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Probabilistic approach for comparing first eigenvalues 

by 
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ABSTRACT 

We use probabilistic subordination and time change to compare the 

first eigemralues for problems of the type Gijl + AljJ = 0; 

GljJ - qljJ + :\pljJ = 0, with zero boundary conditions. 
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I • INTRODUCTION 

The aim of this paper is to use probabilistic subordination and time 

change to compare the first eigenvalues of the problems 

(1. 1) G¢ +A¢= 0 in D ¢/oD = 0 

(1. 2) G¢ - q¢ + ;\¢ = 0 in D ¢/aD = 0 

( 1 • 3) G¢ - q¢ +AP¢= 0 in D ¢/aD = 0 

for an adequate class of operators G. 

In Section 2 we consider a Hunt process (Xt) with state space (E,E) 

whose semigroup possesses a nonnegative symmetric density f(t,x,y) with 

respect to a Radon measure m on (E,E), such that if D is a bounded open 

subset of E with m(oD) = 0 then 

ff f 2 (t,x,y)m(dx)m(dy) < ~ 
DD 

and such that, if T = inf{t > 0 

then 

Vx ED. 

Xt E Dc} is the first exit time from D, 

By stopping (Xt) at the boundary of D and subjecting it to a local death 

rate q(x) we are able to compare the first eigenvalues of the problems 

(1.1) and (1.2), when G is the infinitesimal generator of (Xt). 

In Section 3 we consider an adequate time change of the process with 

generator G-q to compare the first eigenvalues of problems (1.2) and (1 .3). 

Basic for all the comparison results is the fact that under the 

stated assumptions on the semigroup one can get eigenvalue expansions for 

these various processes which allow one to give a simple characterization 

of the first eigenvalue. This characterization (proposition 1 in Section 2) 

is well known for diffussions (see chapter 14 of [4]). 

Section 4 is devoted to the discussion of examples. 

We refer the reader to [l] for the basic notation and definitions 
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throughout the paper. 

2. COMPARISON OF (1 .1) AND ( 1. 2) 

Let (X~) be the process (Xt) killed when it leaves D and (Q~) its 

transition semigroup, that is 

It is proved in [SJ that there is a sequence {A.} of eigenvalues of G such 
J 

that Os Al s A2 ~ ••• s Ans •.• , An+ m and a complete orthonormal set of 
~m -A ·t 

eigenfunctions {~j} such that the series lj=l e J ~j(x)~j(y) converges 

absolutely and 

(2.1) 
-At f 

Q~f(x) =le n ~n(x) 
n 

~ (y) f (y)m(dy) 
n 

D 

for f e: L 2 (D). 

A similar expansion can be found for the semigroup 
~ x D Qtf(x) = E [f(Xt)Mt;t<TJ of the process subordinate to (Xt) with respec~ 

to the multiplicative functional Mt= exp(-J~ q(Xs)ds) where q is a con­

tinuous positive function on E (see also [SJ). 

The first eigenvalue of the problem 

(1. 1) G$ +AW= 0 in D, $/3D = 0 

can now be characterized as follows 

PROPOSITION 1. If Al is the first eigenvalue of the problem (1.1) then 

X AT Al= sup{A: sup E [e J < m}. 
xe:D 

PROOF. It follows from (2.1) that 

~ (y)m(dy). 
n 
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Let Kn= JD $n(y)m(dy) then one has 
00 00 

Ex[eAT J - J 
;u x l 

J -
-(A -A) t n = e dP (T>t) = K $ (x) A e dt = n n n 

0 
n 

0 

= I K $n(x)(AA~A). n n n 

Clearly, when A+ Al this series diverges. Also, EJyeATJ is an increasing 

function of A, so it suffices to show that Ex[eATJ < oo for A< A1, Vx ED. 

