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LARGE TIME ASYMPTOTICS IN CONTAMINANT TRANSPORT 
IN POROUS MEDIA* 

C. N. DAWSONt, C. J. VAN DUIJNt, AND R. E. GRUNDY§ 

Abstract. In this paper we derive large time solutions of the partial differential equations 
modelling contaminant transport in porous media for initial data with bounded support. While the 
main emphasis is on two space dimensions, for the sake of completeness we give a brief summary of 
the corresponding results for one space dimension. The philosophy behind the paper is to compare 
the results of a formal asymptotic analysis of the governing equations as t -+ oo with numerical 
solutions of the complete initial value problem. The analytic results are obtained using the method 
of dominant balance which identifies the dominant terms in the model equations determining the 
behaviour of the solution in the large time limit. These are found in terms of time scaled space 
similarity variables and the procedure results in a reduction of the number of independent variables 
in the original partial differential equation. This generates what we call a reduced equation, the 
solution of which depends crucially on the value of a parameter appearing in the problem. In some 
cases the reduced equation can be solved explicitly, while others have a particularly intractable 
structure which inhibits any analytic or numerical progress. However, we can extract a number of 
global and local properties of the solution, which enables us to form a reasonably complete picture 
of what the profiles look like. Extensive comparison with numerical solution of the original initial 
value problem provides convincing confirmation of our analytic solutions. In the final section of the 
paper, by way of motivation for the work, we give some results concerning the temporal behaviour 
of certain moments of the two-dimensional profiles commonly used to compute physical parameter 
characteristics for contaminant transport in porous media. 
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1. Introduction and model. In this paper we investigate the large time be
haviour of a reactive solute which undergoes equilibrium adsorption in a porous 
medium and which, at a certain instant in time, is present in the form of a pulse. 
Describing the adsorption reaction by a Freundlich isotherm, we shall show how the 
exponent in the isotherm influences the shape of the evolving limit profile. This will 
be done for pulses extending in one and two space dimensions. 

Let us start with a brief description of the underlying transport model in 1R2 . A 
description in one space variable is then obvious; see also Grundy, van Duijn, and 
Dawson [20]. 

Consider the ft.ow of an incompressible fluid through a homogeneous and saturated 
porous medium. We assume that the ft.ow is steady, macroscopically one-dimensional, 
and directed along what is chosen to be the positive x-axis. It is characterized by the 
specific discharge, which will be denoted by q(m/s). 

In the fluid a one-species solute is present at tracer level concentration C(mol/m3 ). 

This means that the ft.ow is independent of the solute concentration. We shall therefore 
take q to be a known positive constant. If no adsorption reactions occur between 
the solute and the surrounding solid part of the porous medium, then the transport 
is determined by convection, molecular diffusion, and mechanical dispersion; see, for 
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instance, Bear [3] and Freeze and Cherry [17]. However, if adsorption reactions do take 
place, this has to be taken into account when describing the transport process. In this 
reactive case we denote by S(mol/kg porous material) the adsorbed concentration. If 
the initial conditions are such that both C and S can be viewed as functions of time t 
and of the Cartesian space coordinates x and y only, we obtain from mass conservation 
the equation 

a ac ~c ~c 
(1.1) Dt {BC+ pS} + q ax = BDxx ax2 + BDyy ay2 • 

Here 8(-) is the porosity of the porous material, p(kg/m3 ) is its bulk mass density, 
and Dxx,Dyy(m2 /s) are coefficients describing hydrodynamic dispersion, which is 
the sum of molecular diffusion and mechanical dispersion. All coefficients in ( 1.1) 
are considered constant and positive. The term p~f represents the rate of change of 
concentration on the porous matrix due to adsorption or desorption. 

In this paper we describe the adsorption reactions by means of a Freundlich 
isotherm. That is, we set 

(1.2) s = K GP (p > 0)' 

where K and p are positive constants. An extensive treatment of chemical reactions 
arising in the transport of solutes through porous media is given by van Duijn and 
Knabner [12] and van Duijn, Knabner, and van der Zee [13] and in a review paper 
by Weber, McGinley, and Katz [23]. Often one finds 0 < p ::; 1 for the Freundlich 
exponent in (1.2). However, Giles, Smith, and Huiton [19] give evidence that p > 1 
also arises. 

Combining (1.1) and (1.2) yields the nonlinear diffusion equation 

(1.3) a { pK p} ac _ a2c a2c at c+ & 0 +v ox - Dxx 8x2 +Dyy 8y2 ' 

where v = q/B denotes the average fluid velocity. We consider solutions of this 
equation in the set 

Q = {(x,y,t): -()() < x,y < oo,t > o}, 
subject to the initial condition 

(1.4) C(x,y,O) = Co(x,y) 

at t = 0. To eliminate the constants from (1.3) we introduce the following redefini
tions: 

(1.5) 

(1.6) 

{ 
u := (lqf-) i/(p-1Jc, 

p i- 1 x := _v_x, 
Dxx 

{ 
u :=C, 

p = 1 X := D:x X, 

2 

t := -"-t, 
Dxx 

y := v y, 
JDxxDyu 

This gives the initial value problem (for all p > 0) 

(1.7) a au 82u 82u 
(IVP): ot (u + uP) +OX = fJx2 + oy2 for (x, y, t) E Q, 

(1.8) u(x, y, 0) = u0 (x, y) for (x, y) E JR2 , 



LIMITING CONTAMINANT PROFILES 967 

where 

uo(x, y) = { 
Co ( D~, X, ../Dx:Dyy Y)' p = 1, 

(f!{f-) 1/(p-l)Co ( ~x, ~y), p=j; 1. 

Note that in many cases of practical interest Bf- > > 1. This means that the implica
tion of these redefinitions is quite different for p < 1, p = 1, and p > 1, so one has to 
bear this in mind when comparing solutions of problem (IVP) for different values of 
p. 

In equation ( l. 7) one can view the term ( 1 + puP-l) as a concentration-dependent 
capacity. For p ~ 1 this capacity is bounded for all bounded u 2: 0, while for p < 1 
it blows up as u \, 0. In mathematical terms we say that equation (1.7) is uniformly 
parabolic when p ~ 1 and degenerate parabolic when p < l. The consequence is the 
following. Suppose that the initial concentration u0 vanishes outside a disc DR(O) 
(centre at origin, radius R), i.e., u0 (x, y) = 0 for all x2 + y2 ;:::: R2 . The uniform 
parabolicity (p;:::: 1) implies that u(x, y, t) > 0 everywhere in JR2 for any t > 0, while 
the degenerate parabolicity implies that u(x, y, t) = 0 outside a disc DR(t)(O) having 
a radius which expands in time (R < R(t) < oo and R(t) ---+ oo as t---+ oo). Hence 
if p < 1 and depending on the initial distribution, a free boundary may occur which 
separates the region where u > 0 from the region where u = 0. The theory for equation 
(1.7) in one space dimension, u = u(x, t), is given by Gilding [18]. The results for 
higher space dimensions are scattered throughout the mathematics literature; see, for 
instance, DiBenedetto [11]. Aronson [2] presents an interesting survey on the equation 
without convection. 

We want to investigate the large time behaviour of nonnegative solutions of prob
lem (IVP) (u;:::: 0, with ·u the redefined concentration) which satisfy mass conserva
tion: that is, we shall suppose that for all t ~ 0, u(x, y, t) ---+ 0 sufficiently fast as 
\x\, \y\ ---+ oo so that u + uP is integrable in JR.2 for all t;:::: 0. 

