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DIAGONALLY IMPLICIT RUNGE-KUITA-NYSTROM METHODS 
FOR OSCILLATORY PROBLEMS* 

P. J. VAN DER HOUWEN'I" ANIJ B. P. SOMMEIJERi· 

Abstract. Implicit Runge-Kutta-Nystrom ( RK N J methods are constructed for the integration of second
order differential equations possessing an oscillatory solution. Based on a linear homogeneous test model 
we analyse the phase errors (or dispersion) introduced by these methods and derive so-called dispersion 
relations. Diagonally implicit RKN methods of relatively low algebraic order are constructed, which have 
a high order of dispersion (up to JO). Application of these methods to a number of test examples (linear 
as well as nonlinear) yields a greatly reduced phase error when compared with "conventional" DlRKN 
methods. 
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1. Introduction. This paper extends the phase-lag (or dispersion) analysis of 
Runge-Kutta methods [12] and explicit Runge-Kutta-Nystrom (RKN) methods [9] 
to diagonally implicit RKN (DIRKN) methods. The methods proposed here are devised 
for the accurate integration of the initial value problem 

( l.l) ji=f(t,y), y(O)=)'o, Ji(O)=;io, 

where it is known that y( t) is dominated by oscillating solution components with 
slowly varying frequencies. 

The approach for constructing such methods parallels the approach followed in 
[9] and [12]. First, we derive the dispersion relations in terms of the RKN parameters 
(see § 2). Next, functions Sand P characterizing the RKN method and satisfying the 
dispersion relations are constructed ( § 3 ). Finally, on the basis of these functions S 
and P, some RKN methods are computed (§ 4) yielding small dispersion errors. 

We present a number of second-order two- and three-stage methods with dispersion 
orders four to ten. These methods are compared with a ""conventional" DIRKN method 
of order four using two stages, which requires a comparable computational effort. In 
§ 5, the methods are applied to a set of test problems, both linear and nonlinear 
examples. The new methods behave markedly more accurately than the conventional 
method (for example, a reduction of the phase-lag error by a factor 1000 is not 
exceptional). It turns out that these large reduction factors are also obtained for the 
nonlinear problems, although these nonlinear oscillators differ considerably from the 
linear model problem on which the theory is based. 

We note that recently a large number of papers have been published proposing 
methods with high-order phase-lag. A few of them deal with first-order differential 
equations [l], [9], and [12], but the majority are devoted to the second-order case. In 
Gladwell and Thomas [7] linear multistep (LM) methods are considered. However, it 
is well known [14] that the order of such methods is restricted to two, if ?-stability 
(see§ 3.1) is required. To overcome this barrier, Cash [2], Thomas [18], and Chawla 
et al. [3], [ 4] have considered hybrid variants of these LM methods, by introducing 
offstep points in the formulae to obtain methods that fit into the class of general 
multistep Runge-Kutta methods. Within this class it is possible to achieve high-order 

*Received by the editors March 16, 1987; accepted for publication (in revised form) March 2, 1988. 
t Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands. 

414 



DIRKN METHODS FOR OSCILLATORY PROBLEMS 415 

P-stable methods. In connection with this, we also mention the papers of Hairer [8] 

and Kambo, Jain, and Goel [13]. Rosenbrock-type methods (adaptive RKN methods) 

are considered by Strehmel [16] and Strehmel and Weiner [ 17]; here, the phase-lag 

analysis is restricted to the effects of inhomogeneous terms. The extension of this 

analysis to explicit RKN methods and predictor-corrector (PC) methods is described 

in [ 11]. Furthermore, we mention the work of Twizell [21] and Twizell and Khaliq 

[20], who have investigated multiderivative methods, and the PC-type methods that 
have been studied by van der Houwen and Sommeijer [10]. 

Most of the above-mentioned methods are implicit and thus require the solution 

of an algebraic equation in each step. Here, we are faced with a nontrivial task: for 

the fully implicit RKN methods it is well known that the dimension of the system to 

be solved is a multiple of the dimension of the ODE. The hybrid methods, viewed as 

RKN methods, exhibit the same difficulty. However, this class of methods can also be 

implemented in such a way that the dimension of the system is not increased. On the 

other hand, if some form of Newton iteration is used, powers of the Jacobian matrix 

(af/ ay) enter into the solution process, i.e., systems of the form 

[ "(af) 4(af) 2 J J-y1h- a~v -y2h ay -··· ily=I 

must be solved. Obviously, this is unattractive from a computational point of view. 

One way to overcome this is to factor the matrix into a product of matrices. The 

coefficients in these matrices should be real, however, which in turn restricts the 

attainable order. For an extensive discussion on this subject, refer to [2], [18]. 

Furthermore, it is clear that the multiderivative approach may also lead to serious 

computational problems because, as in many practical problems, the explicit calculation 

of these higher derivatives is excessively laborious. 
Moreover, the multistep methods need a starting procedure and, as Cash [2] 

pointed out, this is a nontrivial problem. 
Therefore, we think that the DIRKN methods described in this paper may offer 

a useful alternative if ?-stability in combination with a high (phase-lag) order is 

required; they are of one-step nature (i.e., self-starting) and, due to the diagonally 

implicit structure, they allow for a very efficient implementation. 

