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1. Introduction 

In a previous report (de Swart 1984) a quasi-geostrophic potential vorticity equation has been derived 
for a barotropic flow over a large scale topography; it reads 

1_ '\J2l[!+J(o/ '\J2if+ f olz + f)+ f o8E '\J2(if-if*) = 0 (1-1) at ' H 2H . 

Here if is the streamfunctiOn, t is time, '\12 the two-dimensional Laplacian, · J the JaOObian, f the Coriolis 
parameter, f 0= /(4'o) where 4'o is a central latitude, H a scale height,h denotes the topography, 8E the 
depth of the Ekman layer and if* a forcing stream.function. 

A spectral model is constructed by development of if, if* and h in eigenfunctions { '/>; };~ 1 of the 
Laplace operator, with corresponding eigenvalues "J\;2, on a two-dimensional domain with prescribed 
boundary conditions, which are orthonormalized by 

('/>;,'/>j) = 8ij• (1-2) 

where the bar denotes an average over the particular domain considered. Projection of equation (1-1) on 
these eigenfunctions results in an infinite number of nonlinear ordinary differential equations. 

For practical applications the projection is restricted to a finite number (N) of eigenfunctions. Then 
it becomes convenient to write 

if = ifr + ifu; if* = if;+ if:; h = h, + hu, 

where r and u denote the resolved and unresolved modes respectively, so e.g. 
N oo 

if r = ~ if;'/>; ; if u = ~ if;'/>; ' 
i=l i=N+l 

Projection of equation (1-1) on the resolved modes gives the spectral model equations 

f o8E 2 • • 
-

2
H "J\; (if; ~if;)}+ F;; i = 1,2, ..... , N, 

where 

Ft = --2 ~ ~ + ~ ~ + ~ ~ cijp(Ajifp--hp)t/lj . * 1 { N oo oo N oo oo } { f o ·} 
"J\; j=l p=N+I j=N+I p=l j=N+I p=N+l H 

(1-3) 

(1-4) 

(1-5) 

(1-6) 

The synoptic forcing terms { F;* }f";: 1 are due to the projection of the Jacobians J (if,, "V2ifu + f :u ), 

J (I/tu, '\121/t, + f :r ) and J (I/tu, "V2ifu + f :u ) on the resolved modes; they are unknowns by definition. 

Our primary aim is to analyse the nonlinear dynamics of the equations (1-5), which are assumed to 
model the large scale atmospheric flow. It is expected that this is a complicated problem, since the atmo-

. sphere is a chaotic system in the sense that small errors in the initial conditions rapidly grow during the 
time evolution, and lead to unpredictable behaviour, as pointed out by Lorenz (1984). Therefore a careful 
and systematic analysis is required. Our study consists of two parts: first the dynamics of a small number 
of modes will be analyzed, next the number of modes is increased and its oonsequences for the dynamics 
of the systc;Jll will be investigated. 
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Concerning the effect of the unresolved- on the resolved modes, we expect that this will be negligibly 
small if N is large, an assumption made in almost all spectral models. Examples of such studies, in which 
the dynamical aspects of the large scale atmospheric flow are investigated, are the papers of Reinhold & 
Pierrehumbert (1982) for a two-layer model in a beta-channel, and Legras & Ghil (1984) for an 
equivalent barotropic model in spherical geometry. 

However, as discussed by Foias et. al. (1983), theoretical research on tb,e number of modes governing 
solutions of partial differential equations of fluid mechanics, show that N must-be at least of the order 
1<>5 for (quasi) two-dimensional flows in order to neglect synoptic forcing terms. Hence they will have a 
considerable effect on the dynamics of low order spectral models. 

One possible parametrization of the synoptic forcing terms follows from the ideas of Leith (1973), 
Hasselman (1976) and Madden (1976), who suggest that in time-averaged atmospheric models the effect 
of the transients on the low frequency variability can be modelled by stochastic terms. Adaption of this 
idea to synoptic forcing terms has been proposed by Egger (1981), and is confirmed by the data analysis 
of Egger and Schilling (1983). Nevertheless, there is evidence that the effect is not entirely random since 
there is a dynamical feedback between different parts of the spectrum ( Wallace & Blackman, 1983). The 
parametrization of the noise in terms of physical processes will be a subject of future research. 

