are implicit in u 11 +1, Un+2 and Yn+J, and use the back
values Yn-k+ 1, ... , Yn as input. Let us define the stage vector Yn+ I and the input vector Vn

370 J. E. FRANK AND P. J. YAN DER HOUWEN

according to

(
Un+ I)

Yn+I = Un+2 ,

Yn+I

-(Yn-.. k+I) Vn - : .

Yn

Then, using tensor notation, both the EBDF method Oa) and (3h) and the MEBDF
method (3a) and (3c) can be represented in the compact form

(8 © J)Y11 +1 - h(C © f)F(Y,,+Il::::: (£ 0 l)Vn. (4)

Here, 0 denotes the Kronecker product, h the step size tn+I - t,,, and F(Yn+I) contains
the right- hand sides j(un+1), f(u11+2), f (Yn+ 1). We denote the identity matrix by I, and
its dimension will always be clear from the context. In the EBDF case, B, C and E are
defined by

[l 0 OJ [ho 0 0 J [ak
8 := -a1 1 o , c := o Eo o , E := o

0 0 1 () b1 bo Ok

(5)

In the MEBDF case, the last row of the matrix C changes to (bo - ho. h1, /jo).

2.2 Iteration processes

Instead of solving for the unknown components Un+ 1, u12 +2 and Yn+ 1 of Y11 +1 sequentially,
as was the original approach of Cash, we consider here an approach where these
components are solved simultaneously, that is, the subsystems in the EBDF or MEBDF
method are solved simultaneously. As we shall see below, one option in this approach is
approximating the matrix 3-Ic by a diagonal matrix. The relative error of the diagonal
approximation will be smaller if the diagonal elements of w- 1 C arc large compared to
the off-diagonal elements. For this reason, we choose the EBDF method, rather than
the MEBDF method, as our starting point because the additional non-zero off-diagonal
element of the MEBDF matrix is taken out of the diagonal such that the row sum remains
the same.

Premultiplying (4) by 3-I 0 I, we can rewrite the method in the form

Rn(Y11+1) = 0,

Rn(Y) := Y-h(A ® l)F(Y) - (W- 1 E ® l)V11 ,

[ho 0 OJ I - -
A:= 3- C = 2i1bo ho 0 .

0 bi ho

(6)
(7)

Let us iterate the system of implicit relations R11 (Yn+ 1) ""' () by the Newton-type method

(/ - A*® hJn+1)(Y(j) - y(j--Il)::: -R11 (y(}·- IJ), j :::: l, ... , m, (8)

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 371

where A* is a suitably chosen matrix, y<OJ is an initial approximation to Yn+I and ln+I

is an approximation to the Jacobian matrix of the right-hand-side function in (1) at tn+l·
Note that an approximation ln+l given by a evaluation of J (yk) for some k :::;; n may be
sufficient for this purpose (that is, it may be unnecessary to update the Jacobian at every
step). The decision to update the Jacobian is a strategy issue which must be addressed
in a full implementation. In many cases it is possible to take several time steps before
updating the Jacobian. Suppose that the first and third components of y(OJ are defined by
the second component of the stage vector Yn computed in the preceding step, and that the
second component of y(O) is obtained by extrapolation of the most recent approximations
available at the points tn+l• tn, ... , tn-k+l· Then, y(O) has order of accuracy p = k and
is expected to be an excellent initial approximation to Yn+I· Moreover, the computational
costs are negligible. For further discussion on the practical implementation of modified
Newton iterations, see, for example, (Shampine, 1994, p. 405 ff).

It is tempting to set A* = A, resulting in the familiar (modified) Newton method, and
to try to diagonalize (8) by a Butcher similarity transformation y<il = (Q-1 ® l)Y<i> such
that the matrix Q- 1 AQ is diagonal. Unfortunately, the matrix A is defective, so that this
does not work. However, if we approximate A by the matrix

A*=[~ ~ ~]'
c1 c2 bo

(9a)

then diagonalization is possible. It can be shown that

Q := [:~ ~ ~] => Q-1 A*Q = D, D := diag(bo, bo, bo) (9b)
c1q1 +c292 _c2q2 q3

bo-bo bo-bo

for all non-zero diagonal entries of Q. This family of transformation matrices does not
represent all possible transformation matrices Q with the property Q- 1 A* Q = D, but for
our purposes we do not need more generality.

