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On _the measure of the vectorial sum of two~dimensional point sets.

by
C.G. Lekkerkerker.'

Let P,Q be two bodies in'Rn and let P+Q be the wvectorial sum.
Prof. van der Corput raised the guestion, whether one can derive an
upper bound for the volume of P+)Q in terms of quantities, each of which
gnly depends on one of the sets P,Q. Actually he thought of the

quantities V, 5 (P), etcs, defined below. This led to the
1’ 2’ LN ] B, k

conjecture that such an upper bound is given by the relation (2) (==e
below). In this report we give the proof of this formula in the casc
n=2 and also make some general remarkss

Ye consider point sets in the plane., We uge a fixed Cartesian
coordinate system. Points will be denoted by X=(x1,x2), y:(y1,y2), et
We write x+y for the vectorial sum of x and y and denote by )\ x| the
distance from x to the origin.

The notion of component of a point set is important for our

purpcse. Here it may be defined as follows. Two points x,y of a point
get P are called P-connected, if for each € > O we can find a finite

{n) k+1) X(k)‘ <-

chain of points x(o)zx,x(1),...,k = ¥y, such that ‘x(

and x<k)

& P for k=0O41,¢¢e,n-1¢ This relation between two points

of P determines uniquely a subdivision of P into subsets, such that
two points of P are connected if and only if these points. belong to
the same subset; these subsets are called the components of P. The
number of components of a point set P may be denoted by V12(P); it may
be finite or infinite.

Next we define for each point set P two quantities which as to thecir
nature stand between the measurc of P and the above defined quantity
V12(P). Let the coordinates of a point x be denoted by Xq9Xpe For each
real ¢ let TT1(P;c) be the intersection of P and the vertical line
X =C and put ~

my(Pje) = V(T 4(P5e)).
The least upper bound of the integraquoof(t)dt for those non-negative
measurable functions f(t), which vanishQutside a finite interval and
which satisfy the relation

0 L (%) $m1(P;t) for all 1,

will be denoted by V1(P)‘ Thus, if m1(P;t) is a measurable function



of t, then V1(P) simply is given by

[eye]
V., (P) =‘S m,(P;t)at .
Similarly we define TTZ(P;C) as thce intersection of P and the horizontal
line X,=C and denote by V2(P) the least upper bound of

ioo £(t)at

for the non-negative, measurable functions £(t), which vanish outside
a finite interval and for which

0 & £(%) Lmy(Pst) = Vo, (ML (R5%)) s

We remark that the quantities V1(P), VQ(P), V12(P) may be infinite
even if P is bounded.

a

Finally we use the outer measure of P. In the case that P is boundr

this outer measure is defined as the lower bound of the area of the
point sets I>*, which contain the point set P and which consist of a
finite number of rectangles with sides parallel to the coordinate axes-
We now can state the theorem a proof of which is thc main object
of this note.
Theorem. Let P,Q be two bounded, closed point sets in the planc.
Suppose that P and Q have a finite or enumerable system of componentss
Let the quantities V1(P), V2(P), V12(P) be defined as above, and
similarly the quantities V1(Q), V2(Q), V12(Q). Let V(P), V(Q), V(P+n)
be the outer measures of P, Q, P+Q respectively.
Then we have
(1) V(P+Q) V(R)V,,(Q)+7, (PIV,(Q)+V,(B)V,(Q)+V o (B)V(Q),

if in the right hand member we use the convention Oe2e=0, a,eu= oo if
a>O.

