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1. INTRODUCTION 
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1.1. Let (9,F,F) be a stochastic basis, i.e. a measurable spa~ with a filtration F=(F,)1;;;.o such that 

V 1;;;.0 F1 = f' 00 =F. Given two probability measures P and P define a probability measure Q by 

Q =(P + P)/2. Suppose that F satisfies t!ie usual assumptions with respect to Q. Consider then the 

optional projections of_the measures P,P and Q with respect to F. We will denote these optional 

valued processes by P,P and Q, respectively. If Ti~ a F-stopping time, then Pr is the restriction of 

the measure P to the sub- a-field Fr of F; define Pr and Qr similarly. Since the measure~ Pr are 

absolutely continuous with respect to the measure Qr. we can define (Q,F)-martingales rand r by 

- -
h = dPrldQr and h = dPr!dQr. (1.1) 

The collection (9,F, F,P,P) is called the binary experiment. _ 

In the present paper the following distances between stopped measures Pr and Pr are studied 

pp(Pr,Pr) = {EQlrP-f¥Pnl!p i (1.2) 

where p;;;;.2. Recall that if p =2 then p2(Pr,Pr) is called the Hellinger distance. For more details on 

such kind of distances see LIESE and VAJDA {1987). Note that the distances arc independent of a par

ticular choise of the dominating measure Q.: 
1.2. With the binary experiment (9,F, F,P,P) we associate the Hellinger process by 

h = (I/2)((r_f_)-2·<r'> +(y'1+x1r_ --v'1-xd-)2*11w) (1.3) 

Here ;.Q is the compensator of the jump measure of the process r. It is known that the Hellinger pro

cess controls the Hellinger distance in the sense of JACOD and SHIRYAEV (1987), Section V.4 (see also 

v ALKEILA and VoSTRIKOVA ( l 986)). In particular, 

p~(Pr,Pr).;;;;2 y'E;h;. (1.4) 
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To control ptp also for p >2, along with the Hellinger process (1.3) we introduce the process 

k(p) = j(l+x1r-) 11P-(I-x1L) 11PjP"A11W (1.5) 

where p ~2. As is shown in this paper (see Theorem 3.2 below), for each even integer p ~2 there is a 
constant cp >0 such that 

plj;(Pr,Pr)~CP Ep(ho/2 + kr(p)); (1.6) 

for p = 2, in particular 

p~(Pr,Pr)~ 8Ephr (1.7) 

(cf. (1.4)). 
1.2. This paper is organized as follows. In Section 2 more details can be found on the quantities intro
duced above. In particular the key Burkholder type inequality (2.6) is presented. 

The first of two theorems, presented in Section 3 gives upper and lower bounds for Pp in terms of 
the expectation with respect to the measure Q. 

In the case where the processes h and k (p) are not necessarily deterministic, it is useful to have 
bounds in terms of the expectation with respect to the measure P: for an upper bound see Theorem 
3.2 below. This upper bound is given in a slightly more general form then (1.6), useful for an applica
tion in Section 4, Theorem 4.2. 

In Sections 4 and 5 applications to sequences of binary experiments and to a parametric family of 
experiments are discussed (see (4.1) and (5.1) below). In Theorem 4.1, in particular, we give necessary 
and sufficient conditions for the convergence to a limiting Gaussian experiment, alternative to those of 
JACOD and SHIRYAEV (1987), Theorems X.1.12 and X.1.64. 

Finally, in Section 5 we demonstrate how to evaluate, based on (1.6), certain modulus of continuity 
(see (5.4) below) needed in various statistical applications (see, e.g. IBRAGIMOV and HAs'MINSKII 
(1981), KUTOYANTS (1984), DZHAPARIDZE (1986), VALK.BILA and VOSTRIKOVA (1987) and VOSTRIKOVA 

'(1988)). 

2. CERTAIN PROPERTIES OF Pp AND RELATED PROCESSES 

2.1. We assume that (U,F,F) is as described above. Moreover, we assume F 0 ={0,U} Q - a.s. For 
unexplained notation in below we refer to JACOD (1979), JAcoo and SHIRYAEV (1987) and LIPTSER 
and SHIRYAEV (1988). 

Let 6D be the space of right-continuous fu~ctions with left-hand limits on R+ =[O, oo[. We can take 
such versions of the density processes r and r that their paths are in 6D, and 

- -c - -c: 
r + r = 2, <!;"> = <r >, Llr = -t:i.t and <rc,r > = -<re> (2.1) 

(here and elsewhere below the angle brackets process is understood as a (Q,F)-compensator). This fol
lows from the special choice of the dominating measure Q. 