Using (9a) and (9b), we can define the transformed iteration method

(I - D ® hln+1)(Y(j) - y(j-l)) = -(Q-1 ® l)Rn(Y(j-I)), y(j)

= <Q ® nr<i>, j = 1, ... , m. (10)

We shall refer to (9a), (9b) and (10) as the transformed EBDF method. In particular, we
may set c 1 = c2 = O in (9a), i.e. A* = D, so that we can use Q = I, which avoids
transformation costs. We shall call (8), A* = D, simply the diagonal EBDF method.
All the iteration processes (9a), (9b) and (10) and (8), A* = D have the advantage
of possessing a lot of additional intrinsic parallelism when compared with the MEBDF
method as implemented in Cash (1983), where the three equations in (3a) and (3c) are
solved sequentially by Newton iteration (to be referred to as sequential MEBDF). First,
the two LU decompositions can be obtained in parallel and, second, in each iteration, the
forward-backward substitutions for the three subsystems and the three components of the
residue function R11 (Y<il) can be computed in parallel. Furthermore, in the case of (9a),
(9b) and (10), the similarity transformation can largely be computed concurrently, at the
cost of some data relocation.

372 J. E. FRANK AND P. J. VAN DER HOUWEN

Let us compare the iteration cost of diagonal and transformed EBDF on three
processors with that of sequential MEBDF. Suppose that, respectively, m1, m2 and m3
iterations are required to solve the three MEBDF equations in (3a) and (3c) in sequence
and m iterations are required for parallel EBDF. Then, sequential MEBDF needs one LU
decomposition, m 1 +m2+m3 sequential forward-backward substitutions and m 1 +m2+m3
sequential evaluations of f. Thus, diagonal and transformed EBDF (if we ignore the
transformation costs) are less costly than sequential MEBDF if m < m1 + m2 + m3.
Finally, we remark that in an actual implementation of diagonal and transformed EBDF,
it is sometimes advantageous to use in the system matrix in (8) the Jacobian ln+ 1 in the
blocks of the first and third row and an approximation ln+2 of the Jacobian at tn+2 in the
blocks of the second row (see Section 4). Since these Jacobians can again be evaluated
concurrently, the effective costs do not increase.

3. Convergence of diagonal and transformed EBDF

Let us consider the rate of convergence of the iteration process (8). Defining the iteration
error sUl := y()) - Y11 +1, we subtract the exact solution relation:

from (8) getting

(I - A* 0 hln+i)(s(j) - 8{j-l)) = R11 (Yn+1) - R 11 (Y11 +1 + s<J-l))

= - s(}-l) + h(A ® l)[F(Yn+I + sU-I>) - F('Y11+1)]

= - (I - A 0 hln+1)s(j-l)

- h(A 0 /)(/ 0 l 11+1)s(j-l)

+ h(A 0 /)[F(Y11 +1 + s(J-IJ) - F(Yn+i)],

or

(I - A* 0 hln+i)s(j) =(A - A*) 0 h111+i8(j-I) + h(A 0 /)

Defining

x [F(Yn+I + eU-ll) - F(Y11+1) - (/ 0 l 11 +J)e<J-I)].

M := (/ - A* 0 hln+1)- 1((A - A*) 0 hln+1),

L := (/ - A* 0 hl11+1)- 1(A 0 /),

P(e) := F(Yn+I + s) - F(Yn+J) - (/ 0 ln+1)s,

the error recursion becomes

Hence,

(11)

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 373

3.1 The rate of convergence

Let A* be defined by (9a), so that A* has the same diagonal entries as A. Then the 3-by-3

lower block-triangular matrix M has zero diagonal blocks

(13)

so that Mj vanishes for all j ~ 3. Thus,

c;Ol = Ms(O) + hUJ>(e(Ol),

c:C2l = M 2c:CO) + hM L P(s(O))hL P(c:C 1l),

s(j) = hM2 L P(e(J-3l) + hM L iJ>(s(f-2)) + hL if?(c:U-ll), j ~ 3. (12')

In the case of linear problems, where the function <!? vanishes, we have convergence within
three iterations (of course, if A* = A, then (8) reduces to the modified Newton, which

converges within one iteration for linear problems).
For non-linear problems, we consider the first-order approximation to (12'). Let us

write <f?(s) = Ke + 0 (e2), where K is the (3-by-3 block-diagonal) Jacobian matrix of

<P(e) ate = 0. Let N := hLK, and neglecting terms of degree higher than one in£, the
first-order approximation to (12') becomes

e(I) = (M + N)e(O),

e(Z) = (M + N) 2eCOJ,

e(J) = M 2NeCJ-3l + MNeU-Zl + Ne(j-Il, j ~ 3. (14)

