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Abstract
This paper develops an abstract theory for mathematical morphology on complete lattices. The
approach is based upon the idea that objects are only known through information provided by
a given collection of measurements (called evaluations in this paper). This abstract approach
leads in a natural way to the concept of convolution lattice (where ‘convolution’ has to be
understood in the sense of an abstract Minkowski addition), the morphological slope transform,

and the notion of ‘random lattice element’.
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1. Introduction

In many practical situations, physical objects are accessible only through a finite number of
measurements. For example, one can get information about an unknown set X by testing, for
any test set B in a given collection 7', whether or not X N B = &. This is Kendall’s approach
to random set theory [8]. This simple observation, i.e., that objects are only known through
measurements, is used in this paper to build an abstract theory of mathematical morphology on
complete lattices.

The last decade, complete lattices have manifested themselves as a convenient mathematical
framework for morphological image processing. Within this framework, classical approaches
towards binary and grey-scale morphology happen to be only particular cases of a much more
general theory [4, 6, 14, 15, 18].



The approach adopted in this paper is based essentially upon two assumptions: (i) the
objects under study are elements of a given complete lattice; (ii) such objects are not known
explicitly but only through a given collection of measurements. Such measurements, called
evaluations in this paper, are represented by mappings from a subset of the complete lattice (a
so-called sup-generating family) into another complete lattice modelling the space of values. In
practice, this value lattice will be ‘smaller’ than the object lattice, and often, it will have some
additional structure, e.g. that of a vector space. In many practical cases, the value lattice will
be the set of extended reals.

As the only available information about the objects comes from the evaluations, we can
use only this information to build morphological operators. If the value lattice is endowed with
a group or semigroup operation (e.g. Minkowski addition), we can define a ‘similar’ operation
on the object lattice by exploiting the evaluation family. It turns out that in this way we are
able to build a general theory for mathematical morphology which includes most of the known
special cases. The prototype example is the case where the object lattice comprises all subsets
of R?, the value lattice is IR, the extended reals, and the measurements are given by the support
function. Recently, it has been observed that the support function can be regarded as the
binary slope transform [2, 5, 9, 10]. The approach to morphology advocated in this paper leads
us immediately towards a definition of the morphological slope transform in an abstract context.

We conclude with a brief description of the further contents of this paper. The next section
recalls some elementary concepts in mathematical morphology. Section 3 discusses convolution
lattices, which were first introduced by Heijmans and Ronse [6]. However, our nomenclature is
new. In Section 4 it is explained how families of evaluations can be used to define adjunctions
(dilations and erosions) on the object lattice. Some examples are given in Section 5. If the
value lattices possesses additional structure, in particular, if it is a convolution lattice, then
it is possible to define Minkowski-type operations on the object lattice; this is the subject of
Section 6. In Section 7 we investigate under which conditions the object lattice has the structure
of a convolution lattice. Then, in Section 8, we discuss the abstract slope transform. Finally, in
Section 9 we explain how our approach based on evaluations can also be used to define random
lattice elements; such a definition includes the concept of a random closed set as a special case.

2. Morphology on complete lattices: a reminder

In this section, we recall some basic concepts from the theory of morphology on complete lattices;
refer to [6, 15, 18] for details. A comprehensive account can be found in [4].

A set £ with a partial ordering < is called a complete lattice if every subset H of £ has an
infimum (greatest lower bound) A H and supremum (least upper bound) \/ H. The least and
greatest element of £ are respectively denoted by O and I. Some examples of complete lattices
encountered in this paper are:

e R=RU{—00,+00} with the usual ordering of reals.

o 7Z.=7ZU{—00,+x}.
P(E), the power set of a set E ordered by set inclusion.
F(R%), the closed subsets of R?, ordered by set inclusion.
C(IR%), the convex subsets of R%, ordered by set inclusion.
Fun(E,T), with 7 being a complete lattice, denotes the set of all functions mapping E into
7. It is a complete lattice under the partial ordering ‘f < g if f(z) < g(x) (in 7) for every
z e FE.

Let £, M be complete lattices. An operator ¢ : £ — M is said to be increasing when
X < X' in £ implies that ¥(X) < ¢(X’) in M. An operator ¢ : £L — M is called erosion if
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e(Nier Xi) = Nicre(Xi), for every collection {X; | i € I} C L. An operator § : M — L is
called dilation if 6(\/,c; Y:) = V;cy 6(Yi), for every collection {Y; | i € I} C M. Erosions and
dilations are increasing operators. The pair (g,6), where ¢ : L — M and § : M — L, is said to
be an adjunction if

(V)< X << Y <e(X), XeL,YeM. (2.1)
Denote by id, the identity operator on £, that is, id;(X) = X for X € L. The following results
can be found, e.g., in [4].
2.1. Proposition. Let £, M be complete lattices. If (g,8) is an adjunction between L and M,
then € is an erosion and 6 is a dilation. The following identities hold:

ebe = and b6 = 6. (2.2)

Furthermore,
be <idg and €6 <idp. (2.3)

2.2. Proposition. Ife: L — M is an erosion, then there exists a unique dilation 6 : M — L
such that (e,6) is an adjunction between L and M. Dually, if 6 : M — L is a dilation, then
there exists a unique erosion € : L — M such that (e, 6) is an adjunction between L and M.

2.3. Proposition. If (e1,61) is an adjunction between L and M and (g9, 62) is an adjunction
between M and N, then (eqe1,6162) is an adjunction between L and N .

An operator « on L is called opening if it is increasing, anti-extensive (« < id) and idempotent
(a? = a). An operator 3 is called closing if it is increasing, extensive (3 > id) and idempotent.

2.4. Proposition. If o;, i € I, are openings, then \/;c; a; is an opening as well. Dually, if
Bs, i € I, are closings, then \,c; B is also a closing.