2. Dispersion and dissipation in RKN methods. The general rn-stage RKN method 

for the system of 0 D Es ( 1.1) is given by 

"' 
Y11i = Yn + c;h_v11 + '1 2 L: a;tf(t,, + c1h, Y,,1), j = 1, · · ·, rn, 

I" I 

rtl 

(2.1) y 11 , 1=y11 +h_ii,,+h 2 I b;f(t"+c;h, Y11;l. 
1~1 

"' 
Yn+ 1 = _v,, + h L bjf(t,, + c1h, Yn;), 

.1~ I 

where the RK N parameters a1i, b.i, bj, and c1 are assumed to be real. 

By defining 

(2.2) 

the RKN method can be represented by the Butcher array: 

(2.1') I : 
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2.1. Homogeneous test equation. In this section we consider the homogeneous test 
equation 

(2.3) w EIR, 

which will also be referred to as the model problem. On the basis of this model problem, 
we will derive the conditions for RKN methods to possess a small dispersion error. 
In § 5, we will show, by some nonlinear examples, that the obtained results apply to 
a large extent also in the nonmodel situation. 

Application of (2.1) yields the recursion 

(2.4a) Yn+I = y,, + hy" -v2bTY "' 

where 

(2.4b) 

Following [9] we introduce the functions 

(2.6) S(v2 ) :=Trace (M), P(v2 ) := Det (M), 

and we define the phase error or dispersion of the RKN method by 

(2.7) [ S(v2
) J 

<f> ( v) := v - arccos .J , 
2 P(v-) 

and the amplification error or dissipation by 

(2.8) a(v):=t-.JP(v2); 

here, it is assumed that M ( v2) has complex conjugate eigenvalues for sufficiently small 
values of v. 

Let us write the exact solution of (2.3) in the form 

y(tn) = y(nh) = c cos (l/1+ nv), 

where c and if! are real constants determined by the initial conditions; a similar 
expression holds for the numerical solution: 

y,, = c(l - a( v ))" cos ( ~ + nv - n<f>( v) ), 

where c and (fr are real constants determined by Yo and y0 , and the RKN parameters 
(see [9]). 

These expressions show that the dispersion and dissipation errors <f> ( v) and a ( v) 
are accumulated in the numerical integration process. In the case of long interval 
integrations these errors may give rise to considerable numerical errors. Therefore, it 
is of interest to construct RKN methods for which <f> ( v) and a ( v) are of high orders 
in v as v (i.e., h) tends to zero. In this paper we concentrate on the derivation of 
methods that have a high order of dispersion. In addition, some of the methods to be 
derived have zero dissipation, i.e., a ( v) = 0. As a consequence, when applying these 
methods, the numerical errors produced are often mainly determined by ijJ- (fr and 
c - c. These errors were respectively termed initial dispersion and initial dissipation in 
[9]. In our numerical experiments we shall use a test strategy that eliminates these 
initial errors from the numerical error estimated. 
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2.2. Dispersion relations. Let us start by deriving the local truncation error of the 
RKN method for the test equation (2.3 ). Elimination of Yn from (2.5) yields the recursion 

(2.5') 

hence, the local truncation error r( v) of this linear two-step method is defined by 
substitution of the exact solution of (2.3) into (2.5'): 

(2.9) r(v) := e2 iv -S(v2 ) eiv + P(v2). 

If the RKN method is of (algebraic) order p then 

(2.10) r(v) = O(vP+2 ). 

We will likewise call the RKN method dispersive and dissipative of orders q and r, 
if, respectively, 

(2.11) 

It should be remarked that (2.11) is a sufficient and necessary condition for a qth order 
dispersive, rth order dissipative method, whereas (2.10) is only a necessary condition 
for algebraic order p. 

It is convenient to introduce the notions of consistent, dispersive, and dissipative 
functions S and P, and the concept of P-stability. 

DEFINITION 2.1. The functions S( v2 ) and P( v2 ) are called consistent, dispersive, 
and dissipative of orders p, q, and r, respectively, if (2.10) and (2.11) are satisfied. The 
RKN method is called P-stable (or unconditionally zero dissipative) if P( v2 ) = 1 and 
jS( v2 )I < 2 for all v2 > 0. 

P-stability was introduced by Lambert and Watson [14) for linear multistep 
methods and extended to other numerical methods by Hairer [8]. 

The following theorem summarizes a few properties of the functions S and P 
which are straightforwardly proved. 

THEOREM 2.1. (a) The functions S(v2 ) and P(v2 ) are consistent, dispersive and 
dissipative of orders p, q, and r, if. respectively, 

e;"[2 cos (v)-S(v2 )] + P(v2)-1 = O(vP+2 ), 

S( v2 ) - 2J P( v 2) cos ( v) = 0( vq+ 2), 

P(v2 )- l = O(v'+ 1). 

