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Both the method of ranking after alignment and the Tukey-Quade method of weighted rankings for the 
analysis of complete blocks are generalized so as to give rise to classes of tests containing a conditionally 
distribution-free test and strictly distribution-free tests that are asymptotically optimal in the sense that, when 
the number of blocks tends to infinity, their asymptotic local power reaches the one of the asymptotically 
minimax test based on block-location-free statistics. 

RESUME 

En generalisant tour a tour la methode du rangement apres alignement et la methode des rangements 
ponderes de Tukey-Quade en vue de !'analyse de plans de blocs complets, ii est possible de construire des 
classes de tests contenant un test conditionellement libre et des tests strictement libres qui sont asympto­
tiquement optimaux en ce sens que, lorsque le nombre de blocs crolt vers l'infini, leur puissance asympto­
tique locale atteint celle du test asymptotiquement minimax base sur des statistiques invariantes quant aux 
effets de bloc. 
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1. INTRODUCTION 
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Consider N observations divided into n blocks of M observations. Let, for each block, mj(~ 1) be the 
number of observations under the j-th treatment, l~j~(~2). Also, let m~ =O and 
mj ="2.i = 1m1, l~j~p. Each observation is described by the model 

Xik = µ + ai + /31 + f.;k, k=mj-1, ... ,mj,j=l, ... ,p, i=I, ... ,n, 
where µ stands for the main effect, the a;'s and the /3/s for block and treatment effects, respectively, 
and the f.ik's for the residual error components. It is assumed that (€it, ... ,f.;M )',I ~i~n, are indepen­
dently and identically distributed random vectors having a joint density function g(xi. ... ,xM) 
which is symmetric in its M arguments. Let x=(xi. ... ,xM) be a vector-valued variable of 
RM,c=(ci. ... ,cM) a non-null constant vector of ~Mand write x+tc for (x 1 +tci. ... ,xM+tcM). 
It is further assumed that 

g(x+tc) is absolutely continuous in t a.e. (x), 
d M . 
-d g(x+tc) = ~ ckgk(x+tc) a.e.(t) and a.e.(x), 

t k=I 
(1.1) 

" [g1(x)l2 J g(x) g(x)dx<oo, 

Report MS-R8802 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



2 

where g 1(x), ... ,gM(x) denote the partial derivatives of the density function g(x). Note that, if the error 
components are independent within blocks, i.e., if g(x)=Ilr=ig0(xk), condition (1.1) is equivalent to 
the more usual assumption (Hajek and Sidak 1967): g0(t) is absolutely continuous and has finite 
Fisher's information. Assuming without loss of generality that '2JJ= 1mjf3j=O, the hypotheses of 
interest are expressed as 

H: f mj/3} = 0 and K: f mj/3}>0. 
j=I j=I 

Thus, the null hypothesis refers to the homogeneousness of the treatment effects and the alternative 
hypothesis to their nonhomogeneousness. 

The present paper will focus attention on two ranking methods for treating the aforementioned 
problem. In chronological perspective, FRIEDMAN (1937) introduced the method of n rankings in 
which observations are ranked separately within each block. Since no between-blocks comparisons are 
being made, this distribution-free method tends to give rank tests with low efficiency, especially when 
the number of observations per block is small. HODGES and LEHMANN (1962) noticed that such 
between-blocks comparisons could be made by first aligning the observations within each block, that 
is, by substracting from each observation some estimate of the block effect, and then using a com­
bined ranking of all the observations. Their method is known as the ranking after alignment pro­
cedure. Since the vector of combined ranks is not distribution-free, even under the null hypothesis, a 
permutational argument has to be invoked in order for the rank tests to behave like distribution-free 
tests. Thus, rank tests based on the ranking after alignment procedure are only conditionally 
distribution-free but they tend to have higher efficiency than those based on the method of n rankings. 
QUADE (1972, 1979), in an effort to allow comparisons bet~een blocks while still retaining a strictly 
distribution-free behavior, considered the possibility of weighting the within-block rankings used in 
the Friedman method according to some stochastic credibility or variability measure of the blocks, an 
intuitive idea that seems to have been expressed first by 'fuKEy (1957). The method of n rankings is a 
particular case of the Tukey-Quade method of weighted rankings since it corresponds to the situation 
for which the weights are all equal. 

