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A two-unit cold standby production system with one repairman is considered. After 
inspection of a failed unit the repairman chooses either a slow or a fast repair rate 
to carry out the corresponding amount of work. At system breakdown the repair­
man has an additional opportunity to switch to the fast rate. If there are no fixed 
costs associated with system breakdowns, then the policy which minimizes long­
run average costs is shown to be a two-dimensional control limit rule. If fixed costs 
are incurred every time the system breaks down, then the optimal policy is not 
necessarily of control limit type. This is illustrated by a counterexample. Further­
more, we present several performance measures for this maintenance system con­
trolled by a two-dimensional control limit rule. © 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In the classical machine repair problem there is a pool of repairmen main­
taining a finite number of machines. Since each repairman can serve only one 
machine at a time, an interference problem exists as soon as the number of 
machines requiring maintenance exceeds the number of repairmen available. 
The machine repair problem is also known as machine interference problem and 
as the finite source queueing problem. 

In this article we focus on controlling a production system by adjusting the 
repair rate. Our system consists of two units and a single repairman. The system 
is considered to be up if one unit is operating and the other one is either under 
repair or kept in spare position (cold standby). At breakdown of the operational 
unit, this unit is sent into the repair facility to be repaired. The spare unit takes 
over the working position. The system goes down if a unit is still under repair 
at the breakdown of the other one. Then, at completion of the ongoing repair 
the repaired unit enters the operating position, a repair is started on the failed 
unit, and the overall system recovers to up state. 

After inspection of a failed unit the repairman knows how much work is to 
be performed. Then he has the option to choose either a slow or a fast repair 
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rate w earn out this amount of work. When the system breaks down while the 
is working at slow rate, he has an additional opportunity to switch 

1L1 the fo~I rate. 
In Section 2, we pron: that if there are no positive fixed costs associated with 

overall svsk'm breakdowns, then the policy which minimizes the long-run average 
cost is a two-dimensional control limit rule (also called threshold policy). If fixed 
costs are incurred every time the system breaks down, then the optimal policy 
is no! necessarily of control limit type. This is illustrated by an example where 
a four-region policy is shown to be the optimal one. In Section 3, assuming a 
two-dimensional control limit rule to be imposed on our system, we present 
explicit expressions from which the long-run average costs, all moments of system 
up- and downtimes, and an additional number of operational characteristics can 
be calculated. 

An extensive survev of articles on various types of machine repair problems 
that appeared since the 1976 survey of Pierskalla and Voelker [9] can be found 
in Cho and Parlar [3]. In many articles structural results are derived on optimal 
policies such that the long-run average costs are minimized. Systems are con­
trolled, for instance. bv reduction of the number of repairmen (e.g .. Winston 
[14]. Albright [1]), by ~pening or closing the repair shop (e.g., Hatoyama [5J), 
by taking operating units out for preventive maintenance (e.g., Kawai [7], Ha­
toyama [5J), etc. 

Relativelv few articles consider direct control of the repair rate of the re­
pairmen (6abill (4J. Winston [13], Albright (1]. Weber and Stidham (12], Kar­
meshu and Jaiswal [6j). They all assume the repair rate to depend on the number 
of units that have broken down and are waiting for repair. A general conclusion 
is that the optimal repair rate is a nondecreasing function of the number of failed 
units. In these articles, however, failure and repair times are exponentially 
distributed, fixed costs related to changing the repair rate or with a system 
breakdown are not considered. and the repair rate is chosen independently of 
the actual amount of work that is to be performed. In our situation failure and 
repair times have general probability distribution functions. We also investigate 
the influence of fixed costs on the structure of the optimal policy. Furthermore, 
in our model we allow the repair rate to depend on both the number of failed 
units and on the amount of work to be carried out on the unit that is under 
repair. 

Throughout this article we make the following assumptions. 

ASSUMPTION 1: The amount of work that is required to restore a failed 
unit into as good as new condition is known before the repair is started. 

This amount of work becomes known after inspection of the unit. This in­
formation is used to decide whether to start a repair at fast or at slow rate. At 
system breakdown, the residual amount of work is equal to the original amount 
of work minus the amount of work carried out during operation of the last 
working unit. 

ASSUMPTION 2: It is not possible to switch back to slow rate during a fast 
repair. 
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ASSUMPTION 3: The repairman returns to slow rate at completion of every 
repair. 

Assumptions 2 and 3 are explained by assuming that a regular maintenance 
crew is present permanently, working at a certain (slow) rate. If necessary, an 
additional crew is hired to increase the repair rate. The additional crew is hired 
on a contractual basis for one repair task only. So, even if two consecutive 
repairs have to be carried out at fast rate, a fixed cost is charged for each of 
them. 

We use the following notation: 

• c:r1 : = slow repair rate 
• c:r, : = fast repair rate ( u, > u 1) 

• c1 : = variable cost rate for repairing at rate u 1 

• c, : = variable cost rate for repairing at rate u, 
• K, : = fixed costs to start a repair at (or switch to) fast rate u, 
• c,,: = variable cost rate during down time (e.g., loss of production) 
• K" : = fixed costs at start of system down period 
• L : = lifetime of a unit [i.i.d. with general distribution function F(I); I ::o O; F(O) = 

O] 
• F(I) : = I - F(l); I 2 0 
• J.LL : = ft, I dF(l) < x 

• W: = amount of work for a repair [i.i.d. with general distribution function G(w); 
w ::o OJ 

•G(w) :=I - G(w); w ::oo 
• J.Lw: = fi1 w dG(w) < x 

Now we make an additional assumption on the variable down costs c". 

ASSUMPTION 4: There exists a policy with average costs (AC) less than 
c"; i.e., c" >AC. 

