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1. INTRODUCTION 

The first systematic use of the terms censoring and truncation was due to HALD (1949; 1952, p. 144), 

who credited J.E. Kerrich for suggesting the term censoring for use in statistics. Truncation is 'sam­

pling an incomplete population' - we would nowadays perhaps prefer 'sampling from a conditional 

distribution'. Censoring occurs 'when we are able to sample the complete population but the indivi­

dual values of observations below (or above) a given value are not specified'. Obviously Hald's 

definition of censoring immediately extends to more general types of incomplete observation, such as 

grouped data. 
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The purpose of this paper is to survey the mathematical theory of censoring - incomplete sampling 
from a complete distribution - and of truncation - complete sampling from an incomplete distribution 
- not for statistical models in general, but for longitudinal data that may be described by counting 
processes. The simplest example of such a model is the classical life-testing situation, where the life 
times of n individuals are modelled as independent identically distributed nonnegative random vari­
ables and where the nature of the observational situation implies that some individuals are lost to 
follow-up or have delayed entry. 

A main point of this paper is to demonstrate that loss to follow-up and delayed entry are both spe­
cial cases of a particular kind of incomplete observation that is very natural in the stochastic process 
context: what we shall here term the Aalen filter (A.ALEN, 1978). For this reason right censoring and 
left truncation may be conveniently handled here, whereas other kinds of censoring (such as left cen­
soring) or truncation (such as right truncation) may not. Indeed, it might be more methodologically 
consistent to speak about left and right filtering rather than about delayed entry and right censoring in 
the stochastic process situation. 

Nonparametric estimation of a distribution function under left truncation and right censoring was 
surveyed by KAPLAN & MEIER (1958) (although several later authors have overlooked the part about 
left truncation). The subsequently published literature has been much richer for right censoring than 
for left truncation, important contributors being KALBFLEISCH & PRENTICE (1980, Chapter 5), ARTAs 
& lIAARA (1984) and JACOBSEN (1986). There are two approaches: one is the random censorship model 
where censoring is treated (in the model) equivalently with life-length. This leads to a neat and easily 
comprehensible mathematical theory within the general area of competing risk models. However, the 
assumptions needed to complete the ambitious task of having an explicit stochastic model not only 
for the life-length but also for the censoring are often too restrictive, which has led to an interest in 
the second approach, of partial models, identifying minimal conditions for the censoring mechanism 
that allow correct inference for the distribution of the life-lengths, this being the distribution 'of 
interest'. 

Two concepts are important in the partial modelling of right censoring, both given early formula­
tions by KALBFLEISCH & PRENTICE (1980, Chapter 5). There is the statistical concept of noniriformative 
censoring: the censoring mechanism should be ancillary in some sense, not contributing information 
about the unknown parameter. And there is the probabilistic concept of independent censoring, very 
heuristically stating that the extra randomness, and the reduced information, caused by the censoring 
mechanism, should be 'orthogonal' to the (conceptual) situation without censoring. 

We shall present here an account of the important counting process framework of ARJAs & lIAARA 
(1984) for Kalbfleisch & Prentice's concept of noninformative censoring, based upon a particular class 
of marked point processes. And we shall continue the analysis of independent censoring by these 
authors as well as by JACOBSEN (1986). 

For left truncated survival data, one may similarly choose the easy way of embedding everything in 
one model, treating the truncation time symmetrically to the life time. A comprehensive exposition 
with a complete asymptotic theory was given by WooDROOFE (1985), who was motivated by applica­
tions to astronomy and did not connect to life testing. WANG, JEWELL & TSAI (1986) put 
Woodroofe's results into the survival analysis framework, while KEIDING & GILL (1987) demonstrated 
how the (exact as well as asymptotic) results of this random truncation model may be obtained as 
corollaries of the existing statistical theory for counting processes. 

An alternative theory of partial modelling of left truncation is not available in the existing litera­
ture. We provide in this paper some introductory remarks in this direction for the counting process 
framework but we regard it unlikely that this theory will be as rich as that of right censoring. 

Other kinds of censoring and truncation are less easily tractable by genuine stochastic process 
methods except for some tricks in very special situations, and we provide some explanation for this 
towards the end of the paper. 

The structure of the paper is that Section 2 recalls the multiplicative intensity model for counting 
processes and basic examples of completely observed processes. Section 3 introduces right censoring 
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and various models for right censoring mechanisms, and the concepts of independent censoring and 

non-informative censoring are discussed. Section 4 contains discussion of left truncation. In Section 5 

the concept of filtering is introduced and more general patterns of censoring are discussed, also in con­

nection with left truncation. Section 6 outlines the situation when only a discrete skeleton is observed. 

Often the statistician is not interested in specifying a model for the whole system under consideration 

including the distribution of covariates and the censoring mechanism (or he or she is simply unable to 

do this), and therefore in Section 7 possibilities of analysing partially specified models are discussed. 

2. INTENSITY MODELS FOR COUNTING PROCESSES AND EXAMPLES OF UNCENSORED MODELS 

Several expositions of the basics of statistical models for counting processes already exist (MLEN, 

1978, ANDERSEN et al., 1982, JACOBSEN, 1982, ANDERSEN & BORGAN, 1985) so we may be brief in 

defining our framework. 
Consider a measurable space (U, '?J) with a ri@t-continuous filtration ('!f,)1E 5 , where '5 = [O, T) or [O, T] 

for a given time instant T, O<T:s;;;;oo. We write '5 = [0,T] and define 'ff, = v 1E5'!f, if T~'!I. It is assumed 

that, for each member P o.p of a family 

'!P = {Po.p:(8,cf>)E0Xtl>} 

of mutually equivalent probability measures on 'ff,, ~ (and hence each '!f,) is complete in the sense of 

containing all subsets of null sets of 'ff,, although we shall not explicitly include null sets in <Jf0 in the 

examples. 
On (U,'!f,'!f,,'!P) we consider a multivariate counting process N = (N(t),tE~ = (N 1(t), ... ,Nk(t),tE~ 

adapted to ('!f,). That is, each component Nh(t), t E'5 is a stochastic process with sample functions right 

continuous non-decreasing step functions, 0 at time 0, and with jumps of unit size. Moreover, it is 

assumed that with probability one, no two components jump simultaneously and that Nh(t)<oo for 

tE~ 

A counting process N(t) has compensator A(t) such that N(t)- A(t) is a local martingale, and A(t) 

is predictable and has paths of locally bounded variation. Under regularity conditions (see e.g. 

AALEN, 1978, Section 3.2), A(t) will be absolutely continuous 

t 

Ah(t) = f>'·h(s)ds, h = l, ... ,k 
0 

where Ah(t) is predictable and has the property 

Ah(t+) = lim+P{Nh(t+At)-Nh(t) = ll'!f,}; 
.1t!O /j.t 

Ah(t) is denoted the intensity process for Nh(t). 
We shall often construct compensators for multivariate counting processes from compensators of its 

components, combined with an independence assumption, cf. JACOBSEN (1982, pp. 72-73) for the case 

of canonical counting processes. This product construction is given in the Appendix. 

The family '!P is doubly indexed by (8,cp), where 8 is the parameter of interest parametrizing the 

transition intensities for the events under study and cp a nuisance parameter typically parametrizing 

the distribution of censoring and covariates. In some cases there are no nuisance parameters cp. It is 

assumed that the P 8.p-compensator for N with respect to ('!f,) is A8(t) = A(t,8) and hence that it does 

not depend on cp. The sets 0 and <P may be subsets of either finite dimensional Euclidean spaces, 

corresponding to parametric models, or more general function spaces, corresponding to nonparametric 

models. 
The statistical model '!P corresponding to a given filtration ('!f,) is called a multiplicative intensity 

model (AALEN, 1975, 1978) if its intensity process admits a decomposition 

Ah(t,8) = ah(t,8)Yh(t), h = l, ... ,k, tE'5 
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where Yh(t) is predictable and does not depend on 8, while a is deterministic. 
In a moment, we shall see how the counting process N and the filtration ('!J;) may be constructed in 

several examples when there is no censoring. We will either have 'Fi = ~ = o{N(u),O.;;;;;u.;;;;;t} (the 
self-exciting filtration) or 'Fi = 1fo v~ with 1fo generated by a random variable Xo which can be 
thought of as being realised at time 0. Thus the observations available to the researcher at time t con­
sist of (N(u),O.;;;;;u.;;;;;t) and (when relevant) Xo. We shall sometimes use the convention that the obser­
vations at time t are the a-algebra 'Fi hereby meaning that at time t it can be determined whether or 
not any event A E'!fi has occurred. Let P 11,q,;t denote the restriction of P 11,q, to '!J;, for any t E~ When­
ever ('!J;) has the structure 'Fi = 1fo v~, a key result by JACOD (1975) expresses the likelihood function 
dP 11,q,;t or Radon-Nikodym derivative dP11,q,;11dP11

0
.<1>u;t in terms of the intensity of N and the likelihood 

function (or R.-N. derivative) for the data Xo at time 0. Using product-integral notation (see JOHAN­
SEN, 1987, GILL & JOHANSEN, 1987) the result can be summarized as 

k 
dP11,q,;1 = dP11,q,;O. Il{{l-A.(s;8,</>)ds)1-dN(s)Il(Ah(s;8,</>)ds)dN.(s)} (2.1) 

s<;;,t h =I 

where N. = "2.hNh and A. = "2.hAh and (for later use) ~ may depend on </> as well as on 8. Formula 
(2.1) yields the Radon-Nikodym derivative by forming the quotient of left and right hand sides with 
the same expressions for (8,</>) = (80 ,ifu), say. The same result holds for non (absolutely) continuous 
A8·4>, simply replacing A.ds and Ahds by dA. and dAh respectively. Note that by the interpretation of 
the intensity as conditional probability (density), the term in braces in (2.1) can be interpreted as 
P 11,q,(dN(s)I <?fs-). 

Ex.AMPLE 2.1. A single non-negative random variable. Let X be a non-negative random variable on a 
space (0, ?f.) with absolutely continuous distribution function F, survival function S = 1 - F, density f, 
and hazard rate function a = fJ S. We assume that the distribution of X depends on a {finite or 
infinite dimensional) parameter() and write a8(t)' or a(t,8) for the hazard function, F(t,8) for the dis­
tribution function etc. Furthermore we assume that T, the upper endpoint of the support of F8 does 
not depend on() and we let '5' = [0,T). Then 

t 

ja(u,8)du = -log(l-F(t,8))<00 
0 

T 

for all t E~ though J a(u, ())du = oo. 
0 

Define the stochastic process 

N(t) = l(X.;;;;;t). 

Then N is a univariate counting process counting + 1 only at X. We let 

Y(t) = I(X;;;,.t) = 1-N(t -). 

(2.2) 

(2.3) 

It is then a direct consequence of an important representation of JACOD (1975), expressing the inten­
sity of a counting process N (with respect to a filtration of the type 'Fi = 1fo v~) in terms of the con­
ditional distributions of the time and type of each jump given all preceding ones and given <lfo, that N 
has compensator 

I 

A(t,8) = J a(u,8)Y(u)du 
0 

with respect to the self-exciting filtration ('!J;) = (~) and the probability P 11 corresponding to the dis­
tribution F8 of X. It further follows from Jacod's result (2.1) that the likelihood 

L(8) = IT {(1-a(t,8)Y(t)dt)1-dN<1>(a(t,8)Y(t)))dN<1>} 
te'!i 
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= 11 (1-a(t,O)dt).a(X,O) 
t<X 

x 
= exp( - J a(t, O)dt).a(X, 8) = S (X, O)a(X, 0) = f (X, 0), 

0 

the density function/(·,O) evaluated at X. D 

5 

ExAMPLE 2.2. Uncensored survival data. Let Xi. ... ,Xn be independent non-negative random variables, 
X; having hazard function a;(t, 0). Assume that their distributions have common support not depend­
ing on 0, and let T be the upper endpoint for this support. As in Example 2.1 we let ~ = [O,r), and 
define for each i = l, ... ,n stochastic processes N;(t) and Y;(t) by (2.2) and (2.3). 

Identifying i with an 'individual' and X; with the 'survival time' or 'failure time' of that individual, 
then N; counts 1 only at the time X; when individual i dies and Y;(t) = 1 if individual i is still 'alive' 
or 'at risk' just before time t. 

Obviously N = (N 1, ••• ,Nn) is a multivariate counting process with respect to the self-exciting filtra­
tion ('!Ji,) generated by N. The compensator with respect to ('!Ji,) and P 0 , the joint distribution of the 
X; 's, may be derived directly from Jacod's representation as in the previous example, or alternatively 
from the product construction given in the Appendix. 

It follows that N; has intensity process (a;(t, 0) Y;(t)) and compensator 

t 

A;(t,8) = J a;(u,O)Y;(u)du. 
0 

The likelihood for N is 

where 
n 

N.(t) = ~N;(t). 
i=l 

Similarly to Example 2.1 the likelihood 

n X, n 

L(O) =exp(-~ J a;(u,O)du).~a;(X;,O) 
i=Io •-I 

n 
= 11 S;(X;,O)a;(X;,O) 

i=l 

reduces to the product of the density functions f;(-,0) evaluated at X;. 