Several authors, e.g., Puru and SEN (1971), SCHACH (1979), ROTHE (1983), TARDIF (1980, 1985, 
1987), have considere<l classes of tests based on either one of these methods and have given some 
asymptotic efficiency results as the number of blocks tends to infinity. In particular, TARDIF (1985) 
has, for any given joint density function g(x) satisfying (1.1), established the existence of an asymp­
totically local optimal test for the problem and has shown that, in general, the class of tests based on 
the ranking after alignment procedure, the alignment being made on the mean, does not contain a 
member whose asymptotic Pitman-efficiency relative to this asymptotically optimal test is equal to 
one. Furthermore, TARDIF (1987) has shown that, for M-;;:.3, the asymptotic local power of any rank 
test based on the method of weighted rankings never reaches the one of the asymptotically optimal 
test. 

The goal of the present paper is to answer the following question: is it possible to modify both 
methods in such a way that the classes of tests based on them will include asymptotically optimal 
members? The answer to this question is a definitive yes. On the one hand, it will be seen that the 
ranking after substitution procedure, a generalization of the ranking after alignment procedure, gives 
rise to a class of conditionally distribution-free tests broad enough so as to include an asymptotically 
optimal member. On the other hand, the generalization of the method of weighted rankings will be 
such that the class of tests induced by it will, surprisingly enough, contain not one but an infinite 
number of strictly distribution-free tests that are asymptotically optimal. 

The exact definition of the asymptotically optimal test is recalled from TARDIF (1985) in Section 2. 
Sections 3 and 4 are devoted to the ranking after substitution procedure and the generalized method 
of weighted rankings, respectively. 
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2. THE ASYMPTOTICALLY MINIMAX TEST 

Introduce a strictly increasing sequence { nv:v;;;o I} of number of blocks, let N v =nvM, v;;;o I, and con­
sider the sequence of composite contiguous alternatives 

Kv: pj = N; 112 Aj , j = I, ... ,p, v;;;o I, 

for which i1=(d1, .•• ,Ap) is allowed to belong to the ellipsoid {i1:~=lmjA} =C2 and ~=lmjAj=O} 
with C2 a positive constant. Given any density function g(x) satisfying condition (1.1), TARDIF (1985) 
has established the existence of an asymptotically minimax test for distinguishing between H and the 
sequence {Kv}· It should be mentioned that, since the block effects ai. ... ,an. act as nuisance 
parameters in the problem and, as the number of blocks will tend to infinity, there will be an infinite 
number of nuisance parameters, the asymptotically optimal test should exhibit invariance with respect 
to these block effects. With this in mind, introduce the mean-aligned observations 
Y;k=X;k-M- 1 ~f/= 1 X;h,l~k~M and l~i~nv. Then, the joint density function of (M-1) aligned 
observations of any given block is, under H, given by 

00 

f(yi. ... ·YM-d = M f g(y1 +t, ... ,yM+t)dt, (2.1) 
-oo 

where YM = - ~r ;11yk. Furthermore, define the M functions 
00 

fk(y1, · ·. ,JM-1) = M f gk(y1 +t, ... ,yM+t)dt, k=l, ... ,M, (2.2) 
-oo 

the quantity 

[
f,(y) ]2 

1({) =Rf, j (y) j(y)dy, 

where y=(yi. ... ·YM-d, and introduce the sequence of random variables 

n, m, { f } 
Wvj = N; 1n~ ~ - fk (Y;1, ... , Y;,M-d , j = 1, ... ,p and v;;;.I. 