This implies that 

(1.9) J l
2 
(u + uP)(x, y, t)dxdy = f l

2 
(u0 + u&)(x, y)dxdy := M 

for all t ~ 0. 
This invariance property, together with scaling arguments, plays a crucial role 

in establishing the asymptotic solution. Based on intuition one expects that u will 
become small for large times. Therefore, in this limit for the nondcgenerate case 
p ~ 1, one would expect to replace u + uP with u in equation (1.7). This would lead 
to a linear convection-diffusion equation and consequently to a limit profile which is 
independent of the Freundlich exponent p. However, that is not what we observe 
numerically; see Figures 2.2 and 4.1. 

The correct approach is first to transform to the moving coordinate system 

t = t, y = y, and ~ = t - x, 

which yields the equation 

(1.10) 
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In this equation we are now allowed to replace u + uP with u as t becomes large 
and obtain the nonlinear convection-diffusion equation 

(1.ll) 
OU {)uP o2u 82u 

ot + o~ = 0~2 + oy2 · 

Asymptotic results for equation (1.11) in the range p > 1 were derived rigorously by 
Escobedo and Zuazua [14] and Escobedo, Vazquez, and Zuazua [15], where further 
references are given. Using scaling and dominant balance arguments for the trans
formed equation (1.10)-that is, without neglecting a priori the nonlinearity in the 
time derivative-we arrive at the same conclusions as Escobedo and others in the 
above-mentioned papers. Briefly the results are as follows. For all p ;?: 1 and for large 
times we may replace u + uP with u in (1.10). Moreover 

1. For p > 3/2, diffusion dominates convection. This fact is reflected in the 
asymptotic form, which is the radial symmetric fundamental solution1 of the heat 
equation. 

2. For p = 3/2, diffusion and nonlinear convection balance, and the limit profile 
is the fundamental solution of equation (1.11). 

3. For 1 < p < 3/2, diffusion in the y-direction balances convection in the ~
direction. The asymptotic profile now behaves like the fundamental solution of the 
equation 

(1.12) 

In the degenerate situation where 0 < p < 1, rigorous mathematical results concerning 
the asymptotic behaviour of pulse-type solutions are not yet available. However, we 
can still apply the principle of dominant balance, this time directly to equation (1.7). 
We conclude that for 0 < p < 1 convection in the x-direction balances diffusion in the 
y-direction as well as the nonlinear time derivation {)uP /8t. As a result, the leading
order asympotic form is now given by the fundamental solution of the equation 

ouP OU o2u 
7it + ox = oy2 · 

(1.13) 

In §2 we introduce the scalings and use the method of dominant balance to derive 
the equations for the asymptotic similarity solutions which give the above-mentioned 
fundamental solutions. In §3 we summarize the results from Grundy, van Duijn, and 
Dawson [20] about the large time behaviour in the one-dimensional case (u = u(x, t)). 
There the procedure leads to explicit expressions for the limit profiles. Next, in §4 
we return to the two-dimensional situation to study the behaviour of the asymptotic 
similarity solutions for p in the range 0 < p < 1 and p > 1. In §§2-4 we present 
numerical results to support the analytical findings and conjectures. Finally in §5 we 
give an interpretation of the asymptotic results. In particular we investigate in what 
way the movement of the centre of mass of a contaminant pulse and its longitudinal 
and lateral spreading are influenced by the value of the Freundlich exponent p. 

We note that the above procedure can also be carried out for the transport prob
lems in three space dimensions. Escobedo and co-authors also have theoretical results 

1 By the term fundamental solution of a certain evolution equation, such as (1.10)-(1.13), we mean 
a solution in Q that satisfies u(x,y,t)-+ Mli(x,y) as t '-,. 0, where /5 is the two-dimensional Dirac 
distribution at the origin. 
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for p > 1. However, the task of obtaining numerically asymptotic solutions of the full 
problem-namely, by solving (1.7) and (1.8) in R.3 for large time-is computationally 
expensive. Analyzing the corresponding equations for the asymptotic similarity solu
tions is also difficult. For these reasons we leave the three-dimensional problem for 
later study. 

Until now we have not mentioned the linear case p = 1. Here the asymptotic form 
is given by the fundamental solution of the linear diffusion-convection equation 

(1.14) 

namely, 

(1.15) u ( x, y, t) ___, :t exp { - 2~ ( ( x - ~) 2 + y2) } , 

as t ___, oo. Going back to the original variables, see (1.6), we find that the factor 2 will 
disappear from the exponential to be replaced as usual by an appropriate retardation 
factor; see, for instance, Freeze and Cherry [17]. 

2. The large time asymptotic balances. In this section we use the princi
ple of dominant balance to construct large time solutions of problem (IVP). As was 
explained in the introduction, the nature of the solution to the transport equation 
( 1. 7) is quite different for p > 1 and for p < 1. Consequently the ansatz about the 
behaviour of the limiting solutions will be different. We therefore treat these cases 
separately. 

2.1. The case p > 1. The starting point for the analysis is the translated equa
tion (1.10). The ansatz about the large time behaviour is that we expect the spread 
of the solution to be incorporated by using the similarity variables 

(2.la) 
y 

( = tli' 

where (3, 8 ;::: 0, together with the change of dependent variable 

(2.1 b) u(~, y, t) = t<>v(71, (, t), 

with a < O to simulate temporal decay. In terms of these new variables, equation 
( 1.10) becomes 

(2.2) 
(t~ +a - {371..?___ - 8( ..?___) (v + t<>(p-l)vP) at a71 a( 

+ti+<>(p-1)-.B avP = tl-2/3 fPv + t1-26 82v. 
871 8712 fJ(2 

In what follows we expect 

(2.3) v(71, (, t) = v0 (71, () + o(l) as t - oo, 

giving 

(2.4) Q (t - x y) 
u(x, y, t) ___, t Vo ti3' to · 
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The values of o:, (3, and 8 are found by considering the various asymptotic balances 
in (2.2) together with the mass invariance condition which, in the limit t ___, oo for 
p > 1, gives 

(2.5) 

In this way we extract from (2.2) the equation satisfied by vo(rJ, (). The conclusions 
are as follows: 

(a) For p > 3/2 the time derivative and both diffusion terms are dominant in 
(2.2) with 

(2.6) 
1 

{3 = 8 = 2 and a: = -1. 

The solution for v0 is simply the fundamental solution of the heat equation 

(2.7) vo(1J, () = ~ e-(ry2+(2)/4 

and hence 

(2.8) 

Note that this profile is radially symmetric with respect to the moving coordinates 
(x = t, y = O), a behaviour which can be observed from Figure 2.1, showing level 
curves of the numerical solution of problem (IVP). Here the initial condition for u is a 
pulse; that is, uo = 1 on a square of side 2 centred at the origin and u0 = 0 elsewhere. 
The chemical reactions are characterized by the Freundlich exponent p = 3. 

(b) For p = 3/2 there is a balance between the time derivative, convection, and 
both diffusion terms with the same values of a,{3, and 8 as in (a). Here v 0 satisfies 
the equation 

(2.9) 

( ( 

1/ 

t =I t = 15 t = 100 

F;c. 2.1. Numerical solution of problem (IVP) in the scaled variables v = tu and T/ = (t -
x)/t1I-, ( = y/t112 . Here P = 3 and M = 8 (initially, uo = 1 on the square of side 2 with centre at 
origin, uo = 0 elsewhere). Plotted are level curves of v at early (t = I), intermediate (t = 15), and 
final ( t = 100) times. 
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where 

(2.10) v0 ~ 0 and Jl
2 

vod'f/d( = M. 