In the modified Newton case (A* = A), we have M = 0, so that the first-order error
recursion (14) reduces to e CJ) = NE (j-1), j ~ I. However, if M :f- 0, then both N and M
play a role in the rate of convergence. We consider the first few iteration errors taking the
structure of the matrices M and N into account. From (9a) and (11) it can be seen that N has

a 3-by-3 block lower triangular structure. It follows from the nilpotent structure of M (13),
and the fact that the product of a lower triangular matrix and a lower triangular nilpotent
matrix maintains the same nilpotent structure (independent of the order of multiplication),

that all matrix products in (14) containing three or more factors M vanish, so that

e(l) = (M + N)e(O),

eC2l = (M2 +MN+ NM + N 2)e(O),

eC3l = (M2 N + MN M + M N 2 + N M 2 + NM N + N 2 M + N 3)s(O),

eC4l = (M2 N 2 + (M N)2 + M N 2 M + N M 2 N + (N M)2 + N 2 M 2 + O(N3))s(O),

eUJ = O(Nj-Z)eCO>, j ~ 5. (14')

where the notation O(Ni) is used for terms containing at least i factors of N. We
summarize the preceding derivations in the following theorem.

374 J. E. FRANK AND P. 1. VAN DER HOUWEN

THEOREM 3.1 In the error recursion (11), let the function P satisfy P(t:) = Kt: + 0(t:2)
and let N := hLK. Then the first-order approximation to the error recursion (12) is given
by

{sU> = Ns<J-1), j;:: I} if A*= A (modified Newton),

{e(j) = (M + N)Js<0>, j = 1,2; sUl = O(Ni-2)8<0l, j? 3} if A* is defined by (9a).

Thus, if A* is defined by (9a), then after at most two iterations the rate of convergence
is comparable with that of the modified Newton, for all values of c1 and c2. However, in the
transformed EBDF case with c2 = b1, this is already achieved after one iteration, because
for this choice M assumes the form (see (13))

M = [~ 0] .
x 0 0

Both NM and MN have this same structure; hence, all matrix products in (14') containing
two or more factors M vanish. It follows that

Thus, we have proved the theorem.

THEOREM 3.2 Let the conditions of Theorem 3.1 be satisfied and let c2 = b1 in (9a).
Then, for all c1 the first-order approximation to the error recursion (12) associated with
transformed EBDF (9a), (9b) and (10) is given by

{e(l) = (M + N)eCOl; e(J) = O(NJ-l)8<0l j ~ 2}.

3.2 Amplificationfactors

Theorems 3.1 and 3.2 show that transformed and diagonal EBDF may converge slower
than the Newton in the first iteration and the first two iterations, respectively. The reason is
that the magnitude of M is expected to be much greater than that of N. We shall consider
the effect of the amplification matrix (M + N)l ~ Ml on the initial error 8COl. Although
M has only zero eigenvalues, the magnitude of M is not necessarily small. Let us expand
s<0l with respect to the vectors a 0 v, where v is an eigenvector of the Jacobian matrix
ln+l· Since

M1 (a 0 v) = czJ (z) ©!)(a 0 v), Z(z) := z(l - zA *)-1 (A - A*), z := hAUn+1),

we are interested in the size of llZj (z) \\ 00 • It follows from (9a) that

z [- 0 Z(z) = - li1bo(l - boz)
(1 - boz)(l - boz) (+ -)b-

c1 c2a1 oz - c1

0
0

(b1 -c2)(l -boz)

(15)

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 375

2

1.8

1.6

1.4

~l.2
N

~ 1 .

:;o.8
~

0.6

0.4

0.2

0
0 2 3 4 5

y

FIG. I. The amplification factors (16) for the sixth-order iterated EBDF method (k = 5).

Assuming that the eigenvalues A.Un+!) are in the left half- plane, then II zj (z) lloo is
maximal along the imaginary axis, so that we set z = iy. Since c1 and c2 do not appear
in the second row of Z, we can do no better than choosing these parameters such that the
third row is inferior to the second in determining the infinity norm. We verified that this
is the case, both for the diagonal Newton, where c1 = c2 = 0, and for the transformed
Newton with c1 = 0 and c2 = b1. For these cases we find

llZ(iy)lloo = aibo\YI , llZ2(iy)lloo = aibo\bi - czllil , (l 6)

j 1 + b5y2 j 1 + E5y2j1 + b5y2

showing that llZ(iy)lloo monotonically increases from 0 to ii1 and llZ 2(iy)lloo monotoni
cally increases from 0 to a1 lb1 - c2\b01. Since a1 > 1 (see Table 2), we should expect
that the stiff components in the iteration error are amplified in the first iteration. However,
in the second iteration, the transformed EBDF already has a zero amplification factor and
the diagonal EBDF has quite a small amplification factor because a1 \b1 lb() 1 « 1. Figure 1

illustrates the behaviour of 1\Z(iy)lloo and /IZ 2(iy)lloo as given by (16) for the sixth-order
diagonal EBDF method (k = 5) used in the numerical experiments.