2. Application to the p..cbannel 

Consider the barotropic potential vorticity equation in a rectangular channel with length L and width 
B, as shown in Figure I. Here f =/ o + POY. 

y=B 

y=O 
x=O x=L 

Figure 1. Geometry of the domain. 

We investigate the existence of travelling wave solutions in the x-direction. At the boundaries y =O 
and y = B the meridional velocity is zero. Furthermore no circulation may develop around the boun­
daries. The resulting boundary conditions for the streamfunction if!=#.x J' ,t) are derived in detail by 
Philips (1954), and are summarized by Vickroy & Dutton (1979). They read 

L 

f if!dx = 0, (2-1) 
0 

.Ei_ = 0 at y=O and y=B, ax (2-2) 

}ft dx = 0 at y=O and y=B. 
0 

atay (2-3) 

We now have constructed a well-defined mathematical problem. However, it is not a realistic model of 
the atmosphere because of the artificial boundary conditions at the side-walls, which suppress all cou­
pling with outer regions. A different model is obtained by rewriting equation (l-1) in spherical coordi­
nates and then constructing a spectral model. This is done by Wiin-Nielsen (1979), Kallen (1981, 1982) 
and Legr~& Ghil (1984). However, these models carry conflicts in their physical formalism with them 
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as well. For example, quasi-geostrophy is assumed to be valid over the whole sphere, but it is well-known 
that this is a poor representation in the tropics. As we wish to study a simple model of the atmospheric 
flow which roughly describes the physical problem, we do not wonder about this aspect. 

The eigenfunctions c/>;(x J') for this problem can be calculated from substitution of 

c/>(x J') = F(x )G(y) 

in the Helmholtz equation, resulting in the general solutions 

F(x) = a 1ei"" +a2e-i"", 

(2-4) 

(2-5) 

(2-6) 

where µ is a separation constant and aba2,y1 and y2 are integration constants. Application of the periodi­
city condition (2-1) gives 

µ = 
2~n =kn; n =0,1,2, ..... 

At first we put n =O. Then the remaining conditions result in the set of eigenfunctions 

cp~1>(Y) = Y2 cos(lqy ); lq = q; ; q = 1,2, .... , 

with eigenvalues 

(2-7) 

(2-8) 

(2-9) 

where lq is a meridional wave number. The corresponding streamfunction modes describe a purely zonal 
flow. 

In the case #0 solutions have wave number kn . The boundary condition (2-2) gives eigenvalues 

"A.2 = ki+li,; m=l,2, ..... ; n=l,2, ..... . (2-10) 

From the orthonormality condition it finally follows that there are two other set of eigenfunctions, viz. 

cpgJ(xJ') = 2cos(knx)sin(lmy); m=I,2, .... ; n=l,2, .... , (2-11) 

cp~]>(XJ') = 2sin(k8 x)sin(lry); r=l,2, .... ; s=l,2, ..... (2-12) 

The full set of orthonormalised eigenfunctions is given by (2-8), (2-11) and (2-12). 

Next we investigate the interaction coefficients cijp and the b/s, both defined in (1-6). It can easily be 
shown, using partial integration plus boundary conditions and the antisymmetry property of the Jaco­
bian, that 

(2-13) 

(Charney & DeVore, 1979). Furthermore the interation coefficients are only nonzero if the three eigen­
functions in its definition (1-6) are taken from three different sets. It is sufficient to calculate c;jp for 

"'· = .i.(1). "'· = .i.(2). "' = .i.(3) 
't"1 't"q • 't"J 't"mn• 't"p 't"rs • 

resulting in 

(r-mf } 
(r-m)2-q2 

q+m+r odd, 

(2-14) 

0 ; q +m +r even. 

