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1. INTRODUCTION

Let X be a (finite) nonempty set and.L a set of subsets of X. Elements
of X are called points, elements of L are called l7Znes. The pair (X,L) is
called a partial linear space if any two distinct points are on at most one
line.

Two distinct points x and y are called collinear if there exists L € L
such that x,y ¢ L, noncollinear otherwise. Two distinct lines L and M are
called concurrent if |L n M| = 1.

We write x ~y (x # y) to denote that x and y are collinear (noncollin-
ear). Similarly L ~M (L # M) means |L n M| = 1(|L n M| = 0).

If x ~y (L ~ M) we denote by xy (ILM) the line (point) incident with
x and y (L and M).

For a nonincident point-line pair (x,L) we define:
[L,x] := {y € X]ly e L, y ~ x},
[x,L] := {Me L|x e M, L ~ M}.

Given positive integers s,t,o,u, the partial linear space (X,L) is called a

semi-partial geometry (s.p.g) with parameters s,t,a,u if:

(i) every line contains s+l points,

(ii) every point is on t+1 lines,

(iii) for all x € X, L e L, x ¢ L we have |[x,L]]| ¢ {0,a},

(iv) for all x,y € X with x # y the number of points z such that x ~z ~y
equals u.

A semi-partial geometry which satisfies |[x,L]] = a for all x ¢ X, L e L

with x ¢ L, or equivalently which satisfies p = a(t+l), is also called a

partial geometry (p.g).

The point—graph of the partial linear space (X,L) is the graph with
vertex set X, two distinct vertices x and y being adjacent iff x ~ y. The
point—graph of a semi-partial geometry is easily seen to be strongly reg-
ular. Let (X,L) be a semi-partial geometry.

For x,y € X, x + vy we define



[x,y] := {L e Llx e L, |[L,yll = a}.

It is easy to see that o = s+l iff any twd distinct points are collinear
iff (X,L) is a Steiner system S(2,s+1,|X|). We shall always assume s > o,
hence noncollinear points exist.

Let x,y € X, x *# y. Then u = |[x,y]la and |[x,y]l = |[x,L]] = o if
L € [y,x]. Hence, u = uz and

2

(*) a” e VK ¢ [x,y], L € Ly,x]: K~1,

=
1

(x %) U = a(a+l) <> every line K ¢ [x,y] intersect every line L ¢ [y,x]

but one.

This is the basic observation we use in showing that, under mild res-
trictions on the parameters, semi partial geometries with py = az or u =
a(o+1) satisfy the Diagonal Axiom (D).

(D) : Let X X be four distinct points no three on a line, such that

22%32%,
X1~X2~X3~X4~X ]"'X3 .

Then also x2~x4.

From DEBROEY [1], it then follows that such a semi-partial geometry is known.

2. SEMI-PARTIAL GEOMETRIES WITH p = 062.

Our first theorem deals with the case a =1, yu = 1.

THEOREM 1. kvery strongly regular graph with parameters (n,k,A,u = 1) is the

. , k
point-graph of a s.p.g. with s = A+l, t = =7 - o=l u=1.

PROOF. Let (X,E) be a strongly regular graph with p = 1, and let x e X.
Since two nonadjacent points in I'(x) cannot have a common neighbour in T(x),
the induced subgraph on T'(x) in the union of cliques. This induced subgraph

has valency A, so it is the union of XET cliques of size A+1. [J

Next we deol with the case v = 2, 4 = 4,



THEOREM 2. Let (X,L) be a s.p.g. with parameters s,t,~a =2, u=4. Then
(X,L) satisfies (D).

PROOF. Let X 9%y Kq5X, be four distinct points no three on a line, such that
X VK VKV, VK VKg e If x2¢x4, then we can apply (*) to the points X, and X,.

Since X%, € [XA’XZJ and XyXq € [xz,x4], X X, and x intersect in a point

x
# XpsXge Now 3 < I[x],x2x3]l < a=2, a contradiction? 3D
Let U be a set containing t+3 elements. Then we denote by U2,3 the
S.p.g. which has as points the 2-subsets of U, as lines the 3-subsets of U
together with the natural incidence.
The parameters are s=2, t, o=2, u=4,
DEBROEY [1] showed that a s.p.g. with t>1, a=2, p=4 satisfying (D) is

isomorphic to a U2 3° Hence we have the following theorem.
b

THEOREM 3. 4 s.p.g. with t>1, a=2, u=4 <s isomorphic to a U, ,. g
?