Remark 1. With the above convention the theorem is no longer true if we
omit the condition that the number of components of P and Q is at most
enumerable. For let P be the set of points x:(x1,x2) with 0 { xq 1)

0« xz,g 1, such that both X, and X, can be written as an infinite
decimal in the scale of 3, where the digits are all O or 2 (so thut
the projections of P on the X1—axis and the xz—axis form the so~-cali..
discontinuum of Cantor). And let Q be the set of points y:(ngyé) with
0 <y <t 0« Yo $_1, such that both Y4 and ¥y, can be written as an
infinite decimal in the scale of 3, where the digits are all O or 1.
The number of components of P and of Q is not enumerable. It is
evident that each point z;(z1,z2) of the square O 'z, 1, 0 gx, ¢1
can be written as z=(x1,x2)+(y1,y2), where X,,X5,74:¥, have the form
specified above. Hence P+Q- overlaps this square,so that V(P+Q) > =1
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Further the sets P,) are bounded, closed and have Jordan measure O.
Likewise the projections of P and Q on the coordinate axes have, as
one-dimensional sets, Jordan measure O. Hence, according to our
definitions, the numbers V1(P), VQ(P), VJ(Q), VZ(Q) are all equal

to zero. Hence, according to our convention, the right hand member

of (1) must be interpreted to be equal to zero. Consequently (1) is
not true for the pair P,N.

Remark 2. In the inequality (1) the equality sign cannot be omitted
For if P and Q are rectangles with sides parallel to the coordinate
axes with sides a,b and c¢,d respectively, then, as is easgily verificd.
both members of (1) arc equal to (a+c)(b+d). A less trivial example

is obtained as follows.

Let S(pyq) be the square p <Xy ¢ PHly q g%, g a1 and let k and 1 be
positive integers. Then let Q be the square S(0,0) and let P consig’
of the kl squares

5‘%}--[]—{3? s (0,0) , S°(2,0) , S (4,0) , «es , 8 (2k=2,0),
[f]-——[;]_{:] S (0,2) , S (2,2) , S (4,2) 4 e+ , S (2k=2,2),
e — = e e e e e e e e e e e e e -
j: — {:} . Q' $(0,21-2), S(2,21-2), S(4,21-2),ees , S(2k=2,21-2),
E%;j[%%:éwé_q)ﬂij which are connccted by a number of horizontal or

vertical line-scquents in such a way that this number is minimal and
that P is connected (see fig. 1). Then P+ is a rcctangle with sides
2k,21, so that V(P+1) = 4kl. We further find

V(Q) = V(7)) = Vy(Q) = V,(0) = 1,
V(P) = k1 , V,,(P) =1,
V1(P) = (2k=1)1", VZ(P) = k1+1-1

Consequently for these sets P,0 the right hand member of (1) has the

valuc
k1 + (2k=1)1 + k1 + 1-1 + 1 = 4k1.

Hence (1) holds with the equality sign.

We shall say a few words about thc corresponding problem in

"Rn(n333). Let P,Q be two bounded point sets in R . We use a fixed

Cartesian coordinate system and denote thc points of Rn by
X = (X1, X2’°°"Xn)’ etc. We define P+) in the same way as in the
two-dimensional case,

Consider a set of positive integers 11, i2’°"’ik with

1L i1 e 12 L oo <:ik £n (k=1,24¢2+,0~1)« Then for any rcal numbers

Cqs CoyeesyCp WE denote by m.

iy, 12,...,ik<P5°19 02"'°9°k) the number



—4,‘—
of componcnts of the k-dimensional interscction of P and the subspacc
xi1=_c1, x12= 02,...,xik= Cc® Assign in a suitable way a value to the
integral

oo
/( ;;;'j(mi1, 12,...,ik (P; t1, tz’...’tk)dt1dt2..‘dtk’

such that this integral rcduces to the Lebesque (or Ricmann) integral,

if thesc integrals exist, and dcnote this valuc by V, . . (P).
11, 12,coc,lk

In this terminology it is natural. 0 denote by V(P) the number ox
components of P and by V., n(P) the measurce (contrary to our
definitions in the two-~dimensional case). In thc same way

s Yy (D0 Vi (@0 Vi ) (220)

can be defined. We now state the following

Conjecture. If P and Q are n-dimensional point sets, which satisfy
certain not too restrictive conditions, then we have the formula

-
(2) Vo, o(P+Q) < 2 V4

LA————

(P) V (),

17 121“':11{ 319 jzs"‘sjn_k
where the sum is extended over all sets of positive integers

i.I, i2,.0l’ik; j1, jz,lnl,jn—k (k=0,1,2,ac-,n) V\]ith

1 S:i1<12 ~<ooo :<ik s:n 9 1 <‘31 < j2 { oo <jnﬁk g n,

~

ip\ié jq for p=1,2,+00,k; q=1,2;...,0-k.