1=! k=mr 1 +1 

It was shown in TARDIF (1985) that, among the class of tests based on mean-aligned observations, 
which amounts to say among the class of tests based on block-location-free statistics, the one based 
on {g(f)/(M-l)}- 1 ~= 1 mT 1 W;j is asymptotically maximin most powerful, or minimax, for testing 
H against { K v}. It was also shown that this statistic is, under { K v}, asymptotically distributed as a 
chi-squared variable with (p - 1) degrees of freedom and noncentrality parameter 

~2 - c2_JfJJ_ (2 3) 
Uopt - M-1" . 

Any rank test, either conditionally or strictly distribution-free, will said to be asymptotically optimal 
if and only if the asymptotic distribution of its test statistic is a chi-square with (p - 1) degrees of 
freedom and noncentrality parameter equal to (2.3) since then its asymptotic Pitman-efficiency relative 
to the asymptotically minimax test will be equal to one. 

3. THE METHOD OF RANKING AFTER SUBSTITUTION 

With the ranking after alignment procedure, the observations are made comparable by aligning them, 
that is, by removing from them the influence of the block effects so a combined ranking can be 
envisaged. The method of ranking after substitution (MRS) is inspired by a similar principle. Intro­
duce M real functions e1(xi. ... ,xM), ... ,eM(xi. ... ,xM) satisfying for all (xi. ... ,xM)E~M and 
for l~k~M: 

(a) ek(x 1 +c, ... ,xM+c) = ek(X1> ... ,xM) for every cE~, } 

, (b) ek(Xr,, ... ,xrJ = er.(Xi. ... ,XM) for every (ri. ... ,rAf)E'iR; (3.1) 
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where 'iR, is the group of all permutations of the first M integers, and define the random variables 
Eik=ek(X; 1, ... ,XiM),1.;;;;k.;;;;M and 1.;;;;;.;;;;nv. Now, consider the observations of a given block, the 
i-th, say, let Rik be the within-block rank of Xik among Xi 1, ••• , XiM and designate the vector of 
within-block ordered observations by xi(-) = (X;(I)> ... 'xi(M)). Then, for 1.;;;;k o;;;;M: 

Eik = ek(X;1, ... ,X;M) = ek(X;(R,,), ... ,Xi(Rm>) = eR,.(Xi(·))· (3.2) 

Consequently, if X;(.) is fixed, the random variables Eil, .•. , EiM are solely functions of the within­
block ranks of Xii, ... ,XiM• respectively. The MRS thus recommends the use of the random vari­
ables E;k>lo;;;;k.;;;;M and 1.;;;;i.;;;;nv, as substitutes for the original observations X;k>I.;;;;k.;;;;M and 
1.;;;;;.;;;;nv. 

REMARK 3.1. If the substitution functions are required to verify the additional property: 
e1(x0 ).;;;; · · · .;;;;eM(x0 ) for every x0 = (xo» ... ,x(MJ)ERM} 
such that x(l).;;;; · · · .;;;;x(M) holds, (3.3) 

then the vector of the within-block ranks of Eil, ... , EiM coincides with the one of Xii, ... , X;M. To 
see this, let Qik be the rank of Eik among E; 1, .•• , EiM, I o;;;;k .;;;;M. In view of (3.2), 
Ei(I).;;;;; · · · o;;;;Ei(M) are the order statistics of eR,, (Xi0 ), ... ,eR,M (X;0 ) or, equivalently, of 
e 1(Xi0 ), ... ,eM(X;0 ). Property (3.3) entails however that e 1(Xi0 ).;;;; · · · .;;;;eM(X;(-)) so 
Ei(k) =ek(Xi0 ), I .;;;;k.;;;;M. Consequently, 

Eik = Ei(Q,,> = eQ,,(X;0 ), k=1, ... ,M. (3.4) 

It then follows from (3.2) and (3.4) that Q;k = R;k> 1 o;;;;k .;;;;M. 
In view of (3.1.a), the substitutes Eik> I .;;;;k .;;;;M and I .;;;;i .;;;;n v• are block-location-free. Moreover, in 

view of (3.1.b) and since the original observations are exchangeable within blocks under the null 
hypothesis, it holds, for any 1.;;;;;.;;;;nv and any (ri. ... ,rM)E'i.R, that: 

