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BOOLEAN ELEMENTS IN COMBINATORIAL OPTIMIZATION - A SURVEY*) 

by 

**) Peter L. Hammer 

ABSTRACT 

This paper surveys several recent developments in the use of Boolean 

methods in 0-1 progrannning. After a brief introductory section some ele

ments of Boolean algebra are presented. The next section deals with trans

formations of linear or nonlinear constraints in 0-1 programming to Boolean 

equations and these results are used in the following two sections for de

veloping algorithms to solve 0-1 problems (with special emphasis on the 

linear and on the quadratic cases, as well as on the special case of knap~ 

sack problems) and for finding equivalent formulations of 0-1 problems 

(e.g. for proving the fact that "almost" every linear or nonlinear 0-1 

programme can be transformed to an equivalent covering problem in the orig

inal variables). A further section characterizes packing problems which are 

equivalent to knapsack problems. Different possibilities of coefficient 

changes for a given linear inequality in 0-1 variables are exploited in the 

next section. The following section analyzes some connections between the 

Boolean and the geometric representation of certain polytopes in the unit 

cube and establishes a one-to-one correspondence between certain prime im

plicants of the problem and certain facets of the polytope. The last sec

tion deals with n-person characteristic function games, examines different 

value concepts (selections, core elements, Shapley value) as linear approx

imations of the nonlinear psuedo-Boolean function which represents the 

game, and establishes connections between these concepts. 

Presented at the NATO Advanced Study Institute on Combinatorial 
Programming, Versailles, France, September, 1974. 

Department of Combinatorics and Optimization 
University of Waterloo 
Waterloo, Ontario, Canada. 





INTRODUCTION 

The possibility of using Boolean elements in the formulation and in

terpretation of combinatorial optimization problems has been first pointed 

out by R. FORTET [12], [13]. This approach was continued by P. CAMION [5], 

R. FAURE & Y. MALGRANGE [II], P.L. HAMMER (Ivanescu), I. ROSENBERG & 

S. RUDEANU [29]. A monograph [31] on this subject has appeared in 1968, 

and since then numerous publications have been devoted both to theoretical 

and to practical (algorithmic) aspects of this topic. RUDEANU's recent 

monograph [44] is devoted to the problems of Boolean equations. 

Most of the generally available algorithms for the solution of dis

crete optimization problems are based either on implicit enumeration, or 

on linear algebra. The use of linear algebra is motivated by the excellent 

results it yields in the solution of (continuous) linear programming prob

lmes, and by the possibility of "relaxing" a typical discrete condition 

of the form x € {0,1} to its continuous counterpart O ~ x ~ I. However, in 

this relaxation one risks to lose essential features of the original dis

crete problem. (Consider for example the system 2x - 6y ~ - 5, 2x + 6y ~ I, 

with x, y € {0,1}; this system obviously implies x = I. If we relax 

x, y € {0,1} to O ~ x, y ~ I and examine all the possible surrogates of the 

above two inequalities, i.e. ail inequalities of the form 

(2+2:\)x + (-6+6>.)y ~ - 5 + A, we see that they have the following 0-1 

solutions: (O,O), (1,0), (1,1) for O ~A~ 1/5, (0,0), (0,1), (1,0), (1,1) 

for 1/5 ~A~ 5, and (0,I), (I,0), (1,1) for A~ 5. In other words, there 

is no surrogate of our problem implying x=l). On the other hand, the degree 

of implicitness of an enumeration-type algorithm depends heavily on the 

art of using it. The interaction of constraints being usually hard to real

ize (unless it is strong enough to be detected in the continuous relaxation 

of the problem) is bypassed and taken care of only at later steps when 

sufficient variables have been fixed to arrive at conclusions from one of 

the particular constraints of the problem (e.g. how "implicit" is the 

enumeration which tells us that in every solution of the above problem 

x = I, while y is arbitrary?). The difficulties arising in connection with 

discrete nonlinear problems are even greater. 
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The necessity of complementing rather than replacing the presently 

utilized methods with other ones seems obvious and Boolean algebra appears 

to be likely candidate for this task. In our above discussed example, it 

would tell that the first inequality is equivalent to xy = O, the second 

to xy = O, and the system to xy v ;cy(=i) = O, i.e. to x = 1). 

On the other hand, the role of a Boolean viewpoint in combinatorial 

optimization does not reduce to that of assiting the computations. Boolean 

procedures can be used to transform problems to simpler ones and to get a 

better insight into their structure. Irrelevant elements can be disposed 

of (in the above example the variable y was irrelevant, since our problem 

did not depend on it), inessential data simplified (e.g. the inequality 

2x + 6y ~ 1 can be reduced to x + y ~ 1). Further, some familiar problems 

can be given new and possibly advantageous formulations (e.g. see [48] 

for a new formulation of the plant-location problem). Moreover one can 

expect connections to be established between apparently different questions 

and structural results to be obtained (e.g. "almost" every 0-1 programming 

problem can be reduced to a covering problem in the original variables, 

there is a strong connection between prime implicants of threshold func

tions and facets of the polytope of 0-1 solutions of knapsack problems, 

different concepts of value in,n-person characteristic function games can 

be viewed as linear approxamations of nonlinear pseudo-Boolean functions, 

etc.) 

The aim of this survey is not to present a comprehensive bibliography 

of all pertinent developments, but rather to discuss a relatively small 

(and subjective) selection of possibly useful ideas which have been re

ported in the literature of the last few years. 