When Xi. ... ,Xn are independent and identically distributed (i.i.d) with hazard function a(-,0) the 
likelihood reduces to 

L(O) = 11 {(1-a(t, O)Y.(t)dt)1-dN<t> IJ (a(t,O)Y;(t))dN,<t>} 
te'S I =I 

where 
n 

Y.(t) = ~ Y;(t) = n - N.(t - ). 
i=I 

Thus in this case L ( 8) is equal to 

11 (1-a(t, O)[n - N.(t - )]dt)l-dN.(t) a(t, O)dN <1> 
te'S 
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showing that the aggregated process N. is sufficient for 8 corresponding to the fact that the ordered 
observations X(l) ~X<2> ~ • · • ~X(n) are sufficient. We may also say that the self-exciting filtration 
after aggregation is sufficient for 8. Note that in the i.i.d. case N. is a univariate counting process with 
intensity process 

'A.(t, 8) = a(t, 8) Y.(t) 

with respect to (~) and P 0 • Thus the counting process N. obtained by aggregation of the individual 
counting processes Ni each following a multiplicative intensity model is a univariate counting process 
with the same intensity structure. The intensity process for the aggregated counting process N. is a 
product of an individual intensity a°(t) and a process Y. (t) which can be interpreted as the number of 
individuals at risk for failing just before time t. 0 

EXAMPLE 2.3. A model for relative mortality. Let, as in Example 2.2, X 1,. • .,Xn be independent non­
negative random variables and assume that the distribution of X; is absolutely continuous with hazard 
rate function µi(t)ao(t,8). Here µi(-) is assumed to be a known hazard rate function, e.g. a population 
based quantity known from vital statistics, and ao(-,8) is an unknown (time- or age-dependent) relative 
mortality common to all i. Now N = (N 1,. • .,Nn) is a multivariate counting process, Ni having inten­
sity process given by 

'Ai(t,8) = ao(t,8)µi(t)l(Xi;;:.t), i = l,. . .,n 

with respect to(~) and P0 . In this case the likelihood is proportional to 

II(l -ao(t, 8)Y".(t)dt)1-dN.(l)ao(t, 8)dN. (I)' 
IE5' 

where 
n 

Y".(t) = ~/Li(t)l(X;;;:.t). 
i=I 

Thus the pair (N., YI'.) is sufficient for 8, whereas the self-exciting filtration after aggregation is not. 
By aggregation, a univariate counting process N. = N 1 + ... + Nn is obtained with intensity process 
A.(t,8) = ao(t,8)Y".(t). Thus again the intensity process for the aggregated counting process N. has a 
multiplicative form but in this case P.(t) is no longer simply the number at risk for failing at t. 0 

EXAMPLE 2.4. A finite state Markov process. Let (X(t),tE'5), <j" = [0,T], be a Markov process with 
finite state space S and right continuous sample paths and suppose that the initial distribution, i.e. the 
distribution of X(O) = J 0 , say, depends on parameters <P (and possibly on 8 too). We let T,, be the 
v'th jump time of X and J,, the state reached at T,,. Then the Markov process X is equivalent to J 0 
and the marked point process (T,J) = {(T,,,J,,);v = 1,2,. .. } in the sense that observation of 
X(u),O~uo;;;;t gives the same data as observingJ0 and (T,J) on [O,t]. 

We shall assume the existence of integrable transition intensities a~j(t) = ah/t, 8) from state h to 
state j, h=l=j (some a~j(-) may be zero for all values of 8). According to JACOBSEN (1972) a~j(t) can 
then be decomposed into 

a~j(t) = µ~(t'frr~j(t), 

where µ~ equals ~ a~j and satisfies 
jES 

I 

Po.p(Tr+I >tlJo,(T11 ,J11 ),v = 1,. . .,r,Jr = h) =exp{-J µ~(s)ds} 
T, 

and .,,~j equals a~jlµ~ and satisfies 

'TT~j(t) = Po.p(Jr+J = jlJo,(T,,,J,.),P = 1,. .. ,r,Jr = h,Tr+I = t). 

(2.4a) 

(2.4b) 
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Thusµ.~ is the force of transition out of the state h and when µ~(t) = 0 for all t (and 0) we say that 
the state h is absorbing. (Transition intensities into an absorbing state need only be locally integrable 
on [0,T).) 

Let Nhj(t) be the number of direct transitions for X from h to j, h=f=J in [O,t ]. Then also 
N = (Nh/·),h=f=j) and J 0 are equivalent to X in the above mentioned sense and we define (04) to be 
the self-exciting filtration for N and let '!fr = 04 v<?Jo with <?Jo generated by J 0 • The P e.p-intensity pro­
cess for the multivariate counting process N with respect to ('!fr) can now again be found from the 
representation of JACOD (1975) and (2.4) since 

P8.p(lr+I = }IJo,(Tv,lv), P = l, ... ,r;Tr+J) = 'lf'J,j(Tr+J). 

This shows that Nhj has P B<P-intensity process 

A~J(t) = A~j(t) = µ~(t)'lf'~j(t)Yh(t) 
= a~j(t)Yh(t), 

where Yh(t) = l(X(t-)=h) is the indicator for X being in the state h just before time t (see also 
JACOBSEN, 1982, p.120, and GILL & JOHANSEN, 1987). So the intensity only depends on 0 and again 
we have a multiplicative intensity structure. 

Next, assume that given J; 0,i = I, ... ,n, independent copies X 1(-), ••• ,Xn0 of X(-) are constructed 
with X;(O) = J;0 ; let J0 = (J 10, ••• ,Jno) and define a multivariate counting process 
N = (Nhj;,i = l, ... ,n; h=f=j) from (X1(-), ••• ,Xn(-)) as above. Then, by the conditional independence 
of the X;(-)'s and by the product construction given in the Appendix it is seen that Nhji has Pe.p­
intensity process 

A~(t) = A~ji(t) = a~j(t)Yh;(t), 

where Yh;(t) = I(X;(t -)=h) is the _indicator for X;(-) being in state h just before time t. 
So, the multivariate counting process N = (Nhj;,i = 1, ... ,n; h,jES, h=f=J) has a multiplicative 

intensity with respect to ('!fr) which only depends on 0. By (2.1) the likelihood takes the form 

L(O,<P) = L 0(0,cp)L,(0) 

where 

Lo(O,<P) = P e.p(Jo) 

and 

L.,(O) = II.JO-~ ~a~j(t)Yh;(t)dt) 1 -~.~.,.,c1N.1'<1 >r;rh:g.(a~j(t)Yh;(t))c1Nhj,<1 >}. 
IE~ j h=/=j I ..,-'} 

Then L.,(O) equals 

II {(1- ~a~·(t)Yh.(t)dt)1 -~.,.;dN•;<r> II a~-(t)dN,1<1>} 
IE?i h=/=j lj h=/=j lj 

where 
n 

Nhf(t) = ~ Nhji(t) 
i=I 

and 
n 

Yh.(t) = ~ Yh;(t), 
i=l 

the latter being a function of J 0 and (Nhj·,h=f=j). Thus if the distribution of J 0 only depends on cp, 
then for each fixed <f>E«l>, L.,(O) is the full likelihood for 0, otherwise L.,(O) is only a partial likelihood 
(Cox, 1975; KALBFLEISCH & PRENTICE, 1980, Ch.5). At any rate, L.,(0) is the full conditional 
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likelihood given the initial states J0 and (J0 ,NhI ;h=l=J)) is sufficient for 0, the second part being a mul­
tivariate counting process with intensity process 

Afj-(t) = afj(t)Yh.(t). 

Again aggregation leads to a counting process following a multiplicative intensity model where the 
first factor is an intensity on the individual level and the second is a process indicating the number at 
risk just before time t for experiencing events of given types. D 

ExAMPLE 2.5. Competing risks. As a very special case of Example 2.4 one may consider two states 0 
('alive') and l ('dead') and assume a10(t,O) = 0 (that is, state l is absorbing) and the initial distribu­
tion degenerate at 0, yielding exactly the independent identically distributed uncensored survival times 
of Example 2.2, with hazard function equal to the transition intensity ao1(t,0). 

A more general special case of the Markov process example is the competing risks model, obtained 
by considering one transient state 0 ('alive') and absorbing states h = l, ... ,k (so that ahj(t,O) = O for 
h = l, ... ,k and all j). State h corresponds to 'dead by cause h'. The initial distribution is degenerate 
at 0 and the transition intensities a'.oh(t,O), h = l, ... ,k, are termed 'cause specific hazard functions'. 

It is easily seen that the competing risks model is equivalent to considering independent random 
variables Xfi. ... ,X;k> i = l, ... ,n, with hazard functions ao1(t,O), ... ,aok(t,O) and the multivariate count­
ing process 

N(t) = (N 1(t), ... ,Nk(t)) 

with 
n 

Nh(t) = ~I(minX;1 = Xih~t). 
i=l I 

In reliability theory, min1X;1 is interpreted as the life time for a series system of k independent com­
ponents with life times X; 1, ... ,X;k· It has been debated extensively how useful this reliability interpre­
tation is in biomedical contexts. In particular, even if the competing risks model may be generated 
from a set of independent 'latent' (or 'underlying') life times, these are often hypothetical. References 
to a discussion of the interpretability and testability of the latent life time model include Cox (1959), 
TSIATIS (1975), KALBFLEISCH & PRENTICE (1980, Chapter 7), Cox & OAKES (1984, Chapter 9). D 

In Examples 2.1 - 2.4 the individual counting processes Nh; satisfied the multiplicative intensity model 

Af;(t) = af;(t)Yh;(t), h = l, ... ,k, i = l,. .. ,n. 

Here af;(t) was an individual force of transition, relative hazard, or hazard of type h and Yh;(t) a 
predictable process which was observable in the sense that it did not depend on the parameter 0. The 
process Yh;(t) contained information on whether or not individual i was at risk for experiencing an 
event of type h at time t. For instance (with a slight abuse of notation) h could correspond to a transi­
tion from one state to another in a Markov process. 

When af; = a~ for all i, the aggregated counting process Nh. satisfied the multiplicative intensity 
model 

Af(t) = a~(t)Yh(t), h = l, ... ,k 

with the predictable and observable process Yh(t) giving the size of the risk set for that type of event 
just before time t (in Examples 2.2 and 2.4 but not in Example 2.3, Yh(t) was simply the number at 
risk for a type h transition just before time t). 

The next example presents a model for completely observed life history data for which aggregation 
does not lead to Aalen's multiplicative intensity model. 

ExAMPLE 2.6. Relative risk regression models with time-independent covariates. Let (X;,Z;) be random 
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variables with X; non-negative and each Zip-dimensional. We shall assume that Xi. ... ,Xn are condi­
tionally independent given Z = (Z i. ... ,Zn), that the marginal distribution of Z depends on parame­
ters q, (and possibly (J too) and that the conditional distribution of X; given Z = z = (zi. ... ,zn) has 

hazard function a;(t,fJ) as in Example 2.2. We shall consider models of the form 

a;(t,fJ) = ao(t, y)r(/JT Z;) (2.5) 

with (J = (y,p), /JERI' and the relative risk function r(·) being non-negative. The main example is the 
semi-parametric Cox regression model (Cox, 1972) where r is the exponential function and y is infinite 
dimensional, but parametric models with yERq may also be considered. In any case Z i, ... ,Zn are 
covariates upon which we want to condition and q, is a nuisance parameter. In some cases it is reason­
able to assume (X1>Z 1), ••• ,(Xn,Zn) to be i.i.d. but when some of the X;'s correspond to life times of 
individuals from the same family or community the above assumption of conditional independence of 

the X;'s given Z is more realistic. 
From X;, i = l, ... ,n we define stochastic processes N;(") and Y;(·) from (2.2) and (2.3) and we let 

(3) be the filtration generated by the multivariate counting process N = (N i. ... ,Nn). Furthermore we 
let ~ be generated by Z, define ~ = ~ v3 and let P 8</> be the probability measure corresponding to 
the distribution of (X;,Z;), i = 1, ... ,n. The (P fJ<1>,(~))-compensator for N can now be found directly 
from Jacod's representation or alternatively from the conditional independence - version of the pro­

duct construction. 
This shows that the compensator for Ni only depends on fJ and that it equals 

t 

A;(t,fJ) = jY;(u)a;(u,fJ)du. 
0 

The 1*elihood takes the form 

L(fJ,q,) = Lo(fJ,q,)L.,(fJ) 

as in Example 2.4, where 

Lo(fJ,q,) = PfJ</>(Z) 

and 
n 

L.,(O) = 1~~{ (1 - ~a;(t, fJ) Y;(t)dt)1-dN. <1>; :g
1 
(a;(t, fJ) Y;(t))dN,(t) }. 

I 

If the distribution of Z does not depend on fJ then for each fixed cpE<l> L.,(fJ) is the full likelihood for 
fJ; otherwise it is a partial likelihood and the full conditional likelihood given Z. No sufficiency reduc­

tion of (N;(·),Z;), i = l, ... ,n is possible when fJ is unknown. It is easily seen that L.,(fJ) is equal to 

n X, 

i:glao(X;, y)r(/JT Zj)exp{ -r(/JT Z;) I ao(u, y)du} 
0 

the density for the conditional distribution of X = (Xi, ... ,Xn) given Z = z, evaluated at X. 
Combining the present example with Example 2.3 a regression model for the relative mortality is 

obtained (ANDERSEN et al., 1985). Here the hazard rate function for X; given Z = z is 

a;(t, fJ) = ao(t, Y)/L;(t)r(/JT Z;) 

where (J = (y,p) and IL;(-) is known. Also Example 2.4 can be combined with the present one into 
regression models for the transition intensities in a Markov process of the form 

ahj;(t, 0) = ahjo(t, y)r(/JT zh;). 