Now, if O <A< Al then 

An+l A 
---< _n_ 
An+l-A - An-A' 

hence 

REMARK 1. A similar characterization for the first eigenvalue of problem 

(1.2) clearly holds 

REMARK 2. The heuristics of the situation is as follows: 

00 00 

Ex[eAT] = - J eAtdPx(T>t) = J AeAsPx(T>s)ds = 

0 0 
00 00 

= J AeAS Ex[l(Xs),s<T] = A J 
0 

eAS QDsl (x) h x( ) 1 wen P T<oo = 

0 

So what one does is "look at the poles of the resolvent" 

In order to compare the first eigenvalues of problems (1.1) and (1.2) 

we consider (Xt), the canonical realization of the process subordinated 

f t ~ 
to (Xt) with respect to Mt= exp(- 0q(Xs)ds) on the space n = nx[0, 00 ], and 

~ ~ denote by P its corresponding measures on n (see [1] ch.3 for all the con-

s true tions) • 
~ Following [1], let y: n + [0, 00 ] be the projection y(w,A) = A, and 

= ]. t > ~ T 'nf{ 0 Xt ~ De} 
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~ C T = inf{t > 0 : Xt ED}. 

~ 
LEMMA 1. ~[eATJ :s; Ex[eATJ, Vx ED. 

PROOF. It follows from the definition of (Xt) that 

{T>t} = {x 
s ED, s :s; t} = {X En, s :s; 

s t, y > t} = 

= {T > t; y > t} 

and therefore, by the definition of p'X we have 

~ ~ X P (T>t) = E [Mt;T>t]. 

Now 
(X) (X) 

Ex[eATJ J e At dp'X (T>t) J 
At X = = e dE [Mt;T>t] = 

0 0 
T T 

= I + AEx J eA~tdt :s; 1 + AEx J eAtdt = Ex[eATJ. 

0 0 

the integration by parts in the third equality is possible since 

Px(T<<x>) = I Vx. ED. 

The fol11owing comparison result now follows easily from Proposition I 

and Lemma 1. 

THEOREM 1 • Le·t A 1 be the smaUest eigenvalue of problem (1 .1) and 5: 1 the 

smaUest eigenvalue of problem (1 .2) then 

REMARK 3. In the same manner, one can compare the first eigenvalues of the 

problems 

G~ - q1~ +A~= o in D ~/an= o 

G~ - 4 2~ + µ~ = o in n ~/an= o 



for q 2 ~ q1 • In fact, let 

G-q 1, and l1et (X ) be the 

(Xt) now denote the process with generator 

process subordinated to (Xt) with respect to 
t t 

Mt= exp(- J0 (q2(xs)-q 1(xs))ds) then, the same reasoning as before gives 

5 

REMARK 4. The comparison results will hold whenever a characterization for 

the principal eigenvalue, as the one given in proposition 1 holds; there­

fore, these results will be valid for the elliptic operators considered by 

FRIEDMAN [4] Vol.2, Chapter 14. 

3. COMPARISON OF (1.2) AND (1.3) 

We will now compare the first eigenvalues of the problems 

( 1 • 2) (G-q)$ +A$= o in D $/an= o 

(1 .3) (G-q)$ +AP$= 0 in D $/an= 0 

for p continuous and p ~ c > O. 
~ Let (Xt) now be the process with generator G-q = G (we warn the reader 

that to be consistent with the notation of section 2 we should work with 

(Xt), but w1e feel this would become too confusing). 

Suppos1e (X ) has a symmetric transition density p(t,x,y) with respect 
t 

to the Radon measure m which satisfies 

(3. 1) 

(3. 2) 

J f 
2 p (t,x,y)m(dx)m(dy) < ~ 

D D 

J p(t,x,x)p(x)m(dx) < ~ Vt 

]) 

for bounded sets D. 

Let (At) be the following additive functional of (Xt) 

t 

At= J 
0 

p (X )ds 
s 
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and let (Lt) be the right continuous inverse of (At); that is 

Lt= inf{u; Au> t}. 

One may check that (Lt) satisfies 

t 

Lt = f p (;s ) , 
L 

s 

(X ) being the time changed process. 
Lt 

Call Xt = XLt' then 
.., ... X 
X = (n,F,FLt'Xt,eLt'P) is a strong ~rkov process (se~ [1] Ch.V) and it 

follows from Dynkin's formula that (Xt) has generator;-

The following proposition allows one to use the same procedure as that 

of proposition 1 in Section 2 to characterize the first eigenvalue of 

problem (1 .3) as 

... X AT 
Al= sup{A: sup E [e J < m} 

xe:D 
where 

... .., C 
T = inf{t > 0: xt e: D }. 