1 . ELEMENTS . OF BOOLEAN ALGEBRA 

Let B = {0,1}. For X E B we shall denote X = 1 - x its complement or 

negation. We shall also write a if a and x a = X if frequently x = X = l ' 

a = o. This notation can cause no confusion, because the regular powers of 

x EB being all equal to x (idempotency of multiplication) we shall never 



use them. 

For any x, y EB, we shall define their union xv y by xv y = 

= X + y - xy. 

Some of the most connnonly utilized properties of the above defined 

operations are the following: x v y = y v x (commutativity), x v(yv-z) = 

= (xvy) v z (associativity), xv x = x (idempotency), xv y = 0 if and 
-only if x = y = O, xv O = x, xv I= I, xv x = I, xv yz = (xvy)(xvz) 

and x(yvz) = xy v xz (distributivities), xv xy = x (absorption), 
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xv xy =xv y, xy =xv y and xv y = x•y (De Morgan's Laws),;= x (double 

negation), x ~ y if and only if xy = x, x ~ y if and only if xy = O, x = y 

if and only if xy v xy = O. 

A function f(x 1, ••• ,xn) whose variables and values belong to B, will 

be called a Boolean function. Examples of such functions are xv yz, 

xv yz vii, (xvy)(yvxz), etc. The algebraic expression of a Boolean func

tion is not unique, e.g. the expressions XV y V z and XV yz V xi define 

the same function (this can be seen either by giving to x, y, z all 23 

possible combinations of values, or noticing that xv yz v yz =xv yz v z = 
-= X V y V z. 

A variable x, or its negation x will be called a litePal X. A finite 

product of literals will be called an elementary conjunction 
a. 

C = nx.J by convention, we shall consider sometimes also the constant I as 
jESJ 

being an elementary conjunction (with S = 0). A finite union of elementary 

conjunctions E = c1 v c2 v ... v Cm will be called a disjunctive foPm. It can 

be shown easily that every Boolean function can be expressed in a disjunc

tive form. 

We shall say that an elementary conjunction C is contained in the 

elementary conjunction C' if every literal appearing as a factor in C is 

also a factor of C'. e.g. xy is contained in xyzu, also in xy, but is not 

contained in xz or in xyz. 

An elementary conjunction I is said to be an implicant of the Boolean 
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function f(x 1, ... ,xn), if I= I implies f(x 1, ... ,xn) = l. For example, 
- -

xy is an implicant of xy v yz(xvz). Also, xy is an implicant of xz v yz 

(indeed, if xy = I, then x = I, y = 0, and hence xz v yz becomes z v z 

which is equal to I). 

An implicant P of a Boolean funciton f(x 1, ... ,xn) is said to be a 

prime implicant if there is no other implicant P' off contained in P. 

For example, xy is a prime implicant off= xz v yz, but xyz is a non

prime implicant off. If all the prime implicants of a Boolean function f 

are P1 , ... ,Pt, then it is easy to see that f = P 1 v ... v Pt. 

We shall see later that the knowledge of the prime implicants of a 

given Boolean function is extremely useful. A way of finding all the prime 

implicants is offered by the so-called consensus method. 

Given two elementary conjunctions C and C', such that there is pre

cisely one variable (x0) appearing unnegated (x0) in one of them, and 

negated (i0) in the other, then the elementary conjunction obtained from 

the juxtaposition CC' of C and C' after deleting x0 , i 0 and repeated liter

als, will be called the consensus of C and C'. For example, let C = xyzu 

and C = yzuw; then their consensus is C" = xyuw. 

The consensus method consists in applying as many times as possible 

the following two operations to a disjunctive form of a Boolean function: 

(i) eliminate any elementary conjunction which contains another one; 

(ii) add as a new elementary conjunction the consensus of two elementary 

conjunctions, provided this consensus does not include any of the 

listed undeleted elementary conjunctions. 

All the different expressions obtained along this process represent 

the same Boolean function, and the elementary conjunctions appearing in 

the final form at the end of this (finite, but long) process are exactly 

the prime implicants of the given functions. 

It is likely that in practical problems finding all the prime impli

cants of a Boolean function might require an excessive amount of computation. 
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Therefore, in the more practical procedures described in Section III, we 

shall work with implicants which are not necessarily prime, but which allow 

an efficient solution of many 0-1 programs. A particular way of finding 

them is described in [20], and numerous other alternatives are easy to 

describe. 

II. THE RESOLVENT 

Let S = Bn be the set of solutions of the system E of pseudo-Boolean 

inequalities f(X) ~ 0 (i=l, .•• ,m) and let p(X) be a Boolean function which 

takes the value O iff XE S. The function p will be called the resolvent 

of E, and also the resolvent of S. 

Let us consider the linear inequality 

and let l be the family of all nrinima,Z covers of (I), i.e. the family of 

all the minimal sets C = {l, ••• ,n} with the property 

min(O,a.). 
J 

It can be seen ([19]) that the function 

(2) 
a.. 

x. J 
J 

(where a..=I if a.~O and a..=O if a.<O) is the resolvent of (I). 
J J J J 

It has been shown in [29] (see also [31]) that every pseudo-Boolean 

function f(X) has a polynomial expression, which is linear in each variable. 

Hence, every pseudo-Boolean inequality can be written in the form 
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where 

(4) x. 
J 

(h=I, ... ,k) 

are themselves taking only the values O and I. If ~(Y) is the resolvent 

of (3) (viewe,d as a linear inequality in the yh I s), then it is easy to 

see that the resolvent ~(X) of (3) (viewed as an inequality in the x.'s) 
J 

can be obtained from ~(Y) by simply substituting (4) into it. 