Here type specific covariates Zhi may be defined from the vector of basic covariates Z; for individual i 

reflecting the fact that some of these basic covariates may affect the different transition intensities 
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differently (e.g. ANDERSEN & BORGAN, 1985). D 

In the previous examples we have re-formulated well known models for complete life history data in 
terms of multivariate counting processes. We shall conclude this section by two models which are con­
veniently formulated directly as counting processes. 

ExAMPLE 2.7. A model for matings of Drosophila flies (unpublished data of F.B. CHRISTIANSEN, 1969, 
cf. AALEN, 1978). In each mating experiment 30 female virgin flies and 40 male virgin flies were 
inserted into an observation arena, the 'pomoscope', consisting of a circular plastic bowl 1 cm high, . 
with diameter 17 cm covered by a transparent lid. The flies were observed continuously and times of 
initiation and termination of matings were observed. Each fly mates at most once. In particular the 
number of ongoing matings is known for each time. The observation times are unpaired in the sense 
that it is unknown which termination times correspond to which initiation times. 

We let N(t) be the number of matings initiated in the interval [O,t] and F(t) and M(t) the number 
of female and male flies respectively not yet having initiated a mating just before time t. Thus 
F(t) = Jo-N(t-) and M(t) = m 0 -N(t-) wheref0 = F(O) and m0 = M(O) are the number of 
female and male flies respectively in the pomoscope. Let q)"{, = a(N(u), O.;;;;u.;;;;t) be generated by 
N (·) on an interval '5: Then a model for a univariate counting process N (-) can be set up by assuming 
that for a given locally integrable function a°(t) parametrized by some() the (Po,(q)"{,))-intensity pro­
cess for N(t) is 

A.8(t) = a8(t)F(t)M(t). 

It can be shown from Jacod's representation that a counting process with this intensity process exists 
and is unique on (q)"{,). Thus we have another example of Aalen's multiplicative intensity model. The 
interpretation of a°(t) is that of an individual m,ating intensity since it is the intensity of N(t) when 
M(t) = F(t) = I. D 

ExAMPLE 2.8. An illness-death process with duration dependence. Let states 0,1 and 2 denote healthy, 
diseased and dead and define the counting process of transitions 

an(t,d) 

between these states by N(t) = (N0i(t),N02(t),Nu(t)) where Noh(t), h = 1,2, has intensity process 
aoh(t)Yo(t) with Yo(t) = l-No1(t-)-No2(t-), while N12(t) has intensity process a12(t,t-T)Y1(t) 
with Y1(t) = N 01 (t-)-N12(t-) and T = inf{t:N01 (t) = l}. Thus Yh(t) indicates that the indivi­
dual is in state h at time t - , while T is the time of transition from 0 to 1 (if this transition ever 
occurs). It is seen that the intensity au(t,d) of dying while diseased depends on both time t and dura­
tion d. This is not a multiplicative intensity model, since a 12(t,t -T)Y1(t) cannot generally be written 
as a product of a deterministic function and a stochastic process independent of the parameter, except 
in the particular case when a!2(t,d) only depends on t, and the process corresponds to a Markov 
illness-death process, cf. Example 2.4 above. (When a!2(t,d) only depends on d, one has a special case 
of a semi-Markov or Markov renewal process). D 
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3. RIGHT CENSORING 

3.1. Introduction 
In this section we consider multivariate counting processes composed of n individual processes (each of 

which may be multivariate) and we shall see how the most common form of incomplete observation, 

right censoring, may be 'superimposed' onto such a model. 

Right censoring will often introduce extra random variation in which case we first have to enlarge 

the filtrations compared to the ('!Ji) considered in the uncensored examples in Section 2, where 

'!Ii = ~ V'!f4 with ~ = o(Xo). So, now a multivariate counting process 

N = (Nh;; i = l, ... ,n; h = l, ... ,k) 

defined on some space (ll, qj) is considered with compensator A8 with respect to some filtration 

(!3,):!('!Ji) and a family of probability measures 

<!J> = {PIJ<t.,8E0,</>Ecf>}. 

Typically <!J> now also describes the censoring distribution. However, we do assume that the compensa­

tor is the same as if there had been no censoring, i.e. the same as with respect to the original ('small') 

filtration, ('!Ji). We consider this to be the most appropriate mathematical formulation of the notion of 

independent censoring, to which we shall return in Subsection 3.3. We shall indicate explicitly in the 

examples below how this may be achieved. As before, i indexes individuals and h types of events that 

the individuals may experience; for example h = l, ... ,k may indicate the different causes of death in 

a competing risks model (cf. Example 2.5). 
Right censoring of N is the situation where observation of Nh;(·), h = l, ... ,k is ceased after some 

(possibly random) time U;, i.e. Nhi is only observed on the random set E; = {t.;;;;U;} \;;;;'5 or 

equivalently when the process 

C;(t) = /(tEE;) = /(t.;;;;U;) (3.1) 

is unity. Thus, right censoring is imposed onto N by individual right censoring processes C 1(·), ••• ,Cn(-); 

A.ALEN (1975, 1978), A.ALEN & JOHANSEN (1978). 

We shall assume that the censoring process C = (C;,i = l, ... ,n) is predictable with respect to (!31). 

Since each C;(·) is left continuous this is the case if C is adapted, i.e. if the U/s are stopping times with 

respect to (!31 ). The interpretation is that censoring may depend only on the past and not on future 

events. In the concrete examples of censoring to be discussed in the following, the censoring process 

will typically depend only on i and not on h. It is easily seen, however, that the calculations will go 

through virtually unchanged with C;(·) replaced by Ch;(·). Thus different censoring mechanisms for the 

different types h of transitions can be handled within the framework in which we are working, the 

important thing being that the censoring processes are predictable. 

After (possibly) having enlarged the filtrations from ('!Ji) to (!3,) to include any additional random 

variation in the right censoring times we shall now reduce the filtrations again by specifying which 

data are available to the researcher at any time t after censoring. Thus we do not in general assume !31 

to represent the data at time t. First of all, the observable part of N or the right censored counting pro­

cess Ne = (N~;) is given by 

Since 

t 

N~;(t) = J C;(s)dNhi(s). 
0 

Nh;(t) = Ah;(t)+ Mh;(t) 

where Mhi is a local square integrable martingale we have that 

t t 

N~;(t) = J C;(s )dAh;(s, 0) + J C;(s )dMh;(s) 
0 0 

(3.2) 
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= Ah;(t, fJ) + Mh;(t). 

Here the latter term is again a local square integrable martingale by the predictability of C;(·). Thus 
Nh; has (P8cf>,(§1))-compensator 

t 

Ah;(t, fJ) = j C;(s )dAh;(s, fJ). 
0 

For the special case where N satisfies Aalen's multiplicative intensity model A.h;(t,fJ) = ah;(t,fJ)Yh;(t) 
with respect to {§1) it is seen that also Ne satisfies the multiplicative intensity model with respect to 
(§,)with intensity process given by 

Ah;(t, fJ) = ah;(t, fJ) Yh;(t) 

where 

Yh;(t) = C;(t)Yh;(t). 

That is, the observable counting process has the same 'individual intensity' a~; as the uncensored pro­
cess but the random part l'hi(t) of the intensity process must in most examples be interpreted as the 
(predictable) indicator process for individual i being observed to be at risk for experiencing a type h 
event just before time t. 

Next, we tum to a discussion of the available data at time t in addition to the right censored count­
ing process (Ne(u);O:s;;;u:s;;;t). As in Section 2 we assume that Xo is observed (when relevant). We do 
not assume the whole censoring process C to be observed and it is then a question for each individual 
i of whether or not the value of U; is observed. The situation is most easily thought of by introducing 
the concept of an absorption time by which we shall mean a (possibly random) time T; E~ with the 
property that all A.t(t)=<>, h = I,. . .,k for 1;::,T;. In the case of uncensored survival data (Examples 
2.2, 2.3) we have T; = X;. In an uncensored Markov process (Example 2.4) we have 
T; = inf{t :.X;(t)EA} where A <;;;;,Sis the subset of absorbing states. 

tE'!f 

The idea is that typically, when the time of absorption for individual i precedes U;, then 
(Nh;(t), h = 1,. . .,k; tE~ is observed since in this case Nh;(t) = Nh;(t), but U; itself is usually not 
observed. If there is no absorption of individual i before time U; then (Nh;(t), h = I,. . .,k, t:s;;;U;) is 
observed together with the value of U;. 

In the case when N satisfies Aalen's multiplicative intensity model the observations at time t can 
thus be specified as 

(Xo,(Ne(u);Ye(u));O:s;;;u:s;;;t) 

where Ne = (Nh;; h = I,. . .,k, i = l,. . .,n) and ye = (Yh;; h 
observed data at time t can be specified as the o-algebra 

~ = o(Xo,(Ne(u),Yc(u));O:s;;;u:s;;;t). 

I,. . .,k, i = l,. . .,n). Equivalently the 

Then it follows that the observed counting process Ne also satisfies a multiplicative intensity model 
with respect to the filtration (~) generated by the observed family of o-algebras since this intensity 
process is given by 

Eoct>(A.h;(t, fJ) I~) = ah;(t, fJ) Yh;(t), 

by the innovation theorem (see e.g. AALEN, 1978, Theorem 3.4). Here we used the fact that Yh;(t) (by 
definition of~) is adapted to~. So, in this respect censoring by a predictable process C(') preserves 
the multiplicative intensity model. 

In general, the compensator Ah;(-,fJ) may depend on fJ and on the past observations in a more com­
plicated way than specified by Aalen's model. We shall assume that the observations up to time t 
enable the researcher to calculate Ah;(t, fJ) for any given value of the unknown parameter fJ. We may 
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therefore specify the observations available at time t as 

(Xo,(Ne(u),O:s;;;u=s;;;t);e:(t)) 

where 

e:(t) = (N(u,0);0E8,0:s;;;u=s;;;t) 

13 

(3.3) 

is the family of P 6</>-compensators for Ne with respect to (§1). Alternatively the data at time t may be 

given as the a-algebra 

~ = a(Xo,(Ne(u),O.;;;;u=s;;;t);e:(t)). (3.4) 

Then (3.3) is also the family of (P t1<1>,(~))-compensators for the right censored counting process Ne. 

In non-degenerate cases the two definitions of (~) for the multiplicative model coincide, e.g. when 

ah;(-,0) is positive on 5-

3.2. Examples of models for right censoring mechanisms 
We shall first consider the special case where a multivariate counting process N is defined from 

independent survival tim~s Xi, ... ,Xn (Examples 2.2..J 2.3, 2.6). Here, observatio~ of (Nf, Yf ;i = l, ... ,n) 

amounts to observing (X;,D;;i .:= l, ... ,n) where X; = X;AU;; and Di = l(X; =X;). Thus for each 

individual an observation time X; and information on whether or not X; is a failure time or a censor­

ing time is available. If D; = 1 then the censoring time U; is usually not observed; see, however, 

Example 3.3 below. 
We shall now see how some commonly used models for right censoring fit into this set-up. In 

Examples 2.2 and 2.3 we had a multivariate counting process with components defined by 

N;(t) = l(X;.;;;;t) and we studied the compensator with respect to the self-exciting filtration (04). We 

first consider two examples of censoring processes C;(t) = I (t :s;;; U;) predictable with respect to this 

filtration, i.e. examples where the original filtration (04) need not be enlarged to include the censor­

ing. 

EXAMPLE 3.1. Survival data and simple type I censorship. Here the observation of each individual is 

ceased at a common, deterministic time u0 so C;(t) = J(t=s;;;u 0) is non-random and trivially predict­

able with respect to any filtration. This censoring scheme is most common in industrial life testing 

where n identical items are put on test simultaneously and observed on a fixed interval [O,u0 ]. D 

EXAMPLE 3.2. Survival data and simple type II censorship. In this case the experiment is terminated at 

the time of the r'th failure, r:s;;;n, i.e. U; = X(r).i = l, ... ,n. Then C; = l(t=s;;;Xcr» is predictable with 

respect to (04), X(r) being a stopping. time with respect to this filtration. Type II censorship is rarely 

applied in medical contexts but it is more conup.on in inpustrial life testing experiments. Notice that 

in this example the censored observation times X 1, ••• , Xn are dependent. D 

When N has (P6<1>,(04))-compensator A6 then by Jacod's representation also the P 8</>-compensator 

with respect to any enlarged filtration (§1} given by §1 = §o v04 with §o generated by a random vari­

able Xo independent of (XJ, ... ,Xn) is A8• (Here cp may be parameters for the distribution of Xo). 1bis 

is used in the next two examples. 