(E;,,, ... ,E;,J = (e,,(Xil, ... ,X;Af), ... ,e,M(X;1, ... ,XiM)) 

= (e1(X;,,, ... ,X;r"), ... ,eM(Xir,• ... ,Xir")) 
d 

=(e1(X;1, ... ,xiM), ... ,eM(X;1, ... ,XiM)) 

d 
where = denotes an equality in distribution, so the substitutes are also exchangeable within blocks 
under H. Consequently, they are comparable and a combined ranking of them makes sense. Let RN,;ik 
be the rank of E;k among the Nv substitutes and consider a set of scores {aN,(l), ... ,aN,(N.)}. For 
v;;;;.1, define 

M 
aN,(RN,;i·) = M- 1 ~ aN,(RN,;ik) ,i = l, ... ,nv, 

k=I 

Q = r-2 ~ c2 . N, N, ,Z SN,)" 
j=I 

The MRS suggests the use of the quadratic form QN, as a test statistic. This test statistic is of the 
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same form as the one associated with the ranking after alignment procedure (see TARDIF (1980)). In 
fact, the MRS constitutes a generalization of the former. The reason is as follows. Any ranking­
after-alignment test statistic is a function of the combined ranks of the aligned observations 
Xik-a(Xn, ... ,X;Af), 1-s;;;k-s;;;M and 1-s;;;i-s;;;nv, where a(xi. ... ,xM) is some real translation 
equivariant symmetric function. But the functions 

ek(xi. ... ,xM) = xk-a(x1, ... ,xM), k= l, ... ,M, 

are easily seen to form a system of substitution functions satisfying (3.1). Moreover, property (3.3) is 
also seen to be verified. Consequently, aligned observations are just particular choices of substitutes. 

REMARK 3.2. An interesting system of substitution functions can be defined as follows. Consider the 
functionsj(y),f1(y), ... ,fM(Y) introduced in (2.1) and (2.2), respectively, and put 

(3.4) 

where x=M- 1'2.r=ixk. On account of Lemma 4.1 of TARDIF (1980), it is easily seen that condition 
(3.1) is satisfied. Furthermore, if the partial derivatives of the density function g(x) verify the pro­
perty: 

-g,(x0 )-s;;; • • • o;;;;-gM(X(.i) for every :x0 = (xo» ... ,x(M))ERM} 

such that x (I) .;;;;;; • • • -s;;; x (M) holds, (3.5) 

then property (3.3) is also verified. In particular, if g(x) is the joint density function of M independent 
random variables, that is, g(x)=rrr=ig0(xk), then property (3.5) will hold if and only if g0(t) is a 
strongly unimodal density function (see TARDIF (1987)). It may also be noted that the use of the sub­
stitution functions (3.4) for two particular choices of the density function g(x) will produce 
substituted-rank tests that are in fact aligned-rank tests. The first case arises when g(:x) is the density 
function of a multivariate normal random vector with a covariance matrix having the equal-variance, 
equal-correlation pattern. It can be deduced from Section 4 of TARDIF (1987) that the substitution 
functions (3.4) are then proportional to x 1 -x, ... ,xM-x, respectively. Consequently, the 
corresponding substituted-rank test coincides with the mean-aligned rank test. The second case arises 
when g(x) is the density function of M independent random variables having the extreme-value distri­
bution, that is, g(x)=ITr=iexp{xk-exp(xk)}. Once again, it can be deduced from Section 4 of TAR­
DIF (1987) that the substitution functions (3.4) then become 

Mexp(xk) _ 
ek(Xi. ... ,xM) = M - 1, k-1, ... ,M. 