2.5. Proposition. If (g,6) is an adjunction between L and M, then b¢ is an opening on L
and €6 is a closing on M.

As an example we discuss the support function as this will play an important role in the sequel.

2.6. Example: Support function.
In the literature [7, 13, 16] the support function for convex sets has been thoroughly investigated.
Here we will extend its definition to arbitrary subsets of R?.

The support function h(X,-) of X € P(IR?) is defined as

hX,v) = \/ (z,v), veR".
rEX

Here (z,v) is the inner product of z and v. The operator ¢ : P(IR*) — Fun(R?, R) given by
o(X) = h(X,-) is called the slope transform for sets [5]. In [5] it is shown that o(X) is lower
semi-continuous (l.s.c.) and sublinear. Define, for a € R? and 7 € R, the closed halfspace

H™ (a,r) = {z € R? | {a,z) < 7}.
Let the operator o~ : Fun(R%, R) — P(IR?) be given by
o= (f)= [ H (v, f(0))
vE]Rd

In [5] it is shown that (¢, o) constitutes an adjunction between Fun(R%, R) and P(IR?), and
that the closing oo on P(IR?) is given by

o~ o(X) =co(X),
the closed convex hull of X.
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3. Convolution lattices

The theory developed in this section is largely based upon the work of Heijmans and Ronse [6];
see also [4]. The concept of a convolution lattice, however, is new.

Let £ be a complete lattice and let £ be a sup-generating family in £. The latter means
that every element in £ can be written as a supremum of elements of £. For an element X € £
we define

UX)={zel|z< X}

Then X = \/4(X), for every X € L. Assume that @ is a commutative group operation on /.
We say that @ is order-preserving if z < y implies that t @ h < y @ h, for z,y, h € £. We define

Xoh=\/{zoh|zeclX)}, XeL, hel

This notation is justified by the observation that x @ h = \/{z' @ h | 2’ € ¢(z)}, for z,h € £:
see [6]. It is evident that, for a given h € /, the operator X +— X @ h on L is increasing iff
the group operation @ is order-preserving. Let o denote the unit element of £ with respect to
@, ie, xPo=0dx =x for x € L. For z € £ we define —z as the inverse element of z, i.e.,
r@-—r=—-—xxDxr =o0.

In [6] it was observed that further assumptions have to be made if one wants to get useful
results. Towards that goal the so-called “Basic Assumption” was formulated. Here we will
present a slightly different, but equivalent formulation of this assumption.

3.1. Basic Assumption. £ is a sup-generating family in £ with an order-preserving group
operation @ such that (X ® h) ® —h = X, for every X € £ and h € /.

In [6] the starting point is a family of automorphisms on £ which leave ¢ invariant and which
is (simply) transitive on £. In the present context, these automorphisms are the mappings
X — X @ h, where h ranges over £. We define

Xp,=Xo®h.

We also define the (generalized) Minkowski addition and subtraction

xeov=\ Xx, (3.1)
yeL(Y)

Xov= A X, (3.2)
yeL(Y)

for X,Y € L. Alternatively, we might call X &Y the convolution of X and Y. The following
result holds [4, 6].

3.2. Proposition. Let the Basic Assumption be satisfied. For x,y € £ and X,Y,Z € L:

XoY=YoX=\/{zoy|zeclX),yeclY)}
XoY=\/{het|Ys <X}
XeY)aZ=Xo Y & Z);
(XoY)eZ=Xo (Y ®2).

The choice of £ is, to a certain extent, arbitrary. We illustrate this point by means of the following
example. Let £L = F (]Rd), the closed subsets of IR?, and let £ consist of all singletons with rational
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coordinates. If we consider the usual vector addition on £, then the Basic Assumption holds.
Alternatively, we can choose £ to be the collection of all singletons. It is easy to see that both
choices lead to the same Minkowski addition @ on F(IR?), namely X ®Y = X @ Y, where @ is
the ‘classical’ Minkowski addition and Z denotes the closure of Z.

To obtain a sup-generating family in £ which is less arbitrary, we define the completion of
¢, denoted by £, as the set of elements of £ which are invertible with respect to @. It is evident
that £ C £. If £(X) denotes the set {z € /| z < X}, then X®h =\ {z®h | z € {(X)}, as one
can easily show. Replacing ¢ by ¢, the Basic Assumption still holds, and the resulting Minkowski
addition and subtraction coincide with the original one. Also Proposition 3.2 remains valid in
this case.

3.3. Definition. If £ is a complete lattice with a sup-generating family ¢, and if @ is a
commutative group operation on £ such that the Basic Assumption holds, and such that every
element of £ which is invertible with respect to @ lies in £, then we shall call the triple (£, ¢, ®)
a convolution lattice.

Let (E,+) be a commutative group, let P(E) be the power set of E, and denote by {E} the
collection of singletons {z}, = € E. It is evident that {E} is a sup-generating family in P(E).
Defining {z} ® {y} = {z + y}, we get that (P(E),{E},®) is a convolution lattice.

3.4. Examples.
(a) ({0,1},{1},V), where ‘v’ is the logical OR, is a convolution lattice.

(b) (IR, IR,+), where ‘4’ is the usual addition of real numbers, is a convolution lattice. In this
case we write ‘4’ rather than ‘@’. A straightforward computation shows that —ooc + ¢ = —oc0
for t € R, and that +0o+t =400 fort € R, t # —o0.
(c) (P(R%),{R?},®), where ‘@’ is the vector addition on IR?, is a convolution lattice.

Also (C(R%),{R"},®), where C(IR?) is the family of convex subsets of IR?, is a convolution
lattice.

Let F(IR?) be the closed subsets of R?, and let X ®Y = X @ Y for two elements X,V €
F(R?), then (F(R%), {IR*},®) is a convolution lattice.