The b;/s are nonzero if the two eigenfunctions in its definition are taken from the sets (2-11) and (2-12). 
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For ..1... =..1..<2> and ,,. . =..1..<3> we find '1'1 'l'mn 'I'] 'l'rs 

bij = Pokn 8mr 8ns. (2-15) 

The spectral model equations (1-5) can now be developed for any number of modes. Here we take only 
three eigenfunctions into account, viz. (k=ki. 1=11) 

· cp1 = V2cos(ry); Af = 12, 

<Pi = 2cos(kx)sin(ry); Af = k 2+12, 

<PJ = 2sin(kx)sin(ry); A} = k 2+12, 

(2-16) 

which represent a basic zonal flow and two planetary wave modes respectively. The model is further sim­
plified by setting 

(2-17) 

Thus the forcing only acts upon the zonal flow, and the orography is fully described by one eigenfunc­
tion. The model equations become 

do/1 = _!_ { 8V2k f oho .r. _ f o8E 12(·'· -·'·*)}+ p• (2-18) 
dt 12 3B 2H '1'3 2H 'l'I 'l'I 1 ' 

= 1 {-8V2k
3 

.r .. r. +a_z...r. _fo8E (k2+/2'l.r. }+p• 
dt k2+12 . 3B '1'1'1'3 PIJ"-'1'3 2H J'Y2 2• 

= 1 {8V2k
3 

l[lo/-POko/-8-J2k /oho o/_fo8E (k2+/2)1fli}+F* 
dt k 2+12 3B I 

2 2 3B 2H 1 2H 3• 

These equations can be simplified by introduction of a new time 

'T = 4:;- t. 

Furthermore, new variables 

2/k2 

V1 = k2+f2 1/J1; 

V2 = klf12; 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

are defined. Here v 1 is a zonal velocity, v; a forcing velocity and v2 and v3 are wave velocities. Applica­
tion of all these transformations to (2-18) - (2-20) results in 

where 

a= 

. /oho ,. 
V1 = -a.-n v3-C(v1-vi)+Fi. 

v2 = k(v1-cR)v3-Cv2+F2, 

V3 = -k(v1-cR)v2+
1.j;/ v1-Cv3+F3, 

(2-23) 

(2-24) 

(2-25) 

(2-26) 
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and a dot denotes differentiation with respect to T. Note that c R is the phase speed of a free Rossby 
wave mode. 

In subsequent sections we will analyse the equations, neglecting the effect of the synoptic forcing 
terms. Distinction is made between the cases C =O (Section 3) and C >0 (Section 4). 

3. The unforced, nondissipative system 
-----In this section we consider the equations (2-23) - (2-25) without forcing (vi =O) and dissipation 

( C = 0). They read 

. !oho 
V1 = -a-n V3, 

v2 = k(v 1-cR)v3, 

!oho 
-k(v1-cR)v2+ 2H v1. 

(3-1) 

(3-2) 

(3-3) 

These equations can be completely analyzed in terms of standard integrals, which gives some insight in 
the particular effects of the nonlinear terms. 

It is well-known that spectral models of the barotropic potential vorticity equation, without forcing 
and dissipation, possesses two constants of motion, viz. the kinetic energy and the potential enstrophy, 
the latter being the squared relative potential vorticity. For the equations (3-1) - (3-3) it easily yields two 
constants of motion, viz. 

E = fvr +a(v} +v}) (3-4) 

and 

(3-5) 

The former is clearly the kinetic energy, the latter is a combination of the energy and the potential 
enstrophy in spectral terms; they are specified by the initial conditions. 

From the spectral model equations we can now deduce one equation for v 1• By differentiating (3-1) 
and substituting (3-3) and (3-5) we obtain 

[ 

af2h2 
li1 = -fk2v~ +tk2cRvf + k 2(G-c1)-

0 
2° 2H 

Multiplying with v 1 and next integrating, we obtain 

where 

dv1 _ rn-z- = +dT, or 
y.c-4\V]) 

(3-6) 

(3-7) 

P 4(x) = -ik2x 4+k2cRx3+ [ k2(G-c1)-ta(f~o )2 ]x2-2k2cRGx +A (3-8) 

is a quartic in x, with A an integration constant being a function of E and G. The sign on the right 
hand side depends on whether v 1 is positive or negative so that T will increase monotonically. 