(b) An RKN method of algebraic order p, dispersion order q, and dissipation order 
r posse5ses functions S and P that are consistent, dispersive, and dissipative of orders p, 
q, and r. 

( c) If Sand Pare dispersive and dissipative of orders q and r, then the corresponding 
RKN method is dispersive and dissipative of orders q and r. 

(d) An RKN method of algebraic order p is dispersive and dissipative of orders 
q~2l(p+1)2J and r~2l(p+l)/2J. 

( e) If P( v 2 ) = 1 then the orders of consistency and dispersion of S and Pare equal. 
To facilitate the construction of high-order dispersive functions S and P, we 

introduce the Taylor expansions of S and P: 

and we express the order conditions (2.10) and (2.11) directly in terms of the coefficients 
uj and 7T'j· The dispersion and consistency relations are easily derived from Tables 2.1 
and 2.2. We note that in the context of explicit RKN methods the dispersion relations 
have already been derived in [9]. 
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TABLE 2.1 

' </J(v)= L F11V21·1 

/""'l 

F2 = -[lr1 - 77 1 -1] 
F4 = [<Ti+ 4cr2 -41T 1 -4rr2 -j]/8 
F,, = -[ 6u1 <T2 + 12crJ - 47T1 -121T2 - 127T3 -1~]/24 
f"x = ( 45<T~ + 900"1 0"3 + J80<T4 - 87T1 - 601T2 -180773 -180774 - ~]/ 360 

Fw = -[ 45cr2 <TJ + 45<T10"4 +90<T5 - 27T1/7 -41T2- 307T3 -90rr4 -907T5 -1'1-sJ/180 
F 12 = [315<T~ + 1260<76 +630<T1<Ts+630cr2 <T4 - 8rr1/ 45-47T2 - 561T3 -4207T4 - 12607T5 - 12607T6 - 14~5]/2520 

TABLE 2.2 

r(v) = 2: T,v'. 
i=2 

T2 =er, - 1T1 - I 
T3 =i(cr1 -l) 

T4 = -1cr 1 - 0"2 + 1T2 + h 
T5 = -i[!<T1 + <r2 -1] 
T6 = f.4u 1 +1<r2 + cr3 - 7r3 -3j1!Ci 

The coefficients a-j are easily expressed in terms of the RKN parameters. It follows 
from (2.6) that 

(2.13) 

On substitution of N =I+ v2 A= I+ zA and expanding N-·i in a Taylor series, we 
readily obtain 

(2.14) 

In general, the coefficients 1Tj are much more complicated expressions in terms 
of the RKN parameters. However, in the particular case where we have b' == f3b or 
c = ye, with /3 and y scalars, we obtain 

(2.15) 

so that 

(2.16) 

P(z) = l -z[bTN- 1e+b'TN- 1c- o'TN- 1e], 

= S(z)-1 + zb'TN~ 1 e 

We note that the simplifying condition b' = /3 b or c = ye restricts the algebraic order 
of the RKN method to one and two (this can be explained by observing that the 
algebraic order conditions for third-order consistency are expressed only in terms of 
b, b', and c, and do not allow the simplifying conditions). 

2.3. Inhomogeneous test equation. The inhomogeneous test equation 

(2.17) ji = -w 2y + c exp (iw1.f), 

is frequently used to model forced oscillations (see [7], [ 11 ], and [ 17] ). Application 
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of the RKN method (2.1) yields the inhomogeneous recursion 

(2.18) ( Yn+I) M( 2)·(J'")+ h" i<o>J = LJ (' - e I "g 
hJi,1+1 h);.11 ' 

where the matrix M(v 2 ) is defined in (2.5) and 

(2.19) ( 
bTN·· 1 ) 

g:= b'TN !:; , e1 :=(exp (iV1C1)), v1 := hw1. 

It is easily verified that 

(2.20) ( Yn) .h2 iwJ ( i1•/ M)···I . =c e '" e 1 - g 
hy,, 

satisfies the recursion (2.18 ). Hence, the general solution of the recursion (2.18) is 
composed of the forced solution component (2.20) and the general solution of the 
homogeneous recursion (2.5). 

It is of interest to compare the forced solution component of the numerical solution 
with that of the exact solution, i.e., the component 

( 2.21) ( y(t,,)) ch 2 iwi(l) =--e ,,) 
h_v(t,,) v2 - v} iv1 • 

It follows from (2.20) and (2.21) that the phase error and the dissipation error of the 
forced solution component do not depend on t,,, so that, contrary to </J(v) and a(v), 
they are not accumulated in time. Thus, also for the nonhomogeneous problem (2.17), 
it is the dispersion error </J( v) and the dissipation error a ( v) that form the main source 
of inaccuracies when long interval integrations are performed. 