Note that the jump measure µ.f of the (Q,F)-uniformly integrable martingale t as well as its (Q,F)
£0mpensator ,J.Q invol_yed in (1.3) and (1.5), only charges the set {(w,t,x):r1 _(w)>O, 
r1 _(w)>O,-r1 _(w)~x~r1 _(w)}; see JACOD and SHIRYAEV (1987), Theorem IV.l.33. 

Note also, that the processes k(p), p~2, related to the discontinuous part oft only, exist since 
k(p) ~2h (see the next paragraph), and that k(p), p~2, as well ash, are independent of the measure 
Q (JACOD and SHIRYAEV (1987), Theorem IV.1.22). 

By the easily verified inequality 

ju Ilq _v I!qlq~lu Ilp _v l!pjl', (2.2) 

valid for each u,v;;a.O and l<p~q we get the following facts: (i) for p;;a.2 we have k(p)~k(2)~2h. 
(ii) the process k (p) decreases asp increases and (iii) as p ~ oo 
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- - -
k(p) = k(p ;P,P) ~ h(O;P,P) + h(O;P,P) (Q- a.s.), 

where 

h(O;P,P) = Xlp.=O} *P~',Q , k(O;P,P) = Al{~=O} *;.Q 

with 
- -

A= l+x/f_, A= 1-x/f_; (2.3) 

see JACOD and SHIRYAEV (1987), IV.1.57, and also IV.1.36 for the definition of the Hellinger process 
of order aE(O, 1): 

- a 1-a 1 I -
[ ]

2 

h (a) = h (a;P,P) = ( 2 ) I + t 0 <f'> + 'i'aCA.A)*PQ.r 

with 

'i'a(u,v) =au+ (1-a)v-uav•-a. 

Obviously, h:::::h (1/2). Note also that for any even integer p > 2 
p-l 

k(p) = - ~ (- l)k~)h(klp) 
k=l 

due to the binomial formula and properties of h (a). 
2.2. By (2.2) ~ decreases too asp increases. 

Besides, 
- - -

~(P,P)~P(f=O) + P(f=O) as p~oo. 
- -

For the variational distance llP-Pll=p 1(P,P), in particular, we have (cf. JACOD and SHIRYAEV 
(1987), V.4.8, and LIESE and VAJDA (1987), Ch. 2) 

- - - -
llP - Pll ;;;.~(P,P), cpllP - Pll o;;;;;pp(P,P), p ;;;.1 

where the second inequality is obtained by Jensen's inequality applied to the left-hand side inequality 

; 1r-r1..;;;1r1'P-r''P1..;;; 
2
,!.,p 1r-ti. p;;;.1. (2.4) 

The last relation is easily v~rified by taking into consideration that r + r = 2. 
2.3. As the process f 11P - f 11

P is a martingale if only p = 1, the relation (2.4) allows us to estimate 
bounds of~ by applying Burkholder-type inequalities. Namely, there are universal constants cP and 
CP such that for a stopping time T 

cpEQ[rf'f2 
..;;; ~(Pr,Pr)..;;; CpEQ[rJo/2

; (2.5) 

see, e.g., LIPTSER and SHIRYAEV (1988), Section 1.9, Theorem 7. 
Furthermore, usual considerations establishing Burkholder-type inequalities (see LENGLART, 

LEPINGLE and PRATELLI (1980), and LIPTSER and SHIRYAEV (1988)) allows us to replace (2.5) by 

cpEQ{ <f>o/2 + ((Af)~)Y'} ..;;; ~(Pr,Pr)o;;;;; CpEQ{ <f>o/2 + ((An~Y'} 
or, taking into consideration that 1ar1+..;;;1xr*µ~..;;; [f]o/2

, by 

cpEQ{ <f>o/2 + lxr*"~Q} ..;;; ~(Pr.Pr) ..;;; CPEQ{ <f>o/2 + lxlP*v~Q} (2.6) 

with some other constants cp and CP-
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3. MAIN RESULTS. 