If Assumption 4 is not fulfilled, then either the production system should be 
closed or the design should be adjusted to make the system profitable. 

This article is organized as follows. Section 2 considers the optimal control of 
the repair unit. First, in Section 2.1, we describe our system by a semi-Markov 
decision process. In Section 2.2., we give a definition of a control limit rule. 
Then, in Theorem 2.1, we show that at system breakdown, the repair rate is 
switched to the fast rate 0"2 according to a control limit rule. In the next two 
theorems we assume K,1 = 0 (no fixed costs at system breakdown). In Theorem 
2.2, we prove that the repair rate to start a repair is chosen according to a control 
limit rule. For the special case that no additional opportunity exists to switch to 
O"z at system breakdown, in Theorem 2.3, we prove the repair rate to be chosen 
according to a control limit rule as well. If Ki1 > 0, then the optimal rate to start 
a repair is not necessarily chosen according to a control limit rule. This is illus­
trated by a counterexample in Section 2.3. Assuming a two-dimensional control 
limit rule to be applied, in Section 3 we present performance measures such as 
long-run average costs, all moments of system up- and downtimes, system avail­
ability, etc. 
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2. OPTIMAL CONTROL 

The repair rates are chosen such that the long-run average costs are minimized. 
Whik repairing at slow rate a 1 (fast rate 0'2), a cost c, (c2) per unit of time is 
incurred. Fixed costs K: are charged every time when either a fast rate rr2 is 
chosen at the beginning of a repair, or when the repair rate is switched from a1 

to er: at the beginning of a down period. Due to loss of production an additional 
variable cost rate CJ is incurred during downtime. There are fixed costs K" every 
time the system breaks down. Lifetimes (L) of the units are i.i.d. according to 
a general distribution function f(l); I 2: 0 with finite mean 11-L· The amounts of 
\V<~rk that have to be performed on failed units form a sequence of i.i.d. random 
variables with general distribution function G(w); w 2: 0 with finite mean /.Lw· 
Repaired units are as good as new. 

2.l. Semi-Markov Decision Process 

The system is inspected at two types of decision epochs: Either when a new 
unit enters operation and a repair is started on the other one, or when the 
operating unit just failed and repair on the other unit has not been finished yet 
(system breakdown). Inspection reveals the system to be in a state x E f The 
infinite state space. I is defined by 

where 

f: = {(U, w), (D, rr1, w), (D, a2 , w); w 2: O}, 

U(D) denotes that a new repair is to be started (an ongoing repair has to be con­
tinued ;it system breakdown). 

1r1• rr: denotes the current repair rate. 
w denotes the amount of work (still) to be carried out on the unit currentlv 

under repair. • 

If a new repair is started, then after inspection the repairman finds the system 
in a state ( U, w) and has to choose either a slow or a fast rate to perform this 
repair. If the repairman is working at slow rate, then at system breakdown he 
has to decide to continue working at slow rate or to switch to fast rate. Formally, 
if at an inspection epoch the system is in state x E .:r: then the repairman has 
to choose an action er E A(x). The finite action space A(x) is given by 

if x E {(U, w), (D, u1, w); w 2: O}, 
if x E {(D, a2 , w); w 2: O}, (1) 

where a1, a2 denotes the rate at which the current (residual) repair will be 
continued. 

A stationary policy 7T is employed; i.e., the repair rate chosen depends on the 
present state of the system only: 

7T(x) E A(x); x EJ'. (2) 
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This controlled dynamic system is a semi-Markov decision process because 
the following properties are satisfied (cf. Tijms [11]). The time until, and the 
state at, the next decision epoch depend only on the present state x E // and 
the chosen action a E A(x), and are thus independent of the past history of the 
system. Also, the costs incurred until the next decision epoch depend only on 
the present state and the action chosen in that state. Let 

r(x; a) : = expected time until the next decision epoch, given that the current state 
of the system is x E f and an action a E A(x) is chosen. 

c(x; a) : = expected cost incurred during the time until the next decision epoch, 
given that the current state of the system is x E .:r and an action a E 
A(x) is chosen. 

P(-lx; a) : = probability distribution of the state of the system at the next decision 
epoch, given that the current state of the system is x E .:1; and action 
a E A(x) is chosen. 

In Appendix A we show that, in case G(-) has finite support, there exists a 
bounded function v(x), x E ,rand a constant g, which satisfy the following set 
of average cost optimality equations: 

v(x) = min {c(x; a) - gr(x; a-) + J . v(y) dP(y)x; a-)}; 
crEA(x) yE, 

x E ,:/'. (3) 

According to Ross [10], for any policy which, when in state x, selects an action 
minimizing the right-hand side of (3), we have that the long-run average costs 
are minimized and are equal to g. So to find the optimal policy rr* we have to 
investigate which decision is to be made such that (3) is minimized. 

In our model r(x; a-) and c(x; a-) are given by the following expressions: 

r(D, o-1, w; o-1) = 
w 

0-1 

r(D, a 1, w; a 2) 
w 

lT2 

r(D, a 2 , w; 0-2) 
w 

lT2 

r( U, w; o-1) µL, 

r( U, w; a2) µj_, 
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[1 w/rr1 W -(W)J c( U, w; ut) = c1 0 
I dF(l) + er, F a-

1 

[ W 1Wi<T1 J = c1 - - F(t) dt , 
(TI 0 

Substituting these expressions for r(x; u) and c(x; er) into (3) gives us the op­
timality equations for our semi-Markov decision process: 

where 

{ [
W 11v/rr1 J v( U, w) = min c1 u, -

0 
F(t) dt 

-(W) [W fwfrr, J + F (TI z' K1 + C2 er2 - 0 - F(t) dt 

fwi<h -(W) } + 
0 

- v(D, er2 , w - u2l) dF(l) + F er
2 

Z 

Z : = J"' v( U, w) dG(w). 
ll 

2.2. Control Limit Rule 

(4) 

(5) 

(6) 

From (1) we observe that there are two types of decision epochs in which an 

actual decision should be made: ( U, w) and (D, u 1, w). [Due to Assumption 2 
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in ( D, O"::_, w) the repair rate remains unchanged. J For anv stationan r.. 
we define [cf. (2)] · · 

7Tc(w) : = rr( U. w), 

DEFINITION 2.1: For any stationary policy rr, we call rr1 a control limit 
rule CLR(mu) if there exists some threshold value m 1 such that 

7rc{ w) = a-z. iff w > m1 . 