3. Construction of functions Sand P. From now on we shall confine our consider
ations to diagonally implicit m-stage RKN methods (DIRKN methods), i.e., the matrix 
A is lower triangular and aij =a for j = 1, · · ·, m. For such methods, S(z) assumes the 
form 

(3. l) 
? +a-*~+· · ·+a* z"' s ( z) = - I (~ r' "' 

1 +az 

In the following it will be assumed that P(z) has a similar form: 

(3.2) 
l+7rfz+· · ·+1T:1;.z"' 

P(z)= ( )"' 1 +az 

For instance, this happens when the simplifying condition b' = f3 b or c = -ye is satisfied 

(see (2.15)). 
The functions Sand P of the special form (3.1) and (3.2), and being consistent 

and dispersive of orders p and q, will be denoted by s;,;·q 1 and P~/i"'Ji. 

3.1. Zero-dissipative methods. In this section it is assumed that P(z) = l; for 
sufficiently small values of z = v2 = w 2h2 this condition guarantees zero dissipation for 
any consistent RKN method. Such methods are said to have an interval of periodicity 

(cf. Lambert and Watson [14]). 
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In Table 3.1 we list a few functions Sl,/;·q 1 obtained by solving the dispersion 
relations of Table 2.1 and by equating the coefficients in (2.12) and in the Taylor 
expansion of (3.1). (Note that, by virtue of Theorem 2.l(e), p = q.) 

TABLE 3.1 

Functions S~.~"'''(z) of high dispersion order for DIRKN methods possessing 
an interval of periodicity (0, Hf,), i.e., P(z)"' 1. 

m=l: 

m=2: 

m=3: 

,, 2+(2a-l)z s1··- 1(z)- · 
1 1 + az ' 

a;,:;~ 
a=~ 

~q=2, H~=CO 
=:>q=4, H~=6 

2 + (4a - l)z+ (2a 2 -2a +f;Jz 2 

S~4 • 41 (z)= ' -
• (l+az)· 

a>~+ff ~q=4, H6=co 
a=fi+\lf ~q=6, H6'=6.43 
a=fi-·{iJ =:>q=6, H~'=21.85 

16 61 2 + (6a - l)z+ (6a 2 -3a +f2)z 2 + (2a 3 -3a 2 + ka -Ji;o)z3 

SJ. (z) (l+az)J ; 

a>0.656·· · ~q=6, H5=co 
a=a 1"=0.2117520482855 :::::>q=8, Hg==6.64 
a= a121 = 0.765771066213910 -2 ~q = 8, Hf, == 9.33 
a= a 1J 1 = 0.305902410523610- 1 =:>q = 8, Hg== 24.15 

We also list the interval of periodicity defined by 

(3.3) (0, H~) := {zlz> 0, P(z) = 1, IS(z)I < 2}. 

3.2. Dissipative methods. When second-order hyperbolic equations are solved by 
means of the method of lines it is advisable to use time integrators that damp the high 
time frequencies in the solution. In other words, if RKN methods are used, the method 
should be dissipative in the sense that the eigenvalues of the amplification matrix M 
are within the unit circle. Therefore, we drop the condition P( z) = I of the preceding 
section. Consequently, there is no longer an interval of periodicity, but an interval of 
strong stability defined by 

(3.4) (O, /3 2 ) := {zjz > 0, P(z) <I, IS(z)i < P(z) + 1 }. 

In Table 3.2 a few high-order dispersive pairs {S, P} are given together with the 
stability interval (0, /3 2). We observe that the functions {S\3.4>, P\3•41 } are identical to 
the one-stage functions {S\4•4 >, P\4 '41 =1} of the preceding section. Furthermore, there 
exists no unconditionally stable pair {S~2 •61 , P~2 •6»; the largest interval of (weak) stability 
is obtained for a= 1/12-v'TS/60 and leads to the two-stage zero-dissipative functions 
of Table 3.1. 

4. Construction of DIRKN methods of high dispersion order. The construction of 
DIRKN methods yielding small dispersion errors consists of the identification of the 
S and P functions of a given class of methods with one of the function pairs given in 
§ 3. The following lemma is helpful (cf. [12)) for finding a convenient expression for 
Sand P. 

LEMMA 4.1. Let N be a nonsingular m by m matrix, and let v and w be m-dimensional 
vectors. Then 
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TABLE 3.2 
Functivns s;,;···1 \ z) and P'.,;"'' '( z) of high dispersion order j(ir DIRKN methods possessing an interval of 

(srrong) stability (0, {3 2 ). 

m=l: 
"+ a-*'7 S\'·'11 (z)='.::.____!_'.'., 
1 +az 

11 1 1+(1-a+af)z 
P ·'' (z)= q~2. 

1 l+az ' 

( i) 1 "' ' -2;:<:ia·1<2a-I, a>O=>q=2, 13-=co 

(ii) af =2[ a-1-~]. 
(iii) af =2[ a-I+~]. 