'2.h =1exp(xh) 

Now, since log(x + 1) is a nondecreasing function of x, the combined ranking of the substitutes 
Eik.1-s;;;k-s;;;M and 1.;;;;fo;;;;nv, and the combined ranking of the random variables 
log(E;k + l)=X;k -log{ M- 1 '2.f=i exp(X;h)}, 1 o;;;;k-s;;;M and 1 o;;;;i-s;;;nv, lead to identical vectors of ranks. 
Therefore, the corresponding substituted-rank test is equivalent to the aligned-rank test when the 
alignment is made on the function a(xi. ... ,xM)=log{M- 1'2.r= 1exp(xk)}. 

Rank tests based on the MRS are to be performed conditionally, given the configuration, exactly in 
the same way as the rank tests based on the ranking after alignment method. For a precise definition 
and a full discussion on the configuration and the corresponding conditional permutation distribution, 
see HODGES and LEHMANN (1962) or PuRI and SEN (1971). The asymptotic (unconditional) distribu­
tion of QN. under the null hypothesis as well as under the sequence of alternatives { K v} will now be 
considered. For that purpose, some additional conditions are required. Let GE(x) denote the common 
c.d.f. of the substitutes under the null hypothesis and, to simplify proofs, suppose that 
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GE(x) is a continuous c.d.f. (3.6) 

(this requirement rules out, for instance, substitutes that are median-aligned observations when M is 
odd since these observations are, under H, equal to zero with probability l IM). Suppose also that the 
sequence of scores {(aN,(l), ... ,aN,(Nv)):v~l} is generated by a square-integrable function cp on (0,1) 

in the sense that 
I 

lim J {aN.0 +[uNv]) - cp(u)}2du = 0. 
V-->00 Q 

(3.7) 

Assume further that 

cp is not constant and such that } 
P[cp{GE(E11)} = cp{GE(E12)}jH]<l. (3.8) 

Finally, define 

f k 
Hk = - f(Y11, ... , Y1.M-d, k=l, ... ,M, 

and 
I 

i2 = f cp2(u)du - 0(cp{GE(E11)}cp{GE(E12)}), 
0 

where $ stands for an expectation taken under H. The fulfillment of condition (3.8) ensures that 
i2>0. 

THEOREM 3.1. Under assumptions (1.1), (3.1), (3.6)~ (3.7) and (3.8), QN, has, under H, asymptotically a 
central chi-squared distribution with (p - 1) degrees of freedom and has, under { K v }, asymptotically a 
noncentral chi-squared distribution with the same number of degrees of freedom and with noncentrality 
parameter 

PROOF. Lemma 3.1 of TARDIF (1980) can be invoked to show that, under H, T1. converges in proba­

bility to T2. Furthermore, Theorem 3.1 of TARDIF (1980) can be applied without modification to get 
the asymptotic distribution of QN, under the null hypothesis. Finally, straightforward adaptations to 

the present situation of parts of the proof of Theorem 5.1 of TARDIF (1980) show that QN, is asymp­

totically ax;- 1 (8~Rs) under {Kv}· Q.E.D. 

REMARK 3.3. There was an imbalance between Theorems 3.1 and 5.1 of TARDIF (1980) in the sense 
that the former is valid for any alignment while the latter is valid for alignment on the block mean 
only. Theorem 3.1 now compensates for this imbalance since its validity holds, in particular, for any 
alignment function. 

There only remains to show that the class of rank tests associated with the MRS contains an 
asymptotic optimal member. To see this, define substitutes via the system of substitution functions 
introduced in Remark 3.2, that is, take E 1k =Hk, l~k~M, and let cp(u)=Gi 1(u),O<u<l. Then, 
according to Lemma 4.1 of TARDIF (1980), it is seen that 

0(cp{GE(E11)}Hi) =&(Hy)= V") 
and 
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so 8~RS becomes C2~)/(M -1)=8;pt· In view of Remark 3.2, the conditionally distribution-free test 
which is asymptotically optimal turns out to be an aligned-rank test when the observations have either 
the normal or the extreme-value distribution. It should be noted however that, under normality, the 
asymptotically minimax test is actually the asymptotic version of the classical variance-ratio test. 
Moreover, SEN (1968) had already established that the mean-aligned rank test for which normal scores 
are used has, under normality, an asymptotic Pitman-efficiency relative to the variance-ratio test equal 
to one. 