For 7Tv a similar definition of CLR(m 0 ) applies. If 1Tu is CLR(mc) and rrn is 
CLR(m0 ) then the overall system is controlled by a t»·o-dimensional control 
limit rule CLR(mu. m 0 ). The optimal policy is denoted by 17* with corresponding 
Tic and trf>. 

In Theorem 2.1. we prove that in state ( D, a 1• the repair rak is switched 
from 0"1 to 0"2 according to a control limit rule CLR(m0 ). no matter what (sta­
tionary) policy is followed in states (U. w). For Kd = 0. and using the result of 
Theorem 2.1. we prove in Theorem 2.2 that in state (U, the fast rate 1r2 is 
chosen according to a control limit rule CLR(mu) as well. In Theorem 2.3. we 
consider a restricted version of the model presented so far. In this adapted 
version we assume that it is not possible to change the repair rate during an 
ongoing repair. This means that in state (U, w) a repair rate is chosen which 
holds for the entire repair task. For such situations with Kd = 0. in Theorem 
2.3 again we prove that the optimal rate is chosen according to a CLR. However. 
if Kd > O then the optimal policy in state (U. w) is not necessarily a CLR. A 
counterexample and an intuitive explanation are given in Section 2.3. 

THEOREM 2.1: trf> is a control limit rule CLR(m0 ). 

PROOF: From (5) we conclude that <re is chosen in state (D. a1• w) iff 

(7) 

If 

C1 + C.t - g :5 C2 + Cd - g 
a-1 a,e 

then (7) will not hold for any w ~ 0. So. the repairman will never switch to IT2 

(mD := x). If 
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then a2 is chosen iff 

where 

(8) 

So. a2 is chosen according to a control limit rule. D 

REMARK 2.1: In Theorem 2.1 we have not used any information about 
the structure of the (stationary) policy employed in state (U, w). Actually, 
assuming an arbitrary stationary policy to be employed in state (U, w), one can 
construct an alternative semi-Markov decision process on the embedded states 
{(D. a. w); w > 0, u E {a1, a2}} only. From the corresponding optimality 
equations it is easy to see that the conditions for the repairman to choose a2 in 
state (D. a 1• w) are similar to those found in the proof of Theorem 2.1. So, in 
state ( D, a, . w) the repair rate is switched from a1 to a 2 according to a con­
trol limit rule CLR(m0 ). no matter what stationary policy is followed in state 
(U. w). 

In Theorem 2.1 we have shown that the best way of switching to a2 at the 
beginning of a down period, is according to a CLR. Therefore, in Theorem 2.2 
we assume 1To to be CLR(mD), where mD is the optimal control limit in state 
(D, a1• w), as defined by (8). 

THEOREM 2.2: If Kd = 0 and either c1/ a 1 2:: c2/ a2 or F(l) is IFR, then 
7T(,, is a control limit rule CLR(mu). 

PROOF: Consider the optimality equations (4)-(6) with Kd = 0. First we 
substitute (6) into (4). By changing the order of integration, this simplifies the 
second minimization term of (4): 

= Ki + -=- w + (cd - g) F(t) dt + Z. (9) 
C, Jwla2 
Uz 0 

For the remainder of this proof we distinguish three cases. 
Case (i): 

From the proof of Theorem 2.1 we know that in this case in state (D, ai. w) 
always a1 1s chosen. In ( U, w) there is even less reason to work at fast rate, as 
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no variable down costs cd are accounted (initially) and Kd = 0. So, one would 
expect 0'1 to be optimal in this case. This is just what happens. From (5) we see 

w 
v(D, {]'1, w) = (c 1 + cd - g) - + Z. 

0'1 

Substitution of ( 10) into ( 4), and using (9) yields 

v( U, w) = min {~ w + (cd - g) (wlui F(t) dt, 
"1·"2 a1 Jo 

(10) 

K2 + Cz W + (cd - g) (wluz F(t) dt} + Z - gµ,L. (11) 
a2 Jo 

Now a2 is chosen iff 

K2 + - w + (cd - g) - F(t) dt < - w + (cd - g) F(t) dt Cz lw/u, C1 lwlo-1 
~ 0 ~ 0 

However, 

Jwlu1 

(c" - g) F(t) dt + 
WICT1 

By combining (12) and (13) we conclude that a 1 is chosen for all w ::::: 0 (mu = 
oo). 