REMARK. A s.p.g. with t=1, a=2, p=4 is isomorphic to the geometry of edges
and vertices of the complete graph Ks+2'

We now consider the case 0>2. For the remainder of this section let

(X,L) be a s.p.g with a>2 and u = uz.

LEMMA 1. Let x € X, L e L, x ¢ L such that [L,x] = {Zl""’za}' Let M be a
line through z, intersecting Xz, in a point u # X,2z,. Suppose there exists
y e L, y# ZiseeesZ, with u * y. Then M intersects Xz, for all i = 1,...,0

(see figure 1).

Figure 1.



PROOF. By (x) applied to x and y, the a lines L = LI’LZ""’La of [y,x]
intersect the o lines XZ 500 sX2 of [x,y]. In particular Ll""’La inter-
sect xz,. Hence [y,ul = [y,x] = {Ll,...,Lu}.

Since M € [u,y], M intersects Ll""’La in points Vi T Zps VoseessV,
respectively. If x ~ A for all i, then the a+1 points UsV Vysees,V ON M
are all collinear with x, a contradiction. Hence x 4 for some i. Since
Li intersects XZ 5000, X2 it follows that [x,vi] = [x,y] = {Xz],...,xza}.

Since M € [vi,x], M intersects all lines in [x,vi]. O

LEMMA 2. Let x € X, L € L, x ¢ L such that [L,x] = {z],...,za}. Let M be a

line through z, intersecting xz. in a point u # X52Z,- If s > a, then M inter-

2
sects Xz, for all 1 = 1,...,a.

PROOF. Assume that M intersects XZ: i=1,...,8 (2<B<a) in points up =z,
u, = u,...,uB respectively and does not intersect XZB+1""’XZa' Take
yel,y# Zisee+5z . By lemma 1 y ~ ug, i=1,...,8.
Since |[M,x]| = o, there is a v € M such that v ~ x, v # u],...,uB.
Also v ~ z for all z € 'Ul [yui,x], for if v * z for some z € [yui,x], then
l=

vx € [v,z] and yu; € [z,v]. Hence vx ~ yug and so yu; intersects the a+l

g
seeesXZ through x, a contradiction. The points of 'Ul [yui,x]

lines xv, Xz
1 =

are therefore on the a lines M = vz ,vz,,...,vz_ of [v,y].
1 2 o

Since s>o. we can take y' ¢ L such that y' # vy, ZyseeesZy .

Now if z € [yuz,X], then z ~ y'. Indeed, as shown z is on some vz, and
since vz, intersects at most a—-1 of the lines XZ seeesXZ s it follows from
Lemma 1 that every point of intersection of vz, and a line ij’ so in part-
icular z, is collinear with y'.

But now we have I[yuz,y']l > l[yuz,x] U {y}| = a+l, a contradiction. [

LEMMA 3. Let x € X, L e L, x ¢ L such that [L,x] = {Z]""’Za}' If s > a,
then every line M not through x which intersects two lines of [x,L] =

{le,...,xza} also intersects L and all lines of [x,L].

PROOF. The number of pairs (u,v) # (ZI’ZZ) such that u € Xz 5 V € XZ,,

u,v # x, u ~ v equals s(a-1)-1. Every line M # XZ seee X2 which intersects

L and xz e sXZ gives rise to such a pair (u,v). By (*) and lemma 2 the

1°°
number of these lines equals (s+1-a)(a-1) + a(a=2) = s(a-1)-1. [



Let LI’LZ € L intersect in a point x. If L is any line intersecting L1
and L2 not in x, we let L3,L4,...,La be the other lines in [x,L]. By lemma 3,
L3,L4,...,La are independent of the choice of L. Put

L(L,,L,) {L,Ly,.. 0, 3 UL € LlL ~ L»Ly,LL # x # LL,J,

X(Ll,Lz) U L
LeL(Ll,LZ)

LEMMA 4, Let L],L2 )
is a partial geometry (in fact a dual design) with parameters s = s,

t =o0-1, o = a.

e L, Ll ~ L2' If s > a, then <L ,L. > := (X(LI’LZ)’L(LI’LZ))

PROOF. Clearly two points are on at most one line and each line contains

s+1 points. Using (*) and Lemma 3 it follows immediately that every point
X € X(L],LZ) is on o lines of L(LI’LZ) so t+1 = a. It also follows immediat-
ely that any two lines of L(LI’LZ) intersect, hence a = t+1 = o, [

Notice that for M],M2 € L(L],Lz), M] # MZ’ Ml ~ M2 we have <M1,M2> =
<L1,L2>. Notice also that for any two noncollinear points x and y of <L],L2>
there are ; = E(E+1) = a2 = u points z € X(LI’LZ) collinear with both x and
y, i.e. the common neighbours of x and y in (X,L) are the common neighbours

L,>.

of x and y in <L1, 9

THEOREM 4. Let (X,L) be a s.p.g. with parameters s,t,a(>2), u = a2. If

s >aand t 2 o, then (X,L) satisfies (D).

