
Centrum
voor

Wiskunde
en

lnformatica
Centre for Mathematics and Computer Science

R. Bagai, M. Bezem, M.H. van Emden

On downward closure ordinals of logic programs

Computer Science/ Department of Software Technology Report CS-R8917 April

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301663334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

R. Bagai, M. Bezem, M.H. van Emden

On downward closure ordinals of logic programs

Computer Science/ Department of Software Technology Report CS-R8917 April

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N .W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

On Downward Closure Ordinals of Logic Programs

Rajiv Bagai
Dept. of Computer Science, University of Victoria, Victoria B. C., Canada VB W 2Y2

Marc Bezem
Centre for Mathematics and Computer Science, P.O. Box 40i9, 1009 i\B Amsterdam, Tl1e Netherland.;

Maarten van Emden

Dept. of Computer Science, University of Victoria, Victoria B.C., Canada V8W 2Y2

Abstract

Blair has shown tliat for every ordinal up to and including the least non-recursive ordinal

there exists a logic program having that ordinal as downward closure ordinal. However,

given such an ordinal and Blair's proof, it is not straigh tforward to find a corresponding logic

program. In fact, in the literature only a few isolated, ad hoe, examples of logic program;;

with downward clo;;ure ordinal greater than omega can be found. We contribute to bridging

the gap between what is known abstractly and what is known concretely by showing the

connection between some of the existing examples and the well-known concept of the order

of a vertex in a graph. Using this connection as a basis, we construct a family {P., }.« .,, of

logic programs where any member P., has downward closure ordinal w + a.

Ke_v Words & Phrases: logic program, downward closure ordinal, graph.

1985 Mathematics Subject Classification: 03Dxx, 68Qxx, 68Tl5

1982 CR Categories: F.3, F.4.1, I.2.3.

1 Introduction

The functions or relations computed by programs are usually characterized mathemati­

cally by associating a certain mapping with each program. What is computed can then

be regarded as a fixpoint of the mapping. Such fixpoints are subject to an order, so that

we can distinguish the greatest and the least fixpoints as being of particular interest.

In logic programs, the least fixpoint characterizes terminating behaviour; the difference

between the least and the greatest fixpoints can be related to nonterminating behaviour.

The least fixpoint is the limit of all finite powers of the mapping. This is not the case

for the greatest fixpoint. However, when we generalize the notion of power to include

transfinite powers, we find that the greatest fixpoint can also be characterized as the

limit of powers. In this more general setting, we call the least power for which the

least (greatest) fix point is reached the upward (downward) closure ordinal. The lack of

symmetry between the fixpoints that we just referred to can then be expressed by saying

Report CS-R8917
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1'

that the upward closure ordinal is at most w, and that the downward closure ordinal can
be greater than w for certain logic programs. In fact, Blair has shown in [3) that for every
ordinal up to and including the least non-recursive ordinal (wfk), there is a logic program
having it as downward closure ordinal. However, given such an ordinal and Blair's proof,
it is not straightforward to find a logic program having this ordinal as downward closure
ordinal. There is a painful contrast between the richness, in abstracto, assured by Blair's
·theorem and the meagreness of what is known concretely: the literature presents only a
few isolated examples of logic programs with downward closure ordinal greater than w,
presented in an ad hoe manner. It is the purpose of our paper to soften this contrast.

A basis of our approach is provided by the well-known notion of ordering the vertices
of an acyclic directed graph by assigning to each vertex an ordinal number, which may
or may not be finite. The other basis is a connection between graphs and logic pro­
grams provided by a variant of Kowalski's reachability representation of graphs. These
fundamentals allow us to "explain" some of the published examples of logic programs
having downward closure ordinal exceeding w. More importantly, they suggest a fam­
ily of logic programs having as downward closure ordinals all those ordinals for which a
certain convenient notation system applies.

In Section 2 we review some of the theory on fixpoints and closure ordinals. In the next
section we explain some of the examples by relating them to known concepts in graph
theory. In Section 4 we prepare for a more general treatment by exploiting generally
applicable representations of graphs by means of logic programs. Section 5 is devoted
to the construction of a family of logic programs indexed by ordinals up to fo, the least
fixpoint of the function .Aa[w0

'). Each member Po: of this family represents a graph, and
has w + a as downward closure ordinal.

2 Fixpoints and closure ordinals

The immediate-consequence function Tp associated with a logic program P is defined by:
A E Tp(l) iff there exists a variable-free instance

A+- B1& ... &Bn (n ~ 0)

of a clause in P such that {Bii ... , Bn} ~ I.
As shown in Lloyd [5), the immediate-consequence function, with respect to the partial

order of set inclusion, has a unique least fixpoint (denot -' 1fp('Tp)) and a unique greatest
fixpoint (denoted gfp(Tp)). Approximations to one of the fixpoints are obtained by means
of a sequence of sets having the fixpoint as limit.