The global analysis of equation (3-7) is quite difficult, because of the possible complicated structure 
of the quartic. Here we will present qualitative results, which will give insight in the behaviour of the 
solutions. 

We search for real solutions of (3-7), hence positive values of P 4(x) are required. Since the quartic in 
(3-8) tends to - oo for large values of Ix I it must have real zeros. From algebraic considerations we 
then know that there will be two or four real roots. 
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First we assume that all roots are distinct. Then the integral in (3-7) is of the elliptic type and can be 
analyzed in terms of standard integrals. It appears that, by means of suitable transformations and reduc­
tion methods (see Bowman, 1953), the solution v1('r) can be expressed in terms of Jacobian elliptic func­
tions. As a consequence v 1 ( T) is bounded and periodic in T, and from the constants of motions it follows 
the same results for v2(T) and v3(T). Obviously the nonlinear terms in the spectral equations (3-1) - (3-3) 
bring about a continuous energy transfer between the different wave modes and the zonal flow. 

Next we consider the case that the quartic in (3-7) has multiple zeros. As can-be seen from geometri­
cal considerations, the only case resulting in different nontrival behaviour occurs if P 4(x) has four real 
roots a 1 <a2 =a3<a4, thus y=a2 =a3 is a double zero. For this value of x both the quartic and its 
derivative with respect to x become zero, i.e. 

dP4(x) 

dx 
I =2P3(x) I =O. 

x=y x=y 
(3-9) 

From the equations (3-1) - (3-3), (3-6) and (3-7) it then follows v1=v2 =v 3=0, thus if v1=y, with y a 
double zero of the quartic P 4(x ), the corresponding flow is steady. By similar arguments it also can be 
shown that the opposite assertion holds. 

We will now determine the characteristics of the solution of (3-7) for this case. Let v1 be in the inter­
val [a1>y]; the case that v1 is in [y,a4] is not fundamentally different. Although v1(T) may approach and 
leave a 1 once, it must proceed towards y eventually, as v 1 nowhere changes sign on the interval. The 
quartic may be written 

and from (3-7) it follows 

The transformation ~=y- x gives 

2 y-v1(0) d~ 
T(y-£) = - J 

y-v,(0) d{ 
~=========- ~ D j 

k ~y(a4-y+~(r-a1-~ £ 
~va +~' 

where 

2 
D = k yy:::;;_ ; a = a4-y. 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

The vintegral on the right hand side of (3-12) can be performed by application of the transformation 
y = a+~, and next splitting fractions. It then appears that in the limit £~0, T(y-£) becomes infinite, 
hence v1(T) asymptotically tends toy, which corresponds to a steady state. 

With this we have obtained a class of aperiodic solutions. However, as they require special choices of 
the coefficients of the quartic in (3-8), the solution of (3-7) will in general be periodic, as was already 
mentioned by Charney & DeVore (1979). 

For three-component conservative spectral models in spherical geometry the results differ in the sense 
that the solutions will in general be aperiodic, although their associated spectra are periodic. Details are 
discussed by Dutton (1976) and Lupini & Pellacani (1984). 

4. The dissipative system 

In this section we study the full nonlinear spectral model equations (2-23) - (2-25). They form a 
dynamical system of the type 

x = f ,.(x), (4-1) 

where x = (v J>V 2, •••• , vN ), and f ,.(x) is a vectorfield which depends on x and parameters 
p.=(p.1>11-2: •..• , /Lm ). Note that f ,.(x) does riot depend explicitly on time. Such systems are called 
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autonomous, with the property that if x =('r,x0) is a solution such that x(O,x0)=x0 then x(T-T0,x0) also 

satisfies the equations ( 4-1 ). The set of solution curves in the phase space is called the flow generated by 

Jp.(x). 