PROOF. Let X s%9sX35X, be four distinct points no three on a line, such that

X 1 "’X2~X3~X4~X 1 "'X3 o

Suppose x2%x4. Since X,~X VX, it follows that

X| € < XX, XpXo> ("

In (X,L) there are X = s-1 + (a-1)t points collinear with both X, and

X,. In <X, XqsXyXa> there are A = 5-1 + (G-1) t = (s-1) + (a—l)2 points col-

3 273
linear with both X, and Xgze Since t 2 o =t + 1 it follows that A < A and
so there exists X5 € X\X(xaxg,x2x3) such that X VKK Now application of



(t)

to XI’XS’XB’X yields x5~x4,

4
to X 5%y XqsXe X~y

Lo X, X, 5Xy,Xc yields X)™K, . 0

yields

DEBROEY [1] showed that a s.p.g. with parameters s,t,a(>2), u = a2 sat-
isfying (D) is of the following type: the "points'" are the lines of PG(d,q),
the "lines" are the planes in PG(d,q) for some prime power q and d ¢ N,

d 2 4. In this case s = q(q+1), t = (q—])_](qd—l-l)—], a =q+l, u= (q+1)2.
THEOREM 5. Let (X,L) be a s.p.g. with parameters s,t,o(>2), p = az. If s > a
and t =2 a, then (X,L) is isomorphic to the s.p.g. consisting of the lines
and planes in PG(d,q). In particular s = q(q+l), t = (q—l)_l(qd_]-l)-l,

a =q+l, u = (q+1)2.

The only interesting case remaining is s = a. Now if (X,E) is a Moore
graph of valency r, i.e. a strongly regular graph with A = 0, u = 1, then
(X,{F(x)lx € X}) is easily seen to be a s.p.g. with parameters s = t = o =
=r=-1, u= (r-—l)2 (here T'(x) = {y € Xl(x,y) € E}). The point graph of this
s.p.g. is the complement of (X,E). Such a s.p.g. does not satisfy (D) for
r > 2. From the following theorem follows immediately that a s.p.g. with

= az, s = o 1s necessarily of this type.

THEOREM 6. Let (X,L) be a s.p.g. with t = a, u = a° and s

o. Then t = o.

PROOF. Let x,y € X, x # y. Let [x,y]l = {L]""’La}’ [y,ul

put zij = LiMj’ i,j =1,...,0a (see figure 2).

{Ml""’Mﬁ] and

Figure 2.



The number of (z. "Zkﬂ) with i # k, j # £, z. i zkﬂ equals azo(a—l)(a—Z).
Now let K be a line through x, K # Ll""?La’ and let u be a point on K,
u # x.

Then u is collinear with (a-1) of the a points zi’l,...,z for

i,a’
i=1,...,0. Since u # y, u is collinear with all of z FEISEFL M or with

. 1, ’

none, for j = 1,...,qa.

It follows that there are o lines through u intersecting (a-1) of the
o lines M],...,M . Hence each point u # x on K gives rlse to a(a=1)(a=2)
pairs (z ’zkﬂ) as described, so K gives rise to all o (a—l)(a—Z) pairs
(zij ’Zu)

Suppose t > o, then we can find two such lines K and K'. It follows
that for u € K, the o lines through u intersecting (a-1) of the o lines

M]""’Ma also intersect K'. But now |[[u,K']| = a+l, a contradiction. [
3. SEMI-PARTIAL GEOMETRIES WITH u = a(a+l).

In this section (X,L) is a semi-partial geometry with parameters s,t,o
and u = a(a+l).
If x,y € X, x #+ vy we shall always denote the a+l lines in [x,y] by

K]""’Ka+1’ and the (a+1) lines in [y,x] by L],...,L . By (*¥*) we can

a+l
number these lines in such a way that Ki n Li =@, 1=1,...,a+1 and

K, n Lj #0@, i,j = 1,...,0+1, 1 # j (see figure 3).

