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the first constituents are partial linear spaces. 
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0. INTRODUCTION 

Let G be a strongly regular graph with parameters v,k,).,µ whereµ= 2. 

Let x be a fixed vertex, and H = r(x) the graph induced on the neigh­

bours of x. 

Then H has k vertices, is regular of valency A and two nonadjacent 

vertices have at most one common neighbour. Consequently each edge of His 

contained in a unique maximal clique, and His the pointgraph of a partial 

linear space (H,L) which has the property that if y EH, LE Landy i L 

then y is on at most one line intersecting L. [i.e., we have a partial quad­

rangle where lines do not necessarily have constant size.] 

Looking at the structure of Hone can kill graphs that just escape the 
· 210 

CLAW bound: for example, ifµ= 2 ands= -4 then f = 24). + ).+G so that 

). E {0,1,4,8,9,15,24,29,36,64,99,204}. The CLAW bound kills the graphs with 

). ~ 24. Here we shall show that also A E {8,9,15} is impossible, thus leaving 

the parameter sets (v,k,A) = (56,10,0), (99,14,1), (300,26,4). The first one 

corresponds to the GEWIRTZ graph, the other two are unknown. 

1. PARTIAL LINEAR SPACES OF GIRTH 5 

In view of the application to strongly regular graphs we shall use k 

for the number of points and A for the valency (of the pointgraph) of a 

partial linear space. 

THEOREM. A connected partial linear space with girth at least 5 and more 

than one line (lines possibly of varying size) in which every point has A 

neighbours, contains k ~ ~).().+3) points. 

PROOF. Let L be a line of size l. Denote by T the set of points at distance 

at least two from L. Then ITI = k-l().+2--l), and l:;;; A since a line of size 

).+1 would be a component. Let x. be the number of points in T having exactly 
1 

i neighbours at distance one from L. We have 

(i) Ix. = 
1 

i 
k - l().+2-l), 
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.(ii) I ix. ~ .l(A+l-.l) (.l-1), 
i l. 

(iii) I i ::;; (}) (A+l-.l) 2 • (2) x. 
i 

l. 

Hence 

O::;;}: (i-(A+2-.l)) 2x. 
. l. 
l. 

= 2}:C~)x. - (2A+3-2.l)}:ix. + (A+2-'.l) 2 }:x·.-
. l. . l. . l. 
l. l. l. 

· 2 2 
::;; .l(.l-1) (A+l-.l) - .l(.l-1) (A+l-.l) (2A+3-2.l) + (A+2-.l) (k-.l(A+2-.l)), 

whence 

k(A+2-.l) 2 ~ f(A+2-£.) ((A+2) (A+l-£.)+1) 

which can be written as 

k ~ ½A (A+3) + (A+2) (A-l) (2£...;.3..;.A) 

2(A+2-.l) 

It follows that if there is a line of size£. with£.~ ½(A+3) then k ~ ~A(A+3), 

(with strict inequality unless £. = A or £. = ~_(A+3)). 

If£. is relatively small then we can imporve on estimate (ii). Let m 

be the size of the longest line intersecting L. We have 

(ii) I I ix. 
l. 

i 
~ l(A+l-l) (A+l-m). 

Hence, evaluating O::;; }:Ci-£.) (i-l-l)x. we find 
. l. 
l. 

k ~ (A+l) 2 - £.A - 2£.(m..;..ll (A+l..;.£.) 

£.+1 

It follows that if the longest line in our partial linear space has length 

at most ~(A+l) (putting m ::;; £. ::;; ~(A+l)) then k ~ ~(A+l) (A+2) = ~A(A+3)+1. 

In case the longest line has length ~(A+2), we have to estimate somewhat 
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more carefully. If there is a line L of length l ~ ½A such that each line 

intersecting L has length at most ½A then k ~ ½~2 + 2A + 1. This shows that 

for smaller k there are many lines of size _½A + 1 ~ in fact too many. 

Write IMI = l+sM for each line M. Considering the lines M distinct from 

L passing through a point x EL we see that xis at distance two from 

l SM(A-sM) points in T. But l SM= A+ 1 - l, so 

where n 
X 

Let 

= A(A+l-l) - _(A+l--l) 2 + · l SMSN 
M#N 

~ Cl-1) (A+l-l) + (n -1) (2 (A+l--l)-n ) 
X · X 

= l 1 is the number of lines intersecting Lin the point x. 

n M= 1 for j points of L, so that n ~ 2 for the remaining l-j 
X X 

points of L. Then 

(ii)'' l ix. ~ l(l-1) (A+l-l) + 2(l-j) (A-l). 
l. 

In particular, for l = ½A+l we find, evaluating O ~ L(i-l) (i-l+l)x., that 
l. 

On the other hand, if for some j E :N each line of size l = ½A+l intersects 

at least j+l others of this size then considering j(j+l) lines of 

size l intersecting such lines intersecting a given line L we find 

ITI = k - l 2 ~ ½j(j+l) (l-1) = \Aj(j+l). 