Further, if ~.(X) are the resolvents of the pseudo-Boolean inequal-
1 

ities fi(X) ~ 0 (i=J, ... ,m) then ~(X) = vr=I ~i(X) will be the resolvent 

of the system I. 

Consider for example the system consisting of x. E B(j=l, ... ,6) and 
J 

or 

(5- I) 

(5-2) 

5x1 - 4x2 - 2x3 - x4 - 4x5 + 3x6 ~ - 2 

-5x2 + 6x2x6 - 8x1x3x4 - 4x2x4 ~ - 7 

(5-1) 1 :5x1 + 4x2 + 2x3 + x4 + 4x5 + 3x6 ~ 9 

(5-2)' .5x2 + 6x2x6 + 8x 1x3x4 + 4x2x4 =:,; JO 

The resolvents of these inequalities are, respectively. 

(6- I) ~ I = x 1x2x3 v x 1x2x4 v x 1x2x5 v x 1x2x6 v x 1x3x5 v 

x 1x4x5 v x 1x5x6 v x 1x3x6 v x2x3x5 v x2x5x6 v 

x2x3x4x6 v x3x4x5x6 , 

(6-2) q) = 
2 xlx2 v x2x3 v x 1x6 v x3x6 v x4' 

while the resolvent of the system (5-1) - (5-2) is 

x2x6 v x3x6 v x4 v x5x6 , 

(showing in particular that in every solution of (5-1) - (5-2), x4=I). 
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III. ALGORITHMS *) 

Due to the fact that the resolvent of a system of inequalities might 

involve an excessive number of (prime) implicants, practical algorithms 

based on the ideas outlined in the previous section can utilize only par

tially the information contained in it. Spielberg's minimal preferred in

equalities method [44] belongs essentially to this class. Another example, 

APOSS (A Partial Order in the Solution Space), an algorithm given in [32] 

for solving linear 0-1 programs, utilizes only those minimal covers of 

the individual constraints which involve at most 3 elements. The corre

sponding implicants are combined to produce more implicants of lengths 

1, 2 and 3. To every implicant of length 2 an order relation between vari

ables is naturally associated (xy=O means xsy, xy=O means xsy, xy=O means 

xsy). If two binary relations involving the same pair of variables can be 

detected, then one of the variables can be eliminated (xy=xy=O implies 

x=O, iy=xy=O implies x=l, xy=xy=O implies x=y, xy=xy=O implies x=y). When 

all these informations are exhausted, the same binary relations are re

used as cuts in the associated linear program, and finally, if no further 

use of the binary relations is apparent, a branching technique is applied. 

Consider for example a problem involving the constraints 

8x 1 + 7x2 + Sx3 + 4x4 + 2x5 + 2x6 s 14 

4x 1 + 2x2 + 6x3 + 3x4 + x5 + Sx6 ~ 12 

The minimal covers of lenghts not exceeding 3 give rise to the "partial 

resolvents" 

*1 = xi x2 v x 1x3 v XIX4 v x2x3x4 

*2 = xlx3 V x2x3x4 v x2x4x6 v X3X4X5 v x3x6 
-

From xlx3 = xlx3 = 0 it follows that x3 = XI . Substituting we get 

l/J I = x 1x2 v x 1x4 v x2x4 I 

l/J I = xlx2x4 v x2x4x6 v x 1x4x5 v x 1x6 , 2 

A survey on Boolean-based algorithms is given in [20]. 
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hence w' = wj v Wz = xi v x2x4 v x2x4x6' implying in particular xi= 0, and 

hence x3 = I. Substituting x 1 = 0, x3 = I into our original system, we get 

7x2 + 4x4 + 2~5 ~?x6 ~ 9, 2x2 + 3x4 + x5 + 5x6 2:: 6, the partial resolvents 

of which are 

ip" = 
I 

ip" = 
2 

x2x4 v x2x5x6 

x2x6 v x4x6 v x5x6 v x2x4x5 ; 

hence w" = ijJ 11 V ijJ" = 
1 2 

f~asible solution. 
in every 

This algorithm has been coded on a CDC-6600 and a few hundred test 

problems involving up to 200 variables have been solved; the execution 

times (varying from .35 up to 65 sec.) compare favourably with those given 

by other methods. 

The special case of quadratic 0-1 programs has been examined in 

[21], [30]. Consider a quadratic function in 0-1 variables 

n 
f = I 

j=l 

and let us put 

c.x. + 
J J 

j-1 
!::,.. = c. + I 

J J i=I 

I 
i,j=I 

i<j-

d .• x. + 
l.J 1. 

d .. x.x., 
l.J 1. J 

n 
I d .. x. 

i=j+I J 1. 1. 
(j=l, .•• ,n) 

(j ,k=l, ... ,n;j<k). 