It is easily shown that Tp is monotonic with respect to set inclusion; thus the se­
quence T.P(0), where n runs through the natural numbers (i.e. the finite ordinals) is
nondecreasing. The limit of this sequence is its union, which is the least fixpoint of Tp.

Dually, the sequence Tf:>(Bp) is nonincreasing; here Bp is the Herbrand base, the
Herbrand interpretation consisting of all variable-free atomic formulas constructible from

2

symbols in P. The limit of this sequence is its intersection, which is not necessarily a

fixpoint of Tp, as the following example shows.

Example 1 Let P be the program

p(s(X)) <- p(X);
q(O) <- p(X);

\Ve follow Prolog's convention of identifiers starting with upper-case letters for variables.

It can be seen that for n > 0,

Tp(Bp) = {q(O)} U {p(sm(O))lm ~ n}.

The intersection of Tp(Bp) for. all finite n is { q (0) }. This is not a fixpoint, smce

Tp({q(O)}) = 0.

This apparent breakdown of duality is puzzling. To better understand what is going

on, the sequences Tp(0) and Tp(Bp) are extended, according to the following definition

of the ordinal powers of Tp:

Tp i 0 - 0,

Tp i a Tp(Tp i (a - 1)), if a is a successor ordinal;

- LJ{Tp i .81,B <a}, if a is a limit ordinal.

Dually,

Tp l 0 - Bp ,

Tp la - Tp(Tp l (a - 1)), if a is a successor ordinal;

- n{Tp l .81.B <a}, if a is a limit ordinal.

Note that for finite ordinals n, Tp in= Tft(0) and Tp l n = Tft(Bp).

Definition The upward closure ordinal of Tp is the least ordinal a such that Tp Ta=
lfp(T?); the downward closure ordinal of Tp, denoted dco(Tp), is the least ordinal a such

that Tp l a = gfp(Tp). .

As shown in Lloyd [5], both the upward and downward closure ordinals of Tp exist for

any logic program P . Moreover, the upward closure ordinal is at most w (assuming that

the right hand sides of clauses in P are finite).
For the program of Example 1, the downward closure ordinal is w + 1. This shows

that for some programs this value can exceed w. On the other hand, certain classes of

programs have downward closure ordinals of at most w; for example, if in every clause

the conclusion contains all variables that occur in the clause.

For any program P, it is the case that Tp Ta ~ Tp l ,8, for all a and ,B. An important

class is that of determinate programs as defined in Blair [3]:

3

Definition A program P is determinate if Tp j w = Tp l w.

Proposition 1 If P is determinate, dco(Tp) ~ w.

Proof For any P, we have that Tp j w = lfp(Tp) ~ gfp(Tp) ~ Tp l w. Thus determi­
nacy implies that Tp l w is a (in fact, the only) fixpoint. The proposition then follows
from the definition of dco. D

Determinacy of a program is a fixpoint-theoretic property. \Ve define a stronger proof­
theoretic property of programs using the notion of SLD-derivation, which is described in
Lloyd [5].

Definition A program is well-founded if no infinite SLD-derivation starts from a neg­
ative clause consisting of a single variable-free atomic formula.

Proposition 2 Every well-founded program is determinate.

Proof Let P be a well-founded program and A E Bp, i.e. A is any variable-free atom.
Since any SLD-derivation starting from the negative clause +- A is finite, any SLD-tree
with +- A as the root is either finitely failed or contains a successful derivation. That is,
A is either in the finite-failure set (equal to Bp \ Tp l w, see Lloyd [5]) or in the success
set (equal to Tp j w). Therefore, Tp j w = Tp l w. D

As it is possible for a variable-free negative clause +- A to begin a successful as well
as an infinite SLD-derivation, the converse of proposition 2 does not hold in general. For
example consider the program P:

q;
q <- q;

This program is determinate because

Tp j w = {q} = Tp l w.

However, P is not well-founded since the variable-free r.lause <- q has an infinite deriva­
tion, namely

<- q, <- q, <- q,

For use in later sections we establish here the following result:

Proposition 3 Let P be a logic program such that all predicate symbols in it have non­
zero arity and every term occurring in the body of any of its clauses is a proper subterm
of a term occurring in the head of the same clause. Then P is well-founded.

4

Proof Straightforward by structural induction on the terms occurring in any variable­
free negative clause. 0

The relation between a program's structure and its downward closure ordinal is not
well understood. In the literature, a few isolated examples are exhibited as curiosities
to show that the value of this function can exceed w. The example shown above, first
published in [1], is due in part to K.L. Clark and in part to H. Andreka and I. Nemeti.
Here we discuss the other examples found in Lloyd [5].