We remark that the conjecture is right in the case of bounded
convex bodies. In this case the intersection of P(Q) and a subspace
consists of at most one component. Let » X be the smallest parallelotope
a; X4 S;bi(i=1,2,.,.,n), which contains P. In the same way defir

Q¥ . Then we find

- ES
. . . = V. . .
(3) Vl1, 12,000911{(-(?) 11, lg,.oo,lk(P >,

v (Q) =V, (Q™

115 12,o¢o,ik 11, i2,n-o,ik
for each set of positive integers i1, 12,...,‘1k with
k 31, 1K i1 < 12 { sooe ik £ n.

1)

Now we use a result of the theory of convex bodies which runs as

— - crn - — . (ot G RS S Y e B B S

1) See T+ Bonnesen-W. Tenchel, Theorie der konvexen Kdrper, Chelsea
(1948), in particular p. 38, formula (1) and p. 41, property 5.




-5 -
follows. Let A , & be positive numbers, let XN P be the set of
points A x with x ¢ P and let j.Q be the set of points jpux with
X & Qs Then there exist non-negative numbers AO(P,Q),A1(P,Q),..,,An(P,Q),

not depending on A , i, such that
n . :
: i n-i
(4—) V»}Z.‘.n( >\P+ MQ) = 3?—::6 Al(PiQ) )\ j o .

Furthermore, if P' and Q' are bounded, convex bodies with P P', 4 0'.
then we have

4;(2,0) g 421,00,

N
Taking X = jr = 1 we find
n-1 « X
(5) Vo on (B0 = Voo [ q(B) = Vi | () ¢ fé% A (B% Q7).

or, if A or ). tend to zero we get from (4)
Vo, . n(B) = A (BQ), Vip . (R = A5(P,0Q).
Similarly we have
L SO X% ¥ % %
(6) Vio. (P =4 (P%,Q%), v, . (2" = a,(2* "),

Applying (4) with X = ,a =1 and with P,Q replaced by P*} Q* we furth -
get

V12...n(P*:+ Q j:ﬂ A (P y Q . Hence, in virtue of (5) and
(6), we find
o) - . *’Y-_ *._
(7) Vyp, o (Br=Vyp  ((P)=Vop | (DT (BT gp | (P7)

-V

Denote by d1, d2,..a d the lengths of the edges of P*:and by
€4y €pyeeeye the lengths of the edges of Q . Then P *+ Q is a
rectangular parallelotope with edges di+ e« Hence we get, using (7),

(8) Vo, .n(BQ) = Vi | 1 (B) = Vop | (1)

n

n
(di+ ei) - T d = T ey
i=1 i=1

ib

<

1=

i=1

We further find for k=1,2,+..,n=1

. = d d -oad.
(9) V11, 2,..,,11{(P ) 1,71, lk’

*
. . R = €e. €. esao€.
Jqs 32:-":Jn_k(Q ) i’ 7o In-x

Denoting by ' a sum over all sets 11, 12"’°’ik; 31, 32"“’jn-k

(k=1,2,440,n=1) with

1{ 11 < 12 < ees <L lk&_\ I, 1é j.]< j2: cee



-6 -

i # 3. for p=1,2,+..,k and g=1,2,...,n-k, we find, using (3) and (9),

( ) Z 11’ 12,...,11{( ) 319 Jz""’Jn_k(Q)

1

V. C(PM v, . *
z 11’ 12,..‘,11(( ) 31, 32,.--,Jn—k(Q)

'd. d. Oocd. e. e. onoe.
z 191 1y dq J2 In-x

]

n .%_ n
;E}(di+ ei) S d; - iﬂ} e

i=1

The inequality (2) follows at once from (10) and (8).