Case (ii): 

As in Case (i), we note that if condition (ii) holds in a down state (D, a 1, w), 
then a 1 is chosen (due to Theorem 2.1). Again we prove that 0'1 is optimal in 
(U, w) as well, which is intuitively clear. In (4) v(D, a1, w - u 1/) only occurs 
for 
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So, again ( 10) is to be substituted into ( 4). From ( 11) we see that cr2 is chosen 

if (12) holds. However, 

K2 , (14) 

by (8). Now again by combining (12) and (14) we conclude that a 1 is chosen for 

all w e: 0. 
Case (iii) 

In this situation a nontrivial control limit is to be expected. Furthermore in this 

case we will actually use the condition that either c1/ <r1 ?: c21 <r2 or F(/) is IFR. 
From Theorem 2.1 we know that cr2 is chosen in state (D, <r1 , w - <r1l) iff 

and a 1 is chosen otherwise. We use this result to simplify the first minimization 

term in (4): 

Jwla1 

+ (c1 + cd - g) F(t) dt + Z. 
(w-mD)f<T1 

(15) 

After substitution of (9) and (15) into (4) we finally find that cr2 is chosen iff 

K(w) > CH(w), (16) 
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where 

J(w-m 0 )!tr1 [l 
K(w) : = - F(t)] dt, 

(J 

H(w) : = f "'1o-1 [1 - F(t)] dt, 
wltr2 

(17) 

Due to Assumption 4 c" > g, and thus C > 0. From (16), it is easy to see that 
the optimal policy is CLR if 0 < C ::5 1. We have not been able, however, to 
derive a similar general result for C > 1 without the additional assumptions of 
the theorem. Furthermore, since C contains g, the condition 0 < C:::; 1 cannot 
be checked beforehand, which makes it useless for practical purposes. 

To obtain sufficient conditions that guarantee the optimality of a CLR, we 
note that 

K(mn) = O; lim K(w) 

CH(mn) Jim CH(w) = 0. 
w---oo 

So, 

K(mD) ::5 CH(mD); K(oo) > CH(oo). (18) 

This implies that K(w) and CH(w) intersect at least once; K(w) lies below CH(w) 
initially and exceeds CH(w) finally. A first conclusion from (18) is that there 
exists some 0 ::5 w < oo such that cr2 is chosen for all w > w. 

From (16) and (18) we see that a necessary and sufficient condition for a CLR 
to be optimal is that K(w) and CH(w) intersect only once. A sufficient (not 
necessary) condition to guarantee this is 

K'(w) 2'. CH'(w), for w > S, ( 19) 

where K'(w) and H'(wJ denote the derivatives of K(w) and H(w), respectively: 

(20) 
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and 

S : ""' first intersection point; K(S) = CH(S); K'(S) > CH'(S). 

A sufticit'nl ctmdition which guarantees (19) is 

(22) 

Fr,lm ( 21) we see that in this case 

CH (w) s ( .- - - l - f ·. ., , ,[l IJ[ -(w-mD)] 
ff1 <J2 . U1 

So, if (22) holds then the optimal policy is CLR. 
Another condition sufficient for ( 19) to hold is that the lifetime distribution 

function with density function J(l) is IFR; i.e., F(l) has an increasing failure 
rate: 

f(x) < f(y) 
l - F(x) - 1 - F(y)' 

for x < y, (23) 

which is explained as follows. From (17) and (21) we see 

H(O) = 0: H'(O) > O: H(x) = 0. 

In Lemma B.1 we prove that if F(l) is IFR, then H(w) is unimodal; i.e., H(w) 
reaches its maximum in w')j (say), and 

H'(w) > 0, for 0 s w < wjh 

H'(w) < 0, for w > wif. 

If S 2: w;1 then (19) is certainly satisfied because H'(w) < 0 for w > S. If S < 
fi'fl then consider 

L(w) : = K'(w) 
H'(w)' for S < w < wj1. 
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Now (19) is satisfied if 

L(w) > C, for S < w < wjf. (24) 

A sufficient condition to guarantee (24) is for S < w < wjf: 

L'(w) :=:: 0 

which is satisfied if F(l) is IFR. Thus (19) is satisfied, which is a sufficient 
condition for a CLR to be optimal. 0 

In Theorem 2.2, the condition c1 I a1 2: c2/ a-2 has an intuitively appealing 
interpretation. Repairing at rate <ri costs C; per unit of time, while a; units of 
work are performed per unit of time (i = 1, 2). Thus cJ a; denotes the cost of 
performing one unit of work at rate a;. If c1/ a 1 2: c2/ a2 then working at fast 
rate a2 reduces both variable repair costs and the expected length of a down 
period. Once w is so large that K2 is sufficiently compensated by these reductions, 
there is no reason to believe G"1 to become optimal again for larger values of w. 

The case c1/ a-1 < c2/ a2 is less evident, because working at slow rate is cheapest. 
Both K 2 and the additional variable repair costs have to be fully compensated 
by a reduction of the expected downtime. Once wand a- are given, the expected 
downtime is determined by the lifetime distribution F(l). Theorem 2.2 states 
that 7T[1 is a control limit rule if F(l) is IFR, which is intuitively clear. We have 
not been able, however, to develop intuitive arguments to explain why a control 
limit rule would not be optimal if both c1/G"1 < c2/a-2 and F(l) is non-IFR. 

Theorem 2.3 considers a restricted model where the repair rate cannot be 
switched during an ongoing repair. This is equivalent with setting m0 = x in 
the general model considered in Theorems 2.1 and 2.2. For this restricted model 
we prove in Theorem 2.3 that 7Tu is a CLR, without any limitations on either 
F(l) or the variable cost rates. 

Since the repair rate remains unchanged at system breakdown, we have to 
consider embedded states ( U, w) only. Thus we have to consider a modified 
semi-Markov decision process with corresponding state space .I' and action space 
A(x) given by 

.:!:= {w; w 2: O}, 

x E.1: 

T(x; a) and c(x; a) are given by 

w + f"' . F(t) dt, 
a, wl<r1 
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As in the general case, it can be shown that for this model there exist u(x), 
x E / and g which satisfy the average cost optimality equations (cf. (3)]: 

+ CJ J"i"' F(t) dt - g f" F(t) dt} 
0 w!tr~ 

+ J"' u(w) dG(w). 
II 

(25) 

THEOREM 2.3: If K" = 0 then in the restricted model 1Tu is a control limit 
rule CLR(mc). 