EXAMPLE 3.3. Survival data and progressive type I censorship. In clinical trials patients often enter the 

study consecutively while the study is closed at a particular date. When the interest focuses on the life 

time from entry (which might be the case if patients are randomised to some treatment at entry) the 

maximal time under study for patient i will be the time U; from entry to the closing date. If the sur­

vival times from entry are independent of the entry times Xo, say, and if we let §0 be generated by the 

entry times then the censoring process C with components C;(t) = l(t=s;;;U;) is predictable with 



14 P.K. Andersen, 0. Borgan, R.O. Gill & N. Keiding 

respect to (131). Another way of stating this is to say that given §0 , the censoring times 
U1 = u 1,. •• ,Un = Un are deterministic and thus we have the generalisation of Example 3.1 known as 
progressive type I censorship. 

In this example cp may parametrize the arrival time process. Also in this example all the censoring 
times will be observable since it will be known when a patient would have left the study if he or she 
had not died before the closing date. This is of course a consequence of the assumption that all cen­
soring is caused by patients being alive at the closing date, cf. the remark at the end of this subsec­
tion. D 

EXAMPLE 3.4. Survival data and random censorship. A generalisation of Examples 3.1 and 3.3 is the 
general random censorship model where U = (U1,. •• , Un) is independent of X = (Xi. .. .,Xn) but where 
U may have an arbitrary distribution. 

The classical or simple random censorship model in which U 1,. • ., Un are assumed to be i.i.d. is the 
mathematically most tractable model for the censoring mechanism and it underlies the majority of 
papers on the analysis of survival data. In any case, as long as U is independent of X we can intro­
duce §0 = a(U) and the censoring processes are then adapted to §1 = §0 v01, as required. However, 
except for the progressive type I censorship model in the previous example it is usually intuitively 
very unnatural to model the censoring times as being realised at time 0, and this would also be con­
trary to the interpretation that at time t the data can be summarized as the a-algebra ~. 

Therefore, we shall now discuss the random censorship model from another, mathematically 
equivalent, point of view. The approach that we shall adopt is the marked point process approach of 
ARJAs & HAAR.A (1984). This may at first glance look unnecessarily complicated for the study of the 
random censorship model. But we take this rather simple case as an introduction to the marked point 
process approach that we shall use in much more generality in the next subsection. 

The basic tool of Arjas & Haara is a marked point process on the time interval 15' specified by time 
epochs 0<T1<T2 < · · · and marks X;EE, i -= 1,2, .... Here the mark space E is written as 
E = E'XE" where E' contains the so-called innovative marks x' and E" the non-innovative marks x". 
The interpretation is that the innovative marks signal the occurrence of the events of interest (e.g. 
failures) and hence contain information on the parameter 0, whereas the non-innovative marks signal 
censoring events. Either of the components of (x',x") may be the empty mark 0' or 0" respectively 
but 0 = (0', 0")~E. In fact, by E'XE" we mean precisely E'XE"\ { 0 }. 

We first consider the univariate case and let X and Ube non-negative random variables which are 
mutually independent and assume that X has hazard rate function a.(-,0) and that the distribution of 
U depends on parameters cp. (The distribution of U need not be absolutely continuous). We can 
represent the complete observation of X and U by a marked point process with E' = { 0',d} and 
E" = { 0 ",c} in the following way: there is an event at time t with mark x if and only if 

either 
or 
or 

t = X and t:=f= U in which case 
t = U and t:=/=X in which case 
t = U=X in which case 

x =(d, 0") 
x =(0',c) 
x =(d,c). 

We now let (131) be the filtration generated by this marked point process. Then the process 
N(t) = J(X~t) counting the number of innovative marks in [O,t] has the same compensator 

I 

A(t,O) = ja.(u,O)l(X;;::u)du 
0 

with respect to (§1) as it has in the model without censoring, i.e. with respect to (~) = (01,). This is 
(by the independence of X and U) an immediate consequence of Jacod's representation. 

That the observation of 'the failure time' X may be prevented by right censoring at U now 
corresponds to the situation where observation is terminated at the stopping time X /\ U and that the 
mark x = (x',x") is observed at that time, i.e. whether X /\ U is a failure time or a censoring time (or 
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both). Thus the censoring process C (t) = I ( u;;;i: t) is (§1 )-predictable and it follows that the censored 

process Ne has compensator 

t 

N(t,()) = j a(u,O)I(X/\U~u)du 
0 

with respect to (§1) and hence also with respect to the filtration (<?fr) generated by the censored marked 

point process corresponding to the observation of X /\ U and the mark x at that time. 

In the case n>l with Xi, ... ,Xn i.i.d. and (U1, ... ,Un) independent of XJ, ... ,Xn one can go through 

the same arguments. From the 'large' marked point process given by all the Xs and all the Us, we 

can first define a multivariate counting process N counting the innovative marks corresponding to the 

Xs. We can then calculate the P 8.p-compensator A(·,O) with respect to the entire history (§1) of the 

large process and notice that it coincides with the original (§;)-compensator in the model without cen­

soring. Next, we can define a censored process Ne counting only the observed innovative marks and 

we can define observed censoring times. Finally, we can calculate the P 8.p-compensator N(·,O) of Ne 

with respect to the filtration (<?fr) generated by the process (say, N*) consisting of observed failures 

and censoring times and notice that the multiplicative intensity structure is preserved. If U 1'···· Un are 

mutually independent this result can alternatively be derived from the univariate case and the product 

construction. Thus the general random censorship model fits into our framework without modelling 

censoring times as being realised at time 0. D 

ExAMPLE 3.5. Censoring by competing risks. If interest in a study of survival data focuses on deaths 

from one specific cause then one may wish to consider deaths due to other causes as right censorings. 

As seen in Example 2.5 the competing risks model is a simple random censorship model as just dis­

cussed. However, as mentioned in that example the existence of the independent latent failure times 

is debatable. Hence we shall now demonstrate how the situation can be modelled using the marked 

point process approach introduced in Example 3.4 to the competing risks model. 

Let ao1(t,O) denote the hazard function for the cause of interest and let aoj(t,O,q,), j = 2, ... ,k be the 

other cause specific hazards. Consider a single individual, i, define N; = (N Oji ,j = 1, ... , k) as in 

Example 2.4 and consider the self-exciting filtration (<:Jl,). We can then identify N; with a marked 

point process with mark space E = E' X E" as in Example 3.4, a non-empty innovative mark j = 1 

and non-empty non-innovative marks j = 2, ... ,k. Then Example 2.5 shows that the (P8.p,(<:Jl,))­

compensator for the component N oli(t) counting the number of innovative marks in [O,t] is 

t 

Ali(t,O) = Jao1(u,O)Y0;(u)du. 
0 

Here Yo;(t) = 1 - N 0.;(t - ) indicates whether individual i is alive (i.e. in state 0) at time t - . We can 

now define the right censoring process C;(t) = I (t,,;;;;;, U;) where U; ,,;;;;,T is the (<:Jl, )-stopping time: 

U; = inf{t:N0ji(t) = l; j = 2, ... ,k}. 
tE'f 

Observation of the censored marked point process now corresponds to observing X; = X; /\ U; where 

X; = inf{t:No1;(t) = l}, 
(E'f 

- -
and the mark (0',c) if X; = U; or the mark (d, 0") if X; = X;. The component N&1;(t) = Noli(t) 

counting the number of innovative marks in [O,t] in the censored marked point process then has 

(P8.p,(<:Jl,))-compensator Ali(·,O) which is l!dapted also to the filtration (<?fr) generated by the censored 

marked point process (since Y0;(t) = l(X;~t)). Thus Ali(·,O) is also the (P8.p,(<?fr))-compensator for 

N&li and this means that we can make inference on (J (and hence of the cause specific hazard of 

interest, ag1) in the presence of the competing risks by considering deaths from other causes as cen­

sorings. D 
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ExAMPLE 3.6. The illness-death process. In the illness-death model defined in Example 2.8, consider a 
separate study of N 01 (t), the healthy-diseased transition. This furnishes an example of (random) cen­
soring by a competing risk: the transition 0~2 (death, while healthy) removes the individual from 
being at risk for the transition o~ 1 (becoming ill). D 

In Examples 3.1 to 3.6 we have demonstrated how some right censoring mechanisms only depending 
on the previous history of N or on outside random variation preserve the multiplicative intensity 
model in the case of survival data. Next, we shall consider right censoring in the Markov process of 
Example 2.4. 

EXAMPLE 3.7. Right censoring in a Markov process. It is easily seen going through Examples 3.1 to 3.4 
that the same arguments will apply starting with the uncensored Markov process model of Example 
2.4. Thus for example 'censoring at the r'th transition from state h to state j' would be an admissible 
censoring scheme in this setting, being generated by an (§;)-stopping time. 

It should also be mentioned that in a Markov process model censoring may depend on the initial 
states generating <JJb. For example one could have random censorship with different distributions 
according to the state in which the individuals were at time 0. D 

The last remark in Example 3.7 leads to another general class of censoring mechanisms relevant for 
regression models such as that of Example 2.6. 

EXAMPLE 3.8. Censoring depending on covariates. In the relative risk regression models (Example 2.6) 
the filtration considered was of the form §; = % Vq](, with <JJb generated by time-independent covari­
ates Z 1, ••• ,Zn. This means that the previously mentioned models for censoring mechanisms (Examples 
3.1-3.6) can be combined with censoring depending on the covariates generating <JJb. Thus in a simple 
two sample case there may be different censoring distributions in the two samples. Also, a possible 
censoring scheme in a survival study with time since entry as the basic time scale and age at entry 
and sex included as covariates would be every year to censor e.g. the oldest woman still alive. Recal­
ling that the censoring process has to be adapted to an extended filtration (g1), it is crucial that the 
extension generated by the covariates upon which censoring depends does not change the compensa­
tor of N. D 

Let us finally mention that all the models for right censoring mechanisms discussed in this subsection 
may be combined to more general models for predictable processes C. Examples include censoring in a 
clinical trial with staggered entry (Example 3.3). Here censoring may, in addition to being caused by 
patients surviving until the closing date be a consequence of patients dying from causes unrelated to 
the one being studied (as in Example 3.5). 

Censoring of type I or type II (Examples 3.1 and 3.2) are also relevant for the pomoscope model in 
Example 2.7. Thus one might here choose to terminate the experiment at a fixed time u0 or at the 
time of initiation of the r'th mating. In the actual experiment the censoring that was used was as fol­
lows. Let X(l) denote the time of initiation of the first mating. Then the experiment was terminated at 
the first time after X(l) +45 minutes where no matings were going on - no later, however, than at 
time X(l) +60 minutes. It is seen that this censoring satisfies our requirements provided that the times 
of termination of matings are included in the filtration (g1) and do not thereby alter the mating inten­
sities. 
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3.3. Independent and non-informative right censoring 

We now return to the general set-up considered in Subsection 3.1 with the purpose of discussing the 

concepts of independent right censoring and non-informative right censoring. So, we let 

N = (Nh;; i = l, ... ,n; h = l, ... ,k) be a multivariate counting process on some space (O,'!J) and we let 

~ = ~v~ with ~ generated by a random variable Xo realised at time 0. Furthermore 

C = (Ci, ... ,Cn) is a right censoring process, C is predictable with respect to a given, possibly larger 

filtration (\31):2(~) on the same space. Suppose further that a family of probabilities 

<!P = {P0.,.:(0,</>)E0X«P} with all P0.,.'s mutually equivalent is given and that the compensator of N 

with respect to Po.p and (\31), A0 = (A~;; i = l, ... ,n; h = l, ... ,k) is identical to the (~)-compensator 

for N. In particular the compensator does not depend on <f>. We shall denote right censoring generated 

by a process C with these properties independent right censoring. Thus 0 is the parameter of interest 

whereas C depends on the nuisance parameter <f>E«P and it may depend on 0 as well. 