Figure 3.
Again our aim will be to show that the diagonal axiom (D) holds. We first



deal with the éase o= 2.

LEMMA 5. If o = 2 and t > s, then a set of 3 collinear points not on one
line can be extended to a set of 4 collinear points no 3 on a line.

PROOF. Let x, a and b be three distinct collinear points not on one line.
There are t-1 lines # xa,ab through a and on each of those lines there is

a point v~ b, v; #a, i=1,...,t-1. Suppose vi + x for all i = 1,...,t—-1.
Now for each i = 1,...,t-1, ay, + xb (for otherwise |[a,xb]] = 3) and

byi + xa. Also xa,xb ¢ [x,yi] and ay]._,by:.L € [yi,x]. Hence, by (*x) there is
a third line through v intersecting xa and xb in points ug and v, respect-
ively. Clearly U # uj if 1 # j, for u, = uj implies x,vi-,vj € [ui,xb]. Thus

xa contains t+1 > s+l points (namely x;a,U',...,ut_l), a contradiction. []

LEMMA 6. Suppose o = 2. If X|%y,Xq,X, are four distinet collinear points,

3 .
no three on a line, then no point can be collinear with exactly three of

these four points.

PROOF. Suppose x. is collinear with X)sXg,X, and X, * Xg. Clearly Xg ¢ XyXgs

5
X,X, XX, . Hence {xlxz,x1x3,x]x4} = [xl,xsj and {xsxz,x5x3,x5x4} = [xs,xlj
50 XX, has to intersect X X3 OF X X, by (x%). But then I[xz,x1x3]| or

I[xz,xlx4]| > 2, a contradiction. [J

LEMMA 7. Same hypothesis as in lemma 6. Then the only points collinear with

exactly two points of {x],xz,x3,x4} are the points on the lines X)X;, i#3.

PROOF. Suppose Xs ~ X 5%, and X + Xy sXqs Xg ¢ X%, (see figure 4).

Figure 4.



Apply (%) to x3 and X, to get a line ab through X3 with a € XXy b e XX .
Similarly (*x) applied to Xg and X, gives us a line cd through X, with

c € x5x4,»d € XX . Clearly b # c so we can apply (**) to b and c. It fol-
lows that ab n cd = . Also x, + a and (**) applied to x, and a yields:
abnecd # @ or ab n X,%, # . Hence ab n X,%, # @, a contradiction since

{xz,x4} = [x2x4,x3]. O

THEOREM 7. If (X,L) Zs a s.p.g with parameters s,t,a = 2, uy = 6 and t>s,
then (X,L) satisfies (D).

PROOF. Let X| 9%y, X and X, be four distinct points no three on a line such

3

that x4~x1~x2~x3~x4~x2. By Lemma 5 there exists X5~ Xy 3 Xg5%X,

By Lemmas 6 and 7 X ~X35%5e O

REMARK. If (X,L) is a s.p.g but not a partial geometry, then t = s (see
DEBROEY & THAS [2]). Using the integrality conditions for the multiplicit-
ies of the eigenvalues of a strongly regular graph it follows that a s.p.g
with s=t, a=2 and u=6 satisfies (882-24s+25)|{8(s+1)(233-982+193-30)}2.
From this one easily deduces an upper bound for s. The remaining cases were
checked by computer and only s=t=28 survived. Thus, every s.p.g which is

not a partial geometry satisfies (D) or has s=t=28 (and 103125 points).

We now turn to the case a23. We shall make two additional assumptions
in this case. The first assumption is o # 3, the second assumption is
s > f(a) where f is defined in Lemma 9. Notice that this bound on s is used

only in the proof of Lemma 9.

LEMMA 8. Let x,y € X, xty and suppose [x,y] = [Kl""’Ka+1

(L,,...,L .1 such that K, n L, =@, i =1,...,0+l. If M Zs a line inter-
1 o+l 1 1

1, [y,x] =

secting o 2 1 lines of [x,yl, T 2 1 lines of [y,x] and o < T, then o = a-1
and T = o.