4. THE GENERALIZED METHOD OF WEIGHTED RANKINGS 
The method of weighted rankings (MWR) has been described by QUADE (1979), ROTHE (1983) and 
TARDIF ( 1987). The generalized MWR is based on the following simple idea. First, the total number 
of blocks is partitioned into M -1 subgroups of blocks. Then, on each of these subgroups, different 
sets of sums of scores for each treatment are computed as advocated by the MWR Finally, the 
different partial sums of scores for each treatment are added together to form total sums of scores for 
each treatment and a quadratic form of these is used as a test statistic. More precisely, let, for each 
v~l and l.;;;;k.;;;;M-1,nvk be the number of blocks contained in the kth subgroup of blocks, so 
~tI=-1 1 nvk=nv, and put n~=O and n;k=~~=lnvh· For each subgroup of blocks, that is, for each 
l.;;;;k.;;;;M-1, introduce_ a set of_ within-block scores bk=(bki. ... ,bkM)' satisfying 
or=(M-l)- 1 ~W=1(bkh-bk)2 >0, where bk=M- 1 ~W=1bkh• let Rih denote the within-block rank of 
Xih among Xn, ... , XiM• l .;;;;h .;;;;Mand n;,k -I + l .;;;;i .;;;;n;k, and define 

m, -
BikJ = mT 112 ~ [bkR;, -bk],i=n;,k-1 +l, ... ,n;k>k=1, ... ,M-l,j=l, ... ,p. 

h=mj_,+I 

Next, for each l.;;;;k.;;;;M-1, introduce a variability measure dk(x 1, ... ,xM), that is, a real-valued 
function satisfying, for all (x 1, ••• ,xM)ElllM: 

(a) dk(x 1 +c, ... ,xM+c) = dk(xi, ... ,xM) for every cElll, } 

(b) dk(x,,, ... ,x,J = dk(xi, ... ,xM) for every (r 1, ••• ,rM)E01., <4·1) 

define Dik=dk(Xil, ... ,X;M) as the observed variability of the ith block, n;,k-I +l.;;;;i.;;;;n;k> and let 
Qn,,ik be the rank of Dik among the set { Di'k :n;,k - I + l .;;;;i' .;;;;n;k}. Furthermore, introduce, for each 
l .;;;;k.;;;;M -1, a sequence of between-blocks scores {(an,,k(l), ... , an,.k(nvk)):v~ 1 }. Then 

n,. 

Sn.,kJ = ~ an,.k(Qn.,;dBikJ• k = 1, ... ,M -1,j= 1, ... ,p, 
i=n,_,_, +I 

are the partial sums of scores for each treatment and Sn,J =~tI=-1 1 Sn,.kJ• l .;;;;j.;;;;p, are the total sums of 
scores for each treatment. The test statistic is finally defined as the quadratic form 

{
M-1 n,. }-I .,f., 

Qn, = k~1 i~la~ .. k(i)or 12:1s~.J· (4.2) 

Because the observations are independent between blocks and are, under H, exchangeable within 
blocks, the vectors of within-block ranks (Ril, ... , RiM ), l .;;;;i .;;;;n v• are, under H, independently and 
uniformly distributed over the group of permutations of the first M integers and, for l.;;;;k.;;;;M -1, 
the vectors of between-blocks ranks (Qn,.,n;_, _, + l,k, ... , Qn,,n~k) are mutually independent and uni­
formly distributed over the group of permutations of the first n vk integers, respectively. Moreover, the 
observed variabilities are solely functions of the within-block order statistics on account of (4.1.b) and 
hence are, under H, independent of the vectors of within-block ranks. This entails that the vectors of 
between-blocks ranks and of within-block ranks are, under H, mutually independent. Consequently, a 
test based on Qn, is strictly distribution-free. 