Example 2 Let P be the program

p(f(X)) <- p(X);
q(a) <- p(X);
q(f(X)) <- q(X);
r(a) <- q(X);
r(f(X)) <- r(X);
s(a) <- r(X);
s(f(X)) <- s(X);
t(a) <- s(X);
t(f(X)) <- t(X);

Then we have

Tp ! 0
Tp !w

Tp !w2
Tp !w3
Tp !w4
Tp !w5

-

-
-

-
-

-

Bp,

Tp ! 0 \ {p(fk(a))lk < w},
Tp ! w \ {q(fk(a))lk < w},
Tp ! w2 \ {r(fk(a))lk < w},
Tp ! w3 \ {s(fk(a))lk < w},
Tp ! w4 \ {t(fk(a))lk < w},
0,
gfp(Tp).

Thus dco(Tp) is w5, since that is the least ordinal a such that Tp ! a= gfp(Tp).

Example 3 Let P be the program

p(a) <- p(X) t q(X);
p(f(X)) <- p(X);
q(b);

q(f(X)) <- q(X);

5

Then we have

Tp l n - {p(fk(a))lk < w} U {p(fk(b))jn .$ k < w} U

{q(fk(a))jn :5 k < w} U {q(fk(b))lk < w}, for n < w,

Tp l w - {p(fk(a))lk < w} U {q(fk(b))lk < w},

Tpl(w+n) - {p(fk(a))ln:5k<w}U{q(fk(b))lk<w}, forn<w,

Tplw2 - {q(fk(b))lk<w},

- gfp(Tp).

The above shows that dco(Tp) is w2.

Example 4 Let P be the program

p(a) <- p(X);

p(f(X)) <- p(X);

q(b);

q(f(X)) <- q(X);

r(c) <- r(X) t q(X);

r(f(X)) <- r(X);

. Then dco(Tp) is easily shown to be w2. Lloyd [5) is really scraping the bottom of the

barrel here: if we remove the clauses for the predicate symbol p, which do not affect

dco(Tp), then we obtain the program of Example 3, up to renaming of symbols.

3 Graphs associated with uniconditional logic pro­
grams

We have seen some examples of programs with downward closure ordinal greater than

w. With these in mind one can, with a bit of tinkering, produce more. But that exercise

may not make clear what the mechanism is; why the examples work. In this section we

show that all uniconditional logic programs, that is, those where every clause has one

condition, can be mapped to a graph in such a way that each vertex has an ordinal

number associated with it having the property that the downward closure ordinal of the

program has a simple relationship to the orders of the vertices as defined in graph theory.

As it is easier to construct graphs in such a way that all successive ordinals up to a certain

transfinite bound are associated with a vertex, this result suggests a way to construct ad

libitum examples of logic programs with downward closure ordinal beyond w.

Of course, we do not suggest that this be actually done. We present this result because

it substantiates our claim that we now understand some of the published examples. Better

still is to have a parameterized family of logic programs with a downward closure ordinal

closely related to the parameter. This parameter is given as a term encoding ordinal

numbers up to a certain bound. That is the topic of the next two sections.

6

p(O)

0
q(s(s(O)))

Figure 1: Graph of Example 1

The graph associated with a uniconditional logic program has as vertices elements of
the Herbrand base, that is, ground atomic formulas constructed with symbols occurring
in the program. There is an arc from A to B iff B <- A is a variable-free instance of a
clause in the program. In Figure 1 we show the graph associated with one of the examples
discussed in the previous section. We will now review known concepts in graph theory
that translate directly to the downward closure ordinal of a uniconditional program.

Let G = (V, E} be a directed graph, where V is a (possibly infinite) set of vertices
and E ~ V x V is a set of edges. The inverse graph of G, denoted c-1 is the graph G
with all edges reversed, i.e. c-1 = (V,E-1).

Let Ra : 2 v -+ 2 v be defined as

Ra(X) = { vl3u EX : (u, v) EE}.

We call Ra the reachability function of G, because Ra(X) is the set of vertices reachable
in one step from a vertex in X. Clearly, Ra is monotonic and we have the following
proposition.

Proposition 4 If G is the graph associated with a uniconditional logic program P, Ra
is the immediate-consequence function Tp.

Definition The upward ordinal function Xa for the graph G maps ordinals to sets of
vertices of G as follows:

Xa(O) - 0,
Xa(a) - {xlRa({x}) ~ Xa(a-1)}, if a is a successor ordinal;

- LJ{Xa(.B)l,8 <a}, if a is a limit ordinal.

7

A similar function was first defined in Berge [2], where it is called "ordinal function".
Intuitively, Xa(a) is the set of all vertices v such that all paths in c-1 terminating at v
are of order type less than a .

We find it useful to define the dual of Berge's upward ordinal function:

Definition The downward ordinal function Ya for the graph G = (V, E) is as follows:

Ya(O) - V,

Ya(a) - Ra(Ya(a - 1)),

- n{Ya(,B) l,B < a},

if a is a successor ordinal;

if a is a limit ordinal.