This shows that if the linear space contains lines of size l = ½A+l then 

(*) k ~ max min {½A2 + 3A - 3 - j ¥-, _\Aj(j+l) + \A2 +A+ 1}. 
O~j~ 

Hence, for A= 2,4,6,8,10 we find k ~ 5,15,27,46,67 respectively, and 
r ,.7 

in general putting j = vA we find k > ½A_(A+3) for A > 6. This proves the 

theorem. D 

REMARK. Equality holds in the theorem iff A= 2 and k = 5. (This partial 

linear space exists - it is a pentagon.) For: if there is a line of size 
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½A+ 1 then k > ½A(A+3) unless A= 2 or A= 6. But if A= 6 and k = 27 one 

sees that each line of size 4 intersects exactly three others and that each 

point in T has three or four neighbours at distance one of L (where l = 4) 

- hence lines of size 4 do not intersect in T and !Tl 2 18, k 2 34, contra­

diction. 

Hence there are no lines of size ½A+1, but each line of size at most 

½(A+1) intersects a longer line, so there are lines of size ½(\+3) or A. 

In the former case (l = ½(A+3)) we may suppose A> 3. We see that j = l, 
i.e., each line of size ½(A+3) intersects only lines of size ½(A+1). Let 

there to be a lines of size ½(A+3). Then there are ½(A-a) (A+3) points not in 

one of these lines, and \a(A-1) (A+3) incidences of such points with ½(A+1)­

lines. But each point is in at most two ½(A+1)-lines, so (A-a) (A+3) 2 

\a(A-1) (A+3) and a$ 3. If a 2 1 then we find a line L with l = ½(A+1) 

intersecting only one line of size ½(A+3), i.e., with j = 1. From 

0 $ 2(i-l-1) 2x. one finds l $ 1, contradiction. 
1. 

Hence there are no lines of size ½(A+3) and all lines have size 2 or A. 

If some point is only in lines of size 2 then it has A neighbours and 

A(A-1) points at distance 2 so that k 2 A2+1. On the other hand, if A> 2 

and each point is in a line of size A, then let L be a line of size A. Each 

of its A neighbours is in a line of length A, and these lines cannot inter­

sect, so !Tl 2 A(A-1) and k 2 A(A+1). This proves our claim. 

REMARK. We do not know the right order of magnitude of the lower bound. The 

theorem gives something of order ½A 2 - on the other hand, the Moore graphs 
2 

of diameter two are examples with k = A + 1. For small A we have: 

A= 2, k = 5, the pentagon. 

A= 3, k = 10, the Petersen graph. 

A = 4, k = 15: 

There is a unique partial linear space on 15 points with 10 lines of 

size 3 and girth 5. Its point-graph is distance regular with parameters 

i(4,2,1;1,1,4). It is obtained from the generalised quadrangle GQ(2,2) by 



deleting a parallel class of lines. It is the line graph of the Petersen 

graph. 
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Now these three examples are regular: all lines have the same size. But 

for regular partial linear spaces these same methods yield stronger bounds: 

we have 

k ;::-: >..(>..-l+2) + 1 

if all lines have size l. If A :S: l(l-1) this can be strengthened to 

3 
k;::,: .t2 (>..-2l+3) + l(l-l) 

A 

(In case A -- l(l-1), equality would mean that we have a strongly regular 

graph withµ= 1 and discriminant (l-1)/s, hence equality occurs only for 

l = 2. In general equality means that we have a strongly regular graph with 

µ = 1 in the first case and distance regular graph of diameter at most three 

in the second case - the linegraph of a system satisfying one bound with 

equality, satisfies the other with equality. This yields very strong con­

ditions on the parameters, and only finitely many examples are known.) 

An infinite family of regular examples if provided by the incidence 

graphs of finite projective planes: they have k = 2(>.. 2-1.+1), for A= q+1, 

q a primepower. 

Concerning irregular examples there are precisely two others with 

A = 3 , k = lO name 1 y 

and 

For A= 2, k = 5 and A= 4, k = 15 there are no irregular examples. There 

are no examples with A = 5, k = 21. 
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2. STRONGLY REGULAR GRAPHS WITHµ= 2. 

As aln~ady remarked in the introduction, if G is any graph such that 

two nonadjacent vertices have at most two common neighbours then the 

collection of neighbours of a fixed vertex x 0 carries a partial linear 

space of girth at least 5. Now if G is moreover regular and edge-regular 

then if not k ~ ~A(A+3) then by the theorem f(x0 ) is a disjoint union of 

lines of si:ze A + 1. It follows that (A+1) lk and that G itself is a partial 

linear space. Thus: 

COROLLARY • .?l. strongly regular graph withµ= 2 and k < ~A(A+2) is a partial 

quadrangle; in particular it satisfies the divisibility condition (A+l) lk. 