PROOF. Since o < T, there exists a point of intersection u of M with a line
Li e [y,x] such that u is not on one of the lines of [x,y]. Then u#x and
so, applying (**) to u and x, it follows that M ¢ [u,x] intersects a-1
PRI S SUTTIRTIN S
which proves our claim. [

of the o lines KI’K € [x,ul. Thus a-1 < o < T < 0,
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LEMMA 9. Let x € X and L € L such that x ¢ L and x is collinear with o points
ZysZasecnsZy g O L. Let M be a line throygh 241
u # X2 . Suppose s 2 f(a) where £(4) = 12, £(5) = 16, f(6) = £(7) = 17,

£(8) = 18, £(9) = 19, £(10) = 21, £(11) = 23, f(a) = 20 (0212). Then M inter-

sects at least o-1 lines of [x,L].

meeting Xz, in a point

PROOF. Suppose M does not meet at least two lines of [x,L], Xz, and xz4, say.
Since s > 2a we can find y € L such that xfty#u. Let [x,y] = {KI’K =Xz
K =qu+1} and [y,x] = {L]=L,L2,L3,...,La+l} with K, n L, = @.

o+1
Looking at u and y we find that M intersects a-1 of the a lines Li’

2 g3

i # a. Every point LiM which is collinear with x is on a line Kj’ j #a. If
LiM ~ x for these o-1 i's, we find that M meets at least a of the lines
Kl""’Ka+l’ 2""’Ku+1’ a contradiction.
Let t = LiM be a point not collinear with x. Considering x7/t we see that M

hence at least a-1 of the lines K

intersects o-1 of the a lines in [x,y]\{Ki}. This shows that i = 2 or 3, so
there are at most two such points t, and that M meets K]’KQ’KS"'°’Ka+l'
Let V = {K4M,K5M,...,KaM} and count pairs (y,v), y € L, y#x, v € V, vvy.

The number of such pairs is at least (s-a+1)(a-5) (first choose y,s-a+l
possibilities, then given y we can find o-3 points LiM@x as above, possibly
one on K](y), and one is za+1), and at most (a-3)éa—2) (first choose v,

then y). It follows that for a > 5, s < 2a-1 + la=5] Let W=V u {q,q'} =
= {w € M|w~x} and count pairs (y,w), vy € L, y#x, w ¢ W, w ~ y. This yields
(s=a+1) (a-4) < (a=3)(a=-2) + 2(a-1), hence s < 20 + Laféj if a > 4. Above

we saw that for any y € L with xty#u, K

;= K](y) meets M. But if s+1 > o +

+ (a=2) + 2(a-1) = 4a-4, we can find y € L such that y#x, u,q and q', a
contradiction. Therefore we have s < 40~4. We now have obtained a contradic-

tion for all a = 4 and the lemma is proved. [

LEMMA 10. Some hypotheses as in Lemma 9. Then M intersects exactly o-1 lines
of [x,L].

PROOF. Take y € L, y#x and let Ki and Li be defined as before. Put K := Ka+1

and let A(x,L) be the set of lines # K,L through z, intersecting at least

+1

a-1 lines of [x,L], A(y,K) the set of lines # K,L through z, intersecting

+1
at least a-1 lines of [y,K]. Suppose a lines of A(x,L) intersects o-1

lines of [x,L] and b lines of A(x,L) intersect a lines of [x,L]. Counting
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th oints u~z
ep a+l

a(a=2) + b(a-1) = (a=1)(a-2). Hence a = 0 and b = a-2 or a = a-1 and b = 0.

on K2,K3,...,Ka, such that u # X3ZgseeesZ, yields

Thus |A(x,L)| = a=2 or o-1 according as e?ery line in A(x,L) intersects
all lines or all but one line in [x,L]. A similar result holds for A(y,K).
Now A(x,L) = A(y,K), for suppose N ¢ A(x,L) then by Lemma 8, N intersects
at least o-1 lines of [y,x], so at least a-2 > 2 lines of [y,K]. Hence

N ¢ A(y,K) by Lemma 9. Similarly, N € A(y,k) implies N € A(x,L). Suppose

[A(x,L)| = a=2, i.e. there are a-2 lines through z intersecting all lines

o+1

of [x,L] v [y,K]. It follows that KoL+ + z,,q SO We can apply (*¥*) to

KZLa+1 a1’ This shows that Lu+1 € [KZLa+1’za+1

N ¢ A(y,K) E'[za+l’K2La+1]’ a contradiction, for L

> a+l. [

and z 1 intersects all

a+1~N implies |[[y,N]|=>

LEMMA 11. Let x € X, L € L such that x is collinear with o points
ZyseeesZy, ON L. Let M be a line through Zy4

[x,L] and let y € L, ytx. Then, #f [x,y] = {K](y),K2=xz2,...,Ka+1=xz

intersecting o~1 lines of
u+1}’
M intersects Kl(y).