1 
a:::':i-(a,,£0)=>q=4, 

3 

1 I 
-<a :::':i-=>q=4 
12 3 , 

' . ( -4 {00 13-=mrn ---
2crf +l' -1/a, 

-4 
/3'=--

2crf + 1 

m = 2: S\'"''(z)= 2+(4a-1)+(7Tr+~2 -2a +1'2Jz 2 

(I+ az)-

, ~ ) 1+2az+rr~z~ 
P, ·'1 (z) = • q>4 

- (l+az) 2 = · 

/3' = 00 

* , a 1 
(ii) 7T,=-a-+---=>q=6 

- 3 180 

1 1 [ v 8 ] 90( 1 -8a) a>-+-JT5=>{3 2 =A l+ 1- , A=----
12 60 A(l -8a) (13-240a) 

1 1 ' 12 a <---J15=>{3-=---
12 60 (1-24a) 

For all other values of a we have {3 2 = 0 

(iii) 7T~ = -a 2 +~-_!__ 
- 3 180 

' 31 
a,(3cr,-12a -4)-a(24a-+3a -2)+-=0 =>q= 8 

- - 105 

7 a , 
u,=-+--2a-

- 90 3 

a= 0.3148024587598=>q = 8, /3 2 = 6.21 

a= 0.0218432425854=>q = 8, /3 2 = 0 

if a> 0) 
a<O 

By means of this lemma the inverse of the matrix N =I+ v2 A occurring in the 
matrix M ( v2 ) can be eliminated so that S( v2 ) and P( v2 ) as defined in (2.6) are easier 
to evaluate. 

4.1. A one-stage method of algebraic order p = 2. Consider the second-order, 
one-parameter family of DIRKN methods generated by the Butcher array: 

( 4.1) It . 1 

The corresponding functions S and P are given by 

2+(2a-l)z 
S(z)= , P(z)= 1. 

1 + az 

For a= 1~ the function S(z) is identical with the function S\4 •4 1(z) of Table 3.1, so that 
( 4.1) is fourth-order dispersive for a = 1~ with periodicity interval ( 0, 6 ). 
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4.2. Two-stage methods of algebraic order p = 2. We start with the three-parameter 

family of algebraic order two: 

(4.2) 0 
I• 
2 

0 1 

We find the functions 

2+ (4a-l)z+ (2a 2 -a + a 1/2 + ca 1)z2 

S(z) = (1 + az)2 , 

1+2az+ (a 2 - a 1/2 + ca 1)z 2 

P(z)= (l+az)2 

If we choose c =!and a 1 = fi-a, we have P(z) = 1 and S(z) = Si4 '41 (z) as given 
in Table 3.1. We mention two particular methods: the sixth-order dispersive method: 

I I m 
2 12-60 
I Ji5 I m 

(4.3) 
2 60 u:-60 

0 I 
2 

0 1 

with periodicity interval (O, 21.85) and the fourth-order dispersive, P-stable method: 

I I 
2 2 
I 5 I 

(4.4) 
2 -12 2 

0 1 • 
2 

0 1 

Identification with the functions Si3•61 ( z) and Pi3•6 >( z) is obtained for a 1 = 1~ - a, 
c = (24a 2 + 2a -m/(12a -1) leading to a one-parameter family of sixth-order disper
sive, dissipative methods generated by 

(4.5) 

(24a 2 +2a-m/(12a -1) a 
1 
2 h-a 

0 

0 

a 
1. 
2 

Eighth-order dispersion is obtained for a= 0.3148024587598 with strong stability inter
val (0, 6.21). 

Finally, identification with the functions Si3'4l(z) and Pi3•4 \z) with 7Tf = O of 
Table 3.2 leads to the fourth-order dispersive methods: 

(4.6) 

(I2a 2 +6a -D/(12a -1) a 
I 
2 h-a 

0 

0 

a 
1' 
2 

which are unconditionally strongly stable for a~~+ ~~0 • In the numerical experiments 
we will use a = 1. 
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4.3. Two three-stage methods of algebraic order two. Let us see what can be 
obtained with the three-stage scheme: 

C1 a 

C2 a1 a 
(4.7) a1 a3 a 

0 0 I , 
0 

0 0 

which is of algebraic order two. Its S and P functions are given by 

(1 + az )3 S( z) = 2 + [ 6a - l]z + [ 6a 2 - 2a + 1( a2 + a3 ) + a2c1 + a3 c2] z2 

+ [2a 3 - a1 + a(~a2 +~a3 + a1C1 + a 3 c 2 ) - a1 a3( l'1 +~) ]z-', 

( 1 + az )3 P(z) = l + 3az + [3a 2 + a 2c1 + a3 c1 -!( a2 + a3 ) ]z 1 

+ [a 3 - a 1a3 ( c1 - ~) + a(a 2 c1 + a3 c2 -!a2 -~a3 )]z 3 • 

Identification of these functions with the pair {S~6 •61 (z), P~6 •61 (z)= 1} from Table 3.1 
can be achieved by setting 

with a and a3 free parameters. 
The resulting scheme is sixth-order dispersive and, if a> 0.656 · · · , it is ?-stable. 

For the special a-values given in Table 3.1, its order of dispersion is raised to eight. 