Thus for p = 3/2 we have (2.4) with v0 satisfying (2.9) and (2.10). The limit profile 
is the fundamental solution of ( 1.11) 

No closed-form solutions are known for this problem. However, it has received 
attention in the mathematical literature. In a recent paper, Aguirre, Escobedo, and 
Zuazua [1] showed existence and uniqueness (for any given M > 0) of solutions that 
decay exponentially to zero as 1(1, 1'171 --> oo. These solutions are symmetric in ( but 
not in '17· This behaviour can also be seen in the computations. Figure 2.2 shows 
the spreading of contaminant, that is, the numerical solution of problem (IVP) with 
p = 3/2, starting again from a pulse at t = 0. 

(c) For 1 < p < 3/2 the time derivative balances with (-diffusion and 7]-convection 
to give 

and 

3 
a=--

2p' 
3-p 

{3= 2P' 

b = 1/2. 

The equation for v0 can be written 

(2.11) 
3 3 - p ova ( OVo ovi; 82vo 2 
-vo + --'I]- + - - - - + - = 0 for (77, () E ~ , 
2p 2p 07] 2 8( 07] 8(2 

where again v0 satisfies (2.10). This problem will be considered in some detail in §4, 
but we conclude this section with the observation that for 1 < p < 3/2 the asymptotic 
result is 

(2.12) _ _;j_ (t - x y ) u(x, y, t) --> t 2P Vo 3 _p , 112 
t 2p t 

as t--> oo, 

( 

T} T} 1) 

t = 1 t = 15 t = 100 

FIG. 2.2. Numerical results of pmblem (IVP) in the scaled variables; see also Figure 2.1. Here 
p = 3/2 and M = 8. The results are given fort = 1, t = 15, and t = 100. 
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where v0 is the solution of (2.11), (2.10). Numerical evidence for this convergence will 
be given in §4. Note that here the limiting profile (2.12) is the fundamental solution 
of equation (1.12). 

2.2. The case O < p < 1. For this range of values of p we start the analysis 
directly from equation (1.7). Now the ansatz is that the asymptotic profile can be 
obtained by introducing the similarity variables 

(2.13) 
x 

7) = tb' 
y 

( = td 

with b, d 2: 0, and the scaling 

(2.14) u(x, y, t) = tav('f), (, t), 

where again a< 0 to incorporate temporal decay. Then as in (2.2), (2.3), we expect 

(2.15) t v - -a ( X Y) 
0 tb) td 

to be the asymptotic profile. In terms of these variables equation ( l. 7) gives 

( a a a) t- + ap - brj- - d(- (ta(l-p)v + vP) at a'f) a( 

+tl+a(I-p)-bov _ tl+a(l-p)-2b02 V + tl+a(l-p)-2d82v 
07) - 07)2 8(2 ' 

(2.16) 

where from the mass invariance condition for p < 1 we have 

(2.17) ap + b+ d = 0. 

Again the only nontrivial asymptotic balance as t--+ oo in (2.16) involves r7-convection 
and (-diffusion and yields 

(2.18) 

and 

(2.19) 

-3 
a= -3-, 

-p 
b = _'!:p_' 3-p 

andd= _P_, 
3-p 

where in addition Vo satisfies 

(2.20) v0 2: 0 and j l
2 

vlJ drJd( = M. 

As in the case of equation (2.11), we are dealing here with a nonlinear partial 
differential equation in two space dimensions. In general such equations cannot be 
expected to be solved explicity. Nevertheless, we are able to make a number of impor
tant observations about the qualitative behaviour of the solutions. We postpone this 
analysis to §4 but merely conclude here that in the range 0 < p < 1, the asymptotic 
behaviour is given by 

i1(x, y, t) --+ C 3~P v0 ( ~p , ~) as t--+ oo, 
t3-p f3-p 

(2.21) 

where vo is the solution of problem (2.19), (2.20). Here the asymptotic limit is the 
fundamental solution of equation ( 1.13). Also in this case numerical evidence for the 
convergence will be given in §4. 
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3. One-dimensional results. Before we investigate the nature of the solutions 
of the reduced equations that were derived in the previous section, we want to sum
marize here some of the asymptotic results for the transport of reactive solutes in one 
space dimension. These results were recently published by Grundy, van Duijn, and 
Dawson [20]. 

Using the fact that now u = u(x, t) only, we arrive at the one-dimensional initial 
value problem 

(3.1) 

(3.2) 
(IVP1) : 

o ou o2u 
-(u + uP) + - = - for - oo < x < oo, t > 0 at ox 8x2 , 

u(x, 0) = uo(x) for - oo < x < oo 

Further we suppose that for all t 2: 0, u(x, t) -+ 0 sufficiently fast as lxl -+ oo, so that 
again the mass-invariance condition 

(3.3) L {u + uP}(x, t)dx = L {uo + ub}(x)dx := M 

holds for all t 2: 0. 
To classify the asymptotic behaviour, we distinguish again between the cases 

p > 1 and p < l. For p > 1 we introduce the moving coordinates t = t, e = t - x, and 
arrive at the transformed equation 

(3.4) 

We find for p > 1 that uniformly for large time we may replace u + uP in the time 
derivative with u. Thus we work on the simplified equation 

(3.5) 
ou ouP o2u 
at + ae = ae2 for - 00 < e < oo, t > 0, 

from which, under the constant mass constraint (3.3), we obtain the following results. 
(a) For p > 2, the diffusion dominates the convection as t --too. As a result the 

limiting profile is the fundamental solution of the heat equation, which is symmetric 
with respect to the moving coordinate x = t and so 

(3.6) 
M 

u(x, t)-+ c;. exp{-(x - t) 2 /4t} as t-+ oo. 
2y?Tt 

This result was also verified numerically. It is illustrated in Figure 3.1, which gives 
t 112u as a function of the similarity variable (t - x)/t112 for p = 3 and the initial data 

(3.7) u0 (x) = H(x + 1) - H(x - 1), -00 < x < oo, 

where H is the Heaviside function. This gives M = 4. 
(b) For p = 2, the diffusion balances the convection as t-+ oo. Now the limiting 

profile is the fundamental solution of Burgers' equation (equation (3.5) with p = 2), 
which is right asymmetric with respect to x = t. The large time behaviour is 

(3.8) 
1 exp(-rt2 /4) 

u(x, t)-+ .;:;rt {A+ er f(7J/2)} as t-+ oo, 
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-4 

I 
i2u 

(b) 

0 4 - s t-x 

~ 

FIG. 3.1. Convergence of the numerical solution of problem (IVP 1) for p = 3 and uo given by 
(:'Vi). Here t 112u is plotted as a function of (t - x)/t112 for (a) t = 40, (b) t = 1000, and (c) the 
limiting profile (3.6). 

where 

'T/ = (t - x)/t1l 2 and A= (eM + l)/(eM - 1). 

Again we verified the convergence numerically, and the result is given in Figure 3.2. 
We note here that in both cases p = 3 and p = 2, convergence to the final profile can 
be accelerated by using strained coordinates to incorporate the leading error term. 
See Grundy, van Duijn, and Dawson [20]. 