Pinally we remari: that it is easy to find wore ~dimcnsional point sct-

analoguous to thc point sets treated in remork 2, for which (2) holde
with the equulity sign.
Proof of the theoreme

1+ Proof for sets P,Q of a special form.

Let Je be a positive number. In the following we call a p =-cell
each square

(1) »p g x4 <) p 1P g %o & (g+1) ¢  (pyq integral),

denoted by S(p,q;}; ). We write S(p,q;1) = S(pyq)e
Suppose that, for some fA>O)P is the union of a finite number
of f -cells. The interscction of P and the strip P £ ¥ & (q0+1)f

(gp integral) is the union of the  -cells s(p,q,;jo) of P with g=qy-

The components of this intersection will be called § -beams of P.
In this section we consider sets with the following properties s

12  the set is connected

22 for some P> 0 it is the union of a finite number of ¢ -cells

32  the intersection of two different f -beams never consists of a
single point '

42 the boundary of the set is connected (or, stated otherwise, the

set is simply connected).
And we shall prove the relation (1) in the case that P possesses the

propertie8‘12 -‘42 and Q possesses the properties 12 - 28,

Let r be a positive number and let P,§ be the set of points rx
with x ¢ P and the set of points rx with x & Q respectively. Both
members of (1) are multiplied by r2, if we replace P,0Q by P,Q. So,

- without loss of generality, we may suppose £ =1+« Then both P and Q
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consist of 1-cells or of 1-beams (briefly called cells and beams).
Denote by P+Q the union of the cells S(p,q), for which there
exist two cells S(p',q'), S(p",q") with

S(P'r@')(}); S(P“sq_")c—Q: (p'yq') + (p“.q_") = (P7Q)'
Put
A= P(1) 1 Q, where P(1)

$(0,0) ~5(1,0)
1,2 = 2(2) 1 9, where 2(?)

S(0,0) ws(0,1).

1l

il

We arrange the beams of P into a sequence B1, BZ""’Bk in the
following way. Choose B1 arbitrarily and, if B1, BZ""’Bi—1 are
chosen, take as Bi one of the remaining beams, such that the inter-

section of B, and Q§'1,B is not empty (i=2,3,+.+,k)¢ On account

i 321 j
of 32 this intersection is a line-segment, the length of which is a
positive integer; it never happens that Bi is connected W%th two of
the beams Bq, BQ""'B1_1 for otherwise the boundary of U Bj’ and

J=1 k
in view of the maximality of the beams also the boundary of U By
. j=1
i
should not be connected. Consequently each set % Bj (i=1,2,400,k)

j=1
prossesses the properties 12 - 42.
Let Qj(be an arbiltrary set which possesses the properties 12 an”
22 (with @=1). Denotc the beams of Q* vy Cyr CppeeeyCye Lot T e

set of pairs ii,j} of positive integers i,j with 1 {1 ¢ J (1, such
that Ci and Cj have a non-cmpty interscction. Let l;:be the number
of thecse pairs. According to the connectcdness of Q° we have the
relation !

(12) 1ty 1-1.

Let C; consist of m; cells (i=1,2,++4,1) and for {i,j\ ¢ L let g
denote the lcngth of the intersection of Ci and Cj (so that ni,j is a
non-neg.tive integer). Clearly

1
(13) V(@M = Zom - T on; . V(D) =1
i=1 11,3 e 1J
The set 't1Q*:is obtained from Q* by adding to each of the 1 beans
one new cell to the right of it. As a first conscquence we conclud~
from this fact and the second relation (13) that

(14) v(<,Q") - V(@) = v,(Q9), Vo(=,a% g V(a9).
Next we find

1
V(4@ = 2 (men) - ii%}u (n; 5+1).



llencc, on account of (13) .and (12), we obtain,

1
(15) V(e " -v (" = Y1- T 1=1a1'.g 1.
i= {i,3] &L '

For rcasons of symmetry the formulae, obtained from (14) and (15) by
permuting the indices 1 and 2, are also true. Ve only ..ccd the relation

(14) V(1 ,0%) - V() = v,(Q¥).