In the numerical experiments we will choose a3 = f2 - a resulting in a2 = 0. 
Within the class of dissipative methods the parameters 1TJ in (3.2) can be employed 

for a further increase of the dispersion order. However, as the high-order dispersion 

relations are nonlinear expressions (see Table 2.1 ), we could no longer follow the 

analytical approach as was possible so far. 
Therefore, starting with scheme (4.7) and imposing q = 10, we formulated the 

corresponding nonlinear system in terms of the parameters a, a 1 , a2 , and a3 • For a 
range of "realistic" c1 and c2 values these systems were solved numerically; among 

the large set of solutions, we selected the one with the largest (strong) stability interval. 

The resulting scheme is given by 

(4.8) 
4 a 

-0.17329232352333 

-0.01271397498318 
0 
0 

a 

0.043727040749588 
0 
0 

which has strong stability interval (O, 19.30). 

a 
I ' 

a = 0.052320267566927, 
2 

4.4. Reference method. In order to evaluate the merits of the methods of high 
dispersion order, we need a reference formula in which the parameters are utilized to 

obtain the highest possible algebraic order (with respect to the number of stages). 
If we require a nonempty periodicity interval, then a suitable scheme is given 

by [ 15] 

(4.9) 

~+ i~J3 
-~J3 ~ +1~J3 

1+f2J3' 
I I 
2 2 
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Both the algebraic and dispersion order are equal to four and the interval of periodicity 
is given by (0, 12). Note that this scheme is of comparable computational complexity 
as the methods of the previous sections, and hence a comparison is quite feasible. 

5. Numerical experiments. To test the dispersive behaviour of the various schemes 
we implement the following test strategy. Let T 1 and T101 be the positions on the t-axis 
where the exact solution assumes its first and lOlst zero, respectively; hence T := 
T 101 - T1 denotes the length of 50 oscillations of the true solution. This distance will 
be compared with its numerical analogue. However, in all experiments we use a fixed 
integration step hand, consequently, the "numerical zeros" will, in general, not coincide 
with a multiple of h. By using trigonometric interpolation based on neighbouring 
numerical values, the position of these "numerical zeros" can be simulated. In this 
way we calculate approximations to the positions of the first and lOlst zero of the 
numerical solution, denoted by f 1 and TI0 1 , respectively. 

By means of this procedure, we annihilate the influence of the initial dispersion 
error (see the discussion in§ 2.1). Moreover, possible dissipation errors are not taken 
into account. Hence, only the propagated dispersion error is measured. 

In the tables of results we will give the values of T (if no analytical solution is 
available, this value is obtained by an integration with extremely small stepsize), the 
value off:= f 101 - T1 , and (in parentheses) the number of correct digits in the relative 
error of f; i.e., 

(5.1) cd :== -log!O I( T- f)/ n 
Finally, the implicit relations occurring in the DIRKN methods are solved by 

Newton iteration with a sufficiently stringent stop criterion. 

5.1. Linear problems with nonconstant frequency. As a first example we consider 

(5.2) y(t)+ln(2+t)y(t)=O, t~O, y(O)=O, ;i(O)=l, 

which can be considered as a model problem with slowly varying frequency w = 
[In (2 + t) ]112• For this problem the zeros of the exact solution are found to be T1 = 
2.83932438015 and THn = 157.2720560789. In Table 5.1 we list the results of the various 
schemes for several values of h. From these results we conclude that the schemes of 
high dispersion order are much more efficient than the classical DIRKN method. 

Our next example is in the same class of perturbed model equations; it is a 
widely-used test problem, provided by [6] 

(5.3a) ji(t)+(100+~).v(t)=O, t~0.9 
4r 

with the initial values taken from the "almost periodic" particular solution 

(5.3b) y(t) = t 11210(10t), 

TABLE 5.1 
f and ( cd) values for problem (5.2); T z 154.43273169875. 

Method p q h=l h =~ h =l 

(4.3) 2 6 154.734 (2.7) 154.4354 ( 4.8) 154.43275 (7.0) 
(4.5) 2 6 147.84 (1.4) 154.336 (3.2) 154.4322 (5.5) 
(4.7), a= a 1·' 1 2 8 154.4966 (3.4) 154.4329 (6.0) 154.432713 (6.9) 
(4.8) 2 10 154.593 (3.0) 154.4337 (5.2) 154.432747 (7.0) 
(4.9) 4 4 168.65 (1.0) 156.714 (LS) 154.640 ( 2.9) 
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10 being the first-kind Bessel function. For the analytical zeros (beyond t = 0.9) we 
find T 1 = 1.17915344391 and T101 =32.59406213135. The results for the various methods 
can be found in Table 5.2; they give rise to the same conclusions as in the previous 
example. 

5.2. Nonlinear examples. To illustrate the behaviour of the schemes when applied 
to a nonmodel problem (that is, a problem which is not of the form (2.3)), we consider 
the nonlinear example 

(5.4) y(t) = -y3(t), t ~ 0, y(O) = 0, y(O) = 1, 

which has an oscillating solution with T1 = 3.11816949951 and T101 =314.9351194459. 
Table 5.3 contains the results for this problem. Here we observe that the methods 
which are dissipative, viz. (4.5) and (4.8), show a tremendous phase lag, despite their 
high dispersion order. This is explained if we consider the linearized right-hand side 
of (5.4), i.e., -3y2(t) · y(t), and regard the term -3y2 , at least locally, as representing 
the term -w 2 in the model equation; then it is clear that a dissipative method will 
produce an oscillation with an increasing period. This explains the large values of T 
for these methods. The schemes with zero dissipation behave very accurately. 