This corollary rules out infinitely many feasible sets of parameters 

of strongly regular graphs e.g. (v,k,A) = (736,42,8), (875,46,9) and 

(1961,70,15), the three cases mentioned in the introduction. Each of these 

is the first in an infinite series, e.g. (v,k,A) = (t2 (6t+11) (3t+2), 

6t2+10t-2,5t-2) is admissible fort= 1,2,4 or 6 (mod 7) but excluded by 

the corollary fort~ 2. 

Lookin,g at the table we found one parameter set that just escaped the 

bound, namely 

(v,k, A) = (1944,67, 10). 

But also this one is easily killed. Returning to the proof of the theorem 

in the special case k = 67, A= 10 we see that there are no lines of size 

7,8 or 9 and that each line of length 6 intersects at least 4 and hence 

exactly 4 other lines of size 6. If there is a line of size 6 then there 

are at least 1 + 4 + 12 = 17 such lines, together containing at least 

(2 + 4.~).17 = 68 points, a contradiction. 

Hence there are only lines of size 2 or 10 and k ~ A2 + 1 = 101, again 

a contradiction. 

Clearly our result can also be applied to other distance regular graphs, 

but we have no examples at present. 



strongly 1·egular graphs with 

! n=4 k=2 lb=0 mu=2 
! n=16 k = ~, lb=0 mu=2 

k = 1 0 lb=5 mu.=E, 

n=~,6 k=10 lb=0 mu=2 

k =c 4~, lb=36 rnu<:E; 
n=B~, K = 1 4 lb=3 ~) mu=c_ 

k=?0 1 b= ~, 7 rnu=60 
n=99 k = 14 lb=1 - .-l mu-,::. 

k=34 lb=71 mu=72 
t n=243 k=22 lb=1 n,u=2 

k=220 lb=199 mu=200 
n=300 k=25 16=4 mu=2 

k=273 lb=24B mu=2~,2 
n=352 k=25 lb=0 mu=2 

k =32~, 16=300 ITIU'"'3(l(l 
n=455 k=3S 16=10 mu=2 
n=530 k=37 lb=4 mu=2 

k=S92 lb=~,~,6 mu=~i50 
:I= / ,:. lj k=37 16=0 -, mu=,::. 

k=555 16=630 mu=530 
n=7::5 k=42 lb=8 . -, mu.= c: . 
n=87~, k=45 16=9 - -) mu-c 
n=1175 k=S0 lb=4 mu=2 

k=1125 16=1075 mu=1080 
n=1275 k=S0 lb=0 .-, mu=.:::. 

k=122~, 16=1175 mu=1175 
n=1525 k=58 16=3 mu=2 

k=1565 lb=1509 mu=1512 
n=1944 k=57 lb=10 mu=2 
n=1951 k=70 16=15 mu=2 

\= n <= 2000 and mu=2 out not with the 
parameters of a net (OAJ 
complete bipartite graph 
r=1 s=-3 f=10 g=S CLEBSCH 
Hub C12-{2.2} vL-5{1} T~O 
r=2 s=-2 f=S g=l0 Kag{4) 
vL-'.:;{2J TWO 
r=2 s=-4 f=35 g=20 GEWIRTZ Hub S 
Ouasi-stmmetric design 
r=3 s=-3 f=20 g=35 
r=4 s=-3 f=34 g=S0 
r=2 s=-5 f=S0 g=34 
r=3 :::;=-4 f=54 g=44 <::;pg(3,?,1,2)7 
r=3_ s=-4 f=44 g=S4 
r=4 :::;=-::, f 00 132 q=ll0 
BERLEKAMF'-·'.:,EIDEL-vanLINT- _::;pg(3, 11, I ,2) 
r=L1 ·:::;=-~, f=11U g=13:2 
r=6 s=-4 f=117 g=182 
r=3 :::;=-7 f=lE!~: g=11l 
r=4 s=-5 f=208 g=143 
r=S s~-5 f=143 q=208 
r=11 s=-3 f=35 ;=360 CLAW 
r=7 s=-5 f=259 g=370 
r=4 s=-8 f=370 g=259 
r=S s~-7 f=407 g=296 
r=5 s=-6 f=295 g=407 
r=10 s=-4 f=20/ g=528 AEB 
r=11 s=-4 f=230 q=E,44 AEB 
r=B :=:.=--E, f='.::,00 g=E;7~, '.:::,pg(E,,!IJ,1,2)"i 
r=S s=-9 f=675 g=S00 
r=6 s=-8 f=725 g=SS0 
r=7 s=-7 f=550 g=725 
r=8 s=-7 f=754 g=870 
r=6 s=-9 f=870 g=/54 
r=13 s=-5 f=536 q=1407 AN & AEB 
r=17 s=-q f=370 g=l590 AEB 

-..J 