4. Numerical experiments

In this section, we compare the accuracy obtained with a sixth- order (k = 5) sequential
MEBDF method and the transformed (c1 = 0, cz = bi) and diagonal (c1 = c2 = 0)
EBDF methods. Our selection of the sixth-order method was motivated by the development
of a four-stage, sixth-order L-stable method by Psihoyios and Psihoyios (1998), the

376 J. E. FRANK AND P. J. VAN DER HOUWEN

parallelization of which we discuss in a companion article (Frank (2000)) and compare
with the three-stage methods of this one. In a full implementation one would of course
desire a mechanism for varying the step size. However, since at this point we are primarily
interested in the algorithmic properties, we will consider only fixed step sizes in order to
separate the strategy effects. Some possibilities for variable step size implementations use
backward difference arrays (Cash (1983); Hairer et al. (1993)) or Nordsieck vectors (Hairer
et al. (1993)).

In all of the experiments, we computed the initial iterates by taking the most recent
approximation available at each time level or, if not yet available (in the case of the 'future'
value Un+2), by (k + 1)-point extrapolation of already computed approximations. The
experiments include results obtained by the three methods, where the Jacobian matrix
ln+l is evaluated in each step using the future-point approximation to Yn+l from the
preceding step. Moreover, we included results obtained by diagonal EBDF using two
Jacobians ln+l and ln+2, where they-argument in ln+2 is determined by extrapolation
of already computed y-values (these two Jacobians can of course be evaluated in parallel).
This version will be denoted by EBDF(2). In a realistic implementation, one would only
update the Jacobian when necessary to improve convergence.

The starting values were computed either from the exact solution if available or by
applying the fifth-order Radau IlA method with a five times smaller step size. We took two
well-known test problems from the literature having no transient phase, which allows us to
use fixed step sizes, viz. a problem posed by Kaps (1981):

dy1 2 dy2 dt = -1002y1 + lOOOy2, dt =YI -y2(l + y2), Y1(0) = y2(0) = 1, 0 '(t '(5,

(17)

with exact solution Yl = e-21 , y2 = e-1, and the problem

HIRES on [5, 321·8122], (18)

where the initial conditions at t = 5 were obtained by integrating the HIRES problem
given in Hairer (1996, p. 157) on [O, 5]. It turns out that these problems are relatively easy
in the sense that the three methods converge within one or two iterations. Therefore, we
also used the more difficult problem

y; = -lOOO(y~y~ -cos3(t) sin6(t)) - sin(t), y1(0) = 1,

y;=-1000(yiyj-sin\t)sin4 (t))+cos(t), y2(0)=0, 0-(t'(l (19)

y~ = - lOOO(y?Jj - cos2(t) sin3(t)) + cos(t), y3(0) = 0,

with exact solution YI = cos(t) and Y2 = y3 = sin(t). Because of its strong non-linearity
it is a more suitable test problem for showing the differences in rate of convergence of the
three methods. Finally, we tested the problem

Y; = -0·04y1+104y2y3 -0·96e-r, y1(0) = l,
Y2(0) = 0, 0 °(t °(fend•

(20)

y3(0) = 0,

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 377

TABLE 3
Values of scdfor problem (17)

N Method m = 1 m =2 m =3 m-oo
10 Sequential MEBDF 4.7 4.7

Transformed EBDF * 4.5 4.5
Diagonal EBDF * 4.7 4.5 4.5
Diagonal EBDF(2) * 4.7 4.5 4-5

20 Sequential MEBDF 6·5 6·5
Transformed EBDF * 6·3 6·3
Diagonal EBDF * 6-4 6·3 6·3
Diagonal EBDF(2) * 6-4 6·3 6·3

40 Sequential MEBDF 8·3 8·3
Transformed EBDF * 8· l 8·1
Diagonal EBDF * 8·2 8· l 8·1
Diagonal EBDF(2) * 8·2 8· 1 8· 1

with exact solution y, = e-1, Y2 = 0, y3 = 1 -e-1. This problem has the same highly stiff

Jacobian matrix as the famous Robertson problem (Robertson, 1966), but it is modified by

adding non-homogeneous terms, so that it possesses for the given initial values a solution

without transient phase. System (20) resembles the original Robertson problem more as

t increases. Note that the numerical integration process will become unstable if negative
approximations to y2(t) are generated.