3.1. The inequalities (1.6) and (1.7) easily follow from the corresponding statements of Theorem 3.2 
below. The proof of this theorem is based on the following statements of independent interest (note 
that here, in contrast with Theorem 3.2 below, p is not necessarily positive even integer): 

THEOREM 3.1. Lets and T be stopping times, s:;;;;T. For p~2 there are constants Cp and cp such that 

Pf,(Pr,Pr) ~ CpEQ{(X~ 0 hY!/2 + (XI'_ 0 k(p))r} (3.1) 

and 

Pf,(Pr,Pr):;;;;CpEQ{(X _oh)Pi2 + (X _ok(p))s} 

+ 2Q(S<n 

(3.2) 

If the measures P and P correspond to processes with independent increment-;, then the processes h 
and k(p) can be assumed to be deterministic (for more details see JACOD and SHIRYAEV (1987), 
Theorem IV.4.24). In this particular case we have 

COROLLARY 3.1. Suppose that the processes hand k(p) and the stopping time Tare deterministic. Then 
we can replace (3.1) and (3.2) with the following inequalities: 

(i) Pf,(Pr,Pr);;..c(p ;T,h)(ho/2 + kr(p)) 

and 

. (ii) Pf,(PT>Pr):;;;;Cp(ho/2 + kr(p)). 

PROOF OF THEOREM 3.1. In view of (2.6) it suffices to apply the following lemmas, the first two of 
which give the corresponding estimates of the expectations of two terms involved in (2.6), and the 
third one leads to the upper bound of form (3.2). 

LEMMA 3.1. Let X=tt and let h be given by (1.3). Then 
I 
2X2_ oh:;;;;<f>:;;;;.2X_oh 

(cf. JACOD and SHIRYAEV (1987), Lemma V.4.26). 

PRooF. In view of ( 1.3) and the easily verified facts that X:;;;;. I and 

A-A t 
<t> = <t''> + (X -(-

2
-))2*,,...Q 

by (2.3), it suffices to verify only that 

x _(-0:-Vf..)2 :;;;;.x _(l\-i..)2:;;;;4(0:-VX), 2 (3.3) 

by taking into consideration !}lat VA+ Vf? 1.:. and that X _ (VA+ Vf )2 ,;;;;4 due to Shwartz' ine
quality and the identities: t+t=2 and f_l\+f _l\=2. 

The inequalities (3.3) can easily be extended to the case p ;;..2: 

Xl'_-1 (Allp _)...llP'f :;;;;xP_-1 (l\-i..)P :;;;;4"-1(;\uP _)...ltp/, 

and this gives 
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LEMMA 3.2. For p ;;;,.2 

(l/2Y' x_p_ 0k(p)~ jxl1'*p!''Q~2!'- 2 X _ ok(p) 

LEMMA 3.3. For two stopping times S ~ T, and p ;;;,.1 
- -

pl/,(Pr,Pr)~pl/,(Ps,Ps) + 2Q(S<T) 

PRooF. For p =I see JACOD and SHIRYAEV (1987), p. 280. The general case is treated analogously. 

PRooF OF COROLLARY 3.1. (ii) is obvious. To prove (i) observe that the function ft= EQ VX: is de
creasing, in fact ft =&1(-h) where E9 is Dolean-Dade's exponential (as it satisfies ft= 1-(f _ ·h), in ac
cordance with JACOD and SHIRYAEV (1987), IV.1.20), and this and Jensen's inequality entail 

inf EQ(Xs -Y';;;;,. inf (EQ ~)2p;;;,. ff 
set s~t 

Hence (ii) takes place with c (p; T,h) = cp(&r( - h ))2p . 

REMARK 3.1. In the simplest case p = 2 we have the following representation 

p~(Pr,Pr) = 2EQ(X1-!20h)r (3.4) 

(see VALKEILA and VOSTRIKOVA (1986)). Comparing (3.4) and (3.1) for p =2, with 2EQ(X~ oh) on the 
right-hand side (constants here and in the next paragraph are defined by (2.4) with p = 2) we see that 
the lower bound obtained is quite crude; cf. also Corollary 3.1, Assertion (i). 

As for the upper bound (3.2) for p = 2 and S = T, with 4EQ(X _ 0h) on the right-hand side, it is sim
ply derived from (3.4) by the following considerations: 

2 ..!.E 1,.112 :;:11214 
P2;;;,. 2 Q ~ -~ 

;;;,.EQ1r!!2-r~21201r112 _r11212 

= 2p~ - 2EQX11201r112 -f'2l2 

= 2p~ - 4EQX-oh 

Here we have first used the inequality 1r112 -r
1
'
2
12 ~2, then Ito's formula and, finally, (3.4). 

REM.ARK 3.2. By JACOD and SHIRYAEV (1987), Lemma 1.3.12, we have 

EQ(X_ 0h)r~2EQ(r_ 0h)r = 2EQhhr = 2Ephr, 

since r~2. and this gives (1.7). Thus the upper bound here can be given in terms of the expectation 
with respect to the measure P. For the general result see the following theorem. 