PROOF: If K" = 0 then from (25) we see that u1 is chosen if 

K2 + (c2 + C.1 - g) - - cd - [l - F(t)] dt - g (1 - F(t)] dt W lwia, f'" 
U]. () w!cr2 

?: (c1 + c" - g) ~ - cd J" 1
"

1 [l - F(t)] dt - g J"' [1 - F(t)] dt 
lTi tl ~vla1 

+ (c" - g) f.::' [l - F(t)] dt 2 O <::> H(w) ~Cw - K, (26) 
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where H(w) is defined by (17) and 

K : = K2/(cd - g). 

Due to Assumption 4 K > 0. In Lemma B.2 (Appendix B), it is shown that 

H(aw) 2 aH(w), for w ? 0 and 0 :5 a :5 l. 

Now suppose (26) is satisfied for some mu 2 O; i.e., a 1 is chosen if w mu. 
Then 

H(mu) 2 Cmu - K. 

Then using Lemma B.2, for 0 :s a :s 1: 

H(amu) ? aH(mu) ? a(Cmu - K) ? Camu - K. 

Thus, 

V 0 :5 w :5 mu, H(w) ? Cw - K. 

So, if 0'1 is the optimal repair rate for some mu 2 0, then cr1 is the optimal choice 
for all 0 :s w :s mu. This is exactly the definition of a control limit rule (cf. 
Definition 2.1). D 

2.3. Counterexample: Four-Region Policy 

If Kd > 0 then the optimal policy in ( U, w) is not always a control limit rule. 
It may be a four-region (m 1, m2, m3) policy which is defined as follows: 

if w E {(mi. m2] U (m3 , x)}, then cr2 is chosen, 

where 

The optimality of this four-region policy is intuitively argued as follows. If 
w E (0, mi] then the probability of a system breakdown is negligible. So, there 
is no need to switch to the fast rate cr2• If w E (m 1, m 2] there may be a considerable 
chance of a system breakdown occurring during a slow repair, incurring fixed 
costs Kd. One may prevent the system from breaking down by switching to O'z. 
Then the expected down costs are reduced such that K2 is sufficiently compen­
sated. If w E (m2 , m 3] then there may be a considerable chance of a system 
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breakdown, even when repairing at fast rate. So, in this case K 2 has to be 
compensated mostly by a reduction of variable repair and down costs. If this 
reduction is too small then u 1 becomes optimal again. For w > m 3 the reduction 
of variable costs may be such that switching to u 2 is justified. 

The previous reasoning is illustrated by a small example. 

L = 100 (deterministic), 

WE.'!!·:= {4, 104, 204, 1000}, 

P(W = w) = 0.25, w E 11; 

<Ti = L IT2 = 2, 

Ct l, C2 = 2, cd = 10, 

Kd, K1 > 0. 

This example inhibits all properties just mentioned. If w = 4 then the system 
will not break down, even when u 1 is applied. If w = 104 then the system breaks 
down when u 1 is applied, whereas the system keeps operating when u 2 is applied. 
If w = 204 then the system breaks down, even if u2 is applied. 

Several policies are excluded from consideration beforehand. In Theorem 2.1 
we have shown that the optimal switching policy at the beginning of a down 
period is of CLR type. So, only CLR policies are considered in state (D. u 1, 

w). Furthermore, all policies that choose u2 in state ( U, 4) are nonoptimal, 
because a fixed cost K 2 is incurred whereas no variable cost savings are made. 

For each of the remaining 20 policies we have derived explicit expressions for 
the average cost as function of Kd and K2 (using a regenerative approach, which 
is explained in Section 3.1). Now consider a four-region policy 17'4 , which never 
switches rates in a down state, and which chooses 0'1 in ( U, w) if w E {4, 204} 
and a2 if w E {104, 1000}. By comparing the average cost function of 17'4 with 
all other average cost functions, we conclude that 17'4 outperforms all control 
limit rules if the following three conditions on Kd and K2 are satisfied: 

Kd < 13026 - 27.08K2 , (27) 

7T4 is optimal if (27) is replaced by 

Since the amount of work W is completely known to the repairman after 
inspection, its distribution function G(w) does not have any influence on the 
form of the optimal policy. Note that in both intuitive reasoning and the example, 
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the repair policy is tuned to the chance of the occurrence of a system breakdown, 
which in turn is determined by the lifetime distribution F(l). We expect the 
optimality of a non-CLR in state ( U, w) with Kd > 0 to depend strongly on the 
form of F(l). If F(/) is a continuous distribution function and if O'i (variance of 
L) deviates significantly from zero, then no accurate prediction of L can be 
given. In this case the long-run average cost function will be quite insensitive 
to the form of the repair policy applied. So, even if a non-CLR is the optimal 
policy, the best CLR will be close to optimal. If O'I. is close to zero then it may 
be possible to fine-tune the repair policy to the quite deterministic lifetimes of 
the units such that a non-CLR is optimal. 

3. PERFORMANCE MEASURES UNDER CLR(mu, mv) 

3.1. Average Cost Function 

In this section we compute the long-run average cost AC(mu, mD) of con­
trolling our two-unit standby system by a two-dimensional control limit rule 
CLR(mu, mD)· This formula may be useful when searching for the optimal values 
of mu and m0 . 