It is easy to see that in every minimizing point off,/::,.. > 0 (t:,..<0) 
J J 

implies xj = 0 (xj=I), while t:,.jk > 0 (t:,.jk<0) implies xj ~ ~ (xj2::xk). These 

relations can be exploited exactly as in the linear case to obtain infor

mation about variables with fixed values and about equal or complementary 

variables. If for example, 



then from 6 1 = -1 - 3x3 - x4 we get x4 = 0 + 6 1 < 0 + x 1 = 1, 

and from 64 = x 1 + 2x2 + 3x3 we get x 1 =I ➔ 64 > 0 ➔ x4 = 0, 

i. e • x 1 x4 = x: 1 x4 = 0, or x4 = x 1. Replacing now x4 by I - x 1 in f gives 

f' = 

now 6 1 < 0, and hence x 1 = I; f' becomes 

where 63 < 0, showing that x3 = I; finally, f" becomes 

f I II = -4 - X 2' 

showing that x2 = I, and the minimum (-5) is obtained in (1,1,1 ,0). 
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Another device which gives some insight into the problem is the 

examination of a "penalty relaxation inequality". This inequality has the 

form i(x) ~ b0k, where t(x) is a linear lower bound of the quadratic func

tion f(x), and b* is an upper bound of the minimum of f(n); the role of b* 

can be played by the value of f(x) in an arbitrary 0-1 point, while the 

construction of t(x) (see [21]) is 

[34]. Such an t(x) for our function 

as b* the value f(I O I O) = -4, we 

x 1 = x3 = I. 

based on Hansen's 

is -6 + 2.i + X 
2 I 5_ 2 

find that -x + 
2 I 

additive penalties 
7-

+ 2x3 , and if we take 
7-

x2 + 2x3 ~ 2, i.e. 

Of course, the examination of the 6. 1 s, 6 .. 's and of the penalty-
] iJ 

relaxation inequalities does not usually solve the entire problem, but can 

give valuable information when coupled with branch-and-bound type method. 

Since every quadratic 0-1 problem can be brought to a form where the 

quadratic form is positive (negative) definite (see [30]), there are pos

sibilities of "bounding" by the use of continuous quadratic progrannning. 

A special case of quadratic 0-1 progrannning has been studied in [15]. 

The question of maximizing a quadratic function with a single linear con-
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straint ("quadratic knapsack problem") arose in connection with a location 

problem for airports in Italy, and the method suggested in [15] for its 

solution consists in determining linear upper bounds of the objective func

tion and solving a sequence of associated (linear) knapsack problems. 

A question which arises frequently in applications is that of mini

mizing an unconstrained polynomial in 0-1 variables. A method of succes

sive elimination of variables has been given in [29] (see also [31]) for 

its solution. Branch-and-bound methods for the same problem have been 

devised in [3], [25], [33], [47], [51]; the main characteristic of these 

methods is the fact that branching is not performed according to single 

variables, but according to the 0-1 values of the nonlinear terms ap

pearing in the polynomial. A variant of these procedures (see [25]) has 

been progrannned on an IBM 360/50; problems with 10 - 30 variables, invol

ving 10 - 50 nonlinear terms required between 0.48 and 239 seconds of exe

cution time (including input-output time). 

An efficient method for minimizing quotients of linear functions in 

0-1 variables has been given by M. FLORIAN & P. ROBILLARD [41], [42]. 

(see also [31]). 

Another question which has been examined was that of constraint 

pairing and its application to knapsack problems. Single linear constraints 

can be used in a straightforward way for deriving bounds on the variables 

of discrete optimization problems from the examination of all the surrogate 

constraints associated to pairs of constraints. Different surrogates might 

be helpful in fixing the values (or at least improving the bounds) of dif

ferent variables; it might of course happen that no surrogate constraint 

fixes a variable, although the system does. It was however shown in [24] 

that if any variables can be fixed (or its bounds improved) by using ar

bitrary surrogates, then the same conclusion can also be obtained from the 

examination of n + 2 "special" surrogates (n of which correspond to those 

multipliers for which the coefficient of one of the variables in this sur

rogate is O). R. DEMBO [9] shows that many of the conclusions so obtainable, 

are also available from the "best" surrogate. A. CHARNES, D. GRANOT & 

F. GRANOT [6] :show how to extend these ideas to the case of more than two 

constraints. 
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An efficient application of this approach to knapsack problems [IO] 

r n 
1 maximize I a.x. 

j=l J J 

n 
(KP) subject to I b.x. ::; bO 

j=l J J 

x. E {0,1}, j=I, ••• ,n. 
J 

associates to (KP) a pair of constraints and derives conclusions from the 

resulting system. 

Let us assume that a 1/b 1 ~ ... ~ an/bn. Let~= (~ 1, •.. ,~n) be the op

timal solution of (KP'), obtained from (KP) by replacing all the constraints 

x. E {0,1} by O :5 x. :5 I (j=I, ••• ,n). If~ is not an integer vector, then 
J J 

we have ~j = I (j=I, •.• ,t), ~j = 0 (j=t+2, ••• ,n), and O < ~~+I < I. A very 

good (frequently optimal) solution is obtained by fixing x~ = I (j=I, ••. ,t), 
* J t x 1 = O, and re-solving a new KP' for b0 replaced by b0 - l· 1 b., etc., 
t+ J= J 

until arriving to a problem with x: fixed for j=I, ••• ,t*, and such that 
J 

all the bj's (j=t*+1, ••• ,n) are larger than the remaining b0 • Then the al-

ready fixed values x~ (j=I, .•• ,t*) together with x~ = 0 (j=t*+1, ... ,n) 
· · · 1 J · , 1 * ln * J h · form a good initia solution: et a = . 1 a.x .. If t e data are integer, 

J= J J . . * than any better solution will have a + I as a lower bound. An upper bound 

to it is a= \t a + [a ~ J (where [a] means the integer part of 
l j = I j t+ I t+ I ' 

a). Hence if X* is not an optimal solution, then any better solution satis-

fies 

n 

I 
j=l 

* a.x. = a + p + I, 
J J 

where pis a nonnegative integer not exceeding 

with the constraint 

n 
l b.x. + s = bo 

j=l J J 

a - * a - I. Pairing this 

usually supplies enough information to fix at least some of the variables. 

