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ABSTRACT

Certain strongly regular graphs with u = 2 are killed by observing that

the first constituents are partial linear spaces.
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0. INTRODUCTION

Let G be a strongly regular graph with parameters v,k,A,p where u = 2.

Let x be a fixed vertex, and H = T'(x) the graph induced on the neigh-
bours of x.

Then H has k vertices, is regular of valency A and two nonadjacent
vertices have at most one common neighbour. Consequently each edge of H is
contained in a unique maximal clique, and H is the pointgraph of a partial
linear space (H,L) which has the property that if y € H, L € L andy ¢ L
then y is on at most one line intersecting L. [i.e., we have a partial quad-
rangle where iines do not necessarily have constant size.]

Looking at the structure of H one can kill graphs that just escape the
CLAW bound: for example, if y = 2 and s = -4 then f = 24A ¥>§%g-so that
» e {0,1,4,8,9,15,24,29,36,64,99,204}. The CLAW bound kills the graphs with
A = 24. Here we shall show that also A € {8,9,15} is impossible, thus leaving
the parameter sets (v,k,A) = (56,10,0), (99,14,1), (300,26,4). The first one

corresponds to the GEWIRTZ graph, the other two are unknown.
1. PARTIAL LINEAR SPACES OF GIRTH 5

In view of the application to strongly regular graphs we shall use k
for the number of points and A for the valency (of the pointgraph) of a

partial linear space.

THEOREM. A connected partial linear space with girth at least 5 and more
than one line (lines possibly of varying size) in which every point has A

neighbours, contains k 2 %A (A+3) points.

PROOF. Let L be a line of size £. Denote by T the set of points at distance
at least two from L. Then |T| = k-£(X+2-£), and £ < A since a line of size
A+1 would be a component. Let X, be the number of points in T having exactly

i neighbours at distance one from L. We have

(1) ) x, =k - L0w2-0),
i



G L iy s p0wt-l) (2-1),
i i

(iii) ) (%)xi < & o+1-0)2.

1
Hence
. 2
0 <) (i-(A+2-£)) X,
i
= 2Z<§)x, - (2)0+3-28))ix, + (A+2-2) 2 Yx:
i 1 i 1 i 1
< £(£-1)(A+1-£)2 - £(£—1)(A+1—£)(2i+3-2£) + (A+2—£)2(k-ﬂ(x+2—£)),
whence

k(A+2-£)2 > L (A+2-L) ((A+2) (A+1-L£)+1)

which can be written as

(A+2) (A=L£) (2£=3=})
2 (A +2-2)

k = 520 (A+3) +

It follows that if there is a line of size £ with £ = %(A+3) then k = %X (A+3),
(with strict inequality unless £ = X or £ = %(A+3)).
1f £ is relatively small then we can imporve on estimate (ii). Let m

be the size of the longest line intersecting L. We have

(1i) ' ) ix, 2 L(A+1-0) (A+1-m).
i

Hence, evaluating 0 < Z(i—ﬂ)(i—ﬂ—l)xi we find
i

28 (m=L) (x+1=£)
£+1

k 2 (A+1)2 - £ -

It follows that if the longest line in our partial linear space has length
at most %(A+1) (putting m < £ < %(A+1)) then k = %(A+1) (A+2) = LA (A+3)+1.

In case the longest line has length %(A+2), we have to estimate somewhat



more carefully. If there is a line L of length £ < %) such that each line
intersecting L has length at most %)\ then k 2 %A2 + 2A + 1. This shows that
for smaller k there are many lines of size %A + 1; in fact too many.

Write |M| = 1+sM for each line M. Considering the lines M distinct from
L passing through a point x € L we see that x is at distance two from

) S, (A-s)) points in T. But ) Sy=r+1- £, so

AOH-D) - D+ ] s s

) S, (A-s )
MM e

N

v

(£-1) (A+1-2) + (nx—l)(2(x+1~2)-nx)

where n = z 1 is the number of lines intersecting L in the point x.
Let an= 1 for j points of L, so that n > 2 for the remaining £-j

points of L. Then
(1) "' ] ix, 2 £(L-1) (A+1-0) + 2(£-3) (A-0).

In particular, for £ = %\+1 we find, evaluating 0 < Z(i—ﬂ)(i—£+1)xi, that

k = %AZ + A+ 1+ éiﬁ:%lﬁ&:ll.
On the other hand, if for some j € N each line of size £ = L4A\+1 intersects
at least j+1 others of this size then considering j(j+1) lines of
size £ intersecting such lines intersecting a given line L we find
2

[T| =k - £7 2 55 (§+1) (£-1) = %A (§+1).