The asymptotic distribution of the statistic ( 4.2) under the null hypothesis and under the sequence 
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of contiguous alternatives { K 11 } is provided in the next theorem under the following additional condi­
tions. Assume that 

Jim nvk = 1Jk>k=l, ... ,M-1, aslimmin{n 11i, ... ,nv,M-1} = 00, 
-oon 11 -oo 

(4.3) 

where .,,1, ••• , 1JM _ 1 are real numbers lying on the unit interval, and that the sequences of between­
blocks scores are generated by nonconstant square-integrable functions <p1(u), ... ,<JJM-i(u),O<u<l, 
that is: 

I 

1imj{an,.k(l+[un 11d) - 'Pk(u)}2du = O,k=l, ... ,M-1. 
11--+000 

(4.4) 

Also, designate the order statistics of the mean-aligned observations Y 11 , ••• , YIM by 
Y 1(1):;;;;;; • • • :;;;;;; Y l(MJ> define 

Vi= -; (Y1(1)···•Y1cM-I)), h=l, ... ,M, 

Dk= dk(Xu, ... ,X1M), k=l, ... ,M-1, 

and let Gk(x) denote the c.d.f. of Dk under the null hypothesis, 1 :;;;;;k :;;;;;M - 1. 

THEOREM 4.1. Under assumptions (1.1), (4.1), (4.3) and (4.4), Qn, has, under H, asymptotically a central 
chi-squared distribution with (p -1) degrees of freedom and has, under { K 11 }, asymptotically a noncentral 
chi-squared distribution with the same number of degrees of freedom and with noncentrality parameter 

M-1 M 2 

~ 11!'2 ~ bkh&( <pk{ Gk(Dk)} Vi) 
k=I h=I 62 - c2......_~~~~~~~~~~_...-

MwR - M-1 I 

M(M-1)2~11kf'P~(u)dua~ 
k=I O 

(4.5) 

where & stands for an expectation taken under H. 

PROOF. Introduce the random variables tn,J =··2/f=-11Yn,.ktn .. kJ• I:;;;;;j,;;;;,.p, where, for l:;;;;;k:;;;;;M -1 and 
}:;;;;;j:;;;;;p: 

112 

Yn,.k = 

and 

{_nl .~ atk(i)a~}-
112 

_ J:-sn,,kJ . 
~ i=I yn~ 

Evidently, Qn, = '2!j = 1 t'!;,1. Furthermore, define 

1 
1/2 

1Jk J <p~(u )dua~ 
Yk = 0 

M-1 I 

~ 1Jh J <p~(u)dua~ 
h=I O 

,k= l, ... ,M-1. 
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It follows easily from (4.3) and (4.4) that lim._. 00 rn .. k=yk>l:s;;;;k:s;;;;M-1. Now, define 

Kj=(m/M)"2,1:s;;;;j:s;;;;p, consider the pXp_matrix K with entries -KjKj' for f=l=J' and 1-KJ for 
j=j',I:s;;;;j and 1'"1z· let bZh=(bkh-bk)l{(M-I)"2ak},l:s;;;;k:s;;;;M-1 and l:s;;;;h:s;;;;M, and 
'Pk(u)={fbip~(v)dv }- 1 2ipk(u),O<u<I and l:s;;;;k:s;;;;M -1. Theorems 2.1 and 2.2 of TARDIF (1987) 
entail that, for l:s;:;;;k:s;:;;;M-1, the vector (tn.,kh ... ,tn,.kp)' has, under both Hand {K11 }, asymptoti­

cally a multivariate normal distribution with covariance matrix equal to K and with mean vector 
equal to (0, ... , O)' under H but equal to (K18i. ... , Kp8p)'£k under { K 11 }, where 

M 
€k = (M -1)-"2 ~ bZh&(ipZ{Gk(Dk)} Vi). 

h=l 

Since these vectors are mutually independent and since ~r;1 1 y~ = 1, Slutsky's theorem entails that 
M-1 