These informations can be supplemented by those given by the binary and 

ternary relations among the variables. 
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Consider for example the 0-1 knapsack problem of maximizing 

subject to 

IO * * Here== (1,1, Tf,O,O,O), X = (I,I,O,I,O,O), a= 42, a = 40. Hence, if 

x* is not optimal, then any optimal solution satisfies 

15x1 + 16x2 + 13x3 + 9x4 + 17x5 + 1Ix6 = 41 + p 

(O~p~I) 

9x1 + IOx2 + 1Ix3 + 8x4 + I6x5 + 1Ix6 + s = 20 

(s~O) 

Multiplying the first equation by 11, the second one by 13 and subtracting, 

we get 

or 

48x1 + 46x2 + 5x4 + 2Ix5 + 22x6 +lip= 133 + 13s, 

implying x 1 = I, x2 = I, x5 = O, x6 = O, and the last relation reduces to 

si4 +lip= -4 + 13s, which obviously has no nonnegative integer solutions, 

showing that x* was the optimal solution of our problem. 

Experiments carried out with this idea show that it is extremely use

ful for fixing variables in 0-1 knapsack problems. In experiments carried 

out on an IBM 370/145 it turned out that in randomly generated problems 

involving 50 - 10,000 variables, the average number of fixed variables was 

between 74% and 93% of the total number of variables, while the computing 

time was less then one second. 
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IV. EQUIVALENT FORMS OF 0-1 PROGRAMS 

Let us rewrite the resolvent cp(X) of a system E of linear or nonlinear 

inequalities, in the form 

T 
(8) x.)( Tl i.) 

J jEV J 
t 

where Ut, Vt (t=l, ••• ,T) are disjoint subsets of {1, ••• ,n}. Then, it is 

easy to see that cp(X) = 0 iff Xis a solution of the following generalized 

covering problem 

(9) 

Hence 

I x. -
jEV t J 

* ([19]) every 

I . u 
J t 

x. ~ 
J 

1 - lu I t 
( t= 1 , ••• , T) 

linear or nonlinear 0-1 programming problem is 

strongly equivalent to (i.e. has the same set of feasible solutions as) 

a generalized covering problem. 

Consider now the problem (PI) of minimizing a pseudo-Boolean function 

f(X) subject to E. Assume that f 0 is strictly monotonic, i.e. changing any 

1 of any XE Bn to a O strictly decreases the value of f 0 • This assumption 

holds for example for all linear f 0 's having only positive coefficients. 

Specializing (8) to the case where (Tl. U x.) (Tl. V x.) (t=l, .•• ,T) 
JE t J JE t J 

are the prime implicants of cp(X), and assuming that Ut = 0 for t=l, •.• ,T0 
and Ut ~ 0 fort= T0 + 1, .•• ,T, it can be shown ([22]) that (PI) is 

equivalent to (i.e. has the same optimal solutions as) the problem (PII) 

of minimizing f 0 (x) subject to cp'(X) = O, where 

TO 
( 10) cp' (X) = V TT x. 

J t=l jEVt 

i.e. to the covering problem: minimize f 0 (X) subject to 

* 

x. ~ 
J 

This remark appears in a somewhat stronger form for the special case 
of a single linear pseudo-Boolean inequality in [2]. 
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This equivalence holds because every feasible solution of PI is a 

feasible solution of the covering problem, while a feasible solution of 

the covering problem cannot be optimal unless it is feasible for PI too. 

For example minimizing 

6 

I 
j=l 

c.x. 
J J 

( c. >0, j = I , ••• , 6) 
J 

subject to (5-1) - (5-2) is strongly equivalent to the generalized 
. bl . . . \' 6 b. 1 d covering pro em: minimize lj=l cjxj su Ject to x4 = an to 

x 1 + x2 ~ 1, x1 - x6 ~ 0, -x1 + 

x2 +XS~ I, x2 - x6 ~ O, X3 -

the covering problem: minimize 

x3 + x5 ~ 1, x2 + x3 ~ I, 

0, x5 - x6 ~ 0 and is equivalent to 

c.x. subject to x4 = I and to 
J J 

xl + x2 ~ I, x2 + x3 ~ I, x2 

constraints, hence x6 = 0 in 

+ x 5 ~ I (x6 does not appear in any of the 

any optimal solution). 

Numerous equivalences between different forms of 0-1 programs 

have been described in [28]. 

V. PACKING AND KNAPSACK PROBLEMS 

By a packing problem we shall mean a set of linear inequalities in 

0-1 variables of the form x. + x. ~ I ((i,j) Er). A linear inequality 
i J 

l~ 1 a.x. ~ a0 (a.~O,j=O,l, .•. ,n) is equivalent to a packing problem iff 
J= J J J 

all its minimal covers contain exactly two elements. 

The converse problem, of characterizing those packing problems which 

are equivalent to a single linear inequality, has been examined in [7]. 

It has been shown that the following two characterizations follow from the 

theory of threshold functions. 