(d) Let w: IR — IR be a bijective mapping, and define z +y = w=!(w(z) + w(y)), ,y € R.
Here ‘4’ is the usual addition, and w™! is the inverse of w. It is evident that (IR,4) is a
commutative group. Define, for X, Y C IR,

XoY={zt+y|zeX, yeY},
then (P(IR), {IR},®) is a convolution lattice. We can take, for example,

{$2, z >0,

w(m) - —z? x < 0.

We return to this situation in Example 6.7.
(e) Consider the complete lattice of functions Fun(IR?, R). For z € R? and ¢ € IR the pulse
function f,; is defined as the function which equals ¢ at z and —oo elsewhere. We denote the
family of all pulse functions, which is a sup-generating family in Fun(R?, R), by PF(R%, R).
Defining

Ja,s @ fyt = foty,stts
we arrive at the Minkowski addition given by

(Fod)(z) =\ F@-y) +Gy)
yeRY
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for F,G € Fun(IR%, R); see [6]. This operation is sometimes called supremal convolution [5]. Tt
follows easily that (Fun(R%, R),PF(R? R),®) is a convolution lattice.

(f) The pulse functions PF(IR%,R) also constitute a sup-generating family in the complete
lattice of concave u.s.c. (upper semi-continuous) functions, denoted by Fun,(IR%,IR). In this
case, the Minkowski addition is given by

(Fed)(z)=\/ Flz-y)+Gly);

yeR4

here F is the u.s.c. hull of F, that is, the infimum of all u.s.c. functions above F. The triple
(Fun, (R?, R), PF(R?, R),®) is a convolution lattice.

4. From evaluations to adjunctions
Throughout this section we assume that £ and M are complete lattices.

4.1. Definition. A mapping u : £ — M is called an evaluation if it satisfies the condition

z < \/a:l = u(zr) < \/u(a:z), (4.1)

i€l i€l
for all z,z; € £,i € 1.

If £ is an atomic lattice and £ is the set of atoms [1, 4], then every mapping u : £ — M is an
evaluation. For non-atomic lattices this is not true in general. For example, let £L = M = R
and ¢ = IR, and define u(z) = 1 if z is rational and 0 otherwise. It is easy to see that u is not
an evaluation.

Assume that u : £ — M is an evaluation; define the mappings 6, : L+— M ande, : M +— L
as follows:

w(X) =\/{u | z € {(X)}, (4.2)
e.(Y) :\/{xeﬂua:)SY}. (4.3)

Note that 6,(x) = u(z) for all z € £.

4.2. Proposition. Ifu:£{ — M is an evaluation, then (e,,06,) is an adjunction between M
and L. Conversely, if (g,6) is an adjunction between M and L, then u : £ — M defined by
u(z) = 6(z) is an evaluation, and 6 = 6,,.

PROOF. First, we show that (e,,d,) is an adjunction, given that u is an evaluation. We must
show that 6,(X) <Y <= X <¢g,(Y) for X € £L and Y € M. To prove ‘ = ’, assume that
Vi{u(z)| z€(X)} <Y. Thus u(z) <Y for z € {(X), which implies that z < ,(Y). We
conclude that X < ¢,(Y). The proof of ‘=’ is similar.

To finish the proof note that if x < \/,.; z;, then

8(z) < 8(\/ z:) = \/ 8(z),

1€l 1€l

whence it follows that u(z) = 6(z) is an evaluation. It is obvious that § = 6,. |
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Let U be a collection of evaluations. From Proposition 2.5 we know that €,6, is a closing on £
for every u € U. Now Proposition 2.4 yields that the operator X — (X >U given by

(X)y= N cubu(X) (4.4)

u€U

is a closing on L, too. We refer to it as U-closing. We show that
(X)y = V{z €| u(@) < 6,(X) for every u € U}. (4.5)
Denote the right-hand expression by Y. For a fixed u € U:
Y <\/{z €] ulz) < 6u,(X)} = cubu(X).

Thus, Y < A, cpy eubu(X) = <X>U. For the converse, let h € £ satisfy h < A, cyy€ubu(X). Then
h < e,6,(X) for all u € U, that is, 6,(h) = u(h) < 6,(X). This yields h <Y, and (4.5) has
been established.

Next, we show that
5u(<X>U) =6,(X), Xe£L uel. (4.6)

As X < <X>U, it follows that 6, (X) < 6u(<X>U). On the other hand,

6u(<X>tU) = 6u(/\ €40y (X)) < buenbu(X) = 6u(X),
veU

where we used (2.2).

If the lattice £ contains the objects under study, then the evaluations represent the available
information and may be regarded as measurements. Therefore, (X >U represents an element of
L which is retrievable from measurements of X. In the context of random sets, the closing <X >U
has been used in [12].

The family of U-closed elements in L is denoted by Ly, i.e.,

Ly={XeL| (X),=X}.
Being the invariance domain of a closing, the family Ly is closed under infima [4].
4.3. Proposition. For every u € U and Y € M the element ,(Y) is U-closed. Furthermore,
<X>U = /\{eu(Y) Y eM, uelUand X <e,(Y)}. (4.7)

PROOF. To prove the first statement observe that <5u(Y)>U > £4(Y). On the other hand,

(ca(V))y = )\ evbveu(Y) < cubucu(Y) = eu(Y),
velU

by (2.2).