The (~)-likelihood based on observation of N and Xo, whose distribution may also depend on </> 

and maybe on 0 too, is by Jacod's formula (2.1) 
n k 

L(O,</>) = L0(0,</>)II{(l-dA0 .. (t))1-dN .. (i) II II dA~;(t}'IN.,(i)} (3.5) 
1e5" i=lh =I 

= Lo(O,</>)L.,.(O). 

n k 

Here N .. = ~ ~ Nh;, and A0 •• is the P 0.,.-compensator of N .. with respect to(~). If Xo does not 
i=I h=I 

depend on 0 then L.,.(O) is the full likelihood for 0 based on observation of N, otherwise L.,.(O) is a 

partial likelihood and the full conditional likelihood given~. Consider now the right censored count­

ing process 

where 

Ne = (Nh;, i = l, ... ,n; h = l, ... ,k), 

I 

Nh;(t) = J C;(s)dNh;(s). 
0 

Then for all <f>EW the (P o.p,(\31))-compensator of Nh; is 

I 

Ah;(t, 0) = f C;(s )dAh;(s, 0). 
0 

As explained in Subsection 3.1 we assume that the observations available at time t include Xo and 

(Ne(u),O~uo;;;;t) together with right censoring times U;~t for individuals for which there is no time 

of absorption before U;. Under non-degeneracy conditions (e.g. ah;(t,0)>0 for tE'?Jfor the multiplica­

tive intensity model), the observations may be formalised as (Xo,Ne,e'(t)) with e'(t) given by (3.3). In 

what follows we shall consider these observations as a marked point process 

N* = (Ne,N") 

with innovative marks at jump times for Ne and non-innovative marks at observed right censoring times 

as in Examples 3.4 and 3.5 and at t =O. There may be simultaneous marks. Thus N" is the process 

recording the observed right censoring times with marks and which also has a mark at t =O recording 

Xo. These two ways of describing the data are equivalent in the sense that for any t E'J 

o(Xo,(Nc(u),O~u~t);e'(t)) = o(N*(u),O~u~t) 

both being equal to~ (defined in (3.4)). 
We shall now write down parallel to (3.5) the P 0.,.-likelihood L*(O,<f>) for N* with respect to(~) and 

rewrite it along the lines of ARIAS & lIAARA (1984). We shall keep the calculations at an informal and 
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intuitive level and refer the reader to AfuAS & lIAARA (1984) for the full mathematical details. 
An element x in the mark space E = E'XE" of N* can be written as a pair x = (x',x"). Here at 

time t, x' = (i,h) if N~; jumps at t while x' = 0' if only censorings occur at t, and x" indicates the 
subset of { 1, ... ,n} of individuals censored at t where we may have x" = 0 ".Thus 

N* = (N~; x = (x',x")) 

and 

N~i = ~N(x',x") with x' = (i,h ). 
x" 

We can now write, starting from Jacod's formula (2.1) applied to N*, 

L;(lJ,cp) = Lo(8,cp)IIPu.p(dN*(t)l§7-) 
t 

= L~(lJ)L/'(lJ,cp), 

(3.6) 

where the contribution from Xo has been absorbed in the second factor. Here the first factor equals 

L~(lJ) = II{(l-dN .. (t,8))1-dN' .. (t)IIdA~;(t,lJ)CW.;<t>}, (3.7) 
t 1,h 

where Ne .. = ~h,;N~; and N .. (·,8) is the (P11.p,(§7))-compensator for Ne .. , which does not depend on 
cf>. This partial likelihood function has the same form as the (partial) likelihood L,,(8) in (3.5) based on 
the uncensored process N. (It should be noticed that whether or not a given U; is observed does not 
alter L,,(8), cf. the discussion in Section 3.1). Thus independent right censoring mechanisms preserve the 
form of the (partial) likelihood. 

The fact that the form of the partial likelihood is preserved after independent right censoring has 
the consequence that its martingale properties stay the same. For instance, the 'score-process' 
(()/()(} logLHlJ)) is a (P11.p,(§7))-martingale just as (atolJ logL1(8)) is a (P11.p,('3';))-martingale in the model 
without censoring. This means that large sample statistical inference for independently censored data 
based on the partial likelihood will be much the same as that for uncensored data based on the full 
likelihood, since this martingale structure plays such a central role in asymptotic theory. Note also 
that if N satisfies Aalen's multiplicative intensity model then Yh;(t) in (3.5) is simply replaced by 
JTt;;(t) in (3.7). 

In the next example we shall relate our definition of independent right censoring to other sugges­
tions in the literature in the special case of i.i.d. survival times. 

EXAMPLE 3.9. Independent censoring of i.i.d. survival times. WILLIAMS & LAGAKOS (1977) considered 
right censoring of i.i.d. survival times XJ, ... ,Xn with hazard function a11(t). They showed that if the 
model for the censored data satisfies a certain 'constant sum' condition then the likelihood for (} is 
proportional to (3.7). KALBFLEISCH & MACKAY (1979) showed that the constant sum condition is 
equivalent to another condition which is a consequence of our definition of independ~nt censoring, 
namely that the failure intensity at time t for an individual i at risk at that time (i.e. X;-;;:;:,t) is a 11(t). 
Formulated in our notation this condition simply states that the (P11.p,(§7))-compensator for Nf is 

t 
( {' a11(u)Yf(u)du). This condition was verbally formulated by Cox (1975) and further discussed by 
itlLBFLEISCH & PRENTICE (1980, p.120). It was given a precise mathematical formulation, not res­
tricted to the (absolutely) continuous case, by GILL (1980a, Theorem 3.1.1). Thus our requirement, 
being a condition on the larger filtration (§1):?(§7), is a stronger requirement for independent censor­
ing than those considered by these various authors. However, as seen in Section 3.2 it does cover all 
the interesting models for right censoring in the case of survival data and furthermore it can be gen­
eralized to other models based on counting processes. D 
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In the definition of independent right censoring it is required that the censoring process C is predict­

able. So examples of dependent right censoring patterns include cases where C is not adapted. 1bis is 

for instance the case if C depends on covariates which are not included in the model. Another exam­

ple is the following. 

EXAMPLE 3.10. Testing with replacement. (GILL, 1980b, 1981). Suppose that objects (e.g. light bulbs) 

are life tested one at a time and at each failure time replaced by a new one. If observation is ter­

minated at a fixed calendar time the last object put on test will typically still be working and hence 

contribute with a censored life time. Thus censoring of the last object (at life time t, say) depends on 

the life times of previous objects which may well exceed t. A similar situation arises in the clinical 

trial Example 3.3 if observation had not been terminated at a fixed calendar time but instead at the 

r'th observed failure X(r) (as in type II censorship). With this stopping rule patients with entry times 

later than that of the patient with failure time equal to X(r) may still be alive and thus censored after 

a time under study less than X(r)" For a further discussion, the reader is referred to SELLKE & SIEG­

MUND (1983), SLUD (1984) and ARJAS (1985). D 

For independent censoring mechanisms an important question is now whether L~(8) is the full 

likelihood for 8 for each fixed cpE'1> based on observation of (Nc,e'). 1bis is of course the case when 

for each fixed cpEtl:> the second factor L,,.''(8,cp) in L; (8,cp) does not depend on 8. In this case we term 

the independent right censoring mechanism C non-informative for the parameter 8. 1bis precise 

definition (but without consideration of a nuisance parameter cp) is due to ARJAs & HAARA (1984) 

who made the discussion by KALBFLEISCH & PRENTICE (1980, p.126) rigorous. In fact, Arjas & Haara 

termed it non-innovative censoring and considered a more general situation with other kinds of censor­

ing and with time-dependent covariates. Thus their discussion included the concept of non-innovative 

covariates. We shall return to these situations in Sections 5 and 7. 

To find conditions for C to be non-informative for 8 we now look closely at L.,."(8,cp) denoting by 

A;(t,8,cp) the (P8q,,(~))-compensator for N;(t), where x = (x',x") and x' = (i,h) or x' = 0'. 

Furthermore we let N~ = ~ N; be the total aggregated point process. There are three possible kinds 
XEE 

of contributions to L.,."(8,cp) at time t corresponding to 

a) no marks at all 
b) an empty innovative mark 0' and a non-empty non-innovative mark x"EE"\ {0"} 
c) an innovative mark (i,h) = x'=/=0' and a non-innovative mark x"EE", (possibly empty). 

In the first case we get the factor 

1-dA~(t,8,cp) 
Poq,(dN~(t) = OldN~(t) = 0, ~-) = , 

1-dA~(t,8) 

in the second case we get 

dA(0',x">(t, 8,cp) 
Peq,(dN(0•,x")(t) = l ldN~(t) = 0, ~-) = -"'--'---'----

1-dA~(t,lJ) ' 

while in the third case we get 

dA(x• x")(t, 8,cp) 
Pe.p(dN(x',x")(t) = 1 ldNh;(t) = 1, ~-) = 'c · 

dAh;(t,8) 

The (partial) likelihood for the censoring thus becomes 

L "(8 A..) = L (8 A..)Il l -dA .(t, ,cp) 
{ [ 

* 8 1 l-dN°.(I) 

.,. •'I' 
0 

•'I' 1 1-dA~(t,8) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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II (0 ,x l ' •'I' II II x ' •'I' 

[ 

dA • , " (t () ,i..) l dN;~"x"i(t) [ dA • (t () ,i..) l dN:(t)} 
x"=/=-0" 1-dA~(t,8) x'=(i,h)x" dAj;;(t,8) ' 

Collecting factors in (3.7) and (3.11) one can recover, after some calculation, 

L~(8)L.,."(8,c/>) = Lo(8,cp)II(1-dA* .(t, 8,c/>))1
-dN'. <1> II dA:(t, 8,cf>)dN;<i> 

t XEE 

as in (3.6). These heuristic calculations, for which the probabilistic interpretation is very clear, are of 
course only formal algebra. However, each calculation can be rigorized when we take the product 
over t and the ratio over two probability measures, since then each factor becomes a term in a pro­
duct integral or a Radon-Nikodym derivative for which the corresponding algebra is valid. 

In order that L.,."(8,c/>) should be independent of () then to start with L 0 (8,cf>) should not depend on 
8, and furthermore 

dA(0',x"lt, 8,cf>) 
for all x" EE" 

1-dA~(t,8) 

(corresponding to (3.9)) and 

dA( , ">(t () c/>) 
x,x '' forall(i,h)=x'andall x"EE" 

dAt;;(t,8) 

(corresponding to (3.10)) should be independent of 8 for all cf>E<I>. From (3.12) and the relation 

°" dA<*0 • x">(t,8,cf>) 1-dA~(t,8,cf>) .:;.,,, , + =l 
x"=l=- 0 " 1-dA~(t,8) 1-dA:.(t,8) 

(3.12a) 

(3.12b) 

it follows that then also (3.8) corresponding to the first factor in (3.11) is independent of 8. Condition 
(3.12) states that if for each fixed cf>E<I> the conditional distribution of dN* (t) given ~ _ and dNc(t) 
does not depend on() then C is non-informative for 8. In other words, if for each fixed cf>E<I> and each 
t E'!T the conditional intensity of certain individuals being censored at t given the past up till just 
before t and given a possible failure at t does not depend on () then the censoring is non-informative 
for 8. 

In the special case of Aalen's multiplicative intensity model 

'At;;(t, 8) = ah;(t, 8) Yt;;(t, 8) 

where ah; does not depend on i, i.e. ah; = ah, it is easily seen using (3.5) - (3.7) that if the censoring is 
non-informative for() then (NL Yt;.; h = 1, ... ,k) is sufficient for 8. 
Here 

n 
Yj;.(t) = ~ Yt;;(t) 

i=l 

can often be interpreted as the total number of individuals observed to be at risk for experiencing a 
type h event just before time t. Thus, again, a process satisfying the multiplicative intensity model is 
obtained by aggregation. However, in contrast to Examples 2.2 and 2.4 with uncensored data where 
the aggregated counting processes (Nh.,h = l, ... ,k) (and J0) were themselves sufficient, Yh. being a 
function of Nh. (and J0) it is now the pairs (Nj;., ¥};., h = 1, ... ,k) which are sufficient under non­
informative right censoring. 

In Example 3.3 we have non-informative censoring provided that the entry time process does not 
depend on () and in Example 3.4 if the censoring distribution does not depend on 8. In Example 3.8 
we have non-informative censoring when there is random censorship with censoring distribution 
depending on covariates and if this distribution does not depend on 8. 

Informative right censoring may occur if censoring is due to competing causes of deaths with cause 
specific intensities depending on () ( cf. Example 3.5). One such example is the Koziol-Green model 



Censoring, truncation and filtering of counting processes 21 

(KOZIOL & GREEN, 1976) where failure and censoring intensities are proportional. The more simple 
statistical procedures based on L~(O) will lose some information if we have informative censoring and 
in some such examples more efficient methods may be applied. We have seen, however, that most sen­
sible models for right censoring mechanisms were non-informative. This is in contrast to other kinds 
of censoring, including left censoring, to which we return in Section 5. 

3.4. Identifiability of independent right censoring mechanisms 
So far we have strived to put conditions on the censoring pattern to make the resulting observable 
processes tractable. The opposite wish is to see how much of the underlying structure is uniquely 
given, if the observable processes are tractable. We conclude this section by indicating some recent 
results by JACOBSEN (1986), who studied i.i.d. survival data with hazard function a(t) (the restriction 
to identical distributions being made for convenience only). 

Jacobsen's concept of independent censoring is also more restrictive than the one considered in 
Example 3.9 and differs slightly from ours. He studied the marked point process N* with non-empty 
innovative marks at observed failure times (i.e. at jump times for Ne) and considered the joint distri­
bution of N* and all the failure times X = (Xi, ... ,Xn). He then showed first that if for all t the condi­
tional distribution of N*(t) given (Xi, ... ,Xn) only depends on the X's through what we actually 
observe about them at time t - , i.e. that 

X;-;;:.t if X;l\U;-;;:.t 

X; = x; if X; = x;<t and U;-;;:.x; 

X;>u; if U; = u;<t and X;-;;:.u; 

then Nf has (~)-compensator 
t 

(3.13) 

Af(t) = ja(u)Yf(u)du (3.14) 
0 

with respect to the probability measure corresponding to the joint distribution of N* and X. Secondly, 
he showed that given an (~)-compensator A* for N* satisfying (3.14) there exists one and only one 
joint distribution of N* and (X1, ••• ,Xn) satisfying (3.13) such that X 1, ••• ,Xn are i.i.d. with hazard a(·) 
and N* has compensator A*. 

This distribution can be simulated in the way described in the following Example 3.11 concerning a 
randomized version of what is known as progressive type II censorship. 