I. PP is not 0-1 equivalent to a single linear inequality iff it is 

possible to find 4 distinct indices h, i, j, k such that 

(h,i) Er, (h,j) 4 r, (h,k) 4 r, (i,j) 4 r, 
Ci, k) 4 r, (j , k) E r, 
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or such that 

(h, i) E f, (h,j) 4 r, (h,k) tr, i,j) e: r, 
(i,k) 4 r, (j ,k) E f, 

or such that 

(h,i) E f, (h,j) 4 r, (h,k) e: r, (i,j) E f, 

(i,k) 4 r, (j ,k) E f. 

II. PP is O - I equivalent to a single linear inequality if£ there exists 

a partitioning of {l, ••• ,n} into two subsets N' and N" and a permu

tation (j 1, ••• ,jr) of the elements of N" such that 

i) V i,j E N' (i,j) E r 
' 

and 

ii) V i,j E N" 
' (i .j) 4 r 

iii) V :.i ,j t E N"' (s<t), Vi E N'' (i,jt) E r 
implies 

(i,j s) E r. 

An efficient algorithm was also presented in [7] for finding such 

a 0-1 equivalent single linear inequality, if any, or otherwise to 

find a "small" system of linear inequalities equivalent to the given 

PP. Peled studies in a recent paper the more general question of re

ducing the number of linear constraints in an arbitrary system of 

inequalities involving only 0-1 variables. 

VI. COEFFICIENT TRANSFORMATION 

It is obvious that different linear inequalities may have the same 

0-1 solutions, and it might be useful to be able to transform a given 

inequality to an equivalent one which has a "better" form. For example 
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x + y $ l seems to be a better form than 173x + 89y $ 244.5, but obviously 

the two inequalities have the same 0-1 solutions. This problem is studied 

in [4] and it is shown that the "optimal" coefficients (according to a 

large variety of criteria) can be determined by solving an associated 

linear program. 

Let us consider a linear inequality 

n 
( 11) l aJ. XJ. $ ao, 

j=l 

where a 1 ~ ... ~an~ 0. A minimal cover R ~ {l, ... ,n} such that 

l a - a +a, $ a 0 holds for any r ER, r' JR, r < r', is called a 
jER j r r 

roof of (11). Similarly a set C ~ {1, ••• ,n}, maximal with the property 

that l· Ca. $ a0 , and such that l· Ca. - a + a , > a0 holds for any 
JE J JE J C C 

c EC, c' 4 C, c > c', is called a ceiling of (11). It is shown that every 

inequality 

(12) 
n 
I b.x. $ ho 

j=l J J 

0-1 equivalent to (11) and such that h 1 ~- .. ~b 0 ~ O, is proportional 

to a solution of the system 

I b. ~ bO + l (for all roofs R of ( I 2)) 
jEil J 

I b. $ bO (for all ceilings C of ( 12)) 
jEC J 

bl ~- .. ~ b ~ o. 
n 

For example all the inequalities 0-1 equivalent to 

and having the coefficients ordered in the same way, are characterized by 

the system 
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If the criterion is to minimize b0, the optimal solution is (4,3,2,2,1;6), 

i.e. the inequality 

Numerous problems of similar nature have been studied in threshold 

logic (e.g. see [35], [36]). The usefulness of such transformations for 

increasing the efficiency of branch-and-bound methods is pointed out in 

[49]. 

VII. POLYTOPES IN THE UNIT CUBE 

... 
The convex hull Sofa set S of vertices of the unit cube can be 

characterized by its facets. The set Sis characterized by a Boolean Fune-

tion os(X) equal to O for X €Sand to elsewhere. The question of relating 

the Boolean and the geometric structures of a system of inequalities in 0-1 

variables arises naturally. M.A. POLLATSCHEK [40] seems to have been the 

first to examine such questions. M.W. PADBERG [39] has given a procedure 

for producing facets of S. A systematic investigation of this topic has 

been attempted in [23]. Some of the results of [23] overlap with those of 

[1], [17], [18], [37], [39], [50]. 

It was noticed in section IV that every 0-1 progrannning problem with 

a strictly monoto·ne objective function can be reduced to a covering problem. 

Therefore in this section we shall mainly deal with facets of covering 

problems. For notational convenience we shall put y. = ;_ (j=1, •.• ,n); thus 
J J 

the constraints l· T x. ~ 1 (i=1, ••• ,h) of the given covering problem 
J€ i J 
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become 

(13) I 
jET. 1. 

y. s t. - I 
J 1. 

(i=l, ..• ,h) 

where t. = JT. J. Let S be the set of 0-1 solutions of (13), and S its 
1. 1. 

convex hull. We shall assume that Sis n-dimensional. It can be seen easily 
-that -y. s O is a facet of S for all j=l, ... ,n, but y. s 1 is a facet of S 

J J 
if f t 1 = 2 implies that J 4 Ti. 

~ 

It has been shown in [23] that the constraint [13] is a facet of S iff 

for any k Et T., the intersection of all those T. which are contained in 
J J ~ 

{k} u T. is nonempty. Further, if (13) is not a facet of S, a procedure 
1. 

was given for strengthening it to a facet by changing the coefficients of 

the variables yk(k4Ti) from Oto certain positive values. The procedure be

comes particuLarly efficient for an apparently special class of covering 

problems, the so-called regular covering problems, i.e. those covering 

problems where the feasibility of any point (y~, ... ,y:) 

* * (where Yj 1= ... =y. =l, the other components are 0) implies the feasibility 
• r *ls **) • of any po1.nt i_y 1 , ••• ,yn hav1.ng the same number of 1 components 

( ** ** ) . . yQ, 1= ... =yQ,s=ll, the other components are O when JI s £ 1 , ••• ,Js s Q,s. How-

ever (see [22]), a very wide class of covering problems can be brought to 

such a form. 