( c) For 1 < p < 2, convection dominates diffusion as t ---+ oo and the asymptotic 
profile is the solution of the hyperbolic problem, 

(3.9) ~~ + 0;; = 0 for - 00 < ~ < oo, t > 0, 

(3.10) u(~, 0) = M8(0 for - oo < ~ < oo, 

where 8 denotes the one-dimensional Dirac distribution at the origin. The solution 
of this problem can be found in terms of the similarity variables arising from the 
asymptotic balancing. The convergence result then becomes 

(3.11) ( ) -l/p (t-x) U X, t ---+ t Vo ptl/p as t ---+ cx::i, 
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- 8 t-:r 

~ 
-S -4 0 4 

FIG. 3.2. Convergence of the numerical solution of problem (IVP1) for p = 2 and ·uo given by 
(3.7). Again t 112 u is plotted as a function of the similarity variable 1) for (a) t = 40, (b) t = 1000, 
and (c) the limiting profile (3.8). 

where 

(3.12) 

with 

(3.13) 

0, 

(~) l/(p-1)' 

0, 

'T) ~ 0, 

0 < 'T) < 'T)1, 

'T) 2: 'T)1, 

( 
M ) p;1 

'T)1 = p p - 1 

Note that this limiting profile is discontinuous along the curve x = t - 'f)1t 11P and 
vanishes identically for x;::: t and x < t - 'T)it11P. Equation (3.12) is the zeroth-order 
outer solution. Grundy, van Duijn, and Dawson [20] also investigated the boundary 
layers near rJ = 0 and T/ = 'T)i at the leading and the trailing edge of the profile. Figure 
3.3 shows the numerical convergence for p = 1.5 and again u0 given by (3.7). Since the 
convergence was quite slow we accelerated the process by modifying equation (3.1) 
into 

(3.14) 

with c small. 

a ou o2u 
-(u+uP) +- = E:
ot OX ox2 
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2 
thl 

(c) 

(d) 

-4 -3 -2 -1 0 1 2 - 3 t-x 

~ 
4 

FIG. 3.3. Convergence of the numerical solution of (3.14), (3.2) for p = 1.5, uo given by (3.7) 
and c: = io- 2 • Here t 11Pu is plotted against the similarity variable 'r/ = (t - x)/t11P for (a) t = 80, 
(b) t = 320, (c) t = 4000, and (d) the zeroth-order outer solution (3.12). 

We observe that the case p = 2, where all terms in the equation balance can be 
viewed as borderline in the same way asp = 3/2 is in the two-dimensional problem. 
If one considered the problem in N space dimensions, one would find p = 1 + 1:J to 
be the borderline case; see also Escobedo, Vazquez, and Zuazua [16]. 

For 0 < p < 1 the analysis is applied directly to equation (3.1), from which we 
deduce that x-convection dominates x-diffusion. Consequently the limiting profile is 
the solution of the hyperbolic problem 

(3.15) 

(3.16) 

fJuP OU - Q f Q Tt + ox - or - oo < x < oo, t > , 

uP(x,O) = M6(x) for - oo < x < oo. 

In terms of the similarity variables arising from the asymptotic balancing we have the 
convergence result 

(3.17) 

where now 

(3.18) 

u(x, t)--+ C 1v0 (~:) as t--+ oo, 

{ 
0, 

vo(pry) = (P'l7)1/(1-p)' 

0, 

'!]:::; 0, 
0 < '!] < 7]2, 

'!] > '1]2, 
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(c) 

(d) 

-4 -2 -1 0 1 

FIG. 3.4. Solution of (3.14), (3.2) converging toward the asymptotic limit for p = 0.5, u0 as in 
( 3. 7), and e: = 10-2 • The scaled function tu is plotted against the similarity variable 'f/ = xt-P for 
(a) t = 80, (b) t = 320, (c) t = 2000, and (d) the zeroth-order outer solution (3.18). 

with 

(3.19) ( M ) 1-P 
T/2 =p-p -

l-p 

Here too the asymptotic limit is discontinuous now along the curve x = ri2tP and 
vanishes identically for x :::; 0 and x > ri2tP. Boundary layers can again be inserted 
near the leading and trailing edges of this zeroth-order outer solution, a task performed 
in the paper by Grundy, van Duijn, and Dawson [20]. Figure 3.4 shows the convergence 
of the numerical solution for p = 0.5 and u0 given by (3.7). Also here the convergence 
(3.16) was slow, and to avoid excessive computing times we solved the modified initial 
value problem (3.14), (3.2) with c = 10-2 • 

4. The reduced equations in two dimensions. In §2 we saw that the princi
ple of asymptotic balancing leads to partial differential equations for vo in the scaled 
space variables, which we refer to as the reduced equations. If these reduced equations 
could be solved, or otherwise if properties of the solutions were known, then a precise 
characterization of the limiting profiles could be given. 

In this respect the ranges 1 < p < 3/2 and 0 < p < 1 need further attention, 
because in both cases the reduced equations are complicated nonlinear equations 
which do not admit closed-form solutions. In this section we shall analyse the structure 
of the solutions of these equations without solving them explicitly. Again we treat 
the cases 1 < p < 3/2 and O < p < 1 separately. 
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4.1. The reduced equation for 1 < p < 3 /2. The problem to be considered 
is the following. We have to find a function Vo such that 

3 3 - p OVo (ova avg 82vo - 0 
(4.1) 2p Vo+ 2P"77&;/ + 28( - &;/ + fJ(2 -

for all (71,() E IR2, and 

(4.2) 

Before discussing some properties of the solutions for vo, we observe that equation 
( 4.1) is second order in ( but only first order in 77. This means that the profiles 
will have less smoothness in 77-direction, the direction of flow, than in the transverse 
(-direction. 

Equation (4.1) was discussed in a recent paper by Escobedo, Vazquez, and Zuazua 
[15]. In that paper they study the large time behaviour of solutions of the initial 
value problem for equation (1.11), with 1 < p < 3/2, where JJ'IR2 uo = M. They show 
convergence to a fundamental solution of equation (1.12), which has diffusion only 
in the direction transverse to the flow. Moreover they show that this fundamental 
solution, parametrized by M > 0, is unique as an entropy solution in the sense of 
Kruzhkov. These results establish in an indirect way the existence and uniqueness 
for bounded solutions of problem ( 4.1)-( 4.2). In addition they demonstrate some 
qualitative, characteristic properties of the solutions v0 . Below we shall discuss these 
properties and make a comparison with the numerical results. 

(i) vo is symmetric in(. That is, 

(4.3) vo('f), () = vo(77, -() for all ('TJ, () E !E.2. 

This follows directly from symmetry properties of equation ( 4.1) together with unique
ness. 

(ii) There exists a constant L > 0 such that 

(4.4) vo('TJ,() = 0 outside the strip S = {(77,(): 0 < 'TJ < L,-oo < ( < oo}. 

To show this one needs to assume that v0 decays to zero sufficiently fast as 17J[, [([ --+ oo. 
Then the argument is as follows. First write equation ( 4.1) in divergence form 

(4.5) : 77 { 3 ;p '!)Vo - Vb} + :( {~(Vo+ ~Vz} = 0, 

and introduce the transversal mass 

(4.6) j +oo 
Mt(77) = _

00 
vo(77, ()d( for - oo < 77 < oo. 