In other words, Ya(a) is the set of all vertices which terminate some path in G of order
type a or greater. The following proposi t ions are straightforward.

Proposition 5 For all a , Ya(a)= V \ Xa-1 (a).

Proposition 6 Ya is non-increasing, i. e. if G' ~ ,B, then Ya(,B) ~ Ya(a).

Proposition 7 Let S ~ V be such that S ~ Ra(S). Then S ~ YC,(a) , for all a.

Proof Clearly S ~ Ya(O). Now suppose S ~ Ya(,B), for all ,B < a. If a is a successor
ordinal then by the assumption on S and monotonicity of Ra we have S ~ Ra(S) £:;
Ra(Ya(a - 1)) = Ya(a). If a is a limit ordinal, the result follows from the definition of
Ya(o). D

Corollary If a vertex x occurs in a cycle then x E Ya(a), for all a.

Proof For any cycle Sin V we have S ~ Ra(S). D

Definition The upward order of a vertex x is defined in Berge [2] as the smallest ordinal
a such that x E Xa(a) , provided that there exists such a.

The above definition assigns an order to vertices from which no infinite path originates.
Moreover, if it assigns an order a to a vertex then, for all ,B < a it also assigns order ,B

to some vertex.

Before we can develop a notion dual to the upward order, we need the following result:

Proposition 8 For any x E V, if there is an ordinal a such that x </.Ya(a) then there

is a greatest ordinal ,B < a such that x E Ya(,B).

8

Proof If x '/. Ya(a) then by the well-ordering property of ordinals there exists a least
ordinal a' such that x '/.Ya(a'). We know that a' =f. 0 since Ya(O) = V; so a' must be
either a successor or a limit ordinal. The latter case can be excluded since then by the
definition Ya(a') = n{Ya(.8) 1.8 < a'}, we have that x '/. Ya(a') implies x '/. Ya(.8) for
some f3 < a', contradicting the minimality of o/. Thus the only possible case turns out
to be a'= f3 + 1 for some (3, which is the desired maximal solution of x E Ya(f3). 0

Definition The downward order of a vertex x is the largest ordinal .B such that x E

Ya(f3), provided that there is an a such that x '/.Ya(a).

Proposition 9 Let D(x) be the downward order of x in G and U(x) be the upward order

of x in G-1 • Then U(x) = D(x) + 1 for every x E V such that x '/.Ya(a) for some a.

Proof Follows from Proposition 5. D

In the remaining part of the paper, by order we mean the downward order of a vertex.
We also denote this value by Order(x), for any vertex x.

For certain graphs, Order fails to be a total function; for instance it is not defined
for vertices in a cycle since such vertices occur in Ya(a), for all ordinals a. Moreover,
the range of Order is an initial segment of the ordinals, i.e. for any ordinal a if there is
a vertex u E V such that Order(u) = a, then for every ordinal f3 < a there is a vertex
v E V such that Order(v) = (3.

Definition For any vertex x, x• is the set of all vertices from which there is a path to
x.

Proposition 10 If all vertices in x• have an order, then the order of x is the least ordinal

greater than all orders of vertices in x•.

Definition A graph G is well-founded if a- 1 does not contain any infinite paths.

Proposition 11 If P is a well-founded uniconditional program having Gas its associated

graph, then G is well-founded.

Proposition 12 For any vertex x of a well-founded graph, Order(x) is defined iff there

is no vertex y such that y occurs in a cycle and there is a path from y to x.

9

- ---=---;:-: ;·

Proof (=?) Suppose such a vertex y exists. Then there is a cycle C containing y and a

path P from y to x. Clearly, CUP ~ R.a(C UP). By Proposition 7, x E Ya(a), for all
a. Thus Order(x) is not defined.

(~) Suppose Order(x) is not defined. We need to show that there is a y E x* such
that y E y*.

Let Yo be x. By proposition 10, there is a vertex y1 E y0 such that Order(y1) is not

· defined. By iterating the same argument we get an infinite sequence (y0 , y1 , y2 , • · ·} of

vertices such that Yo is x and for all i, Order(y;) is not defined and Yi+i E Yi. If all the

y/s were distinct, they would constitute an infinite path in c-1 , thereby contradicting

the well-foundedness of G. Therefore, there exist m and n such that m < n and Ym = Yn·

Hence, Ym E y~ ~ Yo· D

Proposition 13 If a is any ordinal greater than all orders of vertices in G, then for all

{3 ~a, Ya(f3) =Ya(a).

Proof (~) Since Ya is monotonically non-increasing, we have that for all {3 ~ a,

Ya(f3) ~Ya(a).
(2) Let x f/. Ya(f3), for some (3 ~ a. Then by Proposition 8, there is a maximum

ordinal 6 such that x E Ya(o). By definition of order, 6 is the order of x. As 6 < a, by

the assumption on a we have that x f/. Ya(a). Therefore, Ya(a) ~ Ya(f3). 0

Theorem 1 If P is a uniconditional program and G is its associated graph, then for all

a, Tp ! a= Ya(a) = V \ Xa-1(a).