To prove (4.7), put X' = A{e,(Y)|Y e M, v € Uand X < ¢,(Y)}. From the previous
statement we derive that X < €,(Y’) implies that (X >U < e4(Y). Therefore, it is evident that
<X>U < X'. To prove ‘>, observe that X' < A {e,0u(X)| v e U} = <X>U. (]
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4.4. Proposition. Let U consist of all evaluations which are suprema of elements of U. For
every X € L,
(X)y = {(X)g-

PROOF. It is easy to see that <X>[D C <X>U. To prove the converse, define Y = <X>U. LetucU
be given by u = \/;.; u;, where u; € U. Then Y < g,,6,,(X) for i € I, that is, 6,,(Y) < 8,,(X).
Now taking the supremum over i € I at both sides and using that \/,.; 6., = 6., we get
6, (Y) < 64(X). Therefore, Y < €,6,(X). As this holds for every v € U we conclude that
Y <(X)g ]

4.5. Definition. The family U and the corresponding closing are called unbiased if <a:>U =z
for all z € £.

4.6. Example. Let £ = P(IR?), M = [0,00], and suppose that U contains only one element,
namely u(z) = ||z||. Then (z), is the smallest closed disk centered at the origin which contains
z. This closing is biased.

4.7. Proposition. U is unbiased if and only if for any two elements x,y € £ with x L y there
exists an evaluation v € U such that u(z) £ u(y).

PROOF. ‘if’: suppose that the latter condition holds and that <y>U # y for some y € £. Then
there exists an element x € £ with z £ y such that z < <y>U = Aueuubu(y). Thus u(z) < u(y)
for all w € U, a contradiction.

‘only if’: suppose that U is unbiased and let z,y € £ with £ y. Suppose that u(z) < u(y)
for all w € U. Then z < <y>U = y, a contradiction.

5. Evaluations and U-closings: some examples

In this section we present a number of examples of evaluation families and the corresponding
U-closings.

5.1. Example: Support function. (Continuation of Example 2.6)

Let £ = P(R?) and £ = {IR?}. Often, we shall denote a singleton by z rather than by {z},

where z € R?. Let M = IR and consider for v € R* the evaluation u,(z) = (z,v), where (z,v)
is the inner product of z and v. The corresponding dilation é,,, : £ +— M is given by

bu,(X) = h(X,v) = \/ (z,v).
rz€X

The mapping v — 6,,(X) is known as the support function of X; see Example 2.6. The adjoint
erosion is given by

eu,(c) ={z € R*| (z,v) < ¢} =H (v,¢), c€R.

Thus, for finite ¢, the set €,,(c) is a halfspace with outer normal vector v. We denote the class
of all linear functions by U, i.e., U = {u, | v € R%}. It is easy to show that

<X>U = co(X),

the closed convex hull of X.

IfU ={u,| v=wv1,...,v,}, then <X>U is the smallest convex polyhedron containing X
and having faces orthogonal to vy,...,v,. This closing is unbiased if and only if the only solution
of “(z,v;) <Oforalli=1,...,n" isz=0.



5.2. Example: Kendall’s trapping system.
Let E be a topological space; define £L = P(E), £ = {E}, and M = {0,1}. For a set B C E we
define the evaluation upg : £ — M by

up(z) = 1, z € B,
B 710, otherwise.

The dilation 6,, : P(E) — {0,1} and erosion ¢,, : {0,1} — P(E) are, respectively, given by

(1, XnB#o,
bup (X) = {0, otherwise.

eup(0)=B¢, &,,(1)=E.
Here B°€ is the complement of B.
Now consider the family of evaluations up, where B lies in a given family 7 C P(E). In

other words:
Ur ={up| BeT}.
Since
_JE, XnB+#wo,
5uB6uB (X) - {Bc, OtheI‘WiSe,

the closing <X >UT is given by
Xy, = () B
XNB=o
This concept goes back to Kendall [8], who used the term “trapping system” for 7 and called a
set X T-closed if <X>UT =X.

Clearly, <X>UT = X for all X if T = P(E). If 7 comprises the open subsets of E, then
<X >U7 = X is the topological closure of X. If E = IR? and 7T is the family of all open half-spaces,
then <X >UT is the closed convex hull of X; see Example 5.1.

Note that Proposition 4.4 implies that the 7-closure remains the same if the family 7 is
enlarged by all possible unions of its elements. For example, we can choose for 7 the base of
the topology instead of the family of all open sets.

5.3. Example: Translation invariant morphology.
Let (E,+) be a commutative group. Define £ = M = P(E), and let £ comprise the singletons
of E. Given X C E, h € E, we define the translate X} by

For B C E we define the evaluation up : £ — M by up(z) = B,. Then
bup(X)=X®B= ] B. = | Xo.
r€X beB
The adjoint erosion is given by
cup(X) =XOB= ()X
bEB

The pair (ey,,0u,) is a translation invariant adjunction, well-known from mathematical mor-
phology: see [4, Ch.4] and [11, 17]. If U = {up}, then (X ), = XeB is the classical morphological
closing of X by B.

If E = R? and B is bounded, then U = {up} is unbiased. However, if B is a closed
halfspace, then <X>IU = X ¢ B. For singletons this yields <{ac}>U = B, hence the family
U = {up} is biased in this case.



5.4. Example: Slope transform for functions.
Consider the complete lattice £ = Fun(IR%,R) with sup-generating family £ = PF(IR%, R); see
also Example 3.4(e). Furthermore, let M = IR. For v € R? we define the mapping u, : £ — M
by
Uy (fzt) =t — (x,0).

It is obvious that u, defines an evaluation. The corresponding adjunction is given by

bu,(F) = \/ F(z) - (z,v), F €Fun(R"R),

z€R?

(€u,(0))(z) = (z,v) +¢, c€R.
Observe that the graph of the function ¢,,(c) is a hyperplane. It follows that €, 6,,(F') is the
smallest affine function = — (x,v) + ¢ which lies above F'. This yields that

<F>U = @(F)a

the u.s.c. concave upper envelope of F'; see [5]. We will return to this case in Example 8.4

6. From evaluations to convolutions

Assume that £ is a complete lattice with a sup-generating family £, that (M,m,®) is a con-
volution lattice, and that U is a collection of evaluations mapping £ into M. We can define a
binary operation on £ in the following way:

X1 BX, = N eu(6u(X1) @ 6u,(X3)), Xi1,X;€ L. (6.1)
uelU
A number of properties of ‘@’ carry over to ‘H’, e.g., the operation (X1,X2)— X3 B X, is
e increasing with respect to both arguments;
e commutative.

