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Normality and the weak cb property
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ABSTRACT

It is demonstrated that the Alexandroff duplicate of a Dowker space
is again a Dowker space which is not weak cb, while the existence of weak

cb Dowker spaces is made manifest.
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A non-metrizable, first countable compact space was created by
ALEXANDROFF in [1] and the construction has been subsequently generalized
and employed (ENGELKING [2,3], JUHASZ [7,8]). The present note concentrates
on some properties of the Alexandroff duplicate A(X) which, in particular,
show that a normal space need not have the weak cb property, thus resolving

the open question in MACK [11, p.240].

1. PRELIMINARIES

No separation axioms are implicitly assumed for the topological space
X. The Hewitt-Nachbin realcompactification of a Tychonoff space X is de-
noted by vX. We will write An\\ # to indicate that (An) is a decreasing
sequence of subsets of X such that nnAn = . N denotes the natural num-—
bers. A set A is regular closed if A = clxintXA, and %A denotes the bound-
ary of A.

PROPOSITION 1.1. (MACK [10,11]) A space X iZs cb (weak cb) Zf and only if
for each sequence An\\ @ of closed (regular closed) subsets of X, there

exists a sequence of zero sets (Z_) with A c Z_ and N_Z_ = @.
n n— n nn

cb-spaces originated in HORNE [5] and were studied by MACK in [10].
Every normal, countably paracompact space is cb and every cb-space is count-
ably paracompact. Weak cb-spaces were defined in [11]. They form a natural
generalization of cb-spaces and iﬁclude the Tychonoff pseudocompact spaces
and all extremally disconnected spaces. Interest in weak cb-spaces is cen-
tered in the theorem ([11]) that for a Tychonoff space X, the Dedekind com-
pletion of C(X) is isomorphic to C(Y), for some space Y, if and only if uX
is weak cb. It should be noted that if X is Tychonoff and weak cb, then any
space T with X ¢ T ¢ uX is weak cb. The converse fails in general (see
HARDY & WOODS [4]) but the following result is evident and will be needed

below.

PROPOSITION 1.2. Let X be Tychonoff and consider the statements

(a) For any sequence An\\ @ of regular closed sets in X we have

nHC]'UXAn - ﬂ



(b) For any decreasing sequence (An) of regular closed sets in X we have
nnC1UXAn B ClUXnnAn

(¢) If vX Zs weak cb, then any space T, with X ¢ T < vX s weak cb.

Then (a) <if and only <f (b); and (a) or (b) implies (c).

PROOF. We merely recall that if X is dense in T and A is a regular closed
subset of X then clTA = B is the unique regular closed subset of T with
A=BnX. 0O

According to a result of ISHIKAWA [6], a space X is countably para-
compact if and only if for each sequence An\\ @ of closed subsets of X,
there exists a sequence (Gn) of open sets such that An S_Gn and
ﬂnclen = . The following observation will be useful below and may have

independent interest.

PROPOSITION 1.3. The following statements are equivalent

(a) X Zs countable paracompact.

(b) For each sequence Fn\\ f of closed nowhere dense subsets of X, there
exists a sequence (Gn) of open sets such that F cG and
nnC1XGn = 0.

(c) Each countable increasing cover ([10]) by dense open sets has a count-

able closed refinement whose interiors cover X.

PROOF. It is enough to show (b) implies (a). Let An \\¢ be an arbitrary

sequence of closed sets and define a sequence of open sets (Gn) with

An E_Gn and ﬂncl Gn = @ in the following manner:
(i) If intXAm = @ for some m > 1, there exist open sets Gy with
> = . =
Ak-S Gk’ k 2 m and ﬂkclek f; put Gn X for 1 < n < m. Now assume

that 1ntXAn # f for all n.
(i1) 1If a subsequence (A ) exists with A E_intXA , let
RN +1 e

G = intXA and Gn = X otherwise.
e+l T

(iii) If there exists m = 1 such that Fk = BAk n 8Ak+] # @0 for k 2 m

then Fk \\¢ is a sequence of closed nowhere dense sets and there
f.
0

exists a sequence of open sets (Uk) with Fk E-Uk and nkC1XUk =
Define Gk+l = 1ntXAk u Uk for k 2 m and Gn =X for 1 <n < m.



In order to exploit the use of nowhere dense closed subsets, we ven-

ture to make the following

DEFINITION 1.4. X 728 an nd-space if for each sequence Fn\\ @ of closed

nowhere dense sets, there exists a sequence of zero sets (Zn) with

F cZ ad N Z = §.
n— n nn

Every cb-space is an nd-space. Since every zero set Z is a regular
Ga—set (a countable intersection of closed sets whose interiors contain Z),
we may adapt the proof of Proposition 1.3 to conclude that every nd-space
is countable paracompact. A space is cb if and only if it is both a weak
cb and an nd-space. The example on p.240 of [11] is countably paracompact
but not an nd-space. It is conjectured that an nd-space need not be cb,

although an example at the present time is not forthcoming.

2. PROPERTIES OF A(X)

Recall the construction in [7]. Given an arbitrary topological space
X, consider the set A(X) = X u X', where X' is a disjoint copy of X. For
any x € X, let x' denote the corresponding point of X' and if S c X de-
fine S' = {x' | x € S}. A topology is introduced to A(X) by defining a
base {B(z) | z ¢ A(X)} as follows:

B(x') = {{x"}} and B(x) = {V u (V'\{x'}) | Ve V(x)},

where V(x) is a neighbourhood base of x in X. The resulting space, also
denoted by A(X), generalizes the original construction in ALEXANDROFF &
URYSOHN [1] and is called the Alexandroff duplicate of X. It is clear that
X is a closed, C-embedded subspace of A(X).