PROPOSITION 1. Under the assumptions (3.1) and (3.2) and the symnetl'y of 

p(t,x,y); the proaess (Xt) possesses a symmetl'ia transition density 

p(t,x,y) with respeat to the measure p(y)m(dy) and moreover, if Dis bound­

ed then 

(3.3) f j p2(t,x,y)p(x)p(y)m(dx)m(dy) < = 

DD 

PROOF. Observe that 

u0 f ex> 

where 



7 

If (Xt) has a symmetric transition density p(t,x,y) then (Q~) has a sym­

metric transition density as well (see [5]), call it qa(t,x,y). It is easy 

to see that 

(3.4) 
a -act q (t,x,y) ~ e p(t,x,y) 

(recall c is such that p(x) ~ c > 0). 

O f 00 a Let va(x,y) = 0 q (s,x,y)d~ then by inverting Laplace transforms we get, 

for an appropriate contour y 

i\f(x) = 2!i j e0 t u0 f (x)dcr = 
y 

= j (2!i j e0 t v~(x,y)dcr)f-(y)p(y)m(dy) 

y 

which proves the existence of the symmetric transition density p(t,x,y). 

... 1 j at O p(t,x,y) = -2 . e v (x,y)dcr. 
1r1 a 

y 

To prove (3.3) it is enough to show that 

j p(2t,x,x)p(x)m(dx) < 00 • 

D 

But, for all a> 0 

00 

j e-atp(t,x,y)dt = v~(x,y) 

0 

00 

00 

~ f 
0 

-act e p(t,x,y)dt = 

J -at t 
= C e p(c,x,y)dt. 

0 
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Hence 

p(t,x,y) ~ cp(.!.,x,y) 
C 

and the result follows from (3.2). 

Let 

then 

(3.5) 

and so 

(3 .6) 

T = inf{t > 0: xt e DC} 

i = inf{t > 0: it E DC} 

.... 
T = A(T) 

.... 
{T > t} = {A(T) > t} = {T > Tt} 

(see [ 1] ch.V). 

The foll,owing analytic lemmas will be needed for the comparison result. 

LEMMA 1. Let :F(t,w) be a measurabl,e function on lR. x n, ((n,F,P) being a 

proobabil.ity space) such that t -+ F(t,w) is monotone and roight continuous 

faro each w. Then, faro f ~ 0 

f f(t)dE(F(t,w)) = E f f(t)dF(t,w). 

(E denotes expectation with respect to P). 

PROOF. Easy. 

LEMMA 2. Let£: lR -+ lR be 1-1 and differoentiable. If o(x-a) denotes the 

delta function at a then 

f -1 
g(x)o(f(x)-a)dx = g(f _Ca)) . 

f' (f 1 (a)) 

PROOF. Easy by choosing an approximating o-sequence (h). 
n 
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THEOREM 1. If p < 1 tJzen the first eigenvalue of problem (l .3) is bigger 

than the first eigenvalue of problem (l .2) and if p > 1 the first eigen­

value of problem (1.3) is smaller than the first eigenvalue of problem (1.2). 

PROOF. It suffices to compare 

Now 
00 00 .... 

= - J - f Ex[/'TJ /1.t dPX(T>t) At X = e dP (T>T ) • 
t 

0 0 

Using lemmas 1 and 2 we get 

00 

At x AT e p(XA )o(t-T)dt = E [e p(XA )] 
T T 

the theorem now follows easily. 

4. EXAMPLES 

In this section we list some situations in which the comparison re­

sults hold. In particular, we see that the classical results of examples 

1 and 2 (see [3] ch.VI) are valid for more general situations. 

EXAMPLE 1. The eigenvalues of the problem 6$ - q$ +A$= 0 inn,$= 0 on 

an; increase when q increases. 

EXAMPLE 2. The eigenvalues of 6$ - q$ +A~= 0 inn,$= 0 on an; increase 

when the domain n decreases. 