The time epochs at which one unit starts operating and an (instantaneous) 
inspection is carried out on the other one, are regeneration points for the system. 
The evolution in time of our system can be modeled by a regenerative process, 
i.e., after every regeneration point the system evolves as if it has just been 
started. The time between two regeneration points is called a cycle. From the 
theory of regenerative processes (cf. Tijms [11]) we know that the average cost 
function can be obtained from 

C( ) . _ E[ cycle cost] 
A mu, mv · - £[cycle length]' (28) 

The expected length of a cycle is obtained from 

£[cycle length] : = 11-L. + P(L < :)£[Down], (29) 

where the probability of a system breakdown within a cycle is given by 

p(.L < W) == ("'u F( w) dG(w) + f00 F(w) dG(w), (30) 
u Jo Ur mu CTz 

and 

£[Down] : = expected length of a system down period, 
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which is computed in Section 3.2. The expected cost during one cycle is computed 

from 

£[cycle cost I : = c1E[time 17i) + KzP(0'2 is chosen) 

+ c2E[time 172) + P( L < :)(Kd + cdE[Down]), (31) 

where £[time 17,] denotes the expected time the repairman is working at rate O', 

per cycle (i = I. 2). 

[ . ) fmo W dG(w) E time u 1 = 
II 0'1 

fm1 [f111 ··mJJl/"1 I dF(l) + w F(w - mD) J dG(w), 
+ m/J 11 0'1 0'1 

P( a2 is chosen) Jmu F(w - mv) dG(w) + G(mu). 
mn 0'1 

It is not possible to derive a closed-form expression for AC(mu, mv). After 
reduction. (29) and (31) have to be evaluated using some numerical routines. 

3.2. Moments of System Up- and Downtimes 

Often long-run average measures as defined in Section 3.1 provide insufficient 
information about the actual way a system will be operating. For planning pur­
poses it may be important, e.g., to be able to predict the length of an arbitrary 
down period. In such situations it is useful to know the moments (mean, variance, 
etc.) of system up- and downtimes, which are obtainable from the corresponding 
Laplace transforms: 

<f>u(s) : = ("' e-'1P(Up > t) dt; 
Jn 

<f>n(s) : = ("' e-s1P(Down > t) dt, Jo s > 0. 

Furthermore <f>L(s) denotes the Laplace transform of the lifetime distribution 
function. Using the regenerative nature of our system ( cf. Section 3 .1), in Theo­
rem 3.1 we present a closed-form expression of <f>u(s). Theorem 3.2 gives cf>v(s). 
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THEOREM 3.1: 

<bu(s) <fii(s) - y(s)j. s > n. 

where 

1r;, 

e "dF(l). 

PROOF: We consider an arbitrary regeneration cycle (cf. Section 3.1) Ill 
begin at time 0 with 

L : = lifetime of the unit operating in that cycle. 

R : = repair time of the unit under repair in that cycle. 

We need the conditional probability that the repair will have been completed 
before the operating unit fails. given that it fails at time l; i.e .. we need the 
conditional repair-time distribution given that no additional opportunity to 
switch repair rates has occurred yet: 

P(R ::; fiL /) (32) 

.. . m1 If 0 :5 I :S _.· ' 

mu me if-< I :s -, (33) 
ac 0"1 

mL· 
if-< I< :x. 

a1 

Due to the regenerative nature of our system the distribution of the length of 
a system up period is obtained from 

P(Up > t) P(L > t) + j-1 P(R :s /: Up > t - llL = I) dF(!) 
LI 

= F(t) + J' P(R :s llL = l)P(Up > [ - l) dF(l). 
0 
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Taking Laplace transforms and using (33) we obtain 

cb1 (s) = <f>L(s) + rll e II Lo P(R::;; llL = /)P(Up > t - /) dF(/) dt 

= cbt(s) + ru P(R::;; Ill = /) e-sl f
1 

e-s(t-l)P(Up > t - /) dt dF(l) 

= cl>L(s) + cbu(s) f"' e-'1P(R ::;; !IL = /) dF(l) 
Jo 

= d>L(s) + d>u(s)y(s), 

which completes the proof of Theorem 3.1. D 

Let 

Jm1>1"1 fmi· (W ) N(s) : = e-st F - - t dG(w) dt 
II 1111 O"t 

Recall from Section 3.1 that the probability of a system breakdown occurring 
in a cycle is denoted by P(L < Wlu), which is defined by (30). Now the Laplace 
transform of the length of a system down period is obtained from the following 
theorem. 

THEOREM 3.2: 

cf>v(s) = N(s)/ P( L < :) . (34) 

PROOF: See Appendix C. D 

3.3. Additional Long-Run Average Measures 

Several important operational characteristics can now easily be calculated 
using the expressions found in Sections 3.1 and 3.2. For instance: 
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• £[Up]/(£[Up] + £[Down]):= availability of the system (which is the fraction of 
time the system is operational) 

• P( L < WI u)/ £[cycle] : = mean number of system breakdowns occurring per time 
unit 

• 1 I E[ cycle J : = mean number of repairs performed per time unit 
• G (mu) : = fraction of the total number of repairs that are fully carried out at rate 

0"2 

• P( u2 is chosen) - G (mu) : = fraction of the total number of repairs that are started 
at rate u 1 and completed at rate u2 after an intermediate switch at system breakdown 

• £[time u;] I E[ cycle] : = fraction of time the repairman is working at rate rr,, i = l, 
2 

•(£[cycle] - 2:;:; £[time u;]/ £[cycle]:= fraction of time the repairman is idle 

4. CONCLUDING REMARKS 

Several questions are still open for further research. At first, for the general 
model, in Theorem 2.1 we have shown that in state (D, 0'1, w) it is average cost 
optimal to switch to the fast repair rate a 2 according to a CLR. For Kd = 0, in 
Theorem 2.2, we have shown that in state ( U, w) the optimal repair rate is 
chosen according to a CLR if either c1 I a 1 2:: c2/ a 2 or F(l) is IFR. We have not 
been able to obtain structural results on the optimal policy if both c 1 I a 1 < 
c2/ <r2 and F(l) is non-IFR, but on the contrary we do not have intuitive arguments 
why a control limit rule would not be optimal in this case. 