In our numerical experiments, we denoted the number of steps by N, the number of

iterations in each iteration process by m , and the total number of iterations by M (not

including the iterations needed to compute the starting values). Note that for fixed values

of m and N, sequential MEBDF requires three times more sequential right-hand-side

evaluations and forward-backward substitutions than the transformed and diagonal EBDF

type methods, because sequential MEBDF solves three subsystems per step. Hence, for

sequential MEBDF, the value of M is three times greater. The accuracy is given by the

number of significant correct digits (scd); that is, we write the maximal absolute end-point

error in the form 10-scd. In the tables of results, we shall indicate negative scd values by*.

4.1 Fixed numbers of iterations

We start by applying the three methods with a prescribed number of iterations m. In

the case of the HIRES problem (18) where no exact solution is available, the starting

values were provided by the Radau IIA method using ten iterations. Tables 3 and 4 list

for given values of m and N the resulting scd values for the problems (17) and (18).

These results show that in almost all cases sequential MEBDF finds the solution in one

378 J. E. FRANK AND P. J. VAN DER HOUWEN

TABLE4
Values of scdfor problem (18)

N Method m= 1 m=2 m=3 m=4 m=oo

10 Sequential MEBDF 2·2 2·7 2·8 2·7 2·7
Transformed EBDF * 3·1 2·6 2·7 2·7
Diagonal EBDF * 2·8 2·5 2·7 2·7
Diagonal EBDF(2) * * 2·4 0·6 *

20 Sequential MEBDF 3.4 3.3 3.3
Transformed EBDF * 3.3 3.3
Diagonal EBDF * 3·6 3.4 3.3 3.3
Diagonal EBDF(2) * 3·2 3· l 3.3 *

40 Sequential MEBDF 4.3 4·2 4.2
Transformed EBDF * 4.3 4.3
Diagonal EBDF * 4.4 4.3 4.3
Diagonal EBDF(2) * 4.3 4.3

iteration per subsystem, whereas transformed or diagonal EBDF needs two iterations
for the whole system (note that transformed and diagonal EBDF show a comparable
convergence behaviour). Diagonal EBDF(2) behaves poorly for the HIRES problem (18)
due to the relatively large time steps which destroy the quality of the Jacobian ln+2 (recall
that the argument in ln+2 is based on extrapolation of preceding y-values). Only for the
smallest step size in Table 4 (i.e. h ~ 7 ·9) does the diagonal EBDF(2) method converge. As
to the order behaviour, for the Kaps problem the order p = 6 of the methods is reproduced,
but for the HIRES problem the step size is too large to observe asymptotic convergence.

In order to see more clearly the differences in convergence rates, we now integrate
the highly non-linear problem (19). Surprisingly, the numbers of iterations to reach the
converged solution is more or less comparable for all methods and differs by at most
one iteration. Furthermore, in this example, the additional Jacobian ln+2 used in diagonal
EBDF(2) improves the initial rate of convergence considerably. The N = 20 and N = 40
results indicate that again only the stage order s = 5 is shown (since the experiments
were run with 14 decimals precision, the N = 80 results did not reach the expected value
scd = 14·3). Finally, we integrate the highly stiff modified Robertson problem (20) with
tend = 1. Here, the performance is similar to that for the Kaps problem (17). Apparently,
the methods are able to compute positive approximations to the second component y2(t).

4.2 Variable number of iterations

If the number of iterations is adjusted for each non-linear system (or subsystem in the case
of sequential MEBDF) to be solved, then the efficiency is obviously improved because
we avoid the situation where the (sub)system solutions have quite different accuracies.
Moreover, in such a dynamic approach, sequential MEBDF can take advantage of the
fact that it solves the subsystems successively instead of simultaneously, as done in

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 379

TABLE 5
Values of scdfor problem (19)

N Method m = 1 m=2 m=3 m =4 m =5 m =6 m =7 m=oo
20 Seq. MEBDF 5.3 9.3 10·3 10·9 10·8 10·9 10·9

Transf. EBDF * 7·6 11·2 11·4 1 J.3 11·3
Diag. EBDF * 5·0 9·8 10·5 10·9 11·4 11·3 1 J.3
Diag. EBDF(2) * 11·4 11·3 11·3

40 Seq. MEBDF 11·7 12·3 12·4 12·5 12·4 12·4
Transf. EBDF * 12·9 12·8 12·8
Diag. EBDF * 11·3 12·3 12·9 12·8 12·8
Diag. EBDF(2) * 13·1 12·8 12·8