This shows that if the linear space contains lines of size £ = %A+1 then

. 2 .al-8 L. 2
(%) k 2 max min {%X\° + 312 - 3 - j —7T—-,_4Xj(3+1) + 527+ A+ 1},
0l
Hence, for A = 2,4,6,8,10 we find k > 5,15,27,46,67 respectively, and
r ~1 :

in general putting j = /A we find k > %X (X+3) for X > 6. This proves the

theorem. [J

REMARK. Equality holds in the theorem iff A = 2 and k = 5. (This partial

linear space exists - it is a pentagon.) For: if there is a line of size



L)X + 1 then k > %A(A+3) unless A = 2 or A = 6. But if A = 6 and k = 27 one
sees that each line of size 4 intersects exactly three others and that each
point in T has three or four neighbours at distance one of L (where £ = 4)
- hence lines of size 4 do not intersect in T and ITI > 18, k =2 34, contra-
diction.

Hence there are no lines of size %A+1, but each line of size at most
% (A+1) intersects a longer line, so there are lines of size L(A+3) or A.
In the former case (£ = %(A+3)) we may suppose A > 3. We see that j = £,
i.e., each line of size %(A+3) intersects only lines of size %(A+1). Let
there to be a lines of size %(A+3). Then there are %(A-a) (A+3) points not in
one of these lines, and %a(A-1) (A+3) incidences of such points with %(A+1)-
lines. But each point is in at most two %(A+1)-lines, so (A-a) (A+3) =
4a(A-1) (A+3) and a < 3. If a 2 1 then we find a line L with £ = %(A+1)
intersecting only one line of size %(A+3), i.e., with j = 1. From
0 < Z(i—ﬁ—l)zxi one finds £ < 1, contradiction.

Hence there are no lines of size %(A+3) and all lines have size 2 or A.

If some point is only in lines of size 2 then it has A neighbours and
A(A-1) points at distance 2 so that k 2>A2+1. On the other hand, if A > 2
and each point is in a line of size A, then let L be a line of size A. Each
of its A neighbours is in a line of length_x, and these lines cannot inter-

sect, so |Tl = A(A-1) and k =2 A(A+1). This proves our claim.

REMARK. We do not know the right order of magnitude of the lower bound. The
theorem gives something of order %Az - on the other hand, the Moore graphs

of diameter two are examples with k = Az + 1. For small A we have:

A=2, k
A =3, k 10, the Petersen graph.
A =4, k = 15:

5, the pentagon.

There is a unique partial linear space on 15 points with 10 lines of
size 3 and girth 5. Its point-graph is distance regular with parameters

i(4,2,1;1,1,4). It is obtained from the generalised quadrangle GQ(2,2) by



deleting a parallel class of lines. It is the line graph of the Petersen

graph.

Now these three examples are regular: all lines have the same size. But

for regular partial linear spaces these same methods yield stronger bounds:

we have

k = A(A-£+2) + 1

if all lines have size £. If A < £(£-1) this can be strengthened to

3
> 1’,2()\—2£+3) + f;(—f—::-l)—— .

o

(In case A = £(£-1), equality would mean that we have a strongly regular

graph with p = 1 and discriminant (K—l)/gl hence equality occurs only for

£
u

2. In general equality means that we have a strongly regular graph with

1 in the first case and distance regular graph of diameter at most three

in the second case - the linegraph of a system satisfying one bound with

equality, satisfies the other with equality. This yields very strong con-

ditions on the parameters, and only finitely many examples are known.)

An infinite family of regular examples if provided by the incidence

graphs of finite projective planes: they have k = 2(A2—A+1), for A = g+1,

d a primepower.

Concerning irregular examples there are precisely two others with

A =3, k = 10 namely

For A = 2, k =5 and A

are no examples with A

B
\

15 there are no irregular examples. There

21.

and
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2. STRONGLY REGULAR GRAPHS WITH pu = 2.

As already remarked in the introduction, if G is any graph such that
two nonadjacent vertices have at most two common neighbours then the

collection of neighbours of a fixed vertex x, carries a partial linear

0
space of girth at least 5. Now if G is moreover regular and edge-regular
then if not k 2 %A (A+3) then by the theorem F(xo) is a disjoint union of
lines of size A + 1. It follows that (A+1)|k and that G itself is a partial

linear space. Thus:

COROLLARY. A strongly regular graph with u = 2 and k < LA (A+2) is a partial

quadrangle; in particular it satisfies the divisibility condition (l+1)|k.