From this example we conclude that the methods profit from a high phase-lag 
order, even in nonmodel situations, but that zero dissipativity for such equations is of 
crucial importance. 

As a second example of a nonmodel situation we consider the orbit equation [5] 

(5.5a) 
.Y1Ct) = -4t2y1(t)-2Yi(t)/Jyi(t) + y~(t) 
.Y2(t) = -4t2y2(t)+2y1(t)/Jyi(t) + y~(t)' 

t~ t0 :=.J7T/2. 

Specifying the initial conditions y 1 ( t0) = 0, y1 ( t0 ) = -./27i, Yi( t0 ) = 1, y2( 10 ) = 0, we have 
the exact solution 

(5.5b) y1 (t) =cos ( t2), y2 ( t) =sin ( t2 ). 

TABLE 5.2 
f and (cd) values for problem (5.3); T=31.41490868744. 

Method p q h =t h =i\; h =to 

(4.3) 2 6 31.4609 (2.8) 31.41536 (4.9) 31.4149145 (6.7) 
(4 . .5) 2 6 30.245 (1.4) 31.3977 (3.3) 31.41476 (5.3) 
(4.7), a= a 131 2 8 31.4234 (3.6) 31.414930 (6.2) 31.41490817 (7.8) 
{4.8) 2 10 31.4290 (3.4) 31.414884 (6.1) 31.41490615 (7.1) 
(4.9) 4 4 34.399 ( 1.0) 31.8746 ( 1.8) 31.4556 (2.9) 

TABLE 5.3 
f and (cd) values for problem (5.4); T=311.81694994639. 

Method p q h=t h =i h =k 

(4.3) 2 6 311.7961 (4.2) 311.81633 (5.7) 311.816910 (6.9) 
(4.5) 2 6 523.2 (0.2) 361.4 (0.8) 319.6 (1.6) 
(4.7), a= a 131 2 8 311.7956 (4.2) 311.81633 (5.7) 311.816910 (6.9) 
(4.8) 2 10 350.9 (0.9) 317.461 (1.7) 312.54 (2.6) 
(4.9) 4 4 313.60 (2.2) 311.971 (3.3) 311.8275 (4.5) 
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We will test on the first component, y 1(t), and its T-value is easily seen to be 
T = J203 rr / 2 -J3 rr /2. The results of the various methods are collected in Table 5.4. 
Here, an* means that the Newton process did not converge. Since the solution oscillates 
more rapidly as t increases, all methods have serious problems in accurately 
approximating T 101 if they are applied with a large, constant stepsize, e.g., h = 1\5. 
Consequently, the methods with high order of dispersion do not show any advantage 
over the standard method. However, as h decreases the order of dispersion becomes 
paramount to the algebraic order, even in this nonmodel situation, and the standard 
method is outperformed by the new methods. 

The dispersion error introduced by the dissipation in the methods (4.5) and (4.8) 
is of less significance than it was in the previous example, but its influence in scheme 
(4.5) is noticeable. Note that the result obtained by the method (4.8) for h =do is 
influenced by the error of the trigonometric interpolation. 

5.3. A stiff example. In the examples shown so far, in all cases the stepsize was 
determined by accuracy considerations and there was no need for methods possessing 
a large stability/ periodicity interval. As a matter of fact, we could equally well have 
chosen explicit RKN methods with high phase-lag order [9]. Now, we will test an 
example for which it is necessary to use an implicit method that is unconditionally 
stable or, preferably, P-stable. Hence, only the methods (4.4), (4.6), and {(4.7), a= n 
will be tested. 

The equation describing the vibration in a cantilever bar is given by [ 19] 

q a"u o4U 
(5.6) --,+El-4 =0, 0;E;x2'l, t?;;O, 

g a i- ax 

where q/g is the mass per unit length, Eis the modulus of elasticity, and I denotes 
the moment of inertia. The solution of this equation can be taken to be of the form 

(5.7) u(t,x)=A0f(x)e;'"', A0 EC. 

Substitution of (5.7) into (5.6) yields for f(x) an ordinary differential equation the 
general solution given by 

(5.8) f(x) = C 1 cosh (Ax)+ C 2 sinh (Ax)+ C3 cos (Ax)+ C4 sin (Ax), 

with A = (aw 2 ) 114, a= q/ gEI. The constants C; are determined by boundary conditions 
of the form (see Fig. I). 

u = 0, ux = 0 at x = 0 and Uxx = 0, u,xx = 0 at x = !. 