80 Seq.MEBDF 13·5 13.9 13·8 13-8
Transf. EBDF * 13·8 13-8
Diag.EBDF * 13·5 13·8 13·8
Diag. EBDF(2) * 13·8 13·8

TABLE 6
Values of scdfor problem (20) with tend= l

N Method m = 1 m =2 m =oo
10 Sequential MEBDF 7.9 7.9

Transformed EBDF 7.9 7.9
Diagonal EBDF 7·8 7.9 7.9
Diagonal EBDF(2) 7.9 7.9

20 Sequential MEBDF 9·6 9·6
Transformed EBDF 6-4 9-6 9-6
Diagonal EBDF * 9-6 9·6
Diagonal EBDF(2) 4.9 9·6 9·6

40 Sequential MEBDF 11·3 11·3
Transformed EBDF * 11·3 11·3
Diagonal EBDF * 11·3 11·3
Diagonal EBDF(2) * 11·3 11·3

the transformed and diagonal EBDF methods. Hence, we also obtain a more honest
comparison.

In our dynamic iteration strategy, we used the stopping strategy described in Hairer
(1996, p. 130). This stopping strategy depends on a given tolerance parameter Tot, because
it presupposes the use of automatic step size selection based on keeping the local truncation
error (LTE) close to Tol. Since we focus on convergence aspects we want to use fixed step
sizes, so that we have to replace Toi by some estimate of LTE. In our case, the difference
Un - Yn from the preceding step provides us with a free estimate of LTE. We define the

380 J.E. FRANK AND P. J. YAN DER HOUWEN

TABLE 7
Values of M for problem (17) with K = O· l

Method scd= 5 scd= 6 scd = 7 scd== 8 scd = 9 scd = 10
Sequential MEBDF 29 49 79 123 187 282
Diagonal EBDF 20 32 59 106 160 244
Diagonal EBDF(2) 20 32 62 97 153 235

TABLE 8
Values of M for problem (18) with K = 0-1

Method scd= 4 scd= 5 scd= 6 scd=7
Sequential MEBDF 126 210 305 406
Diagonal EBDF 83 133 189 241
Diagonal EBDF(2) 72 122 177 234

damping parameter em and the accumulated damping parameter TJm as

11 y<ml - y<m- o !loo o.s em
em:= l\f(m-1) _ y(m-2)1100' T/O := (T/old) 'T/m :== l -8m' m ~ 1, (21a)

where T/old equals the T/m from the preceding step (bounded below by the machine
precision). Then, the stopping criterion described in Hairer (1996) yields for the number
of iterations m the condition

(22b)

Here, K is a control parameter. The implicit relations are solved more accurately as
K is smaller. For the problems (17)-(20), we performed experiments where the number
of steps was chosen such that a prescribed scd value was obtained. For these problems,
the maximal number of iterations in the subsequent iteration processes was prescribed,
viz. m = 5, 10, 20 and 10, respectively. In problem (18), where no exact solution is
available, we used the Radau starting method with m = 10. Tables 7-11 list the total
number of iterations M needed to obtain a given scd value. Since transformed and diagonal
EBDF exhibit a similar convergence behaviour, we only listed scd values for the easier
implementable diagonal EBDF methods. From these results we may conclude that the
total number of iterations is always less for the diagonal EBDF methods. Furthermore,
diagonal EBDF(2) is now perfonning quite well for the HIRES problem because the step
size is adjusted to the required accuracy. On the basis of the above results, we can derive
theoretical speed-up factors for the efficiency of the iteration part of the methods. Table 12
presents such efficiency speed-up factors by comparing M-values (averaged over the scd
values) for sequential MEBDF and diagonal EBDF(2).

4.3 Code timings

Finally we will give an indication of how our formulation of the diagonal EBDF method
compares with the sequential MEBDF method of Cash when implemented on a parallel

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 381

TABLE 9
Values of M for problem (19) with K = 0· 1

Method
Sequential MEBDF
Diagonal EBDF
Diagonal EBDF(2)

scd= 10
103
131
32

scd = 11
118
125
38

TABLE 10

scd = 12
157
121
67

scd = 13
231
140
105

Values of M for problem (20) with tend= 1andIC=0·1

Method scd=8 scd= 9 scd = 10 scd = 11 scd = 12
Sequential MEBDF 21 39 66 107 168
Diagonal EBDF 9 17 29 49 74
Diagonal EBDF(2) 8 17 30 48 74