Many properties of X are shared with A(X). It has been noticed that
A(X) is compact ([2]), a-compact (for any infinite cardinal a), realcompact
and Tychonoff ([7]), if X has the corresponding property. We will now ex-
pand this list of properties.

Observe that a space is normal if and only if each pair of disjoint

closed nowhere dense sets can be separated by disjoint open neighbourhoods.



PROPOSITION 2.1. X zZs normal if and only if A(X) is normal.

PROOF. Let A and B be disjoint closed nowhere dense subsets of A(X). Then
A and B are closed and disjoint in X and can be separated by disjoint open
sets U and V in X. The sets U u U' and V u V' are open disjoint neighbour-
hoods of A and B in A(X). [

PROPOSITION 2.2. X 7s countably paracompact if and only if A(X) is count-
ably paracompact.

PROOF. For the necessity, let Fn \\¢ be a sequence of closed nowhere dense

subsets of A(X). Then Fn < X and there exists a sequence (Vn) of open sub-

sets of X with F c U and N cl.U = @. Define G =U u U' and note that
n— n n X n n n n

= 1
clA(X)Gn = clen U Un’ so that Fn E_Gn and N _cl 0. 0O

n A(X)Gn =

PROPOSITION 2.3. If A(X) Zs weak cb then both X and A(X) are cb.

PROOF. To show that X is cb, take a sequence An \\ﬁ of closed sets in X.

Then B = An U A; is regular closed in A(X) and Bn \\ﬁ. There exist zero

sets W in A(X) with B ¢ W amd N W =@. Then Z =W n X is a zero set
n n— n nn n n

in X and An E-Zn with ﬂnZn = @. If X is cb then both X and A(X) are count-

ably paracompact, hence A(X) is cb. []

One may show that A(X) is countably compact if and only if X is. Fur-
thermore, if X contains a C-embedded copy of N, so does A(X) so that A(X)
is pseudocompact implies that X is alsc. However, if X is pseudocompact
(Tychonoff) but not countable compact then A(X) is not weak cb, in particu-

lar, not pseudocompact.

3. DOWKER SPACES

A Dowker space is a normal Hausdorff space which is not countably para-
compact. Such spaces exist within Zermelo-Fraenkel set theory; the axiom of
choice implies the existence of a zero-dimensional P-space which is Dowker
(RUDIN [12]) and more recently a certain combinatorial principle called ¢

implies existence of a locally compact, first countable, hereditarily sep-
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arable Dowker space (JUHASZ et al. [91).

The open question in [11, p.240] may be phrased as follows: Must every
Dowker space have the weak cb property? It follows from Propositions 2.1
and 2.2 that A(X) is a Dowker space if and only if X is such. Since no
Dowker space can be even an nd-space, 2.3 implies that for any Dowker
space X, the space A(X) answeré the above question negatively. It may be
of interest however that the Dowker space of M.E. RUDIN [12] is weak cb,
as is now shown.

The reader is referred to [12] for details. With the same notation as

in [12], define

F={f:]N->ww[f(n)Swnforallne]N}.
X={f e¢F | W) < cf(f(n)) < wy for all n ¢ N and some k ¢ I},
X={f ¢F | w, < cf(f(n)) for all n ¢ N}.

1

F carries a topology generated by the basic open-and-closed sets
(f,gl ={h e F | £(n) < h(n) < g(n) for all n e N}.

Then X ¢ X' c F are subspaces and vX = X' is paracompact, and hence a weak
cb-space.

To show that X is weak cb, let An \\¢ be a sequence of regular closed
subsets of X and suppose g € nncluxAn. We will define an increasing se-
quence {fa e X | acx< wl} as follows:

1) Choose any f_ ¢ intXAl with fO < g.

0
2) Assume f_ ¢ X is defined for all B < a, and

B
(a) if a =B + 1, let i ¢ N be the smallest integer with fB ¢ int

and choose fu € (1ntXAi) n (fB,g].

x4

(b) if o is a limit ordinal, let ha(n) = sup{fB(n) ] B < o} and choose

fa € (intXAl) n (ha’g]'

Now define f(n) = sup{fa(n) I a < wl}' Then £ < g and cf(f(n)) = W) for

all n ¢« N implies that f ¢ X. However, f ¢ Ak for all k e W: let h < £

and for each n ¢ N there is £ ¢ {f | a < w,} with h(n) < £_(n). Let
apn a 1 dp
g = sup{an ] n ¢ N} and then fB+k € (1ntXAk) n (h,f7, that is



f ¢ clxlntXAk = Ak' \\
We have a contradiction and so An @ implies nnC1UXAn = $. Finally,

apply Proposition 1.2 to infer that X is weak cb.

4. REMARKS

Since the Dowker space X in [12] is weak cb, it follows from [4] that
E(uvX) = VE(X), where E(X) denotes the absolute of X (see for example [4,
p.6521). Thus, UE(X) is paracompact. However, it has been shown by
E.K. VAN DOUWEN that E(X) is not normal. It would seem natural therefore
to pose the following questions. 1) Is there a normal (non-paracompact)
space X with normal absolute E(X); 2) Is there an extremally disconnected
Dowker space; and ultimately 3) Is there a Dowker space X with Dowker ab-

solute E(X).
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