Integration of ( 4.5) with respect to ( yields 

(4.7) 3- p d d j+oo 
--(77Mt) - - vP(T/ ()d( = 0 

2p d77 dry -oo 0 ' 

and thus 

3- p j+oo 
(4.8) - 2-77Mt - Vb(7J, ()d( = C for - oo < 7/ < oo, 

p -oo 
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where C is a constant of integration. Letting lrll --+ oo in this expression and using 
the decay of vo at infinity yield C = 0 and leave us with 

(4.9) 3- p l+oo 
- 2-77Mt = v[{(17, ()d( for - oo < 17 < oo. 

p -oo 

Since Vo 2: 0 and consequently Mt 2: 0, this shows that v0('17, () = O for all 17 ::::; 0. 
From (4.9) we further obtain 

3-p 1 
- 2-17Mt:::; supv[{- (77, ()Mt 

p 77EIR 
(4.10) 

or 

(4.11) ( 3 - p p-1( )) - 2-17-supv0 77,( Mt ::;o. 
P (EIR 

This implies the existence of a constant L > 0, depending on the maximum value 

of Vo, such that Mt ( 77) = 0 for all 17 > L. This establishes the second assertion. 
Inequality (4.11) also implies 
(iii) 

( 4.12) 
1 3-p 

supvg- (77,() 2: - 2-17 for 0 :S 17:::; L. 
(EIR P 

Having shown that the maximum value of v[{- 1 with respect to ( is strictly positive 

for each 0 < 77 < L, it follows that (Escobedo, Vazquez, and Zuazua [16]) 
(iv) 

( 4.13) vo > 0 in S. 

It is also possible to estimate v0 from above in S. To be specific we have 
(v) 

(4.14) ( ) 
l/(p-1) 

vo(77, () :S ~ for(77, () ES. 

Note that the upper bound is the one-dimensional solution (3.12). Therefore, this 

inequality has an obvious physical interpretation. The proof of (4.14) follows from a 

straightforward comparison argument. 
The previous estimate implies ov[{- 1 /817(0, () :S l/p for all -oo < ( < oo. The 

following assertion says that this inequality holds throughout S. 
(vi) 

( 4.15) 
fJ p-1 1 
~<-inS. 

fJ77 - p 

To prove this estimate one first writes the equation for w = v[{- 1 and after that the 

equation for the derivative z = fJw / fJ77. This latter equation has the constant solution 

z = l/p. A comparison argument yields (4.15). 
Estimate (4.15) can be viewed as an entropy condition: a solution vo of (4.1) 

may admit a shock discontinuity in the 77-direction only if (4.15) is not violated. This 
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means that v0 can decrease only across a shock. Note that (4.15), after integration, 
yields estimate ( 4.14). 

The next result is concerned with the behaviour of Vo as j(I -+ oo. Let 

( 4.16) 

denote the longitudinal mass. We have 
(vii) 

( 4.17) Ah(() = N~e-(2 14 for all - oo < ( < oo. 
2y1l" 

To show this we integrate equation ( 4.5) with respect to 17. Setting the constant of 
integration equal to zero we find the equation 

(4.18) 

and consequently 

(4.19) 

The value for ML(O) follows from (4.2). 
Combining (vi) and (vii) yields exponential decay of v0 as j(I -+ oo. We give the 

result without proof. 
(viii) 

(4.20) v{f(77, () s; M~- l) e-(2 
/ 4 for all (77, () E S. 

1rp 

This inequality allows us to estimate the magnitude of L. Using (4.12) we find 

( 4.21) 
£.::..!. 

L < .l:E_ (M(p-1)) P 

- 3-p fip 

We conclude the list of properties with two conjectures about the behaviour of vo near 
17 = 0 and 77 = L. These conjectures will have the form of asymptotic expansions and 
will be supported later by the numerical results. 

We start off with the behaviour near 1J = 0. As a first observation we note that 
equation ( 4.1) has a separable solution which vanishes at 77 = 0 and for large 1~1- It is 
given by 

(4.22) ( 
1 ) l/(p-1) 

v(77,() = p; 77 Jo(() for T/ > 0 and - oo < ( < oo, 

where the function Jo satisfies the ordinary differential equation 

( 4.23) I'" + ~I'' + --12__ - l'P = 0 -00 < I" < oo, JO 2JO p- l Jo 1 '> 

and the boundary conditions 

(4.24) fo(±oo) = 0. 
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In ( 4.23) the primes denote differentiation with respect to (. The boundarv value 
problem (4.23), (4.24) was studied by Brezis, Peletier, and Terman [6]. They 0 proved 

the existence ofa solution Jo satisfying max(EIH:. Jo(() = Jo(O) < ( P~ 1) l/(p- l), ( f' ( () < 
0 for ( i= 0, and Jo(() decays to zero exponentially as 1(1 _, oo. The ansatz about the 
behaviour of vo near TJ = 0 is the following: 

(ix) For each ( E JR, 

( 4.25) __ vo_(TJ_, (_)_ - Jo(() = O(r/') as ri l 0, 
(p;lT/) l/(p-1) ., 

where A is a positive constant. It appears as the eigenvalue of a linear problem which 
is given in the appendix. 

The behaviour of Vo as 'T/ r L is more complicated. We conjecture that for any 
( i= 0, 

while at ( = 0 

Jim vo( TJ, () = 0, 
IJT L 

lim vo(·ry, 0) = vo(L-, 0) > 0. 
r1T L 

Thus v0 has a noselike profile at (L,O), with a singularity at TJ =Land ( = 0 creating 
a transverse flow of particles. In the appendix we derive the behaviour of v0 near 
(L, 0), using the method of matched asymptotic expansions. It gives 

( 4.26) v0 (L-,O) = ~L , (
3 ) l/(p-1) 

2p 

indicating that inequality ( 4.12) is sharp at the singularity. The structure of the 
solution near the nose is shown in Figure A. l. Sufficiently close to f) = L two transition 
layers, taking v0 from v0 = 0 to v0 = ( ~L) l/(p-l), move toward each other as 
7J I L, eventually coalescing at TJ = L to produce the singularity at the nose. Thus 
the solution approaches this singularity in a plateaulike fashion. A feature of this 
structure is the locus of the centre of the transition layer as 'T/ T L. In terms of ( (, 'TJ) 

the locus is given by expression (A.18), having the form 

p { (L - TJ) ( L ) }1;2 
1(1 = 2J (p - 1)(3 - p) L log L - 'TJ 

Now we compare the analytical results with the numerical solution. To compute 
a solution of problem ( 4.1), ( 4.2) directly, using a finite-difference or finite-element 
method, say, is fraught with difficulties. Therefore, we used the computed large 
time solution of problem (IVP), with the appropriate scalings, as a comparison for 
the analytical properties. In Figure 4.1, we show the scaled large time solution of 
problem (IVP) for p = 1.2 and u0 as in Figure 2.1, with M = 8. 

These numerical results clearly confirm the large time scalings of §2 and also 
our analytic findings set out above. In particular the asymptotic behaviour near the 
singular point (L, 0) is certainly validated by the computations. 
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(a) (b) 

FIG. 4.1. Numerical solution of problem (!VP) in the scaled variables v = t312Pu and T} = 
(t - x)/t(3-p)/2p, (, = yjtl/2. Here p = 1.2, M = 8 (as in Figure 2.1) and t = 4500. In (a) the level 
curves of the solution are shown, while (b) shows the solution as a three-dimensional object. 