See Figure 2 for an example.

Corollary If G is the graph associated with a uniconditional program P, then dco(Tp)

is the least ordinal greater than all orders of vertices in G.

We feel we have now unveiled the secret of some of the examples found in the literature

where the downward closure ordinal is greater than w. Specifically, here is a method to

follow if another example is required. Take any acyclic graph G with at least one vertex

of transfinite order, say, a. Name the nodes of G by variable-free atomic formulas. A

uni conditional (possibly infinite) program P of which G is the associated graph then has

a downward closure ordinal greater than a. Of course we choose G and name the nodes

in such a way that P has a finite, even a small number, of clauses.

Although we have an improvement over the existing situation, where only a few iso­

lated examples of programs with downward closure ordinal exceeding w were published,

the above "method" is hardly satisfactory. It does not specify how to get from an infinite

graph G to a finite, preferably small, logic program having G as associated graph. This

problem is addressed in the next section.

10

,,,- - - - - - - - - - - - - -Tpil
/

"' X (2) - - - - - - - - - -T
1
2 ----------------------------7··----··1 - I p ..j,

f"-p(Of-1XG-1(1} "'p(s(O)) ! G,,,. ,,,.Pcs(s(O)))
: : : ,,,,. \ : / }--..,.._ ___ .,...

'\ : v
' L--- • • ·-~~ .
'\ / ,,,,,,
;,., __ ___ -;;;-..e •• -- ------------ --- Xa-1 (oo)

/ ,,,.
,,..,,,.,,,.r-­,,,.

I q) I

L - - _I T p J.oo

Figure 2: Ordinal powers compared with Berge's ordinal function

4 Graph representations

In this section we consider representations of graphs by logic programs. When G is the
graph associated with a wiiconditional program P, P is similar to a graph representation
due to Kowalski [4] that we call unary representation. According to it, given a graph G

whose vertices are labelled by variable-free terms, the clause

is in P iff G has an edge directed from the vertex labelled by T to the vertex labelled
by u. Note that since there is a one-one correspondence between the edges in G and
the clauses in P, P can be infinite. The greatest fixpoint for the unary representation is
easily seen to be the empty set and the following proposition follows immediately from
the corollary to theorem 1:

Proposition 14 The downward closure ordinal of the unary representation of a graph

is the least ordinal greater than all orders of vertices in the graph.

Kowalski also uses what we call the binary representation of a graph, where a variable­
free atom arc(r, u) is interpreted as saying that the graph contains an edge directed from
the vertex labelled by T to the vertex labelled by u. A binary representation P of a graph

11

- - -~---

G is an axiomatization in Horn clauses of the arc relation. The clauses in P can either be

all variable-free or, more interestingly, they may contain variables, in which case P can

be finite if the edge set of G is recursive. In its general form, P is a binary representation

of a graph when arc(r, u) E T p j w iff the graph contains an edge directed from r to u .

Unfortunately, we do not have a result equivalent to proposition 14 for a binary

representation of a graph. This is due to the fact that, unlike the unary representation,

a graph may have many binary representations, which have different downward closure

ordinals. On one extreme, if the binary representation contains only variable-free unit

clauses for the arc predicate, its downward closure ordinal is 1; however on the other

extreme, there may exist binary representations with hlgher, even transfinite, downward

closure ordinals.
We find it useful to combine Kowalski's two graph representations. A combined rep-

resentation is obtained by adding the following clauses to a binary representation:

C1: r(X) <- r(Y) & arc(Y,X) ;
C2: r(X) <- p(Y);
C3: p(s(X)) <- p(X);

assuming that the predicate symbols r and p do not occur in the binary representation

but the function symbol s does. The intuition behind the clause C1 of the combined

representation is that if a vertex Y is reachable and there is an arc from Y to a vertex

X , then X is reachable.
The reason for including clauses C2 and C3 in a combined representation becomes clear

in the proof of theorem 2(b), but for an intuitive understanding, first consider a combined

representation, say R, without these two clauses. Assuming that the corresponding binary

representation contains only variable-free unit clauses defining the arc relation, from

proposition 14 it may be seen that dco(TR) will be 1 +a, where a is the least ordinal

greater than all orders of vertices in the graph. In general, if the downward closure ordinal

of the binary representation is /3, dco(TR) will be at most /3 +a; it will not always be

equal to f3 +a because the r-atoms may start disappearing in the sequence (TR l 8} .s ;:::o
before all the unwanted arc-atoms have disappeared. To ensure that it is equal to f3 +a:
we need to retain all the r-atoms just until all the unwanted arc-atoms have disappeared.