PROOF. Suppose M does ﬁot intersect K2, say. As shown in Lemma 10, M also

intersects o-1 lines of [y,Ka+1] = {L]=L,L ”La}' So M intersects at

93"

least one of La— and La and since a = 4, L2 # L Suppose M inter-

1 a—]’La'

sects Lu— (La) in a point v. If v#x then apply (**) to v and x. It follows

1
that M € [v,x] intersects Kl(y) e [x,v] for M misses K, € [x,v]. If v~x

o-1
it follows that M intersects KI(Y) € [x,La_]] (KI(Y) e‘[x,La]), for M does

then v = L Ki (V=LaKi) for some i. By Lemma 10 applied to x and La—l(La)

not intersect K, ¢ [x’La—IJ (K2 € [X’La])' O

COROLLARY. The Lline Kl(y) 18 the same for all y ¢ L, y ¥+ x.

LEMMA 12. Let x € X, L € L such that x is collinear with o points
ZysZgsevesZ g On L. Put K.=xz., i=2,...,0+1 and let K, be defined by
{KI’KZ""’K } = [x,y] for any y € L, vy + x. Then every line which in-

o+1
tersects K, and a Ki(i#l) not in x, intersects L and therefore exactly

1
a lines of {Kl""’K 1.

PROOF. Fix i € {2,...,a+1}. The number of pairs (u,v) such .that
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u e Kl\{x}, vV e Ki\{x}, u~v equals s(o-1). If y € L; vy # x and [y,x] =
{L1=L,L2,...,La+1},ithen each of the a—llllnes L2’L3""’Li—]’Li+]""’La+1
gives rise to such a pair (u,v). Each point zj, j=2,3,...,i-1,i+1,...,a+]
is on o-1 lines # Kj?L which intersect a lines of {K]""’Ka+1}' They all
intersect K1 by Lemma 11 and no two miss the same Kk since otherwise some
K, would be hit o+1 times. Thus each point z., j=2,3,...,i-1,i+1,...,a+l

4 i J=4,

gives rise to (a-2) pairs (u,v). Finally there are (o-1) pairs (u,v)

with v = z,. In all, the lines intersecting L contain (s+1-a)(a-1) +

(a=1) (a=2) + (a~1) = s(a-1), i.e. all, pairs (u,v). 0O

If in Lemma 12 we replace L = L, by a line Lj missing Kj’ then it

1
follows that every line intersecting two lines of {Kl""’Ka+1} not in x,
intersects exactly o lines of {Kl""’Ka+l}° Using this result and the
foregoing lemmas we can now proceed as in the case u = az. For any two

intersecting lines L L2 we can define in an obvious way a partial geometry

]’
<L],L2> = (X(LI’LZ)’L(LI’LZ))’ now with parameters s = s, t = a, o = a (so

<L ,L.> is an (o+1)-net of order s+1). Again n = E(Z+]) = a(a+l) = u, so

1°72
with the same proof as the proof of Theorem 4 we have the following theorem.

THEOREM 8. Let (X,L) be a s.p.g. with parameters s,t,o,u = a(a+l). If a = 4,
s 2 f(a) (f as in Lemma 9) and t 2 o+l (i.e. Zf (X,L) Zs not a p.g.), then
(X,L) satisfies (D).

Fix a (d-2)-dimensional subspace S of PG(d,q), q a prime power, d € N.
Then with the lines of PG(d,q) which have no point with S in common as
"points'" and with the planes of PG(d,q) intersecting S in exactly one
point as "lines" and with the natural incidence relation, one obtains a
S.p.g. with parameters s = qz—l, t = (q—l)_l(qd-l-l)-l, o =q, u=q(q+l).

DEBROEY [1] showed that a s.p.g. with parameters s,t,o = 2, p =
= a(o+1) and satisfying (D) is of this type. Combining this result with

Theorems 7 and 8 we arrive at the following theorem.

THEOREM 9. Let (X,L) be a s.p.g. with parameters s,t,o,u = a(a+l) which
18 not a p.g.. If o =2 and not s = t = 28 or 2f o 2 4 and s = £(a), then
(X,L1) Zs Zsomorphic to a s.p.g. consisting of the lines in PG(d,q) miss—

ing a given (d-2)-dimensional subspace of PG(d,q) and the planes inter-



secting this subspace in one point. In particular s = qz—l,
t =,(q—1)_1(qd—1—l)—l, a =g, u = q(q+l) for some prime power q and d € N

and any s.p.g. with these parameters with q # 3 and d > 4 is of this type.
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