EXAMPLE 3.11. Survival data and randomized progressive type II censorship. Suppose that n identical 
items are put on test simultaneously, as in Example 3.9, and let XJ, ... ,Xn be the i.i.d. life times that 
would have been observed had there been no censoring. Next, generate n potential (possibly mutually 
dependent) right censoring times U\1> , •.• , 1.f;p independent of the X;'s and find X(l» the smallest X; 
with X;..;;;; up>. Items j for which uy> <X(I) and 01> <J0 are removed at the time points 01>. At time 
X(I) new potential right censoring times 02> > X(I) are generated for each item j still on test. The 
joint distribution of the 02> may depend on X(I) and the censoring times for those items actually 
removed in [O,X(l)) (and on the labels of these items) but not on the life times Xj of the items still on 
test. Next, X<2» the smallest X; with X;o:;;;l.f;2> is found and items j still on test and for which 
02> <X<2> and 02> <J0 are removed at 02>. At X<2> the censoring times for items still on test are 
once more updated and allowed to depend also on X<2> and censorings in [X(l),X(2)) and so on. At 
every point in time the decision to censor an item 'still working' may depend arbitrarily on the past 
observations but not on the future. 0 

Jacobsen illustrated the concepts by the following 'counterexample'. 
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EXAMPLE 3.12. Let X 1 and X2 be i.i.d. with hazard function a(t) and let the censoring variables U 1 

and U2 be given by assuming that U1 is independent of X 1 and X2 and exponentially (1) distributed, 
and by defining 

One may check that this strange censoring pattern satisfies Jacobsen's as well as our definition of 
independent censoring. Of course it is not defined by a simulation experiment as described in Example 
3.11 above, because the censoring time U 2 depends on the value of X 1 exactly when this is not 
observed. Jacobsen's result then tells us that there exists one and only one simulation experiment 
resulting in exactly the same observable process as in this example. The reason one feels unhappy 
about this example is that, though the censoring is independent, it is also informative. Thus the prob­
lem with it is statistical, not probabilistic. D 

In our view the simulation experiment represents the canonical form of what one should understand 
by well-behaved right censoring. It would be desirable to obtain a more abstract formulation (perhaps 
as a suitable stopping time condition on the U i, ... , Un) so that the concept may be defined for general 
counting processes. 

4. LEFT TRUNCATION 

The most common kind of incomplete information on life history data, right censoring was discussed 
in the previous section. 

To exemplify a different kind of incomplete observation consider a study of survival among insulin 
dependent diabetics in Fyn county (GREEN et al., 1981, GREEN & HouGAARD, 1985). Out of the 
about 450,000 inhabitants in Fyn county, Denmark, it was ascertained from prescriptions in the 
National Health Service files that n = 1499 suffered from insulin dependent diabetes mellitus on 1 July 
1973. They were all followed until 1 July 1980 with the purpose of assessing the age-specific mortality 
of diabetics. Since a diabetic was only included in the sample conditionally on being alive on 1 July 
1973, the relevant distribution to consider for the survival times X;, i = l, ... ,n is the conditional dis­
tribution of X given X> V where the entry time, Vis the time since birth at 1 July 1973. The survival 
data are then said to be left truncated. 

In this section we shall consider in more generality counting process based models for left truncated 
life history data. The set-up is analogous to that studied in Section 3. We consider a single indivi­
dual, i, at a time and we drop the subscript, i. We let 

N = (Nh, h = l, ... ,k) 

be a basic, untruncated multivariate counting process on a space (~. §) with P oq,-compensator A8 and 
intensity process "A.8 with respect to a filtration ('Ji) of the form 'Ji = 'ifo v3, cf. Section 3.1. We 
assume the existence of a larger filtration (§1):2('Ji) such that the (Poq,,(§1))-compensator of N is also 
A8 ; this is intended to carry the possible extra random variation involved in the truncation time. 
Furthermore, we let V be a (§1)-stopping time and consider an event A E§v. The process N started at 
Vis defined as 

vN(t) = N(t)-N(tA V). (4.1) 

We want to study the process N, starting from the time V, given that the event A (prior to V) has 
actually occurred. We call the process vN, under this conditional distribution, a left truncated process. 
The proposition below (proved in the Appendix) shows that left truncation of N by the event A 
(before V) preserves the intensity of N after time V. For ease of presentation we suppose P8q,(A)>O; 
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similar results can be obtained for any event A E§v using the technical apparatus of proper regular 

conditional probabilities and Blackwell spaces; see JACOBSEN (1982, Exercise 8, p. 51, and Appendix 

1). 

PROPOSITION 4.1. The left truncated counting process vN has intensity process 

vA.8(t) = A.8(t)l(t > V) 

with respect to the filtration (v§1) given by 

v§r = §1V§v 

and the conditional probability Pd.,, given by 

Pd.,,(F) = PiJ<p(FnA)!Po.,,(A), FE6J. 

(4.2) 

Suppose (just as in the right censoring case) that as well as observing vN, the available data also 

allows us to write down v'A8 for any 8E0. If §1 has the special form 

§t = §oVq}(, 

then 

v§1 = §vVo{vN(u);O..;;;u..;;;t} 

and the (Pd.,,,(v§1)) conditional likelihood for vN given §v, also the partial likelihood for vN, is 

k 

vL(O) = II {(l-vA.~(t)dt) 1 -dvN.(t) II (vA.~(t)dt)dvN•<1>}. (4.3) 
t>V h=I 

For instance, if N satisfies Aalen's multiplicative. intensity model 

A.~(t) = a%(t)Yh(t), tE~ h = l, ... ,k 

with respect to P 8.,, and (1J;) then the left truncated process vN satisfies the multiplicative intensity 

model 

vA.%(t) = a%(t)v Yh(t), t > V 

with respect to Pd.,, and (v§1), where 

v Yh(t) = Yh(t)I (t > V). 

In this case the data needed at time t, t >Vis (vN(u), vY(u); V <u..;;;t). 

A general discussion of how the truncated data becomes available as time procedes in parallel with 

the situation for censored data, cf. (3.3) and (3.4), is possible, but we do not give it here. In the most 

trivial example V = v 0 is deterministic and we have §1 = 1J;. More interesting is the following exam­

ple. 

EXAMPLE 4.1. Random left truncation of a survival time. Let the random variable X>O have hazard 

function a~. Define N(t) = Nx(t) = I(X..;;;t) and let (q][,) be the filtration generated by Nx. Assume 

that V>O is independent of X with distribution depending on parameters cp. Define the bivariate 

counting process (Nx,Nv) with components Nx(t) and Nv(t) = l(V..;;;t) and let (§1) be the filtration 

it generates. The (§1)-intensity process A.81 for Nx with respect to the joint distribution P 8.,, of X and 

Vis (as previously, cf. Example 3.4) 

A.8J(t) = A.~(t) = a~(t)I(t..;;;X) 
which is the same as the intensity process with respect to (q}(,). If the event 

A = {X>V} 
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has positive probability then the intensity process for the left truncated process 
vN x = N x(t)- N x(t /\. V) with respect to the conditional joint distribution Pj</> of X and V given A is 

vA~(t) = vA~(t) = a~(t)I(V <t:s;;;X) 

as shown above. We see that random left truncation preserves the multiplicative structure of the 
intensity process and in particular, vAx still only depends on 0. The conditional (given V) or partial 
likelihood for vN x with respect to the conditional distribution given X >Vis by ( 4.3) 

vL(()) = II (1-v;\~(t)dt)l-dvNx(t) vA~(dvNx(t) = S~(X)a~(X)/ S~(V). 
t>V 

It is seen that this is the conditional density of X given X>v, evaluated at (X, V). D 

When the distribution of X depends on covariates Z (Examples 2.6 and 3.8) the basic filtration is 
given by §; = §ii V'J(, with <Fa = o'(Z). In order to write down the intensity process vl\8 for the left 
truncated process vN we must include not only Vbut also Zin the 'observed filtration'. 

In Examples 2.5, 3.4 and 3.5 the relationship between the random censorship model for survival 
data and a certain Markov process, the competing risks model, was studied. The next example estab­
lishes the relationship between the random truncation model and a certain Markov process. 

ExAMPLE 4.2. The random truncation model for a survival time viewed as a Markov process (KEIDING & 
GILL, 1987). In the model of Example 4.1, assume for convenience the distribution of V absolutely 
continuous with hazard ai(t). Define the Markov process U(t) by U(O)=O and transition intensities 
as specified in the diagram. The random variables 

a~(t) 

ai(t) 

X and V correspond to the times of transition from 1 to 2 or 0 to 3, and from 0 to 1 or 3 to 4, respec­
tively. Observation of (V,X) given V <X is equivalent to observing U(t) in the conditional distribu­
tion given U('r) = 2 (ultimate absorption in 2). The counting process 

vNx(t) = Nx(t)-Nx(tf\V) 

is identical to that counting transitions from state 1 to state 2: 

vNx(t) = Nii(t), 

and it is a standard result for Markov processes (see HoEM (1969) for an explicit formulation) that the 
intensity 1 ~2 in the conditional Markov process is 

afJ ( ) P(U(T)=21 U(t)=2) _ 8 () 
x t P(U(T)=21 U(t)= I) - ax t . 

It now follows from Example 2.4, used for the conditional Markov process given { X> V}, that N 12(t) 
has intensity process 

a~(t)Y 1 (t) = a~(t)I{V<t:s;;;X} 
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with respect to the conditional distribution given V <X and the filtration given by 

v~ = a(I{V<u,V<X},I{V<X<u}, O<u<t). 

25 

The likelihood with respect to 0 consequently has the form ( 4.3) which may thus in this case be 
obtained without recourse to the proof given there. D 

EXAMPLE 4.3. Left truncation of a Markov process. Let the Markov process X = (X(t),tE'5), the 
counting process N and the filtration(~) be defined as in Example 2.4. Let V>O be independent of 
X with distribution depending on parameters </> and define Nv(t) = J(V<t). Then N has the same 
compensator both with respect to(~) and with respect to the filtration (§1) defined by 

§1 = ~Va(Nv(u), O<u<t) 

and we can apply Proposition 4.1 to any event A E§v = a{ V,J 0 ;N(t /\ V),t ;;;.Q} with P o.p(A )>0. 
Examples include events A indicating that a certain component Nh had at least or at most some 
specified number of jumps before V. 

As an alternative to such partly external truncation (V independent of X) one might consider inter­
nal truncation, where Vis an (~)-stopping time. The obvious examples are the first arrival time to a 
particular state (cf. the illness-death process to be further discussed below) or the first (or p'th) time 
that the process (or one of its components) jumps. D 

EXAMPLE 4.4. The illness-death process. Consider the illness-death process earlier discussed in Exam­
ples 2.8 and 3.6. A separate study of the transition 1~2 (death when diseased) may be performed by 
studying the counting process N 12 which has intensity process a12(t,t-T)Y1(t) where Y1(t) =/(the 
individual is in state l at time t - ), T = entry time into state 1; define also X = time of death. Con­
sider left truncation by the event A = {T<V<X<T} at some random time V. 

Internal truncation is obtained by choosing for instance V = T, that is, follow the individual from 
the time of disease occurrence conditioning on it occurring: the truncated counting process would be 

vN12(t) = Nn(t)-N12(t/\V) = Nu(t) 

with intensity process 

a12(t,t-V)Y1(t)I(t>V) = an(t,t-T)Y1(t). 

In this case, except for the conditioning, left truncation is equivalent to observation of the original 
process N 12 • 

External truncation is exemplified by choosing V independent of the illness-death process. On the 
conditioning event A, the truncated counting process N u(t)-N u(t /\ V) has intensity process 

au(t,t -T)Y1(t)J(t > V) = au(t,t -T)I(V <t<X). 

It is seen that this is only observable (for given a 12) if we not only follow the diseased individual from 
time V (> T) until death at time X, but also actually know the time T of disease occurrence. The 
latter condition (technically: that a nontrivial part of §v is needed) is not always fulfilled and forms 
the basic problem in the modelling of latency times for epidemics such as AIDS. 

Finally, in the particular case where au(t,d) does not depend on d (the original process is a Mar­
kov illness-death process), it is easily seen that both types of truncation (that is, following diseased 
individuals only, either from disease occurrence or from some random time, until death) are 
equivalent to studying a left truncated random variable with hazard given by the death intensity of 
the diseased. D 

So far we have only considered a (possibly multivariate) counting process corresponding to a single 
individual. We shall now briefly study left truncation of the processes corresponding to several 
independent individuals simultaneously. Let N; = (Nh;, h = l, ... ,k), i = I, ... ,n be independent and 
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define N = (N;, i = l, ... ,n). Assume that N has the same P0</>-compensator with respect to (§1) and 
(~),where (§1):2(~) and~ = ~v<?)t,. 

If Vis a (§1)-stopping time then we may apply the general result to the process 

vN(t) = N(t)- N(t AV) 

corresponding to truncation of all individuals at the same time. Alternatively we can let 
(Vi.N 1), ••• ,(Vn,Nn) be mutually independent. In this case 

v,N;(t) = N;(t)-N;(tAV;), i = l, ... ,n 

are independent and the theorem may be applied to each individual separately after which the 
relevant intensity process for the multivariate counting process 

(v,N;, i = l, ... ,n) 

can be found using the product construction (Appendix). 
More general cases with Vi. ... , Vn being dependent seem to be more difficult to handle and the 

theory of left truncation as a whole seems to be less rich than the theory of right censoring. 
Very frequently in practice there will be both left truncation and right censoring. Here we briefly 

indicate how the methods from this and the previous section can be combined. If in the construction 
of our model truncation precedes censoring then conditionally on an event before a stopping time V; 
the individual process Nh;( ·) started at V; is observed on a set of the form ( V;, U;] with V; ;;;;.o and 
U; ;;a. V;. If censoring precedes truncation then the right censored process N~; started at V; is only 
observed conditionally on an event before V;. 