Substitution of these conditions into (5.8) yields a homogeneous system for the 
constants C;. To obtain a nontrivial solution the determinant must vanish, resulting 
in an equation for the frequency w in (5.7) 

(5.9) cosh (l(aw 2 ) 114 ) cos (l(aw 2) 114 ) = -1, 

TABLE 5.4 
Tand (cd) valuesfor thejirst componentofprob/em (5.5); T= 15.686173985635. 

-···--·--~---------

Method p q h = ln h = f<) h ·=Jo 
------·------

(4.3) 2 6 16.604 ( 1.2) 15.68766 (4.0) 15.686212 (5.6) 
(4.5) 2 6 * 15.5892 (2.3) 15.68396 (3.9) 
(4.7), a= al-'J 2 8 16.280 ( 1.4) 15.68653 (4.6) 15.686197 (5.8) 
(4.8) 2 10 16.347 ( 1.4) 15.686131 (5.6) 15.6861527 (5.9) 
(4.9) 4 4 16.596 ( 1.2) 15.9738 ( 1.7) 15.7194 (2.7) 

--·-·-----·-·-····"-----
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which is approximately solved by 

(5.10) 
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By choosing the appropriate initial conditions, i.e., u(O, x) =f(x) and u,(O, x) = 0, we 
obtain the particular solution 

(5.11) u(t, x) = f(x) ·cos (wt), 

where f(x) is given by 

. . [ cash (A/)+ cos (A/) J 
(5.12) f(x)=A cosh(Ax)-cos(Ax)- . ( ) . (sinh(Ax)-sin(Ax)), 

smh A/ +sm (Al) 

with A a free parameter. In our test we choose the following data: 

A=0.1, 1=22, q/g=50, E/=104 , 

resulting in a= 510- ', w = 0.10273546, T, = 15.2897, T101 = 3073.2335. 
Before we are able to apply our methods we first must semidiscretize (5.6). 

Therefore we define an equidistant grid Xj := j!l, 11. =I/ N, (j = 1, · · ·, N) and use the 
second-order approximation 

a4 u I l -4 =4(U;-2-4U;--1 +6uj-4U;+1 + U;+2). ax ,, 11. · · · 

Substituting the discretized boundary conditions, we arrive at 

Ui 7 -4 U1 

U2 -4 6 -4 1 U1 

d2 U3 -4 6 -4 U3 

(5.13) 
dt" 

= --
a.6.4 

UN-2 -4 6 -4 1 UN-·2 

UN-I 1 -4 5 -2 UN-I 

UN 2 -4 2 UN 

The eigenvalues of the Jacobian matrix in (5.13) are verified to be real. In our tests 
we used N = 20; for this value the spectral radius of the Jacobian is approximately 2160. 
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TABLE 5.5 
T and (cd) values for the tenth component of (5.13); T = 3064.3996. 

Method p q h=8 h=4 h=2 h = 1 

(4.4) 2 4 3135.2(1.6) 3070.7 (2.7) 3064.84 (3.8) 3064.424 ( 5.1) 
(4.6) 2 4 3179.7 {1.4) 3076.3 (2.4) 3065.27 (3.6) 3064.460 (4.7) 
(4.7), a =i 2 6 3095.3 (2.0) 3065.4 (3.5) 3064.43 (5.1) 3064.401 (6.3) 

It should be observed that, due to the space discretization error, (5.11) is not 
exactly a solution to this ODE. Consequently, the values of T1 and T101 corresponding 
to (5.13) differ slightly from the analytical values given above. A very accurate integra
tion of this ODE (and testing on the lOth component) yielded T1 =15.3289 and 
T101 =3079.7285. Table 5.5 shows the results obtained by the three DIRKN methods 
for several stepsizes. 

6. Concluding remarks. In this paper we derived implicit Nystrom methods with 
a friendly structure from the implementational/ computational point of view, i.e., of 
diagonally implicit form. These methods share a relatively low algebraic order with a 
high phase-lag order; that is, they are aimed to integrate periodic initial value problems 
with small dispersion errors. 

By a number of examples we have shown that problems possessing an oscillatory 
solution are more efficiently integrated by these new methods than by conventional 
methods with highest possible algebraic order. Although the theory is based on the 
linear, homogeneous model problem (2.3), this feature turned out to hold to a large 
extent in a nonmodel situation. However, in case of a nonlinear oscillator that largely 
deviates from the model problem in combination with a large stepsize, we may encounter 
the situation that the algebraic order is paramount to the order of dispersion; i.e., the 
total error is dominated by the usual truncation error rather than the dispersion error. 
In such cases the new methods do not show an advantage over standard methods. 
However, in the examples above, there is still a substantial gain in accuracy for the 
new methods. 

Furthermore, we have seen that, especially for nonlinear problems (see § 5.2), 
methods with a nonempty periodicity interval usually yield more accurate results than 
the so-called dissipative methods. 

Unless a large interval of periodicity is necessary, we recommend the second-order 
methods (4.3) and {(4.7), a= a 13 J} having, respectively, order of dispersion six and 
eight. If large eigenvalues of the Jacobian are involved and P-stability is required, 
method {(4.7), a=~} with q = 6 is probably the best choice. 
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