To make a local analysis of the system we first determine the possible steady states x, governed by 

Jp.(x) = o. (4-2) 

As µ. varies the implicit function theorem implies that these steady states are deseribed. by smooth func­

tions ofµ. away from points at which the Jacobian derivative of J p.(x) with respect to x, denoted DJ p.(x), 

has a zero eigenvalue. The graph of each of these functions is a branch of equilibria of ( 4-1 ). At an 

equilibrium where DJp.(x) has a zero eigenvalue several branches of equilibria come together. The set of 

parameter values for which DJ p.(x) has a zero eigenvalue forms a hypersurface in the parameter space, 

which is called the bifurcation set. 

The stability of the steady states can be analyzed from the linearized equations for small perturba­

tions about these states. Substitution of 

x = x+x' 

in ( 4-1 ), and expansion of the vectorfield in Taylor series about x , results in 

x' = DJp.(x)x'+O(lx'l 2
). 

(4-3) 

(4-4) 

H all eigenvalues of matrix DJ p.(x) have negative real parts the steady state is stable. If at least one 

eigenvalue has a positive real part the steady state is called unstable. The points (x ,µ.) for which the real 

part of some eigenvalue vanishes are the bifurcation points. 

The case of a zero eigenvalue has already been discussed. If some eigenvalues are purely imaginary a 

periodic solution branches off from a steady state curve in that point. This is called a Hopf bifurcation. 

Finally we state that the divergence of the vectorfield 

\lf p.(x) (4-5) 

gives some qualitative insight in the behaviour of the flow. In the first place the time evolution of an 

infinitesimal volume element 8V in the phase space is governed by the equation 

d 
dt 8V = (\lf p.)8V, (4-6) 

and furthermore the sum of the eigenvalues near a steady state is equal to \l · J p.(x) in that point. More 
details about dynamical systems can be found in e.g. Guckenheimer & Holmes (1983). 

We now apply this theory to the spectral model equations (2-23) - (2-25). It appears that the diver­

gence of the vectorfield is here 

ov1 ov2 ov3 
-+-+-= -3C, 
OV1 OV2 OV3 

(4-7) 

which is always negative. According to (4-6) it means that a volume element in the phase space is con­

tracted, and thus for T-+OO the flow will tend to set of points in phase space with lower dimension. As a 

further consequence there are no steady states with the real part of all eigenvalues positive. 

The steady states (vhv2,v3) of this model follow from (4-2). Elimination of v2 and v3 results in 

(4-8) 

where 

a2 = -(2cR +v~), 

- 2 • 1 J oho 2 C2 

a1 - cR +2cRv1 +2a('H) + k 2 ; (4-9) 

2 c2 • 
a0 = -(cR+ k 2 )v1. 
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The eigenvalue equation for the linearized equation (4-4) reads 

O\+c)3+p1(A+c)+po = 0, 

where 

(4-10) 

(4-11) 

From ( 4-8) it follows that the model has either one- or three real steady states. From the preceding 
theory we conclude that the transition from one- to three steady states occurs if both the cubic in ( 4-8) 
and its derivative with respect to v 1 vanish. Elimination of v 1 finally results in the bifurcation set 

(4-12) 

where 

(4-13) 

In the region of the parameter space where q3+r2 has negative values, called the catastrophe set, three 
real steady states occur. 

The qualitative behaviour of v 1 as a function of the parameters in ( 4-8) is fully determined by two of 
them, since e.g. the quadratic term can be suppressed by a suitable transformation. For that reason we 
choose two free parameters, viz. the zonal wave number k and the forcing velocity v i . 

To calculate the bifurcation- and catastrophe set in the L,vi-parameter space (L =2wk- 1) we have to 
specify the numerical constants in the equations (2-23) - (2-25). We first investigate the choices of Egger 
(1981). He takes / 0 =1.10-4s-1, h0 =500m, H=l.lifm, C=l.10-6.s~' p. =l,6.10- 11m- 1s-1 and 
B = ± L. In figure 2 the bifurcation set of this model in the L, v i -parameter space, enclosing the catas­

trophe set, is shown by the solid lines. 