4.2. The reduced equation for 0 < p < 1. Here the problem is to find a func
tion v0 = u01, with m = l/p, such that (see equation (2.19)) 

__ 3_u0 + __ 2_"'8uo + __ l_r8u0 _ 8u'[) 
( 4·27) 3m - 1 3m - 1 ., OT} 3m - 1.., 8( O'fJ 

for all (TJ,() E IR2 , and 

(4.28) Uo;::: 0, 

Equation ( 4.27) too is second order in ( but only first order in 'f/· In addition 
there is the complication that the term describing (-diffusion is degenerate since the 
corresponding diffusion coefficient mua-1 (m > 1) vanishes as Uo """ 0. Because of 
this we expect less (-smoothness than in the previous case. In fact, based on the 
observations made in the introduction about the finite speed of expansion of the 
region where u > 0, we conjecture that there exist functions z±(TJ), -oo < 'f/ < oo, 
satisfying z+ ;::: 0 and z+ + z- = 0 by symmetry such that 

(4.29) uo(TJ,() = 0 for all (TJ,() E IR2 with1(1;::: z+(TJ). 

This behaviour is confirmed by the computations. We note that to the authors' knowl
edge equation (4.27) is new, and no existence-and-uniqueness theory is yet available. 
In this respect our discussion on the behaviour of u0 (or v0 ) is purely formal. Again 
we compose a list of properties. 

As mentioned above we expect the following. 
(i) uo is symmetric in(. 
Writing ( 4.27) in the divergence form 

(4.30) :T/ { 3m2-1 T}Uo - Uo} + :( { 3mm_ 1 (uo + o;r} = 0 

and integrating this equation in ( lead to the invariance property 

( 4.31) 2 l+oo l+oo 
3m _ 1 T/ _

00 
uo(TJ, ()d( - -oo u()(TJ, ()d( = O 

for all -oo < T} < oo. From this expression it follows that 
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(ii) there exists a constant L > 0, depending on the maximum of u0 , such that 

(4.32) uo(rJ, () = 0 outside the strip {(71, () : 0 < 17 < L, -oo < ( < oo} 

and also 
(iii) 

( 4.33) 

for O < 7J < L. 
For the support of Vo-that is, the set where vo > 0-we expect a set as in Figure 

4.2. 
Indeed, when considering the asymptotic expansions near 7J = 0 and 7J = L, we 

obtain strong evidence that l+(ry) """0 as 17 l 0 and as 7J j L, just as in Figure 4.2. 
The set where v0 > 0 will be denoted by S. 

Again we can make a comparison from above with the one-dimensional solution. 
The result is 

(iv) 

( 4.34) uo(rJ, () ::::; (~)1/(m-l) or vo(rJ, () ::::; (p77)1/Cl-p) for (17, () ES. 

This estimate implies 

( 4.35) 
!'.:> 1-p 
uv0 ( a:;;- 0, 0) ::::; p. 

In f"act, by the method described in the previous section, we can show the "entropy" 
inequality 

(v) 

( 4.36) 
aum-l avl-p ----§;,.- = ;'17 (77,() ~ p for all (ry,() ES. 

It is possible to construct bounds on the solution which are in the spirit of identity 
( 4.17) and estimate (4.20). However, due to the different character of equation (4.27), 
such bounds are not as elegant as the previous ones and are of a complicated technical 
n.at ure. Therefore, they will not be given here. 

( Uo, Vo= 0 

0 

FIG. 4.2. Location of the support (S) of vo. 
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Next we turn to the asymptotic behaviour of the solution as rJ l 0 and 'I'} I L. In 
the appendix we use formal asymptotic methods to show that, in terms of Vo, 

(vi) 

( 4.37) v - 1/1-p 1- 3(1 - P ( + o(l) [ 
) 2 }1/(1-p) l 

o-(prJ) { 4p(3-p)r1flogryf 

as r7 1 0. This gives an emerging profile with the interface such that 

( 4.38) Z±('l1) "" ± 4p(3 - p) {77[ log'T)f}1;2 
., 3(1-p) 

as T] 1 O. This of course is entirely consistent with the concept of finite support of Vo. 
As r1 I L we have a nose-type singularity very similar to that in the case 1 < p < 

3/2, except that the support of the solution is now finite (see also equation (A.28)). 
Again two transition layers converge as 7J T L coalescing to the singularity at (L, 0), 
where 

(vii) 

( 4.39) 
- ( 2pL ) 1/(1-p) 

vo(L , 0) = 3 _ P , 

which since p < 1 is consistent with the bounds in ( 4.33) and ( 4.34). The locus of the 
transition layer centres is given by expression (A.28) as 

( 4.40) f(f=J 2 {(L-ry)log(L/(L-77)} 1/ 2, 
1-p 

which, except for the scaling factor, is equivalent to the corresponding form for p > 1. 
As in the case 1 < p < 3/2 we compare our analytic results with the large time 

solutions of the full problem (IVP) since the task of computing numerical solutions 
of the reduced equation directly again poses considerable difficulties. We present 
these solutions in Figure 4.3. These are clearly consistent with the large time scalings 
of §2 and the analytic properties presented above including the asymptotic results 
encapsulated in (4.38) and (4.40). 

5. Development of contaminant plumes. When considering the groundwa
ter transport of a contaminant plume at field scale from a practical point of view, one 
is often only interested in certain averaged quantities (moments) such as the mean 
displacement or the transversal and lateral spreading. The reason for this is that 
small-scale variations in the physical and chemical properties of the porous medium 
disturb the actual contaminant distribution. For instance it is now well accepted 
that spatial variations in water velocity, caused in turn by the heterogeneity of the 
hydraulic conductivity, can be accounted for by a macrodispersion at field scale (Dx,, 
and Dyy in equation (1.1)). 

The effect of chemical heterogeneity for instance, through a spatial variation of 
the coefficient Kin (1.2), was investigated only recently. Dagan and Cvetkovic [8] and 
Burr, Sudicky, and Naff [7] considered the linear case (p = 1) allowing for nonequilib
rium sorption, while Bosma, van der Zee, and van Duijn [5] considered the equilibrium 
Freundlich case (0 < p < 1) as discussed in this paper. Bosma and his coauthors used 
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(a) (b) 

FIG. 4.3. Numencal solution of problem (!VP) in the scaled variables v = t3!( 3 -P>u T/ = 
xr2P/(3 -p), and ( = yt-P/(3 -p), with p = 0.5 and M = 8. In (a) the level curves for the solution 
with t = 3000 are shown, while for the same value oft (b) shows the sol'Ution as a three-dimensional 
object. 

a Monte Carlo method in a medium in which the hydraulic conductively and the 
Freundlich coefficient K were log normal distributed with a certain degree of cor
relation. They showed that the results obtained in this paper can also be applied 
to transport problems in heterogeneous media if one makes a comparison based on 
moments and in particular compares the time evolution of the moments. 