For this reason, we will be particularly interested in determinate binary representations ,

so that all the unwanted arc-atoms disappear within the first w steps of the sequence

(TR l 8}o>o· Clauses C2 and C3 are added in R to retain all the r-atoms until TR l w .

The downward closure ordinal of TR then turns out to be w +a.

Definition Let P be a combined representation of a graph. The clauses with the

predicate symbols r or p in their heads are kernel clauses; all other clauses of P are called

non-kernel.

Definition If P is a combined representation of a graph, P denotes the set of all non­

kernel clauses of P.

12

Definition For any Herbrand interpretation I and predicate symbol p, the p-component

of I, denoted I op, is {p(ti, ... , tn)lp(ti, ... , tn) EI}.

Proposition 15 Let P be a combined representation of a graph. Then

(a) for all a~ w, (Tp l a)op = 0,

(b) for all a, {Tp l a,(Tp l a)or,(Tp l a)op} is a disjoint partition of Tp la.

Proof (a) Straightforward as C3 is the only clause in P with the symbol pin its head.

(b) Straightforward since P ~ P, they share the same Herbrand universe Up and the

symbols r and p do not occur in P. 0

Theorem 2 Let P be a combined representation of a graph G = (V, E) such that fa is

determinate. Then

(a) (Tp l w)oarc = {arc(r,u)l(r,u) EE},

(b) (Tp l w)or 2 {r(u)lu E V},

(c) for all a> 0, (Tp l (w +a)) or= {r(u)lu E Ya(a)}.

Proof (a) By proposition 15(b) and the fact that fa is determinate, we have

(Tp l w) o arc = (Tp l w) o arc = (Tp j w) o arc.

The result follows since fa is a binary representation of G.

(b) Due to clause C3, for all n < w, (Tp l n) op =j; 0. The result follows due to clause

c2.1

(c) See appendix. D

Theorem 3 Let P be a combined representation of a non-empty graph G such that fa is

determinate. Then dco(Tp) = w +a, where a is the least ordinal greater than all orders

of vertices in G.

Proof See appendix. D

l In fact, clauses C2 and C3 are included in the combined representation only to ensure that the set

{r(o")lu E V} is contained in Tp l w. The importance of this becomes clear in the proof of part (c).

13

- -- =-~- ...

· -:- :. !'~ ~ - -: ·- - - -· -

4.1 An example of combined representation

Consider any graph containing exactly one vertex of order a, for each ordinal a< €0 • It is
easily seen that all such graphs have the same transitive closure, denoted by W, which has
the property that an edge directed from vertex u to v exists in W iff Order(u) < Order(v).
In this section we construct a combined representation of W.

Any combined representation of W will contain the kernel clauses:

C1: r(X) <- r(Y) & arc(Y,X);
C2: r(X) <- p(Y);
C3: p(s(X)) <- p(X);

along with the non-kernel clauses axiomatizing the arc relation, which depend upon the
structure of W.

Since W contains exactly one vertex of each order less than €0 , we can represent
vertices by their orders. For representing natural numbers we use variable-free terms
made from the constant 0 and the successor function symbol s, i.e. zero is represented
by O, one by s(O), two by s(s(O)) and so on. For any natural number n, we let n denote
such a term representation of n. To represent ordinals2 we use the following well-known
result of their normal form expansions in base w (see Sierpinski [7]):

Proposition 16 Every ordinal number a, such that 0 < a < €0 , may be represented
uniquely as

a = wf31 c1 + wf32 c2 + · · · + wf3ncn

where n and c1 , c2 , . .. , en are non-zero natural numbers while (31 , (32 , ... , f3n is a decreas ing
sequence of ordinals less than a.

When the (3 's are finite, a can be any ordinal less than ww. More generally, if the (3 's are
less than nw, a can be any ordinal less than I+nw. Here, nw is a "tower" of n w's defined
by 1w = w and I+nw = w<nw), where n is a natural number. As every ordinal number
has a unique normal form, the representation of any ordinal number a, denoted r O:' l, is
the list of exponent-coefficient pairs appearing in the same order as in its normal form .
Using the function symbol d to construct such pairs, r al is given by t he list

By convention we let rol be the empty list (). Note that a finite number n > 0 has
different representations as a natural number and as an ordinal, since n = sn(0) whereas
r n l = (d((), sn(o))}; also 0 = 0 but ro1 = (}.

As neither addition nor multiplicat ion among ordinals is commutative, arithmetic
becomes rather unfamiliar. After some simplification, it can be seen for exan1ple that the
ordinal

(w + 1)2(w + 1)3(w + 1)4

2That is, there will be two representations for finite ordinals.

14

has the following normal form

and is represented by the list

(d((d((),s(s(s(o))))),s(s(s(s(o))))),

d((d((), s(s(0)))) , s(s(s(0)))),

d((d({), s(O))), s(s(o))),
d({), s(O))).