But for other properties, such as associativity, this is not true in general, as shown by the
following example.

6.1. Example. Let £L =M = R and £/ = m = IR. Define u : R — IR by

() = rz—1, x<0,
L) = z+1, z>0;

see Figure 1.

.
.
Eu .
.
u'
!
.

/ |
Fig. 1. An evaluation for which the resulting

operation @ is not associative.



It is easy to see that u is an evaluation. The corresponding dilation §,, and erosion ¢, are

given by
—00 T =—00 0 T=7%
ac—;l mzo 7 z+1, z< -1
_ y =Y, — 1< <
by () s+l >0 ey(x) 0, 1<z <1,
400 T =400 z-1 z21,
’ o ’ +00, T = +o00.

A straightforward computation shows that
—1B(1#H1)=-183=1,
(-18H1)B1=081=0.
Therefore, B is not associative.
There is an alternative way to define a binary operation on L:
X1 & Xy = \/{z By |21 € UX)), 70 €4(X2)}, X1, Xp €L (6.2)

Then
1‘1@$2=I1 H zs, .Tl,.TQEE.

Since 21 & xo < X1 B X, for 21 € £(X1),x9 € £(X3), we find that
X1dX, <X BX,,, Xi,X,€CL. (6.3)
6.2. Definition. The family U is said to be linear if

5u($1 EE xg) = u(ml) D U(IQ), T1,To € L.

6.3. Proposition. IfTU is linear, then
bu(X1 B X3) = 6,(X1 & Xa) = 6,(X1) @ 8u(X2), (6.4)
(X1 6 Xp), = X1 B Xo,

for X1,X5 € L.

PROOF. By the fact that U is linear, we get that

8u(X1 & Xp) = \/ {bular B ao) | 21 € £(X1),22 € £(X2)}

= \/ {bu(z1) ® bu(z2) | 21 € £(X1),z2 € £(X2)}

Therefore,

<X1 @ X2>U = /\ Eu((su(Xl) D 6U(X2)) =X EE‘ X,.
u€lU

It remains to prove that 6, (X3 55 Xso) = 6,(X1) ® 6,(X3). Firstly,

8u (X1 B X5) = 6u( J\ u(60(X1) @ 6,(X2)))
vel
< 0ueu(6u(X1) @ 6u(X2))
< 0u(X1) @ 6u(X2)-
On the other hand,
bu (X1 B Xp) = 6,((X1 & Xp) ) > 6,(X1 & X3)
= 0u(X1) ® 6u(X2).

This concludes the proof. ]



6.4. Proposition. If U is linear, then the operation B is associative.

PROOF. Suppose that U is linear. Then

(Xl EE X2) EEI X5 = /\ Eu(éu(Xl EEI X2) 2 ‘5u(X3))
u€lU
ucU
= X, B (X, B X3).

This proves the result. |
Observe that the family {u} in Example 6.1 is not linear since 6,(—1H 1) = 6,(0) = —1 and
u(—=1) +u(l) =0.

6.5. Question. What can be said about associativity of & under the assumption that U is
linear? In all examples that we have considered and for which U is linear, the operation &

is associative. As a matter of fact, the question appears nontrivial even in the case where U
contains only one evaluation.

We discuss a number of examples. All of them deal with linear evaluation families.

6.6. Example. (Continuation of Example 5.1)
Let M = IR be endowed with the usual addition operation. Then {z;} B {zy} = {z; + z} for
two singletons in £ = P(IR?). It follows that X; & X, is the usual Minkowski sum of two sets
X1,X, C Rd, and that X, 55 X, is the closed convex hull of the Minkowski sum of X; and X,
that is

X, B X, =co(X; ® X,).

It is evident that U is linear.

6.7. Example. (Continuation of Example 3.4(d))
Let £ = P(IR?) and £ = {IR*}, and let M be the convolution lattice (IR, R,+). Assume that
w : R — IR is a bijective mapping. Consider the evaluations U = {u,; | a,b € R} from {IR?}
to IR given by

Ua b (2, y) = aw(z) + bw(y).

Writing €, for Eug yy WO have
eap(c) ={(z,9) € R* | aw(z) + bu(y) < ¢},

for ¢ € R. An easy computation shows that

{(z1,51)} B{(@2,12)} = [ {(z,9) | aw(2) + bw(y) < aw(z1) + aw(zs) + bw(yr) + bw(yz)}
a,beR

= {(z,9) € R? | w(z) = w(z1) + w(z2) and w(y) = w(y1) + w(y2)}
= {(z1 + 22,51 +92)},

where z1 -z = w™ (w(zy) +w(z2)); cf. Example 3.4(d). It follows immediately that the family
U is linear (without any further restrictions on w).
Using Proposition 4.3 we derive the following expression for the U-closing:

(X)y = \ean() | X Ceaplc), a,b € R, c € R}
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Fig. 2. Generalized halfspaces are determined by
an inequality of the form sign(z) -z? +sign(y) 3?2 <e.

We can interpret £, (c) as a ‘generalized halfspace’ with ‘normal vector’ (a,b)”. If w(z) = =,
then e, 4(c) is the affine halfspace bounded by the straight line az + by = c¢. The halfspaces
gap(c) for a = b =1 and w(z) = sign(z) - z* are depicted in Figure 2.

6.8. Example. (Continuation of Example 5.2)
Consider Example 5.2 with 7 equal to the family of open subsets of E. In Example 3.4(a) we
have seen that ({0,1},{1},®), where ‘@’ represents ‘V’, the logical OR, is a convolution lattice.
Let, for B € T, up,0u,,cup be as in Example 5.2.