This corollary rules out infinitely many feasible sets of parameters
of strongly regular graphs e.g. (v,k,A) = (736,42,8), (875,46,9) and
(1961,70,15), the three cases mentioned in the introduction. Each of these
is the first in an infinite series, e.g. (v,k,i) = (t2(6t+11)(3t+2),
6t2+10t—2,5t—2) is admissible for t = 1,2,4 or 6 (mod 7) but excluded by
the corollary for t = 2.

Looking at the table we found one parameter set that just escaped the

bound, namely
(v,k,A) = (1944,67,10).

But also this one is easily killed. Returning to the proof of the theorem
in the special case k = 67, X = 10 we see that there are no lines of size
7,8 or 9 and that each line of length 6 intersects at least 4 and hence
exactly 4 other lines of size 6. If there is a line of size 6 then there
are at least 1 + 4 + 12 = 17 such lines, together containing at least
(2 + 4.%).17 = 68 pointé, a contradiction.

Hence there are only lines of size 2 or 10 and k 2 12 + 1 = 101, again
a contradiction.

Clearly our result can also be applied to other distance regular graphs,

but we have no examples at present.



ztrongly reaular araphs with | <= n <= 2000 and mu=2 but not with the
parameters of a net (0A)

' n=4 k=2 1b=0 mu=z complete bipartite araph _
' n=16 k=5 1b=0 mu=2 r=1 z=-03 f=10 a=5 CLEBSCH
Hub C12-{2.2} vL-5{1) TWO
k=10 1b=6 mu=6 r=2 =g f=5 a=10 Kaagfd;
vi-5{2} TWO ' _
' n=56 k=10 1b=0 mu=2 r=¢2 s=-4 f=35 a=20 GEWIRTZ Hub &
Oua .i-symmetric desian
k=45 1b=36 mu=36 r=7 z=-3 =20 a=35
n=85 k=14 1b=3 mu=2 r= 4 o==23 =34 a=50
k=70 - 1b=%7 mu=60 r=2 z=-5 =50 a=234
n=99 k=14 lb=1 mu=2 r=3 s=-1 f=54 a=44 spal3,7,1,2)7
k=34 1b=71 mu=/72 r=3 z=-4 f=44 a=54
b n=243 k=22 lb=1 =2 r=4 s=-5 =132 a=110
BERLEKAMP-SEIDEL-vanL INT zpal(3,11,1,2)
k=220 1b=199 mu=200 r=4 z=-5 f=110 a=13%
n=300 k=26 1b=4 mu=2 r=6 o=- =117 a=182
k=273 1b=248 nu*’cd r=3 g=-7 f=122 a=117
n=352 k=26 ib=0 mu=2 r=4 ==-6 f=208 a=143
k=325 1b=300 mu=300 r=% s=-5 f=143 a=208
n=4%6 k=35 Ib=10 mi=2 r=11 z=-23 f=35 a=360 CLAKW
n=630 k=37 Ib=4 mu=2 r=7 s=-5 f=259 g=370
k=592 1b=L56 wmu=560 r=4 z=-8 f=370 a=259
n=/04 k=37 1b=0 mu=2 r=5% -7 f=407 a=296
k=666 1b=630 wmu=630 r=C z=-& =296 a=407
n=736 k=42 1b=8 mu=¢ r=10 z=-4 f=207 g=528 AcB
n=875% k=46 I1b=9 mu=¢ r=11 ==-4 =230 a=b44 AEE
n=1176 k=50 1b=4 mu=2 r=8 ==-5 =500 a=675 epalb,10,1,2)7
: k=1125% 1b=1075 mu=1080 r=5 z=-9 f A a=500
n=1276 k=50 Ib=0 mu=2 r=6 s=-3 f=725 a=550
k=1225 1b=1176 mu=1176 r=7 z=-7 {*2%0 a=725%
n=1625 k=58 1b=3 mu=2 r=98 a=-7 f=75% a=870
k=1566 1b=1509 mu=1512 r=0b ==-9 f=870 a=75%4
- n=1944 k=67 1b=10 mu=2 r=13 g=-5 =036 a=1407 AN & AEDB
- n=1961 k=70 1b=15% mu=2 r=17 z=-{ =370 a=1530 AER
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