We allow lists to be nested to any finite depth. It may be verified that, with one level of

nesting, this provides a representation for all ordinals up to (but not including) w; with

two levels of nesting, up to ww; and so on. With a level of nesting of n we can represent

all ordinals less than nw, the tower of n w's defined just after proposition 16. Thus, in

the general case, we have a representation for all ordinals smaller than fo, which is the

least fixpoint of the function .Xa[wa].
W contains an edge from vertex u to vertex v iff Order(u) < Order(v). This gives

rise to the following Horn clause C4 for the arc relation:

C4: arc(X,Y) <- ord(X) t ord(Y) t lto(X,Y);

The predicate ord is true of all lists that are representations of ordinals. The predicate

1 to specifies the less-than relation on ordinals: 1 to(X, Y) is true if the ordinal represented

by X is less than that represented by Y. Representing lists as terms made up in the usual

way from the constant nil and the binary functor '.', we can axiomatize ord as follows:

CS: ord(nil);
C6: ord(p(B,s(N)).nil) <- ord(B) t int(N);
C7: ord(p(B1,s(N1)).p(B2,s(N2)).Rest) <-

CS: int(O);

ord(B1) t int(N1) t

ord(p(B2,s(N2)).Rest) t

lto(B2,B1);

C9: int(s(X)) <- int(X);

Note that ord requires the coefficient fields to be non-zero and the pairs in the lists to

be sorted in decreasing order of their exponent fields.

The < relation on the ordinals induces a < relation on their list representations such

that fa l < f .81 iff a < .8, for any ordinals a, {3 < t:0 • We have

(d(r f31 l ,ci), ... 'd(f f3m l ,~)) < {d(f 81 l ,d1), ... 'd(f 8n l ,dn))

if one of the following (mutually exclusive) cases hold:

15

• m = O,n > O;

• m, n > 0 and /31 = 81 and c1 < d1 ;

• m, n > 0 and /31 = 81 and c1 = d1 and
(d(f /32 l ,c2), · · ·, d(f /3m l ,~)) < (d(f 82 l ,d2), · · ·, d(f 8n l ,dn)).

These cases are directly translated to the following axioms for the 1 to predicate:

C10: lto(nil,X.Rest);
C11: lto(p(B1,N1).Rest1,p(B2,N2).Rest2) <- lto(B1,B2);
C12: lto(p(B,N1).Rest1,p(B,N2).Rest2) <- ltn(N1,N2);
C13: lto(p(B,N).Rest1,p(B,N).Rest2) <- lto(Rest1,Rest2);

The predicate 1 tn specifies the less-than ordering on natural numbers: 1 tn(X, Y) is true
if the natural number X is less than the natural number Y. It is defined as:

C14: ltn(O,s(X));
C15: ltn(s(X),s(Y)) <- ltn(X,Y);

This concludes the combined representation of the graph W. Clauses C1-C3 are the kernel
clauses and clauses C4-C15 are non-kernel.

5 A family of logic programs

In this section we construct a family {Pa}a<(o of logic programs, such that dco(Tpo) is
w + a. The members of this family are combined representations of graphs containing
vertices with transfinite order.

As a basis for this family we consider the graph W introduced in the previous section,
which contains exactly one vertex of each order less than e0 and has the property that
from any vertex there are edges to all vertices with higher orders. Let Wa be the graph
obtained by adding, in W, an edge from the vertex with order a to itself. This extra
edge introduces a cycle containing only that vertex, thereby causing that vertex, and
vertices which in W had a higher order, not to have an order. Then the program Pa is
the combined representation of lVa.

Thus in addition to the clauses C1-C15 given in section 4.1 for the combined repre­
sentation of W, Pa contains the non-kernel clause

C16: arc(f al, ral);

Theorem 4 For a> 0, dco(Tp) = w +a.
cl(

16

Proof Po:(= {C4, ... ,C16}) can be verified to meet the conditions of proposition 3.

Thus by proposition 2, it is determinate. Proposition 12 tells us that a vertex has an

order in Wo: iff the corresponding vertex has an order less than O:' in W. So O:' is the least

ordinal greater than all orders of vertices in Wo:. The result follows from theorem 3. D

6 Conclusions

V./e have presented a systematic way of constructing logic programs with downward clo­

sure ordinals up to E0 , the least fi.xpoint of AO:'[wo:]. Given Blair's result that there exist

programs with downward closure ordinals up to and including the least non-recursive

ordinal (wfk), it is quite tempting to go beyond E0. Even though we have not considered

that in this paper, it seems to be a simple matter to arrive at closer approximations to wfk.