Let Xl,XQ g F and B € T, then 6uB (Xl) D 6,,“3 (XQ) =0iff X1 NB= X2 NB= g, which
holds iff X; U Xy C B€. Thus we get that

X, B X, =(){B°| B open and X; UX, C B}
= ﬂ{C | C closed and X; U X, C C}
=X;UX, =X;UX,.

Furthermore, X; & X, = X; U X3, i.e., inclusion (6.3) is strict.
It is evident that the evaluation family U is linear and that both operations & and B are
associative.

6.9. Example. (Continuation of Example 5.3)
Let £ = P(F) and £ = {E}, and let M be the convolution lattice (P(E),{E},®). Let U = {ug},



where up(z) = B,, and B C E is given. Now

X1 B Xy = eup (bup (X1) ® 60y (X))
=(X19B®X,0B)oB=(X1®X,® B)eB.

Thus {z1} 23] {z2} = B! where B’ = B e B. This implies that X1 & X = X, ® X, ® B'. It

T1+x2?

is easy to verify that U is linear. Observe also that the operation & is associative.
6.10. Example. (Continuation of Example 5.4)

The triple (IR, R, +), where + is the extended addition, is a convolution lattice; see Exam-
ple 3.4(b). Let fz, t,, fz,,t, be two pulse functions, then

fml,tl EE f-’tz,tz = /\ Euy (6u'u (f-’h,h) + 6’&1; (fmz,tz))

veRY

= /\ €uv(t1 +t2 — <SL‘1 +(L‘2,U>)
vERY

= /\ (x — (z —x1 — z9,v) + 11 + t3).
veRY

Here z — f(x) denotes the function which maps = onto f(z). In other words, fa, ;, B fu,.s, i8
the infimum of all hyperplanes through (x; + x9,%; + t2) that is

fﬂfl,tl & fzz,t2 = fE1+-’E2,t1+t2'

In Example 3.4(e) we have seen that the resulting operation & on Fun(IR? TR) is the supremal
convolution

(FoG)(2)=\ Flz—y)+G@).
yER?

Using (6.5) we get that
FBG=(FbG), =cc(FdQq).

Cc(F) is the u.s.c. concave upper envelope of F'; cf. Example 5.4.

6.11. Example. Let £ = P(IR?), £ = {IR?}, and take for M the convolution lattice (IR, R, +).
Let U = {u} with u(z) = ||z||, the norm of z. Then

6u(X) = r(X) = sup [|z|

z€X
eu(r) = rB, r >0,
T @, r <0,

where B is the closed unit ball in IR>. Thus (X >U = r(X)B, which means in particular that U
is biased. (See also Example 4.6.) It is easy to show that

X, BX, =X, X, = (r(Xy) +r(X2))B.

The family U is linear, and the operation & is associative.



7. When is £ a convolution lattice?

An interesting question is the following: when is (£,/4,®) a convolution lattice, given that
(M,m,®) is one? Note that in general £ may be too big, e.g., £ = L. Consider the following
conditions:
(I) There exists an element ¢ € £ such that u(0) = o, for all u € U; here o is the zero group
element of m.
(IT) For every x € £ there exists an element —x € £ such that u(z) ® u(—z) = o, for u € U.

Condition (I) does not hold in Example 6.9 and condition (IT) does not hold in Example 6.11.

7.1. Lemma. Assume that (M, m,®) is a convolution lattice, that U is linear and unbiased,

and that conditions (1)—(I1) hold. Then

(a) The element o is unique and equals N,y €u(0)-

(b) u(z)yemifz €l andu € U.

(c) For every x € ¢, the element —x given in (II) is unique, namely —z = A,cycu(—u(z)),
and it is the inverse of x in L in the sense that © & —z = 6.

ProOOF. (a): If u(6) = o, then ,6,(0) = ey(0). Therefore, 6 = <6>U = Aucuubu(6) =
/\uEU a:‘.U(O)'

(b): Condition (II) implies that u(x) is invertible in M, for z € £, u € U. As m is complete,
this means in particular that u(z) € m.
(c): Assume that u(z) ® u(—z) = o for u € U. Then u(—z) = —u(z), hence

-1 = <;x>U = /\ €ubu(—1) = /\ eu(—u(x)).

u€U u€lU
Since u(z) ® u(—z) = u(z & —z) = o, we get that x & —z = 6. [

7.2. Proposition. Assume that the family U is linear and unbiased and that conditions (I)—(II)
hold, then the triple (L,{,®) satisfies the Basic Assumption.

PROOF. We must show that (X &h)®—-h = X for X € L and h € £; here X Oh = Vaeeux) zdh.
We show that the pair X — X ® h, X — X & —h forms an adjunction on L, i.e.,

Xdh<Y < X<Y&-h.

Note that X &k <Y means that tdh <Y for z € £(X), hence (xS h)d —h <Y & —h. Using
that & is associative on £ (see Proposition 6.4), this yields z < Y & —h for z € £(X). Therefore,
X <Y @& ~h. The reverse implication is proved similarly. Now, X + (X &) & ~h is a closing,
whence it follows that X < (X & h)® —h. On the other hand, X — (X & —h)& h is an opening,
hence (X & —h) & h < X. Substituting —h for h, we get (X @ h) ® —h < X, whence equality
follows. |
Now we follow the procedure described in Section 3. Let £ be the invertible elements of £ with
respect to @, then (£, £, ®) is a convolution lattice. An evaluation u : £ — M can be ‘completed’
by putting w(Z) = 6,(T), for T € £. Then % is an evaluation, too. With this modification, the
family U is a convolution system in the sense of the following definition.

7.3. Definition. Let (£,£,®) and (M, m,®) be two convolution lattices. If U is an unbiased
family of evaluations from /£ into M which satisfies

u(0) =o
wz ®y) =u(z) Duly), =,y €,

for all u € U, then we say that U is a convolution system between (L, £, ®) and (M,m, D).