Now by induction on th¢ number of beams of P, we shall prove the
following formula

(16)  V(PQ) < V(P) + V() + V,(P)V,(2) + V,(P)V,(Q).
First suppose k=1. Put V1(I) = as Then, apart from a translation,

P1Q is the set T, a=1n (if 1100_:_ Q, € ?Q = 1;1(tn"1 ) for

n=1 2,...). Now for n=0,1,2,... the set 1. Q posscsscs the pronerties
1_, 22. Hence wo find, by rcpeatecd appllcatlon of both relations (14),

) = W) = Vg2 ¢ g
$V(ta1'—2Q) + V() g eee

<V(Q) + (a=1) V().
On thc other hand the right hand member of (16) bccomes

a + V(Q) + aVy(Q) + Vy(Q) > V(Q) + (a=1) V,(Q).

This proves (16) in the case k=1,

Next suppose k > 1 and suppose that (16) holds if P is replaced
by a set P¥*, which has the properties 12 - 42 and consists of k-1
bcams. Arrange the beams of P, such as i1s explained above and put

p*= .Ef1 Bj' Then Bk has a non-empty interscction with exactly onec

j=1
of thc beams of }f*; denote this beam by B. Without loss of gencrality
we may suppose that we have the situation, given by figure 2. Denote
by Bi the union of the cells of Bk’ which have a side in common with
B a cell of B, and denotc by B' thc union of the
‘ 1 ]corresponding cells of B. Denotc by Bﬁ the
| iBg | union of the remaining cclls of B,. Further
let a,b be the number of cells of Bﬁ, Bﬁ
respectively; we have a > Oy b » O+ Finally
let S be the last ccll of B! and put P** = P* VBl

fig 2

A cell of P*X } Q, which does not belong to P* % 0, must be a
cell of Bk 1 Q; furthermore this cell certainly does not belong to
B' + Q CP*1 Q.



Hence we find
V(P**1 Q) - V(E*! Q) < V((B' v B ) 1 Q) - WBt Q.
Evidently
(B' WB!) + Q= €,(B' tq)

and, apart from a translation,

of

B' 1= t?"1Q.
Hence, applying (14') and (15), we find
V({B' v B + Q) - V(B + Q) = V(t,tiTR) = V(i) -

= V1(t 1“1Q) SV.‘(Qj + a-1,
hencec
V(P** 1 Q) - V(B*t Q) < V,(Q) + a1,

Similarly a cell of P + Q, which does not beleng to prY ¢ Q,
is a cell of By + Q, which is not contained in S + Qs
So we find

V(P 4+ Q) - V(P** 1) g V((SwBY +Q) -V(siq)

=v(x ] Q) - v,
hence, applying the rclation (14)
V(P EQ) - V(E** Q) ¢ bV,(Q).
Summarizing we get
(17) V(P4 Q) - V(P*t Q) ga+ V,(0) + b Vy(Q)s

On the other hand P X posscsses propertics 12 ~ 42 ‘and consists of
k~1 beams. So, by the induction hypothesis,we have

(18) V(B*1 Q) < V(PY) + V(Q) + V,(F*)V,(Q) + V,(P*)V ().
The right hand mcmbers of (16) and (18) differ by

[(2) = VED ]+ (7 (R (BT Y (@) (Vo (B)-Tp(2H) V(@)
which is at least equal to

a+ b+ b Vy(Q) + V() > a+ V(Q) + b Vy(Q)s

'Using this fact and the reclations (17) and (18) we obtain (16)«

This completes the proof of (16). :
Since P and Q are connected, the numbers V12(P), V12(Q) arc equal T«
Hence the right hand mcmbers of (16) and (1) are identical. It rcmainn
to prove, that in (16) we may replace the quantity V(P % Q) by V(P + ), -
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Let N be a positive integer.