The relevant moments are 
1. dissolved mass: 

(5.1) M(t) = f k.
2 

()C(x, y)dxdy; 

2. centre of mass in mean flow direction: 

(5.2) µx(t) = ~( ) j" { xeC(x, y)dxdy; 
Mt JR2 

3. longitudinal variance: 

(5.3) 

4. transversal variance: 

(5.4) a- 2 (t) = ~( ) j" r y2BC(x, y)dxdy. 
yy Mt }R2 

Substituting the asymptotic forms obtained in §2 into these expressions yields 
their large time behaviour. Moreover, by applying the scaling (1.5) or (1.6) and by 
absorbing the total mass 

(5.5) Mc:= j" { {OC0 + pKCb}dxdy 
}R2 
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into an additional scaling, we obtain explicity the dependence of the large time be
haviour of the moments on the relevant physical parameters. For instance, if 0 < p < 1 
we find as t -+ oo that 

(5.6) µx(t) = (:;) 
2 ~'_=-;l (;YJ ~ (~~) £% µ(p){l + o(l)}, 

where 

(5.7) 

(5.8) ( M )·~'_=-;i ( v ) 2~1-=-:i (evt)-/!p 
O"xx(t) = p; Dyy pK O"z(p){l + o(l)}, 

where 

(5.9) 

and 

(5.10) (M ) 2 ~1~) (D ) 3 .:P (()vt) 32.!:p 
ayy(t) = p; :v pK O"j.,(p){l + o(l)}, 

where 

(5.11) 

The function v0 appearing in the coefficients µ(p), O"i(p), and O"j, (p) is the solution of 
(2.19), (2.20) with M = 1. Their value has to be established numerically, which we 
did for p = 1/2 to give 

(5.12) µ ( ~) = 0.656, 0"1 ( ~) = 0.052, and O"~ ( ~) = 0.853. 

Expressions (5.6)-(5.11) were used in the paper by Bosma, van der Zee, and 
van Duijn [5] to interpret the movement and spreading of a contaminant plume in a 
heterogeneous medium. In many cases the agreement between their Monte Carlo sim
ulations for the heterogeneous medium and our analytical expressions was excellent, 
in particular with respect to the exponent of t. 

Finally we make an observation concerning the motion of the y coordinate of the 
centre of mass, namely, 

(5.13) µy(t) = Ml(t) fl
2 

y()C(x,y,t)dxdy. 

If we use the leading-order term from expansion (2.3) in (5.13) we find that µy(t) = 0 
identically, due to the symmetry of v0 as a function of (. The large time behaviour 
of µy(t) must therefore be determined by the nonsymmetric higher-order terms in 
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the expansion of C(x, y, t) for t large. These reflect, in some unspecified way, the 
asymmetric nature of the initial data. 

We conclude this section with a short description of the algorithm used to generate 
the two-dimensional numerical results of this paper. It is based on the "conservative 
form" of the differential equation (1. 7), obtained by first transforming to a moving co
ordinate system as in (1.10) and making the change of variables s = u+uP, <f>(s) = u. 
The result is a nonlinear convection-diffusion equation in s. The convection terms 
are handled numerically using a higher-order Godunov scheme as described in Bell, 
Dawson, and Shubin [4]. These terms are incorporated explicitly in time. Diffusion 
is handled using an implicit, cell-centred finite difference method. The combination 
of higher-order Godunov methods with cell-centred finite differences for multidimen
sional convection-diffusion equations was formulated and analyzed in Dawson [9]. For 
smooth problems the rate of convergence is O(h2 +At), where his the maximum mesh
spacing and At is the time step. Analysis for problems with a nonlinear capacity term 
of the form ( uP)t is given in Dawson [10], with the provable rate of convergence being 
O(hP + fltP). This rate represents a worst-case scenario, however, and in the runs 
presented here the convergence rate appeared to be higher. 

This algorithm has proved to be very useful for studying the nonlinear problems 
discussed in this paper. First, the method conserves mass exactly, which is crucial 
for seeing the correct asymptotic behaviour of the solution. Furthermore, it satisfies 
a maximum principle, which is important for handling the uP term numerically. 

In the simulations presented here, the computational domain and the computa
tional mesh varied with the exponent p. In all cases, the domain was chosen large 
enough so that boundaries had little effect on the numerical solution. In order to cap
ture the correct asymptotic behavior, including the developing discontinuities present 
in some of the cases, we used as fine a grid as possible for most of the simulations. 
A typical computation used 160,000 uniform grid blocks on a computational domain 
[-200, 200] x [-200, 200]. However, in some cases, most notably p = 1.2, the compu
tational domain was much larger (due to the long times simulated) and nonuniform 
meshes were used. At various times during the simulation the domain was regrid
ded (by hand), and the numerical solution was projected conservatively onto the new 
mesh. For stability of the convection scheme, the time-step in all simulations satisfied 
a Courant-Friedrichs-Lewy condition. 

We attempted various approaches for solving (4.1)-(4.2) numerically with little 
success. This equation represents a nonlinear, stationary convection equation for 
vo in the 'f/ - ( plane. As one approach, we added an artificial di.ifusion term to 
stabilize the equation and applied an upwinded finite difference method, treating the 
nonlinearities using Picard iteration. The convergence of this iterative procedure was 
very slow, with the number of iterations exceeding the number of time-steps needed 
to drive the original equation (problem (IVP)) to steady state. We concluded that 
simulating the time-dependent equation until steady state was reached gave more 
reliable answers with less computational effort. 

Appendix: Local solutions of the reduced equations for p < 3/2 near 
the tail and nose of the limiting profile. In this appendix we contruct local 
solutions of the reduced equations (2.22) and (2.32) near 'f/ = 0 and 'f/ = L. 

A.1. 1<P<3/2. Here we take equation (2.22) and put 

(A.1) { 
71(p - 1) }l/p-1 

vo = P wo(7/1,(), 
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where 7/l = 7// L to give 

(A.2) 82wo + f OWo + ~ - wP = - ( 3 - p) { 1 - 2p(p - 1) wp-1 } 7/1 OWo . 
8(2 2 8( (p - 1) 0 2p ( 3 - p) 0 07}1 

Near the tail of the profile located at 7/l = 0 we seek a local solution of the form 

(A.3) 

Clearly the leading-order term f 0 ( () satisfies 

(A.4) r" + f r' + _l2__ _ rP = o 
JO 2JO (p-1) JO 

together with the boundary conditions 

(A.5) fo(±oo) = 0. 

We note here that f 0 (() is actually an exact solution of (A.2) and has been studied in 
a different context by Brezis, Peletier, and Terman [6]. In that paper they showed that 
there exists a unique symmetric solution of (A.4) satisfying (A.5) with exponential 
decay as ICI -+ oo. These are the very properties we require here. We observe that Jo 
also satisfies the integral condition 

(A.6) l oo [(3 - p)fo - j,P] d( = 0 
-oo 2(p-1) 0 , 

which is related to condition ( 4. 9). 
Going further in the expansion (A.3) we find that Ji ( () has to satisfy 

! If (!, f { 1 (3-p).A p-l[p ( ) i} 
1+2 l+ 1 (p-l)+ 2P -f0 + p-1.A =0, 

fi(±oo) = 0. 

This is an eigenvalue problem for Ji ( () with a point spectrum for real .A (see, for 
example, Titchmarsh [22]). 