We point out that the condition u(6) = o in this definition cannot be omitted because of
Example 6.9.
If U is a convolution system, then

(zdy)y= N cululedy)) = \ eululz) ®uly)),
u€U u€eU
and since U is unbiased, this gives

zdy= N eululz) ®uly)).
uelU

7.4. Examples.
(a) U= {u,|ve R with u,(z) = (z,v) is a convolution system between (P(IR?), { R}, ®)
and (IR, R, +); cf. Examples 2.6, 5.1, 6.6.
(b) U= {u, | v € R*} with u,(f.:) =t — (x,v) is a convolution system between
(Fun(R?, R),PF(R% R),®) and (R, R,+), with ‘@’ being supremal convolution; cf. Exam-
ples 3.4(e), 5.4 and 6.10.

7.5. Proposition. Let U be a convolution system between (L,£,®) and (M,m,®). The
following identities hold:

6, (X ©h) = 6,(X) @u(h), (7.1)

eu(Y ®u(h)) = e, (Y) & h,

<X®h>U = <X>IU & h,
forXeLl, YeM, hel uvwel.
From Proposition 6.3 we know that 6, (X @ A) = 6,(X) ® 6,(A), for X, A € £. Taking adjoints
on both sides (see Proposition 2.3), we find that

eu(Y ©6,(A4)) = £,(Y) © A. (7.4)
Here © is given by (3.2), i.e.

XOA= /\ X & —a,
a€t(A)
where —a is the inverse of @ in £ with respect to &, that is, a & —a = o.
In Example 5.1, the U-closing is the closed convex hull operation. It is well-known [13,

16] that the Minkowski sum of two compact convex sets is compact and convex. The following
example shows that this is not true for general U-closed sets.

7.6. Example. This example shows that X, X, U-closed does not imply that X; & X, is
U-closed.
Let £ = P(2Z?%), £ = {Z*}, consider also the convolution lattice (Z,Z,+), and let U =
{uy,ug,us,us}, where
wr(@,5) = o+ 9, uslz,y) = —2 +9, up(zy) = —z —y, ua(@y) =z~ y.
Note that singletons in {Z?} are denoted by (z,y) rather than by {(z,%)}. It is not difficult to
prove that U is linear, unbiased, and satisfies (I)-(II). However

{(__1’__1)a(0a0)} éé{(l,O),(O,l)} ::{(__130)3(130)3(03__1)’(051)}5

or graphically:

The two sets at the left hand-side are U-closed, but the one at the right hand-side is not.



8. Slope transform

The slope transform is defined as the operator X : £ — Fun(U, M) given by
Y(X)(u)=6,(X), XeL uel. (8.1)

For two evaluations u,v € U we define (u @ v)(z) = u(z) ® v(z), for x € £. Tt is easy to show
that

LX) (u®v) < B(X)(u) ® B(X)(v).

<
For X1, X, € £ we define (2 X))@ N(X ) (1) ® T(Xs)(w), for u € U.
It is easy to see that

(X1 B X)) <B(X)) e N(X,), X, X,eLl. (8.2)

Namely,
B(X B Xo)(u) = 6,(X1 B X5)

8ul J\ £0(8(X1) @ 6,(X2)))

veU

by (€u(0u(X1) @ 64(X2)))
0u(X1) ® 6u(X2).

<
<

Here we have used that 6,e, < id..
For a function S : U — M we define

27(8) = N\ eul(S(), (8.3)
u€eU
which is an element of £. Therefore ¥~ is an operator which maps Fun(U, M) into L.
8.1. Proposition. The pair (X—,X) defines an adjunction between Fun(U, M) and L.

PROOF. We show that ¥(X) < S <= X <X(S), for X € £ and S € Fun(U, M).
‘= 3(X) < S means that 6,(X) < S(u), hence X < ¢,(S(u)), for every v € U. This
implies that X < A cyeu(S(u)) = X(S).
< if X <X7(S) = Aycueu(S(w)), then X < e,(S(u)), hence 6,(X) < S(u) for u € U.
This means that %(X) < S. |

We call X< the inverse slope transform. Note however that X~ is not an inverse in the usual
sense of the word. The composition 33 is a closing on L. It follows from (4.4) that

SR(X) =(X),, XecL (8.4)
8.2. Theorem. IfU is linear then
SX1HBXy) =2(X1 6 X,) =2(X) @ N(X,), X, Xy €L (8.5)

PROOF. Note that the second equality in (8.5) is a reformulation of the first statement in
Proposition 6.3. By using (6.5) and (8.4) we find

S(X1 B Xp) = (X1 6 Xa),) = EXTE(X; © X,)
= 5(X1 & Xp) = I(X1) @ B(X),

where we have also used that (X,X) is an adjunction. |



8.3. Example: Support function. (Continuation of Examples 5.1 and 6.6).
The operator ¥ : P(IR?) — Fun(R%, R) given by

S(X)w) =\ (@)

z€EX

is the slope transform for sets; see [5]. It coincides with the support function if one restricts to
convex sets [7, 13, 16]. For some theoretical results on this transform the reader may refer to

[5]-

8.4. Example: Slope transform. (Continuation of Examples 5.4 and 6.10).
The operator X : Fun(IR*, R) — Fun(R%, R) given by

S(F)w) =\ Flz)~(z,0)

r€RY

is the (upper) slope transform for functions: see [9, 10] and [5]. In the latter reference it is
explained in considerable detail that this transform is closely related to the (Young-Fenchel)
conjugate [7, 13, 16]. The adjoint X~ can be computed explicitly:

ES)@) = A ew(S@)= A @)+ {z,0).

vERY vERY

As observed above, ¥~ is not an inverse of ¥ in the usual sense of the word, but X =X(F) =
<F>U = ¢c¢(F), the u.s.c. concave hull of F. In particular, if the original function F' is u.s.c.
and concave, then X=X (F') = F. Further theoretical results about this slope transform can be
found in [5].