The extension procedure becomes extremely simple for the case of reg

ular covering problems and it can be shown that there is a 1-1 corre-
-spondence between those factors of S which have only 0-1 coefficients and 

those sets T. which have the following two properties: 
1. 

(i) if u. = min{jJjET.}, w. = min{j!HT., j > u.} (if any), and if P. E Bn 1. 1. 1. 1. 1. ]_ 
is the point whose I-components are all the elements of the set 

J ({wi} u Ti) - {ui} 

l Ti - { ui} 

(if w. is defined) 
1. 

(otherwise), 

then P. ES; (ii) if v. = min{j JjET., j ~ u.} and R. ES is the point whose 
1. 1. 1. 1. 1. 



I-components are all the elements of the set ({1} u TJ- {u.,v.}, then 
l. l. l. 

R. e: S. 
l. 
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The most COlillllon case of a regular covering problem corresponds to 

knapsack problems, when the T.'s are its minimal covers. A list of all the 
l. 

facets of all the knapsack problems with at most 5 variables is given in 

[23]. 

VIII. PSEUDO-BOOLEAN FUNCTIONS AND GAME THEORY.* 

A characteristic function game (N,W) is a set of "players" 

N = {1,2, ••• ,n} and a real-valued function W: 2N ➔ R (called the charac

teristic function), defined for all subsets T of N. If T is a "coalition", 

then W(T) is the "payoff" it can secure. It is clear that 2N is mapped in 

a 1-1 way onto Bn by mapping a subset T of N to its characteristic vector 

X, defined by~= I fork e: T and~= 0 fork d T. Hence as remarked by 

Owen ([38]) a characteristic function game is actually the same as a pseudo

Boolean function. 

It is well known [31] that every pseudo-Boolean function fin n vari

ables has a unique polynomial expression of the form 

f(x) = I [aT TT ~], 
T~N ke:T 

called its canonical form. The corresponding characteristic function game 

(N,W) then satisfies 

W(T) = I as, T .5. N. 
S.5.T 

Shapley ([45]) has shown that this relation gives 

aT = I (-I) t-sW(S), T ~ N, 
S.5.T 

* See [26]. 
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where t ands are the cardinalities of T and S, respectively. Thus the 

a 'scan be found from the function f(x). 
T 

As an example let us consider the 3-person characteristic function 

game defined by the following table: 

T {I} {2} {3} { I , 2} { l , 3} {2 3} {1,2,3} 

W(T) 0 0 0 0 3 2 2 4 

The corresponding pseudo-Boolean function on B3 is 
- -

f(X) = 3x1x2x3 + 2x 1x2x3 + 2x 1x2x3 + 4x1x2x3 . By replacing each xj by 

l - x. and simplifying, we obtain the canonical expression: 
J 

A game (N ,W) is said to be superadditive if for any disjoint sets S, T 

of N, we have W(S) + W(T) :,; W(SuT) (i.e. it always "pays" to form a larger 

coalition). It can be easily seen that the game of the example in section 

I is superadditive. The following result holds: 

Let f be the pseudo-Boolean function corresponding to the game w. Then 

the following are equivalent: (a) Wis superadditive, (b) X + Y:,; I implies 

f(X) + f(Y):,; f(X+Y) for all X, YE Bn, (c) XY = 0 implies 

f(X) + f(Y):,; f(X+Y) for all X, YE Bn, (d) f(XY) + f(XY) :,; f(X) for all 
n -X, y EB (here y = - Y, _!_ = (1, •.• ,1)). 

The goal of n=person characteristic function game theory is to find a 

"solution", i.e. a value for each player based upon the coalitions he may 

join. If a game (N,W) satisfies W({i}) = 0 then, as SHAPLEY [45] mentions, we 

may regard a solution as an inessential game (N,Z) which "approximates" 

(N,W) by some method and which assigns a value Z({j}) to each player j. In 

this paper we discuss a few specific solutions in terms of pseudo-Boolean 

functions. Since such a function defines a game we can speak about the 

core and the Shapley value of a function. Throughout this section let f be 

a pseudo-Boolean function with f(O) = 0. A core element off is a linear 
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pseudo-Boolean function h(X) satisfying h(X) ~ f(X) for all XE Bn and 

h(l) = f(l). We shall also say that the vector h of coefficients of h(X) 

is a aore element off. The polyhedron of all the core elements off is 

called the aore off. It may be empty for some f. In this selection we 

construct another polyhedron (the seleatope) and show that it contains the 

core off. 

Consider the canonical form of the pseudo-Boolean function f. We de-
- -

note T+ = {T 5- N: 8T > 0}, T = {T 5- N: aT < 0}, T = T 
+ 

u T . The inaidenae 

gmph of f is a directed bipartite graph G = (T' N; E) in which an edge 

e E E is directed from T E T 
+ 

to j E N if j E T, and an edge e E E is di-

rected from j EN to TE T if j ET. For any node TE T, I(T) denotes the 

set of edges e EE incident with T. For any node j EN, I+(j) denotes the 

set of edges e EE directed to j, I-(J) denotes the set of edges e EE 

directed away from j and I(j) = I+(j) u I-(j). For each edge e EE, T(e) 

denotes its end in T and j(e) its end in N. The edge e EE corresponds to 

the occurence of the variable xj(e) in the term aT(e) • TTjET(e) xj off. 