TABLE 11
Values of M for problem (20) with tend = I 0 and IC = O· l

Method scd= 3 scd=4 scd=5 scd=6 scd=1
Sequential MEBDF 31 60 101 163 255
Diagonal EBDF 19 37 47 75 119
Diagonal EBDF(2) 18 26 47 76 119

scd = 13
260
114
115

scd=8
392
184
184

shared memory machine, in this case a Cray C916. Parallel speed-ups in this section were
obtained using the Autotasking Expert Analysis tool (Cray Research Inc., 1994) available
on Cray computer systems, which estimates the speed-up that would be obtained by a
program run on a dedicated multiprocessor system, based on the observed performance of
an arbitrarily loaded system. Since the ATExpert tool measures speed-up with respect to
the same code run on a single processor, it is important in order to obtain meaningful
results that no redundant work be performed within parallel sections of the code. The
tests in this section were run with a fixed number of Newton iterations per time step to
clearly distinguish the parallel performance in the absence of iteration strategies. We have
taken many more time steps in the experiments of this section to reduce the effects of
initialization costs, such as memory allocation and start-up procedure.

There is, of course, a certain amount of parallelism available in sequential MEBDF.
For each of the three relations in (3a) and (3c), a non-linear system must be solved
with a (modified) Newton method, in which the following tasks have varying degrees of
parallelism:

1. evaluation of the Jacobian ln+ 1;
2. evaluation of the right-hand side;
3. update of the solution vector;
4. computation of an LU decomposition of the system matrix I - bohln+l;
5. execution of a forward-backward substitution.

382 1. E. FRANK AND P. J. VAN DER HOUWEN

TABLE 12
Theoretical iteration

speed-up of diagonal
EBDF(2)

Problem Speed-up
(17) l ·3
(I 8) 1·7
(19) 2·7
(20) 2.2

These tasks all contain a number of independent operations which are proportional to
the problem dimension d (parallelism across the space, in the classification of Gear
(1993)), and are present in sequential MEBDF as well as in the diagonal EBDF methods.
However, we are interested in an additional, coarser grained parallelism, orthogonal to
these parallelizations, such as the concurrent computation of LU decompositions and
forward-backward substitutions for the three subsystems (parallelism across the method).
This kind of parallelism is not available if the subsystems are solved successively as in
sequential MEBDF. However, by solving the subsystems simultaneously, as in diagonal
EBDF, all of items I through to 5 above can be computed in parallel for the three
subsystems. In the following subsections we present timings concerning the effect of
concurrent computation of the various tasks in the diagonal EBDF.

4.3.1 LU decompositions. Since the computation of LU decompositions is generally
considered to be expensive, we first discuss the effect on the CPU time of computing the
LU decomposition of the matrices I - bohln+I and I - bohl11 +2 needed in diagonal
EBDF concurrently. Since the Jacobians are factored only once per time step, the effect
of factoring them concurrently becomes less important as more iterations are needed.
Table 13 shows for N = 1280 time steps the speed-up figures obtained from a two
processor implementation of diagonal EBDF in which only the two LU decompositions
are computed in parallel. Apparently, for the problems (17)-(20), the parallel computation
of the LU decompositions does not lead to a substantial speed-up, even for the eight
dimensional HIRES problem (18). Of course, for higher dimensional problems, the speed
up will increase. On the other hand, a more sophisticated implementation, where the
Jacobian is only updated every few steps, will decrease the speed-up attained by concurrent
decomposition of Jacobians. Therefore, a substantial speed-up of a parallel implementation
of diagonal EBDF should not be expected from the parallel computation of the LU
decompositions alone.

4.3.2 Overhead costs. The diagonal EBDF approach incurs a small increase in cost due

to the fact that the most recently computed function evaluations f(u~j~I)) and f(u~+21 l)
must be updated in the second and third components of the residue in (8), whereas these
are constant components of the residue functions if the subsystems are solved in sequence.

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 383

TABLE 13
Speed-ups attained by concurrent decomposi-

tion of Jacobians in diagonal EBDF

Problem
(17)
(18)
(19)
(20)

m =2
0-97
1· 18
1-03
1·04

m=3
0·97
1-14
1·02
1·03

TABLE 14

m=4
1·00
1·11
1·02
1·03

1-00
1·10
1·02
1-02

Ratio of serial CPU times for sequential and

Problem
(17)
(18)
(19)
(20)

diagonal Newton

m =2
0-94
0-98
1-01
0·98

m=3
0-91
0·97
0-99
0-96

m=4
0-89
0-97
0-97
0-95

m =5
0-89
0-96
0-97
0-94

Hence, these additional costs have to be considered as overhead costs. In order to estimate
these costs, we compared diagonal EBDF with sequential EBDF. The latter method is
understood to be the method obtained if the EBDF subsystems in (3a) and (3b) are solved
sequentially. An indication of the significance of this overhead is provided in Table 14, in
which the ratio of serial CPU times for sequential EBDF and diagonal EBDF is compared
for N = 1280 time steps. These figures show that the increase in sequential overhead is
quite modest.