9. Applications to random elements

The introduced concept allows to define random elements with values in £. The construction
resembles Kendall’s [8] approach to define a random set. For this, assume that M = IR is
endowed with the usual addition and a Borel o-algebra B, and m = IR. We also assume that the
family of evaluations U is separable, i.e. there exists a countable subfamily Uy C U such that
U = Uy, see Proposition 4.4.

9.1. Definition. Let (©2,.4, P) be an abstract probability space. Then = : Q — L is said to be
a random element in L with respect to U if 6,(Z) : Q — M is (A, B)-measurable for all v € U.

Thus, Z is a random element in £ with respect to U if 6,(Z) is a random variable for all
u € U. In the framework of Example 5.2 we get Kendall’s definition of a random closed set [8].
Furthermore, if 7 in Example 5.2 comprises the open subsets of E, then our definition coincides
with Matheron’s definition of a random closed set [11].

The following result follows from (4.6).

9.2. Proposition. If = is a random element in £ with respect to U, then its U-closing <E>U
18 a random element as well.

By separability, the distribution of Z is determined by joint distributions of (6, (Z), ..., 6., (Z2)),
which play the same role as finite-dimensional distributions in the theory of stochastic processes.
Note that from the distributional point of view, = is indistinguishable from <E>U if only infor-
mation about 6,(E), u € U, is available.
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9.3. Definition. A random element = in £ is said to be integrable if §,(E) is integrable (has
a finite expectation E[6,(Z)]) for all u € U. If E is integrable, we define the U-ezpectation of E
as follows:

EyE = A cu(E[bu(E)]). (9.1)

u€elU

Note that when = is deterministic, i.e., = = X with probability one, then

It is obvious that Ey= < g, (E[&u(E)]), for u € U. This yields that
6, (EyE) < E[6,(2)], wel. (9.2)

9.4. Example. Let £ = F(RR%), and let 6,(2) = h(Z,u) be the support function of Z; see
Example 2.6. If
Efsup {|lz]| | = € Z}] < oo,

then Z is integrable. Furthermore, E[h(Z,u)] = h(EyZE,u), and the set Ey= is called the
Aumann ezpectation of = [19, 20]. Then

EuE = ) {x eR?| (z,u) < Eh(E,u)}
u€lU

i.e., (9.1) holds for for U = S?1 and the Aumann expectation appears to be a particular case
of (9.1).

9.5. Example. Let £ = F(E) be the space of all closed subsets of a metric space (E,d), let
{={E}, and let M =RR. Put U= {u, | p € E} where u,(z) = d(p,z), for z € E. Then

bu,(Z) = sup{d(p,z) | z € Z} = du(p,=),

where dg (p, Z) is the Hausdorff distance between p and = [11, 13, 16]. Note that for X € L, its
U-closing (X ), is the intersection of all closed balls which contains X. If E[dz (po, )] < oo for
some pg € F, then = is integrable. In this case,

EvE= () {z€ E| dlp,z) < Eldn(p,E)]},
pEE

which is exactly the so-called Doss ezpectation of Z; see [3].

The following result follows from Proposition 4.3 and the fact that infima of U-closed sets are
U-closed.

9.6. Proposition. If = is integrable, then EyZE € L is U-closed, and EyZ= = EU<E>U.
The binary operation introduced in Section 6 can be applied to random elements in L.
9.7. Theorem. If U is linear and =1,Z2 are random elements in L with respect to U, then

=1 @ Z9 is a random element, and

Ey(E; © Z9) > EyE; © EyEs.



PROOF. By Proposition 6.3, 6,(Z; © Z5) = 6,(Z1) @ 6,(Z2). Now =1 & =5 is a random element
because a sum of two random variables is again a random variable (note that “®” is the usual
addition in M = R).

To establish the inequality, we observe that for Y7,Y5 € R and u € U

Yl 5> Y2 2 6u€u(Yl) 5> (5u€u(Y2) = 6u(€u(Y1) EB 8u()/vZ))
This yields that &, (Y; @ Y3) > ,(Y1) © €,(Ys). Thus we derive that

Ey(E1 & 52) = N eu(Ebu(E1 & E))

uelU
= N cu(E6.(E1) © Bb,(Z,))
uelU
> N [ea(B6.(21) & eu(E6,(22)]
uelU
2 /\ eu(Eb6yu(Z1)) @ /\ eu(Eby(Z2))
u€lU u€elU
= Ey(Z1) & Ey(E,).
This concludes the proof. |

In general, we do not have equality in Theorem 9.7. For, let =; = X; with probability one. Then
EuZ; = (Xi)y, and equality in Theorem 9.7 would imply that

<X1 ®X2>1U = <X1>U 2 <X2>U'

We have seen in Example 7.6 that this equality does not hold in general.

9.8. Proposition. Assume that U is linear, that =1,Z9 are random elements in L with respect
to U, and that the following conditions hold:
(i) 6.(EuZ) = E[6,()], ueU,
(i) X1 & Xy is U-closed if X1, Xo are U-closed.
Then we have the following identity:

Ey(E, & Ey) = Eyg,y & EyE,.

PrROOF. We derive _
Ey(Z1 ©E2) = N eu(Ebu(E1) © Ebu(E2))
u€lU

= A\ e (5U(EU51) o 5u(ELU52)>

= A =u(6u(BuZ1 6 EuSy)
u€elU

= (EyE; ® EyEs),

= EyE; & EyE,,
where we have used condition (ii) and (i), respectively, as well as the fact that Ey=; and EyZE,
are closed; see Proposition 9.6. The first identity was taken from the proof of Theorem 9.7. &

Note that (9.2) says that the inequality ‘<’ in (i) is automatically satisfied.
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