Figure 1 illustrates the incidence graph of our pseudo-Boolean function 

(14) with the values aT displayed next to the nodes T. 

a 

T 

E 

N 

Figure I 

A selector off is a vectors= (eT,TET), 

The corresponding seleation off is the vector 

h. = L I(") aT. Swill denote the set of all 

such that eT E I(T), VT ET. 

h(s) = (h.,jEN), where 
J 

selectors off. In our ex-
J eTE J 

ample there are TTTET ITI = 2•2•2•3 = 24 selectors, which are listed below 

along with the corresponding selections (of which only 20 are distinct). 
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Selectors Seiections 

e{l,2} e{l,3} e{2,3} e {I,2,3} hi h2 h3 

1 a C e g 2 2 0 

2 a C e h 5 -I 0 

3 a C e i 5 2 -3 

4 a C f g 2 0 2 

5 a C f h 5 -3 2 

6 a C f l. 5 0 -1 

7 a d e g 0 2 2 

8 a d e h 3 -I 2 

9 a d e l. 3 2 -I 

10 a d f g 0 0 4 

I I a d f h 3 -3 4 

12 a d f l. 3 0 1 

13 b C e g -I 5 0 

14 b C e h 2 2 0 

15 b C e l. 2 5 -3 

16 b C f g -I 3 2 

17 b C f h 2 0 2 

18 b C f l. 2 3 -1 

19 b d e g -3 5 2 

20 b d e h 0 2 2 

21 b d e l. 0 5 -1 

22 b d f g -3 3 4 

23 b d f h 0 0 4 

24 b d f i 0 3 l 

Selectors have been introduced in [27], where selections are called 

"linear factors", and where it is shown that if T- is empty then f(X) is 

the minimum of all the linear pseudo-Boolean functions L· N h.x., where h 
JE J J 

is a selection off. This concept has been generalized by I. ROSENBERG in 

[43]. 



The seleatope off is the convex hull of all the selections off. We 

give below a characterization of the selectope off. Leth= (h.,jEN) be 
J 
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any n-vector. A flow for h in G is a non-negative vector z = (z ,eEE) ·satis
e 

fying the node equations 

Then: 

I+ 
ed (j) 

z -
e 

T € T 

L 
ed (j) 

z = H., 
e J 

j € N. 

(I) The selectope off is the set of those n-vectors h for which there 

exists a flow in G. 

(2) The selectope off contains the core off, equality holding if and 

only if all the nonlinear terms in (1) have nonnegative coefficients. 

We remark that from here we obtain an efficient partial test for a non

negative vector h satisfying h(l) = f(I) to be a core element of an un

linear pseudo-Boolean function f. Apply the maximal flow algorithm to G. 

If the value of this flow is less than }:TET+ aT, h cannot be a core element 

off. However if the value is }:TET+ aTm we do not have any conclusion. (For 

example, of all the 20 selections of the pseudo-Boolean function fin (14), 

only (2,2,0) is a core element off.) It would be of interest to refine the 

test for that case. 

A vector YE Bn is said to be a carrier of a pseudo-Boolean function 

f on Bn if f(X) = f(XY) for all XE Bn. The product of carriers off is a 

carrier off, hence the product y* of all the carriers off is the unique 

minimal carrier off, and f effectively depends on x. if and only if y~ = I. 
J J 

n n A mapping TI: B + B is an automorphism if it is one-one and onto, and 

also conserves the operations v, • and , i.e. TI(XvY) = TI(X) v TI(Y), 

TI(XY) = TI(X)TI(Y), TI(X) = TI(X). For convenience we shall write TIX for TI(X). 

For any automorphism TI on Bn and for any function f on Bn we define the 
-1 

function Tif by Tif(X) = f(TI X) or equivalently by Tif(TIX) = f(X). It can be 

seen that if TI is an automorphism of Bn and Xis a unit vector of Bn, then 
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TTX is a unit vector of Bn. Hence TT permutes the unit vectors of Bn and 

permits us to view TT as a permutation of the variables j EN themselves. 

For j EN, k = TT(j) is defined so that if Xis the unit vector with xj = 1, 

then TTX is the unit vector with (TTX)k =I.Thus 

( ) for all XE Bn. TTX k = XTT-1 
k 

We can now state the axiomatic definition of the Shapley value ([45]). 

Let F be the set of all pseudo-Boolean functions f on Bn such that f(O) = 0. 

A Shapley value is a mapping n: F + Rn satisfying the following axioms: 

Axiom 1. 
n For each automorphism TT of B and for each f E F, 

k= I , ••• , n. 

Axiom 2. For each f E F and for each carrier Y off, 

n 
I nk[f]yk = f(I). 

k=l 
n 

(in particular then l nk[f] = f(J)). 
k=l 

Axiom 3. For each f, g E F 

n[f + gJ = n[f] + n[gJ. 

The following theorem is due to SHAPLEY ([45]): 

There exists a unique Shapley value, and it is given by the formula 

As an illustration, the Shapley value of (14) is: 

n[f] 3 2 3 
= <2 + 2 - 3' 

3 2 3 
2 + 2 - 3' 

Let f be a pseudo-Boolean function with f(O) = O. Then the Shapley 



value off is the arithmetic mean, over all the selectors off, of the 

corresponding selections, i.e. 

7TI I h(s). 
SES 
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Also the following result holds: Let f(O) = O. If aT ~ 0 for all Tc N 

then f is superadditive and every selection off as well as the Shapley 

value off are core elements off. 
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