The problem is essentially that of denoting ordinals by logic terms. We have presented

a method to construct notations r O:' 1 for O:' < Eo given some notations ii for n < w. This

step can be iterated and increasingly large initial segments of ordinals can be assigned

notations by enlarging the base of their normal form expansions. For example, instead

of w, using fo as the base yields a notation for all ordinals less than the least fixpoint of

the function AO:'[Eg]. Rogers [6] gives notation systems to go beyond even this value as

follows. Let

'Yo - Eo,

'Yn+i - least ordinal not expressible as

a polynomial of 'Yn.

Let us call a system of notations maximal if it assigns a notation to every recursive

ordinal. Then, since for all n, 'Yn < w}k, any notation system for ordinals up to 'Yn will

fail to be maximal. A system of notations is said to be recursively related if there exists

an effective procedure, which, when given any two representations in that system can tell

us which one represents a smaller ordinal. A classic result by Kleene (see Rogers [6]) is

that there is no maximal recursively related system of notations. As we need our system

to be recursively related (to axiomatize the l to predicate), it follows that our method

cannot be generalized to a maximal family of programs.

7 Acknowledgements

We would like to thank Krzysztof Apt , Roland Bol and Gary Miller for helpful discus­

sions.

17

- ~.:;< __ :_~~ -

8 Appendix

Proof of theorem 2(c): (By transfinite induction) By theorem 2(b) we have

(Tp l w) <>r ::) {r(a)la E V}

- {r(a)!a E Ya(O)}.

Induction hypothesis: For all f3 < a,

(Tp l (w + /3)) <> r 2 { r(a)la E Ya(/3)}.

Induction step: If a is a successor ordinal then

(Tp l (w+a))<>r

(Tp(Tp l (w +a: - 1))) <> r

by definition of Tp l (w +a:)

(Tp(Tp l (w +a: -1) U (Tp l (w + o:- l))<>r U (Tp l (w +a: -1)) <>p))<>r

by proposition 15(b)

- (Tp(Tp l (w +a: - 1) U (Tp l (w +a - 1)) <> r)) <> r

by proposition 15(a)

(Tp(Tp lwU(Tp l (w+o: - l))<>r))<>r

by proposition 1

{r(a)l3r: arc(r,a) E Tp l wand r(r) E (Tp l (w +a- l))<>r}

by definition of Tp on clause C1, and proposition 2

{r(a)l3r: arc(r, a) E Tp l wand TE Ya(a - l)}

by induction hypothesis and T E V

{r(a)l3r: (r,a) EE and TE Ya(o: -1)}

by proposition 15(b) and theorem 2(a)

- {r(a)la E Ya(o:)}

by definition of Ya.

If a: is a limit ordinal then

(Tp l (w + o:))<>r

- (n{Tp l /31/3 < w + o:})<>r

by definition of Tp l (w +a:)

- (Tp l w n n{Tp l (w + /3)1/3 <a:}) <>r

by simplification

(Tp l w) <> r n n{(Tp l (w + /3)) <> rl/3 <a}

18

by further simplification

- (Tp ! w) <> r n n{{r(u)lu e Ya(,B)}l,8 <a}
by induction hypothesis and induction step for successors

- (Tp ! w) <> r n {r(u)lu E Ya(a)}
by definition of Ya(a)

- {r(u)lu E Ya(a)}
by theorem 2(b). D

Proof of theorem 3: (~) For ,8 ~a we have

Tp!(w+,8+1)

Tp ! (w + ,8 + 1) U (Tp l (w + ,8 + 1)) or U (Tp l (w + ,8 + 1)) <> p

by proposition 15(b)

- Tp l (w + ,8 + 1) U (Tp l (w + ,8 + 1)) <> r

by proposition 15(a)

- Tpl(w+,B)U(Tpl(w+,B+l))<>r
by proposition 1

- Tp l (w + ,8) U {r(u)lu E Ya(,8 + 1)}

by theorem 2(c)

- Tp l (w + ,8) U {r(u)lu E Ya(,8)}
by proposition 13

- Tp l (w + ,8) U (Tp l (w + ,8)) <> r

by theorem 2(c)

Tp l (w + ,8)
by proposition 15.

Thus, dco(Tp) ~ w + a.

(~) By the condition on a, for all ,8 < a, there is a vertex x in G such that x E Ya(.B)
and x ~ Ya(a). By theorem 2(c), r(x) E Tp l (w + ,B) but r(x) ~ Tp l (w +a). Hence,
dco(Tp) ~ w +a. D

19

References

[1] K. R. Apt and M. H. van Emden. Contributions to the theory oflogic programming.
Journal of the ACM, July 1982.

[2] C. Berge. The Theory of Graphs. John Wiley and Sons, 1962.

[3} H. A. Blair. The recursion-theoretic complexity of the semantics of predicate logic as
a programming language. Information and Control, July-September 1982.

[4] R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[5) J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[6} H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw­
Hill, 1967.

[7} W. Sierpinski. Cardinal and Ordinal Numbers. Polish Scientific Publishers, 1965.

20