In either case, one needs a specification of the conditional joint distribution of V; and U; given 
U;;;;a. V; for i = 1, ... ,n, possibly via a specification of their joint unconditional distribution. 

5. GENERAL CENSORSHIP, FILTERING AND TRUNCATION 
In Section 3 we studied the case where the observation of the individual counting processes 
N; = (NJi,. .. ,Nki) was right censored, i.e. the component i was observed not on ~but only on a set of 
the form E; = (0, U; ]. lbis is the most important example of incomplete observation but there may be 
other observational plans of interest where observation of N; is restricted to a subset E; k:5. 

Left censoring corresponds to a set E; = (V;;r], V;;;;a.O; as an example we may recall the problem of 
recording the time of descent of baboons from the trees (WAGNER & ALTMANN, 1973). Troops of 
baboons in the Amboseli Reserve, Kenya, sleep in the trees and descend for foraging at some time of 
the day. Observers often arrive later in the day (say, at time V;) than this descent and for such days 
they can only ascertain that descent took place before V;, so that the descent times are left censored. 

When defined in terms of random variables, left censoring is of course a concept symmetric to right 
censoring, and indeed WARE & DEMETS (1976) solved the baboon estimation problem by reversing 
time and using standard methods for right censored data. This trick however violates the basic role of 
the filtration in our framework, and as we shall see presently, in more complicated models left censor­
ing presents special problems because of this. 

Notice the difference between left censoring where N; is only observed on (V;;r] and left truncation 
(discussed in Section 4) where N;, started at a stopping time V;, is only observed on (V;;r] condition­
ally on an event prior to V;. We shall return to a comparison of these two concepts later on in this 
section. 

Censoring on intervals and combination of left and right censoring correspond to observing N; on a 
set of the form 

r 
E; = LJ (Ji};,~;] (5.1) 

j=I 

where 
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Thus, censoring corresponds to observing N on (possibly random) subintervals of 5 only. Closely 
related to censoring is the concept of filtering where dN is observed on certain subintervals of 5 only. 
To exemplify the difference between these two concepts we can consider a simple two-state Markov 
process model for a reversible disease (states healthy and diseased, transitions possible both ways, 
mortality disregarded). We can think of the case where occurrences of a recurrent disease are being 
studied in an individual on two intervals [O,Uli] and (V2;,U2;] where Uli<V2;. If only new informa­
tion is being collected during the two intervals we are observing the disease process via a filter and the 
number of disease occurrences in (U1;, V2;] will not be known. If, however, at time V2; this number 
can be observed (via hospital records, interviews or whatever) the observation of the disease process is 
censored. So, for a set E; of the form (5.1) more information is available after a censored observation 
of the process than after observation via a filter, and only in the right censoring case E; = [O, U;] do 
the two concepts coincide. As we shall see presently, however, there may be cases where one deli­
berately throws away some pieces of information about the censored process and analyses it as if it 
had been observed via a filter. 

We shall now extend the method for handling right censoring in Section 3 to the more general 
plans of observation of N; considered above. Corresponding to the set E; we define a censoring or 
filtering process C by 

C;(t) = /(tEE;) 

and the filtered counting process by 
I 

N~;(t) = J C;(u)dNh;(u). 
0 

We shall assume the existence of a filtration (§,):?(<!ft) such that N = (N;, i = 1, ... ,n) has the same 
Poq,-compensator A 8 with respect to both. We also assume that the set E; is such that C; is (§1)­

predictable, i.e. that the U/s and Jj's are (§1)-stopping times. Then the P 8q,-compensator for N~; with 
respect to (§,) is 

I 

A~;(t,O) = j C;(u)dAhi(u,O). 
0 

As in the cases of right censoring we assume that the available data include Xo and Ne. For a set E; 
of the form (5.1) time points J-};.~; before the time T; of absorption are also observed. If T; is not 
observed i.e. when T; belongs to some interval(~;, J-]+ 1,;] then we may also observe the smallest Jj; 
such that Jj; ;;..T;. This is for instance the case when we have a left censored survival time X; and 
observe Vi when Vi> X;, see Example 5.2 below. In the case of censoring we also observe the values 
of Nh; at the observed entry times J-j;. In the case of filtering these values are not observed. We do, 
however, assume that the data at time tenable us to calculate Ae(t,O) for any given value of 0. View­
ing these observed data as a marked point process N* = (Ne ,N") we can calculate the likelihood 
L; (O,q,) corresponding to the filtration ('?ft) generated by N*. Letting jumps in Ne carry the innovative 
marks of N* the corresponding partial likelihood 

L~(O) = II(l-dA~(t,0))1 -dN'.:<t)IldA~;(t,O)~<t) 
IE'!i h,i 

is identical to (3.7) and thus it has the same form as (3.5). We therefore term the predictable process 
C an independent filter. We shall also denote it an Aalen filter. 

When Nh; satisfies Aalen's multiplicative intensity model 

'Ah;(t, 0) = a~;(t) Yh;(t) 

with respect to (<!ft) it follows that N~;(t) follows the multiplicative intensity model 
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A.~;(t, 0) = a~;(t) Y~;(t) 

with respect to (~). Here, Y~;(t) = Yh;(t)C;(t). 

EXAMPLE 5.1. Mau's concept of partitioned counting processes (MAu, 1985). Assume k = 1, let, for 
i = I, ... ,n and some m, O:s;;;S;0 :s;;;Sn :s;;; ... :s;;;Sim:s;;;S;,m+I = T be (§1)-stopping times and define sto­
chastic processes 

cp>(t) = I(S;,j-I <t=s;;;Sij), i = 1, ... ,n; j = I, ... ,m + 1. 

Then to each component N; there exists an (m +I)-variate partitioned counting process given by 

{

o, o=s;;;t=s;;;sij 

Nij(t) = N;(t)-N;(Sij), Sij<t=s;;;Si,j+I 

N;(S;,j+I)-N;(Sij), Si,j+I <t=s;;;-r, 

i = I, ... ,k, j = I, ... ,m + 1. Obviously (Nij(t)) counts the events in the random interval (Sij,Si,j+d· 
MAu (1985) noted that the partitioned counting process still satisfies the multiplicative intensity 
model, now with intensity processes 

8 8 (j) a; (t) Y;j(t) = a; (t)C, (t) Y;(t). 

In our terminology C = ( cp>) is an Aalen filter, so that the analysis of what happens to the counting 
process in particular random intervals may be performed using the powerful tools of the multiplica­
tive intensity model. MAu (1987) showed how this allows monitoring of clinical trials, e.g. by 
separately analysing the information from several calendar time intervals in a trial with staggered 
entry, cf. also KEIDING, BAYER & WATI-BOOLSEN (1987). D 

When inference is based on L~(O) alone using the Aalen filter, the non-innovative marks of N* are 
disregarded. These marks will at time t contain information on certain individuals either leaving the 
risk set or entering the risk set at that time and they may also be defined to carry information on 
occurrences of earlier events the exact times of which are not observed. In that case the marks will 
typically carry information on 0, the parameter of interest, and we then term the censoring mechan­
ism (or the filter) C informative for 0. If C is non-informative for 0, L~(O) is the full likelihood (or at 
least the full conditional likelihood given Xo) and no information is lost by basing the statistical infer­
ence on it. In the example mentioned above concerning a disease process observed on the set 
E; = [O,U!i]U(V2;,U2i] the mark at V2i may thus contain information of disease occurrences in 
( U Ii, V 2i] if this piece of information is available. In this case some information is lost by only consid­
ering the process counting the number of disease occurrences filtered via the process C with com­
ponents C; = J(tEE;). Thus C is informative (for the parameters of the disease intensity) and it 
would be more efficient to base inference on the entire likelihood L; (O,q,) than on the partial likeli­
hood L~(O). On the other hand, the entire likelihood may depend on the nuisance parameter q, which 
is often inconvenient. In fact, one may not even be prepared to write down a full statistical model for 
N,C. 

To return to a comparison of left truncation, left censoring and left filtering note first the technical 
difference that the latter two keep the original sample space and probability measure whereas left 
truncation is a conditional procedure, restricted to a subset of the sample space and the correspond­
ing conditional probability. Some further aspects are best considered in the simplest possible example. 

EXAMPLE 5.2. Random left censoring of a non-negative random variable. We consider once more the 
set-up from Examples 3.4 and 4.1: X and V are independent non-negative random variables, X has 
hazard function ax(·,O) and V has distribution function Fv(·,'f>) (and hazard function av(·,f/>) if it 
exists). Furthermore complete observation of X and Vis considered as observation of a marked point 
process as described in those examples. Right censoring at V corresponds to only being able to 
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observe Xl\V and the mark at that time, i.e. the counting process Nx(t) = I(X:s;;.t) is only observed 

on the random interval E = [O, V]. Similarly left censoring corresponds to the case where N x(t) is 

only observed on a set E = (V, T] and we shall assume that V is always observed. Thus we observe 

the filtered counting process 
t 

Nc(t) = jC(u)dN(u) = (N(t)-N(V))J(t>V), 
0 

its ~,-compensator (except for the value of the unknown 0) 

t t 

Ac(t,O) = J C(u)dA(u,O) = J a(u,O)Yc(u)du, 
0 0 

(where yc(t) = C(t)Y(t) = I(V <t:s;;.X)), and the value N(V) = I(X:s;;.V). That is, if X> Vthen we 

observe both V and X, and if X :s;;. V then we observe V and know that X :s;;. V. The partial likelihood 

L~(O) is in this case, according to (3.7) 

L~(O) = II (1-ax(t, O)dt) ax(X, 0)1<X> V) (5.2) 
V<t<X 

[

Sx(X,0) ]I(X>V) 

= Sx(V,0) ax(X,O) . 

The second factor of the full likelihood (3.6) is 

L./'(0,cp) = Sv(V,cp)av(V,cp)Sx(V,0)1<V<X) Fx(V,0)1<V;;;.X) 

and it does depend on 0. So, obviously observation of N (V) gives us some information on 0 meaning 

that C(-) is informative for 0 and that inference based on L~(O) only will not be fully efficient. 

The fact that Vis always observed is in contrast to the case of right censoring (see, however, Exam­

ple 3.2). A more direct parallel definition of left censoring would be to assume that Xv V were 

observed together with the mark at that time. That situation gives a different likelihood but it can be 

handled in a similar way. D 

The way in which left censored data are analysed using the Aalen filter is by treating the counting 

process as being observed with delayed entry or as being left filtered. The partial likelihood (5.2) for 

the left filtered process Ne is identical to ( 4.3) in the sense that the data used in the two situations are 

the same and that the parameter 0 enters into the two likelihoods in the same way. Formally, how­

ever, the likelihood (4.3) is with respect to a conditional distribution Pdq, whereas (5.2) is with respect 

to the original probability measure P 0q,. These results show that left truncated counting processes can 

be correctly analysed as counting processes observed with delayed entry. If individuals i = l,. . .,n are 

observed then individual i is included in the relevant risk set from the time V;. Analysing left cen­

sored data as data with delayed entry is, however, not fully efficient. 
For survival data the basic difference between a left censored and a left truncated survival time X; 

is that in the latter case individual i is only included in the sample conditionally on its survival time 

exceeding the entry time Vi whereas in the former case individual i is always included in the sample 

but observation of the exact failure time may be prevented for some reason. So for n independent left 

truncated observations the partial likelihood will be a product of a fixed number (n) of factors of the 

form (5.2) whereas for n independent left censored observations the partial likelihood is a product of 

a random number ( :s;;.n) of factors of this form. 
Also the situation with both left truncation and right censoring can be handled using the Aalen 

filter. In this case we can define the filtering process by 

C;(t) = I(V;<t:s;;.~) 

and base the inference on 0 on the (partial) likelihood L~(O) with the form (3.7). In many realistic 
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models for the distribution of N, V and U the filtering process C = (Ci, ... ,Cn) will be non­
informative about () and this analysis will be efficient. It should, however, be emphasized once more 
that for other incomplete plans of observation a more efficient analysis can be carried out using the 
entire likelihood L; (fJ,cp). 

Right truncation and more general types of truncation may be defined similarly to left truncation, 
but none of these are conveniently dealt with in the present framework. As for left versus right cen­
soring, the explanation is that the time direction given by the filtration destroys the symmetry 
between left and right, except for some simple cases where one may study right truncation by reversal 
of time. See KEIDING (1986) for applications to the disease intensity ('incidence') in the illness-death 
model under special epidemiological sampling plans. 

The literature on general censoring and truncation is rather unsophisticated as regards concepts of 
independence and non-informativity of the censoring (and truncation) patterns, in effect assuming 
these to be deterministic. However aspects of the iterative methods (versions of the EM algorithm) 
necessary to study the full likelihood and primarily developed by 'I'uRNBULL (1974, 1976) and DEMP­
STER, LAIRD & RUBIN (1977, Section 4.2) are instructive in the general modelling framework of this 
paper. While censoring is readily interpreted as being an example of incompletely observed data, it is 
at first sight more surprising that truncation may also be interpreted in this way. The idea is to con­
sider among the unobserved data also the number of individuals who were never observed, because 
their values are outside the relevant truncation set. TuRNBULL (1976) termed these the 'ghosts' and 
DEMPSTER, LAIRD & RUBIN (1977) gave a comprehensive discussion. 