3.2. 
THEOREM 3.2. Let S and T be stopping times, S ~T. For a positive even integer p there are constants CP 
and BP such that 

Pf,(Pr.Pr)~CPEp(h~12 +k(p)8 ) 

+ BPP 11P(S<T) 

PROOF. In view of (3.2) it suffices to show that 



6 

and 

EQ(X _ 0k(p)T)~2Epk(p)T, 

EQ(X _oh)t'2 ~Ephej2 

Since t~2, (3.5) follows from JACOD and SHIRYAEV (1987), lemma I.3.12. 

(3.5) 

(3.6) 

(3.7) 

To prove (3.6) apply the same lemma, along with the considerations of LIPTSER and SHIRYAEV 
(1988), Lemma I.9.6: for A =X _oh we have 

T .E..._1 

EQA!?/2~f EQj A/ dAs 
0 

T L-1 

~tEQj Xs_h} dhs 
0 

T ..e__ 1 T L-1 

~pEQ/ts-h} dhs = pEp jh} dhs~Eph!?/2 • 
0 0 

For (3.7) see VosTRIKOVA (1987), Theorem 2.2. 

REMARK 3.3. The method for establishing (3.7) developed by VOSTRIKOVA (1987) in the course of 
proving her Theorem 2.2 amounts in justifying the equality of the left-hand side of (3.7) to 

Ep [1(s<T}:~:~)(-I)k(z}'P-Z~1P)] 
with Z=tlt, using here Holder's inequality with exponents lip and p -1/p and, finally, evaluating 
the factor 

p - I _p_ .E..::.!_ 
(Ep}:(-Ii(Z}'P-Z~1P)P- 1 ) P 

k=I 

by taking into account that EpZ'f~ I for O<a~ I. Of course, the result is rather crude (one can in 
(3. 7) take BP = p 11P (2!' + 1 -4)(p - l)tp which gives, in particular, B 2 = 2 V2 ), nevertheless this is 
sufficient for our purposes, that is the application in the course of proving Theorem 4.2 below. 

4. SEQUENCES OF BINARY EXPERIMENTS 

4.1. In the present section we consider certain applications to sequences of binary experiments 
-n 

(fJn,Fn,pn,p ), n=l,2, · · · (4.1) 

with the associated density processes tn and tn as in (1.1), and the corresponding Hellinger process hn 
and processes kn(p),p~2 defined as in (1.3) and (1.5). 

We remark first that in view of the properties of the distances Pp indicated in Subsection 2.2, the 
limiting (as n-700) behaviour of Pp(P'f.,P~), defined by (1.2) with a sequence of stopping times 
Tmn = 1,2, ... , is controlled under the circumstances 

P' P' 
h't. - 0 or h't. - + oo (4.2) 

in the exactly same way as that of the variational distance llP't. - P~. II (see JACOD and SHIRYAEV 
(1987), Theorem 4.32). 

Contrary to (4.2), in the next subsection we consider the situation in which a sequence of the Hel-
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linger processes possesses a certain limit in pn_ probability. 

4.2. Let t ~ C, be a non-decreasing continuous function with C 0 = 0. Let M be a continuous mar
tingale with M 0 =O and <M,M > 1 = C" on some stochastic basis (U,F, F,P) (so Mis Gaussian). 

Let 6D be a dense subset in R +. Consider the following conditions: 

P" I 
(a) h7~-gc1 for all t E6D 

(that is Condition [H -DJ in JACOD and SHIRYAEV (1987), Theorem X.1.12) and 
(b) for a certain p > 2 

p• 

k7(p) ~ 0. 

Along with the processes hn and kn(p), p;;:.2, we will associate with (4.1) a new process J'/(a) for 
a>l: 

r(a) = Ip1a<x·1A'<arl.An -Xnl*,,r.Q· (4.3) 

where Xn and .An are defined as in (2.2) and Qn=(Pn+Pn)/2 obviously, and we consider Condition 
[L -DJ in JACOD and SHIRYAEV (1987), Theorem X.1.12: 

p• 

(c) r(l +E)1 ~ 0 for all tED,E>O. 

Set zn=rn l~n, and consider the following statement: 

(i) zn ~z = eM-Ct2 in low e(_Pn), 

with Mand <M > = C defined above. 
The following extension of Theorem X.1.12 by JACOD and SHIRYAEV {1987) takes place: 

THEOREM 4.1. The statement (i) is equivalent to the following two statements: 
(ii) Conditions (a) and (c) hold; 
(iii) Conditions (a) and (b) hold. 