EXAMPLE 3. This is a generalization of example 1. Let G be the Laplace­

Beltrami operator on a Riemannian manifold or compact Lie group and nan 

open bounded subset. The same conclusions hold. See [7] or [8] for the 
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appropriate constructions. 

EXAMPLE 4. The following construction, going back to PHILLIPS [6] yields 

a larger class of processes (and eigenvalue problems) for which the com­

parison results apply. Suppose (Xt) has a transition density p(t,x,y) such 

that 

p(t,x,y) = r e 
n 

-At 
n 

where the(~) are an orthonormal, complete set, and(~ ,A) are all the 
n n n 

solutions to G~ +A~ = 0 plus appropriate boundary conditions. 
n n n 

Let (t,t) t~O now denote a subordinator (a process with stationary in-

dependent increments on [0, 00 ]) independent of (Xt). Define a new semigroup 

on the same state space by 

00 00 

f I -Au f 
Qtf(x) = Puf(x)Tt(du) = l ( e n Tt(du))~n(x) ~n(y)f(y)dy 

0 n O 
-µ t f =le n ~ .(x) ~ (y)f(y)dy 

n n 
n 

(3.1) 

where µn = aAn - f (e-Anu_l)v(du), (a,v) being the characteristics of {Tt). 

In this case, the process (XTt'n,Px) where Px is constructed from 
T T 

(Qt) via the Kolmogorov extension theorem, has transition semigroup (Qt) 

and infinitesimal generator 

(3.2) G f(x) = aGf(x) 
T. 

00 

- J (P f(x)-f(x))v(du). 
u 

0 

One has G ~ + µ ~ = 0 and, from completeness, there are no more solutions 
T n n n 

to G w +AW= 0 (with the same boundary conditions as for Gw +AW= 0). 
T 

EXAMPLE 5. The comparison results can be applied to the synnnetric stable 

process in Rn of index a, 0 < a :;;; 2; that is, the process with stationary 

independent increments whose continuous transition density relative to 
Lb . lRN. e esgue measure in is 

t > 0. 
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See [2J and [5] in connection with this example. 

It is interesting to observe the connection with example 4, which is 

as follows: If (N:) is the one sided stable semigroup in (0,m), BE (0,1) 

and Pt(x,A) the transition semigroup of the Brownian motion process in lRN 

then, the semigroup of the synnnetric stable process in lRN satisfies 
m 

(see [1] ch.I;2.20). 

If one now considers the Brownian motion process killed when it first 

reaches Dc and one performs on it the time change of example (4) with (,t) 

being (N~/2) one obtains, as might be expected, the synunetric stable process 

of index a, killed when it first leaves D. This fact follows from the fol­

lowing two lemmas, which might also be interesting for other situations. 

Following the notation of example 4 define 

T 
T 

= inf{t > 0: X 
't 

€ DC} 

T inf{t > 0: C = Xt ED} 

lt = inf{s > 0: 's ~ t} the left continuous inverse of (Tt). 

It is well known that 

{l > t}.,.. {. < s} 
s t 

and therefore 

{l(T) > t},... {,t < T}. 

LEMMA 1 • l {T) = T • 
T 

PROOF. T, ~ t..,.. X.s ED, Vs< t.,. 's < T, Vs< t..,. s < l(T) Vs< t 

..,. t s l{T). 

If E[ J denotes expectation with respect to the distribution of 't then 

one has as an immediate consequence of Lemma 1 and the remarks preceding 

it, that 
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LEMMA 2·. 

E[Ex[f(X ); •t < T]] = E[Ex[f(X ); t < T ]]. 
•t •t T 

EXAMPLE 6. The Ornstein-Uhlenbeck process in lR ~as a transition density 
f(t,x,y) with respect to the measure m(dy) = e-y /2 dy which is symmetric 

see [2]. 

EXAMPLE 7. The following situation may apply to discretized versions of 

examples 1 or 2. Consider a synunetric Markov chain on a lattice, with . 

transition among nearest neighbors only. Let D be a subset of the state 

space and let an denote the subset of Dc consisting of nearest neighbors 

to points in D. If Q denotes the rate matrix of the process killed on 

leaving D, then our comparison r,esult applies to the problems 
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