Later authors have primarily been concerned with the (difficult) task of proving asymptotic proper­
ties of estimators derived this way. An interesting modelling contribution was made by SAMUELSEN 
(1988), who suggested a stochastic process model for double censoring, generalizing the competing 
risk framework for random right censoring (Example 3.5) and the Markov process model for random 
left truncation (Example 4.2). 

6. INTERMITTENT OBSERVATION OF A COUNTING PROCESS: MODELS FOR GROUPED DATA 
An extreme example of incomplete observation formally covered by the concept of interval censoring 
is observation of a discrete skeleton of the process, that is, the h'th component Nh is observed at times 
0 = Tbh)<T~h)< ... <T~h),s;;;;T. Because one will then (with probability 1) never observe the exact time of 
a transition, the Aalen filter will reduce observation to nothing: the partial (filtered) likelihood 
L~(fJ) = I. This is for instance the case in connection with various kinds of grouped data from a 
Markov process as exemplified in this section. 

Let the Markov process X with state space S, the counting process N and the filtration (~) be 
defined as in Example 2.4. The statistical model is given by assuming some transitions impossible and 
the rest of the transition intensities (specified by the set R <;;;, { (h,j):h,j ES,h-=f=.J}) arbitrarily varying. 
Intermittent observation of the counting process N = (Nhj•(h,j)ER) is observation of 
(Nhj(T~hj)), ... ,Nh/T}~))), where the T's are assumed to be deterministic times unless otherwise specified. 
Note that Nhj(Tfh4)1 )-Nhj(Tfhj)) counts the number of transitions h-">} in the time interval (Tfhj) ,Tf'i>d, 
and therefore intermittent observation of the transition counts corresponds to grouped observation of 
the transition times. As indicated above, filtering removes all information, in the sense that (with pro­
bability one) we have Ne =O and L~(fJ)= 1. So, in this case the partial likelihood contains no informa­
tion on fJ. In connection with other kinds of grouped data even less information may be available. 
Sometimes, only the state occupied at To, ••• ,Tr is observed, i.e. (X(Tj),j = 0,1, ... ,r) or equivalently 
(Y(Tj + ), j = 0, l, ... ,r). Also in this case L~(fJ)= I and one has to consider the full likelihood. 
KALBFLEISCH & LAWLESS (1985) studied maximum likelihood estimation in the model with constant 
transition intensities based on panel data, i.e. observation of independent Markov processes 
X;(-), i = l, ... ,n at time points To, Ti. ••• , Tr· 

There may even be cases where the individual panel data are not available but only the number of 
individuals in each state. In this case the aggregated data are (Yh.(Tj); j = 0, l, ... ,r, h = l, ... ,k). 
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ExAMPLE 6.1. The illness-death process. This example was discussed earlier in Examples 2.8, 3.6 and 

4.4. While the time of death can usually be observed exactly, it is often difficult to assess exactly when 

disease occurred. 
One group of problems of this kind is long-term animal carcinogenicity trials where it is usually 

assumed that it can always be assessed after death whether disease had occurred or not. Often sup­

plementary data. are obtained by serial sacrifice, that is, animals are killed at pre-specified times and it 

is assessed whether or not they already had the tumour. Most of the literature on designs of such tri­

als (see e.g. BoRGAN et al, 1984) studies deterministic observational plans as opposed to plans deter­

mined adaptively by the development of the process. An exception is MAu (1986) who formulated an 

explicitly random 'associated design process'. The likelihood function usually becomes complicated 

and sometimes only certain functionals of the process are identifiable. Recent reviews well in tone 

with the approach taken here are by McKNIGHT & CROWLEY (1984), McKNIGHT (1985) and 

DEWANJI & KALBFLEISCH (1986); see also the monograph by GART et al. (1986). 
A somewhat different application of the simple illness-death process is to non-reversible complica­

tions of chronic diseases such as diabetis (ANDERSEN, 1988) or cancer. Here patients are examined at 

visits to the hospital and the determination of whether a transition o~ 1 (onset of disease complica­

tion) has happened may only be performed at those times. It is here very important (though often 

overlooked in practice) to know whether the visits to the hospital are planned independently of the 

underlying disease process (as would be true for deterministic observational plans) or whether they 

may be triggered by the disease. Motivated by these problems GROGER (1986) developed an interest­

ing theory of noninformative observational plans for counting processes much along the lines of the 

present paper. 0 

7. PARTIAL MODEL SPECIFICATION. TIME-DEPENDENT COVARIATES 
The essence of the concept of independent censoring or filtering is that under such a scheme of obser­

vation it is possible to write down a partial likelihood for 0, the parameter of interest, which has the 

same form as the likelihood for the full data and which does not depend on the nuisance parameter <f>. 

Thus, the partial likelihood can be computed without actually specifying a model for the censoring 

mechanism, in fact as if censoring had been at fixed given times. Another example of a partially 

specified model is the Cox regression model (Example 2.6) where inference could be performed condi­

tionally on the covariates and without specifying a model for their distribution. 
In these examples the covariates were time-independent, i.e. they were fixed given §ii, but in several 

examples it is also of interest to study for instance a death intensity conditionally on covariates which 

change in time. Some such time-dependent covariates may be deterministic or at least fixed given §ii; 

in the example mentioned at the beginning of Section 4 concerning survival among insulin dependent 

diabetics in Fyn county time was taken to be the age of the patients whereas the age at diagnosis was 

included as a time-independent covariate. The death intensity may also depend on the time-dependent 

covariate 'disease duration' which can be computed for each age t knowing the age at diagnosis. Thus 

the stochastic process Z;(t)='disease duration for patient i at age t' is adapted to the filtration gen­

erated by the data. 
In such a case, where the intensity depends on what KALBFLEISCH & PRENTICE (1980, p.123) 

termed a defined time-dependent covariate, the (partial) likelihood stays the same and inference based 

on the likelihood can be pedormed as if the covariate paths had been fixed in advance. 

In other examples there may be time-dependent covariates which are truly random in the sense that 

the processes Z;('), i = l,. . .,n are not automatically adapted to the filtration under consideration. 

KALBFLEISCH & PRENTICE (1980, Section 5.3) distinguished between ancillary covariates and internal 

covariates (much corresponding to exogenous and endogenous variables in econometrics, cf. HENDRY 

& RICHARD, 1983). An ancillary covariate could for instance be the level of air pollution in a study of 

the occurrence of asthma attacks, while an important class of internal covariates are 'disease compli­

cations' developing in a fashion unpredictable from the history of the process itself. 
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In order to include such covariates in the model we must extend the filtration. One way of doing 
that is to consider the whole system of uncensored observations as developing according to a (very 
large) marked point process Nz recording, with innovative marks, failures (and other transitions or 
events of interest) and, with non-innovative marks, changes of covariate values. To consider every­
thing as a point process does pose some restrictions on the types of covariates considered in that (ran­
dom) changes of covariate values have to be generated by an underlying process changing at discrete 
(possibly random) points in time and not continuously. So, if a continuously observed time-dependent 
covariate, which is not adapted, is to be included in the model then its path has to be discretised in 
some way; for instance by defining its changes of values to happen at discrete points in time or at 
least to let its path vary deterministically except at a discrete set of points. 

As in the previous sections one may superimpose censoring or filtering onto the marked point pro­
cess Nz via a process C which is predictable with respect to a filtration (§1) larger than that generated 
by Nz. In this way a censored or filtered marked point process, say Nz, is obtained, and we may write 

Nz = (Ne,Nz"). 

Here Ne, as before, counts the observed transitions of interest and carries the innovative marks, 
whereas Nz" carries the non-innovative marks including information on individuals entering or leav­
ing the risk sets and information on observed changes in covariate values, ARIAS & IIAARA (1984). We 
assume that observation of Nz enables us to calculate for each value of 8 the (P9<1>,(§1))-compensator 
for Ne. We can then calculate the full likelihood for Nz with respect to the filtration (§7) generated by 
itself and factorise it into a partial likelihood L~(()) not depending on the nuisance parameter cp and a 
second factor L,,.''(8,cp) which may or may not depend on 8. This means that inference on 8 can be 
based on L~(D) only and it can be made without specifying the model for the censoring mechanism 
and the covariate processes. However, as before, a more efficient inference on 8 may be obtained from 
the full likelihood if the second factor does in fact depend on 8, i.e. if censoring or covariates are 
informative. 

The partially specified model specifying only the (§7)-compensator A~ for Ne has, however, got 
some limitations due to the fact that only a small part of a big system is modelled. If one wants to 
make predictions then this is not directly possible if the model for Ne includes time-dependent covari­
ates whose development in time is not modelled (ANDERSEN, 1986). So, if prediction making is an 
important issue of a study one has to either disregard time-dependent covariates or to model them. 
The latter possibility corresponds to labelling the marks for changes in these covariates innovative and 
to include the parameters for them in 8 rather than in cp. It should be emphasized that the labelling of 
marks as innovative or non-innovative is up to the statistician and it depends on the purposes of the 
study. 

An example of this problem was seen previously in that one may sometimes be interested in study­
ing several cause specific hazard functions in a competing risks model (Example 2.5) and sometimes 
only deaths due to one cause are of interest while deaths due to other causes are treated as censorings 
and the corresponding cause specific hazard functions as nuisance parameters (Example 3.6). Another 
problem with censored or filtered observation of time-dependent covariates is that values of these 
covariates may not be observed, which may prevent one from computing even the partial likelihood 
L~(8). As discussed in Example 4.4 this might be the case in the illness-death model with duration 
dependence introduced in Example 2.8. Suppose that the 1 ~ 2 transition intensity is modelled as 
a!2(t,t - n = ao(t)exp(fi(t - D) using the time-dependent covariate z (t) = t -T = 'sojourn time in 
state I at time t', and suppose that at the entry time V> T, the value of T is unknown. Then the value 
of z (t) is unobservable. 
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8. APPENDIX 

8.1. The compensator of a product of independent counting processes 

The product construction, without loss of generality for k = 2 components, proceeds as follows. From 

(flf.O, 6ji) ,(61/>,t E'?f),Pi),i = 1,2, we define 

12 = u(I> X f!J.2>' 'if= 6.f..1> ®6.f..2>' 

~ = ~1>0~2>,P = p(l>@p<2>; 

thus P is the product probability measure on §: If the counting processes Ni)(t) have compensators 

ACi>(t), with respect to pi and (~i)),i = 1,2, then it is easy to check that the A~>(t) are also predict­

able viewed as defined on U, with respect to P and(~), and that the ,M:>(t)-A~>(t) are (local) mar­

tingales. However ~ is not necessarily right-continuous. A sufficient condition for this is that 

~i) = <?Jff>vo{N(i)(s):so;;;;;t} in which case 

~ = %1>@<fJb2>vo{N1>(s),N<2>(s):so;;;;;t} 

which is obviously right-continuous. The filtrations also have to be completed, which creates no 

further problems. 
Instead of this combination of independent component process we will occasionally need to com­

bine conditionally independent components. The situation now is that there is one Rrobability space 

(12, 'if,P) on which N(t) = (N1>(t),N<2>(t)) is defined; we consider two filtrations (~ >) and (~2>) and 

assume that they are conditionally independent given some a-algebra tee 'if, that is, if 

A E~1>,BE~2>,CE~P(C)>O, then 

P(A nB IC) = P(A I C)P(B IC). 

(Often ~i) = o{N<;>(s):so;;;;;t}). Define 

~ = cev~1>v~2>. 

One may then check directly that any (tev~1>)-martingale is also an (~)-martingale, which is the key 

step in verifying that the (~)-compensator of N(t) may be obtained by combining the (&v~i>)­

compensators of Ni)(t). 

8.2. Proof of Proposition 4.1. 
The basic point is to show that if Mis a (P,(§1))-martingale and A C§v has P(A)>O, then 

vM(t) = M(t)-M(t/\V) 

is a (PA ,(v§1))-martingale. This may be seen as follows (M. JACOBSEN, personal communication, Sep­

tember 1986). 
Clearly vM is adapted to (v§1). We have to verify that 

E[l(A nF){vM(u)-vM(t)}] = 0 (*) 

for all FEv§1, t<u. Since {V>t}Ev§, it suffices to consider the two special cases FC{V>t} and 

Fc;;{Vo;;;;;t}. 
If Fc;;{Vo;;;;;t}, we have 

A nF =(A n{Vo;;;;;t})n(Fn{Vo;;;;;t})E§1 

(definition of §v resp. of v§1) and since on {Vo;;;;;t} we have 

vM(u)-vM(t) = M(u)-M(t), 

(*)follows from the martingale property of M: 
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E[I(A nF){M(u)-M(t)}] = 0 for A nFE§t· 

If Fk{V>t}, define B = {V~u}. The left hand side of(*) may be written as 

E[l(A nB nF){M(u)-M(u/\ V)}]. 

Now since FE<31vv and Fk{V>t}, FE@v, and hence A nB nFE@v. Furthermore A nFE@v implies 

A nBnF =(A nF)n{V~u}E§u, 

henceA nBnFE§ul\V = §un§v and(*) follows by optional stopping. D 
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