PRooF. J.:or (i) <=>(ii) see JACOD and SHIRYAEV (1987), Theorem X.1.12. To show (ii)<=> (iii) denote 
by Aa(A,.A) the set the indicator of which is involved in (4.3) (we suppress the index n, as it is 
superfluous here). 

It is easily verified that the validity of the following two statements suffices here: 
I) for each E, O<E< I and p ;;:.2 

k<p).,;;;,.(_1:!_y-2k(2) + /( l+f); 
1-f 1-f 

2) for each p > 2 and a> 1 there is a constant C a,p > 0 such that 

1A.<>..-'>l.A1'P-x
1
'Pr*;.Q .,;;;,. I(a).,;;;,. ca.p 1A.<>..-'>l.A 11P-x1'Pr*"~.Q 

Statement 1) follows from the simply verified inequalities 

{

(u 112 -1)2(2£/(1-E)Y'-2 if I .,;;;,.u.,;;;,. ! ~:, 
(ul'P- Iy.,;;;,. I+ 

u-1 ifu>--E, 
1-f 

and Statement 2) from (2.2) and the fact that the continuous function lu 11P - W 1 lu - 11 vanishes as 
u~l and tends to one as u~oo. 
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REMARK 4.1. The relation between k(p) and the Hellinger processes h(a) of order aE(O,I) indicated 
at the end of Subsection 2.2, allows one to trace directly the equivalence of (iii) above and (ii) or (iii) 
in JACOD and SHIRYAEV {1987), Theorem X.1.64. 
4.3. Under the circ·.·:nstances of the previous subsection we have 

THEOREM 4.2. Statement (i) implies 

lim /l'p(P7 ,P;) ~KpCP,12 
n-->OO 

with a certain constant KP" 

PROOF. Let Sn= inf{slh;;..c,+1}. Then 

ks./\,<p )~2hs,/\1 ~1c, + 3, 

since M~l, and {Sn<t} ~{h7;..c1 + I}. Hence pn(Sn<t)~O under (i), and this implies in turn that 
p• I 

hs./\,~ 8 c, 

and 
p• 

ks,/\,<p > ~ o. 
But the sequences k1S,/\1(p) and hs,/\t are bounded and hence under (i) 

Er (hs,/\1112~( ! c,112 

and 

Er (ks,1\1)~0. 

This, in view of Theorem 3.2, gives the result. 

5. PARAMETRIC FAMILIES OF EXPERIMENTS 

5.1. We consider here an application to a parametric family of experiments 

({2,F, F,{P8,0E0},Q) 

where 0 is a closed subset of the Euclidean space Rd, and Q is a measure dominating the family 
{P8,0e0} of probability measures depending continuously on a parameter 0. 

We retain here the assumptions and notations of Introduction (with a general dominating measure 
Q, however) writing specifically {for 0,0+ u e0) 

Pp(P~+u,P~) = {EQltr(O+u) 11P-tr(0)11PV'} 11P (5.2) 

with p;;.. 2 and 

h(O) = dP~I dQr. (5.3) 

Analogously, we define the Qrocesses h(O+u,O) and k(p;O+u,O) by the formulas (1.3) and (1.5) 
respectively, with t=t(O) and t=t(O+u) this time. 
5.2. We wish to evaluate the expectation EQ with respect to the dominating measure Q of the follow
ing modulus of continuity (for a certain p >d) 

'-'p(8,L ;P~,p~+u) = sup lfr(O+ u) 11P -fr(0) 11Pl1' (5.4) 

where sup is taken over O,O+uE0with181~L. IO+ul~L and juj~8. 
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THEOREM 5.1. Let the following Lipschitz type conditions be satisfied: there is a bounded function Bo of 
0 such that for each O,O+uE0 

E 0ho/2(0,0+u).;;;;;Bolul1', E 0kr(p ;O,O+u).;;;;;Bolul" (5.5) 

with the expectation relative to the measure P 0• 

Thenforp>d 

EQwp(8,L;P~,p~+u).;;;;;Bo suoBo L'JpfJP-d 
IOl<'L 

where the constant B 0 depends on d and p only. 

PROOF. We apply here Theorem 19 in IBRAGIMOV and HAs'MINSKII (1981), Appendix I. All of its 
conditions are satisfied: the first one in (7), p. 372 by EQh(O).;;;;;l and the second one by Theorem 3.2 
above which implies 

Pp(P~+u,P~).;;;;;CPE0 {ho/2(0,0+u) + kr(p ;0,0+u)} 

.;;;;;cpBolul" 

in view of (5.2), (5.3) and (5.5). 
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