We now turn to the behaviour at the nose of the profile near 7/l = 1. Here we 
make the local scaling 

(A.7) p = 1 - 7/1, 

in (A.2) to give 

(A.8) =(l- )(3-p) {l- 2p(p-l)wp-l}{ awo -~awo} 
P 2p (3 - p) 0 P ap 2 a~ · 

We now make the expansion 

(A.9) [ 
(3 ) ] l/p-1 

wo(p,E) = 2(p-=-Pl) + p1/2W1(~) + O(p) 
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for p ---+ 0, ~ = 0(1). Substituting (A.9) into (A.8) and equating terms which are 
O(pl/2 ) give 

(A.10) 

where 

6= 
(p-1)(3-p)~ 

2p 

and primes denote differentration with respect to 6- The even solution of this equa
tion is given by 

(A.11) 1!: 1 2 ds 
W1(6) = A-A6 {e8 14 -1} 2 ., 

0 s 

where A = W1 (0) is an arbitrary positive constant. Anticipating a possible nonuni
formity in (A.9), we look at the behaviour of the expansion (A.9) as 161---+ oo. Now 
from (A.11) we have for 161 ---+ oo 

2A e;4 
W1(6)"'-~re', 

so the first two terms in (A.9) give 

{ 
(3 - p) }l/p-1 

wo(p,6) rv 2(p- l) 
2p1/2 Ae~U4 
--~~?--+··· 

which reveals a nonuniformity where 

(A.12) 

We observe that (A.12) defines a variable x where, for 6 > 0 (there is an equivalent 
transition region for 6 < 0), 

_ 112 /2log{log(l/ p)} 
6 - h{log(l/p)} + [log(l/p)]l/2 

(A.13) + [log(l/ p)]112 + ... 

such that x = 0(1) when (A.12) is satisfied. We now rewrite (A.8) in terms of X and 
p and expand w0 (x, p) in the form 

(A.14) 
Z1 (x) 

wo(x,p) = Zo(x) + log(l/p) + · · · 

to find that Z0 (X) satisfies 

(A.15) 
{ 1 - 2p(p-1) z1;-1} 

Z" - - (3-p) Z' 
o - ( ) o· p-1 
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Now for 6 > 0 the solution of (A.15) has to take Zo from the plateau value 
{ 2;P-::_P1)} l/p-l as x--+ -oo to zero as x--+ +oo. The solution which does this is given by 

(A.16) { 
(3-p) }l/p-1 

Zo = 2(p- l){Kex + 1} ' 

where the constant K can be found in terms of A by matching the expansions (A.14) 
and (A.9). This gives 

(A.17) { 
2(p - 1) }l/p-1 

K = (p- l)A 3 , 
-p 

and A is not determined by the local analysis. 
To summarise we have that as 'f/1 T 1 
(a)~= (l-7)~) 112 = 0(1), 

{ }
l/p-1 

wo = 2~ -=_Pl) + (1- TJ1) 1l 2w1 {(/(l -171) 112 } + o(l -171 ) 112; 

(b) x = 0(1), 

{ 
(3-p) }l/p-1 

wo = 2(p- l){Kex + 1} + o(l), 

a structure which is shown schematically in Figure A.l. 
The locus of the centre of the transition region is given by putting x = 0 in (A.13). 

To leading order this gives in the original coordinates 

(A.18) 

as TJ T L. 

(-±2 p (L-TJ log L { 
) 

( ) } 
1/2 

- V(p-1)(3-p) L L-r1 

Wo 

__.-------------...... - ........ 
-~----- -----~~ 
;I I\ 

I I I \ 
I I 

x=O 
(left) 

I 
I 

x=O 
(right) 

- {2=..L}/1 
2(p-1) 

( 

FIG. A.1. Plateaulike structure of the local solution near T) = L. The two transition layers 
move toward each other as T) T L and coalesce at T/ = L. The two-term solution (A.9) is indicated 
by the broken line, and the two transition solutions, given by (A.16) and its counterpart for ( < 0, 
are indicated by the solid lines. The locus of the centre of the transition region (x = 0 right/left) is 
given by (A.18) to leading order as T/ T L. 
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This behaviour is confirmed by the numerical results shown in §4; see Figure 4.1. 

A.2. 0 < p < 1. For this range of values of p we start from equation (2.32): 

(A.19) fPvo _ 8vo _P_ 8( vf;) ~ 8( vf;) ~ P _ 

8(2 8ry + (3-p)( 8( + (3-p/1 ory + (3-p)vo -O, 

where 0 < 'TJ < L. To simplify matters we put 

vo = {pry} 1l 1-Pwo(r, ry), 

where 

r = (/'T/1/2. 

This gives the equation 

(A.20) 82 wo + !:. 8wo + (wf;-wo) = ~ {wo - 2wl: } . 
8r2 2 or (1 - p) 'T/ 8ry (3 - p) 

We are interested in the way the profile develops as 'T/ increases from zero at the tail. 
If we try to construct the equivalent to (A.3) for p > 1, we find that the only bounded 
solution for wo(r) is w0 = 1, a solution which does not satisfy the boundary conditions 
at the edge of the support. The situation is very similar to that for the extinction 
problem for diffusion reaction equations (Grundy [21]), and with this analogy in mind 
we seek an expansion for wo ( r, 'TJ) as 'T/ -> 0 of the form 

(A.21) 
V1 (r) Vi(r) log(log 'TJ) V3(r) 

Wo = 1 + -- + + + · · ·. 
log( 'T/) (log 'T/ )2 (log 'T/ )2 

Substituting (A.21) into (A.20) we find that V1 satisfies 

(A.22) V" rV{ V - 0 1 +-- i-
2 

and, disregarding Vi, that V3(r) satisfies 

(A.23) V"+rV:{ -V =Ev,2_ 3(1-p)V. 
3 2 3 2 1 (3-p) 1 

We need polynomial solutions of these equations, so we take 

(A.24) Vi = A(2 + r 2 ), 

where A is found by requiring that equation (A.23) for V3 has a polynomial particular 
integral. This gives 

(A.25) 
-3(1 - p) 

A= 4p(3 - p). 

Clearly, the form (A.24) for V1 implies that the ordering of expansion (A.21) breaks 
down where the new variable 

s=r/llogryJ 1l 2 =0(1) 
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with a corresponding region of nonuniformity when s < 0. Introducing the variables 
into (A.20) together with the expansion 

wo = Ua(s) + o(l) 

as r7-+ 0, s = 0(1), we find that the resulting equation for Uo can be solved to yield 

(A.26) { 
3(1- p)s2 }1;1-p 

Ua(s) = 1 - 4p(3 _ p) 

Reverting to the original variables we find that 

{ 
3(1 - p)(2 }1/1-p 

Wo"" 1 - ------
4p(3 - p )71[ log 77[ 

as 77 -+ 0, a profile that has an interface where 

(A.27) (2 = 4p(3 - p) 77[ log77[. 
3(1 - p) 

We finally note that the equivalent invariance condition to (A.6) for 1 < p < 3/2 is 

1-: { U0 - (:~bp)} ds = 0 

which, using (A.24), can be written 

r1 (1 - t2 )p/l-p ( 1 - p - t 2) dt = 0 . .L1 3 - p 

This is an identity which can be easily verified. 
The structure of the profile near the nose for 0 < p < 1 is almost identical to that 

for 1 < p < 3/2 except that the support is finite in (. Starting from (A.20) we have 
for 77 I L the results 

(a) (L-~)1/2 = 0(1), 

( 
2 ) 1/1-p 

wo = -- + (L - 77)1;2W1 {r /(L - 77)1;2} + o(L - 77)1;2; 
3-p 

(b) x = 0(1), 

{ 
2 }1/1-p 

wo = -- - CeX + o(l), (3 - p) 

where matching gives C(A) and A is a constant appearing in the expression for W1. 
Note that w0 vanishes at a finite value of x, which is consistent with the finite nature 
of the support of v0 . The centre of the transition region, x = 0, is given to leading 
order as 77 i L by 

(A.28) (=± j2{(L-77)log(L/L-77)}1/2. VG 
Again these results compare well with the numerical solution given in §4; see Figure 
4.3. 

The schematical structure of the local solution is similar to that exhibited in 
Figure A.l, except of course that the support is finite in(. 
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