We have developed a different model by taking p. =2,67.I0- 11m- 1s-1, resulting from the choice 
{J0 =1,6.10- 11m- 1s-1, which is a representable value for midlatitude atmospheric flow. Furthermore a 
constant width of the channel is assumed, in our model B = 1,5.106m. The bifurcation set of our model 
in the L, v ~ parameter space, enclosing the catastrophe set, is shown in Figure 2 by the dashed curves. 

15 

I 
tll 
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> 

0 

--
' ' ' ' ' ...... - - - - - - - - -':::. ... _ 

- L(I0
7 

m) 
2 

Figure 2. Bifurcation set of the Egger model (full line) and of our model (dotted line). 

From this we conclude that the results of the two models are fundamentally different. We first treat the ,, 
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Egger model. There it appears that the region of possible zonal wave-lengths, for which three real steady 
states occur, increases with increasing values of the forcing velocity. This can also be seen from figure 3, 
which shows the real equilibrium solutions v 1 as functions of the free parameters. 

I " 
!~ 

" .. 
'! 

" 

Figure 3. Bifurcation diagram of the Egger model. 

The bifurcation set of our model (see Figure 2) is more complicated. Up to vi =(12,003+0,00l)ms- 1 

there is one region of possible zonal wave-lengths where three real steady states occur, and it increases 
with increasing v i . Due to numerical inaccuracy the transition values could not be calculated exactly. 
An example of the behaviour of the equilibrium solution v11vi as a function of the zonal wave-length is 
shown in figure 4° for vi=IOms- 1• At vi=(l2,003+0.00l)ms- 1 and L=(l,60+0,01}107m a new 
catastrophe set arises. Next for (12,003+0,00l)ms- 1os;;;vi :E;;;(l2,342+0,00l)ms- 1 two separated regions 
exist, where three real steady states occur. In figure 4h v11vi is shown as a function of L for 
vi = 12,2ms- 1• At vi =(12,342+0,00l)ms- 1 and L =(1,18+0,0l} 107m the two regions join each other. 
For larger values of the forcing velocity one region is left over, which becomes smaller if v i is increased, 
and eventuality disappears at vi =(41,420+0,00l)ms- 1, L =(3,12+0,01}106m. Figure 4c shows v1/vi 
as a function of L for v i = 15ms- 1• 
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vl 
x 

VI 

I 

• 
V1 

vl 
------:t 

~ VI 
t 
0 

-L(I07 
m) 

2 -L(J0
7 

m) 
2 0 

-L(I07 
m) 

a) b) c) 

= IOms- 1 * = 12,2ms- 1 • = 1sms-1 
V1 V1 

Figure 4. The equilibrium solution v11vi as a function of L for 
different values of v i . 

2 

The difference between the results of the Egger model and our model becomes even more clear if the 
stability of the steady states is investigated. From the preceding results it appears that for realistic values 
of the forcing velocity there is one equilibrium El for small zonal wave-lengths. It is characterized by 
v1......,vi, positive v2 and v3......,oms- 1, and a linear stability analysis shows that it is always stable. With 
increasing L two further equilibria appear. The intermediate one (E2) appears to be unstable and is of 
little dynamical significance in the deterministic model. The low one (E3) is stable; it is characterized by 
small values of v1, negative v2 and positive v3• Mathematically spoken El and E3 are stable spiral points, 
and E2 is a saddle point. 

Now consider again the model equations (2-23) - (2-25), where the free parameters are assumed to be 
slowly varying functions of time, i.e. they vary on a time scale which is much larger than the adjustment 
time scale of the model. For arbitrary initial conditions the system will always reach an equilibrium state 
after a sufficiently long time. For the Egger model it then appears that each time the bifurcation set is 
crossed the equilibrium solution suddenly transits from the one- to the other stable steady state, a 
phenomenon which is called a castatrophe. But for our model this is not always the case: as long as v ~ 
is larger than (12,342+0.00I)ms- 1 the equilibrium solution will always be represented by El after the · 
bifurcation set has been crossed one time. Catastrophes can only occur for smaller values of v '; . 

Finally our model results show that, apart from the bifurcation set, there are no points in the parame­
ter space at which the stability of some steady state changes. This e.g. lfleanS that there are no Hopf 
bifurcations. 