Let 

m&, m8, gG: the optimal control limits, and the minimum average costs, of 
the general model considered in Theorems 2.1 and 2.2. 

mt, gR : the optimal control limit, and the minimum average costs, of 
the restricted model considered in Theorem 2.3. 

0, the following relationship is intuitively clear: 

(35) 

After choosing the proper repair rate in the restricted model, it takes some time 
before the system eventually breaks down; thus mt 2:: m8. This inequality follows 
easily from (7) and (26), since gR 2:: gc;. In the restricted model there is no 
additional opportunity to switch repair rates; thus we expect mB 2:: mt. From 
i and ii in the proof of Theorem 2.2, it is immediately clear that m8 2: m8. 
However, we have not yet found the right arguments to prove the first inequality 
of (35). 

By numerical experiments one can investigate monotonicity of the average 
cost function AC(mu, mn) as a function of mu and mD· This result may lead to 
considerable savings of computation time when efficiently searching for the 
optimal control limits m/1 and m'}). 

Most intriguing is the form of the optimal policy for Kc1 > 0. At the end of 
Section 2.3 we argued that the best control limit rule will be (close to) optimal 
if a-I, deviates significantly from zero. This conjecture may be verified by nu­
merical experiments after properly discretizing the probability distribution func­
tions. Other questions may be answered, such as: When is the best CLR a good 
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alternative to an optima! non-CLR'? What is the influence of Ki1 and F(l) on the 
form of the optimal policy'? Are there optimal policies with more than four 
regions'.1 (we hdieve , etc. 

Sensifrvitv results mav be obtained by varying input parameters during the 
numerical ~xperiments. ·one might. for instance, vary the fast repair rate, the 
slow repair rate. variabk down costs (loss of production). or one might apply 
a n1mop1imal control limit rule. etc. 

APPENDIX A. EXISTENCE OF AN AVERAGE COST 
OPTIMAL POLICY 

In this appendix we outline the proof of the existence of an average cost 
11ptimal policy. under 1he additional assumption that G( w) has a finite and F(l) 
has an infinite support. First we make use of Theorem 2 of Ross [ 10]. which 
guarantees the existence of an average cost optimal policy, provided the follow­
ing two conditions are satisfied. 

CONDITION A. l: There exist finite numbers o > 0 and e > 0 such that 

P(T(x: a) :so)< l - e, 

where T(x: a) denotes the time until the next decision epoch, given the current 
state x and current action a. 

CONDITION A.2: There exists a bounded Baire function v( ·) on J and a 
constant R satisfying the optimality equation (3 ). 

Theorem 2 of Ross [HJ] states that under Conditions A. l and A.2 any policy 
which, when in state x. selects an action minimizing the right-hand side of (3) 
is average cost optimal. 

Condition A. l, however, is not satisfied in our model, since for i 1, 2 

inf {T(x; <r;)} = 0. (36) 
.\EI 

To overcome this difficulty, we slightly modify our original semi-Markov de­
cision process into an equivalent semi-Markov decision process for which Con­
dition A. l does hold. This modification is based on a preliminary analysis of 
the average cost optimality equations (4)-(6). Note that (36) is caused by those 
states x E J which are represented by (D, <r;, w) for small values of w (i = 1, 
2). Hence we modify our semi-Markov decision process such that those states 
are removed from I. Due to (6) the states (D, u2 , w) can be removed without 
any difficulty for all w 2:: 0: Simply insert (6) into the second term of (4) [d. 
(9) J. Moreover. we note that ai is the minimizing action in (5) (independently 
of the value of g 2:: 0) in those states (D, <Ti, w), with w :5 w*, where 
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So by removing those states from the state space for which the optimal action 
can be determined beforehand, we arrive at the following modified semi-Markov 
decision process, which is equivalent to the original one (i.e., the average cost 
optimality equations for both models have exactly the same solutions): 

,i'm = {(U, w); w:::: O} U {(D, <Ti, w); w:::: w*}, 

(u ) + lwi,,, F(t) dt, Tm , w; <Ti = J.lL 
() 

J.lL + rw/,;~ F(t) dt, 
Jo 

x Edm, 

O:Sw:Sw*, 

w:::: 0, 

T,,,(D, <Ti, w; <T;) 
w 

w:::: w*, i = 1, 2, 

w > w*, 

O:Sw:Sw*, 

Jw1,,, [ (w - w*)] } + (w-w')lu, F(t) - F <Ti dt 

+ c" J wllf, [F(t) - F(w - w*) J dt 
(w-w'l"i <Ti 

w > w*, 

w 2: 0, 

w:::: w*, 

w:::: w*. 
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Finally, the one-step transition probabilities are given by 

0 s w ::s w*, 

[ ( w - w*)] p,,,{(U, [O, u])J(U, w; u 1)} = G(u) 1 - F ai , w 2: w*, 

p,,,{(U, (0, u])l(U, w; a2)} = G(u), w 2: 0, 

w - w* 
w 2: w*, 0 ::s t < ---

0"1 

Pm{(U, [O, u])J(D, u 1, w; u;)} = G(u), w 2: w*, i = l, 2. 

Note that for this modified semi-Markov decision process the transition times 
Tm(x; er) between two successive decision epochs have the property 

Tm(x; u) 2: min{ L, ::} , for all x, u. 

Since F(O) = 0, Condition A. l is certainly satisfied for the modified model. To 
verify Condition A.2 for the modified model, we invoke Theorem 3.1 in Kurano 
[8], which states that Condition A.2 holds if Conditions A.3 and A.4 below are 
fulfilled. 

CONDITION A.3: The one-step transition functions Tm(x; u) and the one­
step cost functions cm(x; u) are bounded on .::r;" X Am. 