4.3.3 Overall speed-up factors. Table 15 shows the ATExpert observed speed-up of the
diagonal EBDF approach on three processors over sequential MEBDF on one processor
for N = 1280 time steps and m = 5 iterations. It is noteworthy that this speed-up is
essentially independent of the number of Newton iterations. In the table we have also
listed the dimension of each system (the non-autonomous terms of problems (19) and (20)
have been implemented as an extra dimension). The attainable speed-up is highest for the
HIRES problem, which has dimension 8, and lowest for the Kaps problem of dimension 2.
As observed in Section 4.1, we suffer only a slight loss in convergence rate when changing
from sequential MEBDF to diagonal EBDF. Hence, we may expect comparable accuracies
for equal numbers of steps N and iterations m, so that the CPU speed-up factors in Table
15 are also an indication of the speed-up of efficiency (that is, CPU speed-up under the
condition of equal accuracies).

384

Acknowledgements

J. E. FRANK AND P. J. VAN DER HOUWEN

TABLE 15
Speed-up of diagonal

EBDF on three pro
cessors

Problem d
(17) 2
(18) 8
(19) 4
(20) 4

m=5
1-8
2·3
2·0
2-0

The authors are very grateful for the comments and suggestions of the referees.

REFERENCES

BROWN, P. N., HINDMARSH, A. C., & BYRNE, G. D. 1992 VODE: a variable coefficient ODE
solver. Available at http://www.netlib .erg. /ode/vode. f.

CASH, J. R. 1980 On the integration of stiff ODEs using extended backward differentiation
formulae. Numer. Math. 34, 235-246.

CASH, J. R. 1983 The integration of stiff initial value problems in OD Es using modified extended
backward differentiation formulae. Comput. Math. Appl. 5, 645-657. Software available
athttp://1<WW.ma.ic.ac.uk/-jcash/IVP_softvare/finaldae/readrne.html.

1994 Cray Research Inc. CF77 Commands and directives, SR-3771, 6.0 edn.
FRANK, J.E. & VAN DER HOUWEN, P. J. 2000 Diagonalizable extended backward differentiation

formulas. BIT 40, 497-512.
GEAR, C. W. 1993 Massive parallelism across time in ODEs. Appl. Numer. Math. 11, 27-44 Proc.

lnt. Conf on Parallel Methods for Ordinary Differential Equations, Grado (It), Sept/0-13,
1991.

HAIRER, E., NORSETT, S. P., & WANNER, G. 1993 Solving Ordinary Differential Equations, /.
Nonstiff Problems, 2nd edn, Berlin: Springer.

HAIRER, E. & WANNER, G. 1996 Solving Ordinary Differential Equations, JI. Stiff and Differential
Algebraic Problems, 2nd edn, Berlin: Springer.

HAIR ER, E. & WANNER, G. 1998 RADAU. Available at ftp:/ /ftp. unige. eh/pub/ doc/math/
stiff/radau. f.

KAPS, P. 1981 Rosenbrock-type methods. Numerical Methods for Stiff Initial Value Prob
lems, Bericht nr. 9. (G. Dahlquist & R. Jeltsch eds). Inst. for Geometrie und Praktische
Mathematik der RWTH Aachen, Germany.

LIOEN, W. M. & DE SWART, J. J.B. 1998 Test set for IVP solvers, Release 2.0. Available at http:
//vvv.cvi.nl/cvi/projects/IVPtestset/.

PETZOLD, L. R. 1991 DASSL: a differentiaValgebraic system solver. Available at http: I /vwv.
netlib.org/ode/ddassl.f.

PARALLEL ITERATION OF EXTENDED BACKWARD DIFFERENTIATION FORMULAS 385

PSIHOYIOS, G.- Y. & CASH, J. R. 1998 A stability result for general linear methods with character
istic function having real poles only. B/T38, 612-617.

ROBERTSON, H. H. 1966 The solution of a set of reaction rate equations. Numerical Analysis. an
Introduction. (J. Walsh ed.). Academic, pp 178-182.

SHAMPINE, L. F. l 994Numerical Solution of Ordinary Differential Eqw:itions. New York: Chapman
& Hall.