(Kn,I• · · · ,tn,p)' = ~ Yn,,k(Kn,.kh · · · ,tn,,kp)' 
k=I 

is asymptotically a multivariate normal with covariance matrix equal to K and with mean vector equal 
to (0, ... ,O)' under H but equal to (K18i. ... ,Kp8p)'~r=-i 1 Yk£k under {K11 }. Hence, Qn, is asymptot­

ically distributed as a x;-i under Hand as a x;- 1(8
2) under {K11 }, where 

8' = ;~1•}ll} [:~:Yk•kl" 
in accordance with Lemma 1.4.1 of HAJEK and SmAK. (1967). Finally, straightforward computations 
lead to 82 =81..twR· Q.E.D. 

It may be noted that, if '1)2 = · · · =1JM-I =O, which entails 'IJI = 1, the noncentrality parameter (4.5) 
reduces to the one given in Theorem 2.2 of TARD IF_ ( 1987). Thus, Theorem 4.1 may be viewed as a 
generalization of the latter. 

REMARK 4.1. Using an argument similar to the one of Theorem V.2.2 of HAJEK and SmAK. (1967), it 
is noticed that, to establish the asymptotic distribution of Qn, under the null hypothesis, the part of 

condition (4.3) requiring the ratios n11kln 11 to converge to finite numbers 'Ilk> 1 :s;;;;k:s;;;;M -1, can be 
dispensed with. It is preferable however to impose such a condition for establishing the asymptotic 
distribution of Qn, under the sequence { K 11 } in order that 8ifwR is a constant. 

It will now be seen that the class of distribution-free tests induced by the generalized MWR con­
tains asymptotically optimal members. Let the within-block scores be the columns of any MX(M -1) 
Helmert matrix, or matrix of orthonormal contrasts, B* = [b1 · · · bM - I], where 
bk=(bki.···•bkM)',k=l, ... ,M-1, and assume that '1)1>0, ... ,'IJM- 1>0. Now, define the optimal 
variability measures as 

dk(Xi, ... ,XM) = f bkh{ _ ffh (x(l)-x, ... ,X(M-1)-:X)},k = 1, ... ,M -1, (4.6) 
h=I 

where x(l1£:s;:;;; · · · :s;;;;x<Ml is the enumeration of xi, ... ,xM in ascending order and where 
x=M- 1 ~h=lxh. Note that (4.6) entails Dk=~f=1bkhVi,I:s;;;;k:s;;;;M-1. Moreover, define the optimal 
score-generating functions as 'Pk(u)='IJ;;"2G;; 1(u), where G;; 1(u) is the quantile function of Dk under 
H, I :s;;;;k :s;;;;M -:--- 1. Then, the noncentrality parameter ( 4.5) becomes 

M-1 
~ &(D~) 

82 - 2 k=l 
MWR - C -M-(M---1-) 

On the other hand, introduce the MXM matrix~ with entries akh=&(Vi Vi),I:s;;;;k and h:s;;;;M. TAR­
DIF (1987) has noted that~ is, in general, of rank (M -1), its smallest characteristic root being 0 and 
1, the MX 1 vector of ones, being the associated characteristic vector. Since 1'~1=0 and since the 

,_ 
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MXM matrix B=[B*M- 112 1] is orthonormal, it follows that 
M-1 M-1 
~ f9(D~) = ~ bk'Lbk = tr(B'LB) = tr(L), 

k=I k=1 

where tr(A) denotes the trace of the matrix A. Finally, it was noticed in TARDIF (1987) that 
tr(L)=Mg(j) so 8~wR is equal to (;_2V)!(M-1)=8~K}·_The latter result hold~ for any value of t~e 
constants 111 >0, ... , 1JM - 1 >0, provided, of course, Lk = 1 11k = 1, and any choice of Helmert matnx 
B*. Consequently, the class of tests based on the generalized MWR contains an infinite number of 
optimal members. In other words, no matter how the partitioning of blocks is made and no matter 
which within-block scores are used, asymptotic optimality can be reached as long as the variability 
measures and the score-generating functions are defined accordingly. 
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