CONDITION A.4: There exists a finite measure yon ,7~, and a 0 < f3 < 1 
such that 

(i) Pm{,Y-lJ(x; er)} > T,,,(x; er)y(JJ), for any Borel set.1"} of d~,, 

(ii) y(,f~,) > (1 - {3)1 Tm(x; a), for any (x; er) E J,,, X Am-

Condition A.3 is trivially satisfied under the following assumption. 

ASSUMPTION 5: G(w) has finite support [O, wmaxl and F(l) has infinite 
support. 

Note that Assumption 5 implies that the state space ,f':n can be restricted to the 
states (U, w) and (D, a1, w) with w s Wmax· 

From the specification of the one-step transition functions Tm(x; u) and the 
one-step transition probabilities PnJl(x; a)} it is straightforwardly verified that 
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the following choices for the measure -y( ·) and the number (3 satisfy Condition 
A.4: 

and 

where 

G(v>[ 1 - F( w;;x) J 
y(U, (0, v]) = ------

Tmax 

-y(D, <T1> (0, w]) = 0, w 2:: 0, 

l _ (3 = Tmin, 

Tmax 

v 2:: 0, 

Tmin : = inf {T(x; o-)} and Tmax: = sup {r(x; cr)}. 
X,<T X,<T 

The exposition above yields the following theorem. 

THEOREM A.I: Under Assumption 5 Eq. (3) has a bounded solution, and 
any policy which, when in state x, selects an action minimizing the right-hand 
side of (3) is average cost optimal. 

APPENDIX B. AUXILIARY LEMMAS TO THEOREM 2.2 AND 2.3 

Let H(w) be defined by (17). 

LEMMA B.l: If F(l) is IFR then H(w) is unimodal. 

PROOF: Since H(w) = 0 if F(w/0'2) = 1, and H(w) is monotonically 
decreasing if F( w I cr2 ) < 1 and F( w I cr1) = 1, we only consider w such that 
F(wlcr1) < 1. From (17) and (21) we note that 

H(O) = O; H'(O) > 0; H(oo) = 0. 

So, there is at least one solution to the following equation: 

H'(w) = 0. (37) 

H(w) is unimodal iff (37) has a unique solution. For convenience we assume 

0"1 = 1; 
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)\;1lW ( 37! is aknt v.ith 

Si111:..: 

Vol.40(1993) 

l - F(w) 

1 
Q(O) = l >-, 

0"2 

a solution to (38) is unique if 

l f(11•la,) f(w) 
< O <=>a:. [ l ~ F(w-la2)] < I - F(w)' 

which is satisfied if F(/) is IFR. c: 

LEMMA 1:3.2: H(aw) 2: aH(1r), w <:: O; 0 :s a :s l. 

PROOF: 

aH(w) = r .::I a[l - F(t)] dt 

:s {" "'""(\\ •'i-w,u-,) [1 - F(t)] dt 
~ }\ ()!', 

:S {"""1 [l - F(t)] dt = H(wv). 
~ uW· ff~ 

(38) 

0 

REMARK B. I: Note that Lemma B.2 is equivalent with the statement that 

H(w). . . f 0 -- is nonmcreasmg or w 2: . w 

In the literature this property is referred to as star-shapedness of - H(w). For 
a discussion of the relation between star-shapedness and the IFRA property of 
distribution functions we refer to Barlow and Proschan [2]. Note, however, that 
Lemma B.2 does not require any structure on the probability distribution func­
tion F(I). 
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APPENDIX C. PROOF OF THEOREM 3.2: <f>D(s) 

Consider an arbitrary regeneration cycle to begin at time 0. Let 

a:= initial repair rate, 

a' : = repair rate after system breakdown. 

The distribution of the length of a system down period is given by 

(w - aL w) P(Down > t) = P > tlL < -
O'' er 

P(L < W/a) is obtained from (30). Let the indicator function I(a > b) with a, 
b E R be defined by 

Now 

J(a > b) = {6: if a> b (true), 
otherwise (false). 

P( W -a' crL > r) J"'u (w - 0'1L ) = P , > t dG(w) 
l) (J' 

+ J"' p(w - cr2L > t) dG(w) 
mu 0'2 

= A(t) + B(t) + C(t), 

where A(t), B(t), and C(t) are defined by 

A(t) : = (mu Jwlui 1( W - l > t) dF(l) dG(w), 
Jo (w-mD)lu1 al 

B(t) : = J"'u 1(w-m"l1
" 1 1(w - O'il > r) dF(l) dG(w), 

mD o rr2 

C(t) : = J"' P(L < w - r) dG(w). 
mu U'2 



522 Naval Research Logistics, Vol. 40 (1993) 

Careful inspection of A(t), B(t), and C(t) leads to the following expressions: 

F - - t dG(w) [t"' (w ) 
ru F(w - mo) dG(w), if 0 < t <mu, 

= <T1l lT1 mn er, <T1 
A(t) 

'ft> mu I - , 

0, lT1 

J"'u F(w - mv) dG(w), 
. mv 
1f 0 ::s t < -, 

mD lT1 CTz 

B(t) f'u F( w - CTzl) dG(w), 
mv mu 

if- ::s t < -, 
u2t lT1 

CTz cr2 

'f mu 
0, 

l t 2: -, 
ITz 

\f ~w _ 1) dG(wJ, 
. mu 1f 0 ::s t < -, 

mu a2 CTz 
C(t) 

= r F( w - t) dG(w), 
. mu 
If t 2: -. 

cr2t (J2 
ITz 

<f>0 (s) can now be obtained by integrating over the appropriate regions for t: 

</>0 (s) = ( e-slA(t) + B(t) + C(t)] dtl P( L < :) , 

which gives (34). D 
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