As can be seen from the equations (2-23) - (2-25) the existence of multiple equilibria is solely due to 
the presence of orography. Furthermore the instability of the steady state E2 is due to the interaction of 
the orography and the zonal flow. Generally there are more instability mechanisms for barotropic flows, 
viz. barotropic instability of the zonal flow and wave instabilities. However, a necessary condition for 
barotropic instability is that Po-d2u I dy 2 vanishes somewhere in the beta channel, where ii is a steady 
zonal flow (Holton, 1979). In the three-component spectral model the equilibrium zonal flow profiles do 
not satisfy this condition, and hence the mechanism is absent. Similarly, wave instabilities cannot occur, 
since they require at least three different wave modes (Iprenz (1972), Gill (1974), Coaker (1977)). The 

·present mechanism, causing the unstable steady state E2, is called orographic instability. 

5. Construction of a stochastic model 

In order to let the dynamics of the large scale atmospheric flow be modelled by the equations (2-23) -
(2-25), we"have to choose realistic values for the free parameters. We take k=(2w/3.106)m- 1 and 
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v i = 10 ms - I. As can be seen from figure 2 the model then has three real steady states, from which two 

are stable. The numerical values are shown in table 1, together with the values of the Egger model. 

Table 1 

our model Egger model 

--------v1 Vz v3 v1 Vz v3 

El 9.33 1.76 0.13 9.55 1.47 0.09 
E2 4.49 3.34 1.10 2.75 2.80 1.45 
E3 2.26 -2.52 1.55 1.36 -1.69 1.73 

The differences are entirely due to the different values of /J• in both models. 

In figure 5 the streamfunction patterns of the stable equilibria El and E3 of our model are shown. 

0 (@/ ··,2.i 
\ -4./2 . 

············· : 

3• 106 
m 

Figure 5. Streamfunction patterns (106m2s - 1, solid lines) for El and E3. 
· · The dotted lines' represents the orography (ln2m ). 

The equilibrium El corresponds to a strong wnal flow, while the flow pattern of E3 has a large meri­

dional component. Both equilibria resemble well-known large scale preference states in the atmosphere 

(Charney & DeVore, 1979). 

The two attraction domains of the stable steady states in the three-dimensional phase space are 

separated by a two-dimensional hypersurface, called the separatrix. Its position can only be found by 

numerical analysis. In figure 6 sections of the separatrix with various planes v3=constant are presented. 
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-10 -8 -6 v2 

" 6 8 v =-< 
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-6 

Figure 6. Intersection curves of the separatrix 
with various planes v 3 =constant. 

-------

From our model results it appears that, for large values of T, nearly all trajectories approach one of the 
two stable steady states, depending on the initial conditions. Exceptions are trajectories starting at points 
which lie on the separatrix; they spiral to the unstable steady state. However in the phase space these 
points form a set of measure zero, which is not of dynamical significance. 

So far we have not considered the effect of the synoptic forcing terms F;(i = 1,2,3) in the equations 
(2-23) - (2-25). As argued in the introduction a crude parametrization of this effect can be attained by 
letting the F; stochastic forcing terms. In a symbolic form the new model reads 

x = f(x)+11(t), (5-1) 

where f (x) is the deterministic vectorfield and the components of 11 are stochastic terms. 

The stochastic forcing will drive the system away from the steady states, but these states will continue 
to attract the trajectories. Therefore the latter will become erratic paths in the phase space. The system 
will be kicked around and thus be capable of passing from the one- to the other attraction domain. 

We ask for the typical residence time of the system in a certain attraction domain, and for the proba­
bility that at a certain time the system will be in a certain part of the phase space. Since we argue that 
the equations (5-1) resemble in some way the dynamical climatology of the atmosphere, the first quantity 
is a measure of the typical life of a large scale preference state. The probability distribution over the 
phase space is an analogy with the relative frequency distribution of the possible flow states. 

Since the model is no longer deterministic, statistical methods have to be involved in order to describe 
the behaviour of the solutions. This will be done in a next report. 
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