Let PN be the set of points Nx with x € P and Qp the set of points
Nx with x &€ Q. Thesc scts are the union of a finitc number of cclls.
Clearly PN possesses the properties 12 - 42 and QN the propertics
12, 22, Hence we got from (16)

(19) = L5 V(B + ) < V(R) + V(Q) + V() V() + Vy(R) V. ().

Consider the sets P+Q, PN+QN = (P+Q)N. These sets consist of a
Tinite number of cells. Denote by A the length of the boundary of
P+Q. Then Pp+ Qy has a boundary of length N A + Each cell of Py + Oy

is a cell of P QN and a cell of P QN’ which does not belong to
PN 1 QN’ necassarlly falls along thc boundary of PN + QN. Henece the
number of these cells is at most cqual to N A . Henceforth

V(P'*‘Q) - V(P + QN) N Ay
which implics

(20) lim ~MV(P 1 QN) = V(P + Q).
N - oo N

The relation (1) is a consequence of (19) and (20),

2, Elimination of thc condition 42.

In this scction we prove the rclation (1) in the case that P and
Q possess properties 12 - 32 (with p =1)

The boundary of P consists of a finite number of line-secgments.
On account of 32 no three of these line-segments have a common end-
points So the boundary of P consists of a finite number (at least 1)
of closed curves (broken lines) without double-pointse Since P is
connected, one of these closed curves, Y“o say, has the property,
that the other ones, let us say T“1, Yﬂz,..., Ty (53 0), lie insic-

Vb. Consequently there exists a point set PO, which possesses the

properties 12 - 42, such that P is obtained from PO by removing from
its interior a finite number of open point sets P1, PQ,..., 5 (t > 0),
each of which has a closure which possesses the properties 2 - 48,

In the case t=0 the assertion holds, in virtue of the result of

section 1. So we may suppose t > 1. Put ;5 P =T, so that P = Py/T -
“ i=1
Since Q is connected and closed, the projections of Q on the x1-axis

and the xzwaxis are closed intervals. From the definition of

V1(Q), VQ(Q) it follows that the lengths of these intervals are at
‘most equal %o V1(Q), VQ(Q) respectively. Hence there exists a
‘rectangle Q' with Q € Q', such that the sides of Q' are parallel to the
coordinate axes and have length V1(Q), VZ(Q)'
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Clearly
(21)  v4(Q") = 7,(Q), V,(Q') = V,(Q).

Without loss of generality we may suppose that the origin is the left
lower wvertex of Q!'.

Further let ' be a rectangle with P € P' and with sides parallel

P P = P' 4+ Q
L | M, = (P+Q) AT |
i | T, = (2 AT+ ) T
_j On account of P ¢ P'AT , Q € Q' we have
(22) e T, ¢ T,
Clearly (P'/AT + Q)AT = (P' + Q") /T ,
hence
PUAT  +Q = (BAT + AT w (BT + )T
= P"AT SRIPY
hence

(23) V(P'AT +Q') = V(P") = V() + V(T,).
Since (P+Q)AT is contained in (PO+ Q) /T , we have
P+Q = (P+Q) AT w ((P+Q) ~ 1) C (By+Q)/T o T4

hence
V(P+Q) < V(PO+Q) - V() + V('TT1).
' So on account of (22) we get
(24) V(P+Q) - V(Py+Q) & = V() + V(T,).
For shortness write
| Vh(P) = ah’ Vh(P') = 8‘1:1’ Vh(“') =°Lh9 Vh(Q) = Vh(Q') = bh (h=112)‘
. Then we clearly have

V(P') = alab , V(Q') = byby, V(B") = (a} + byd(a + by,

Vh(]?o) = ay -o(_h ' Vh(P'/T\') = a}"l +cLh (h=1,2).

We further get

(25) {V(RI+V(Q)+T, (D)o (Q4V,(2)V(Q) | = {V(B)+T(Q)+V (Bg)Vp(Q) +
| + Vp(BQ) V4 ()]
V(R)=V(Ro)+ { V(R)=V,(Zg) | Vo(@)+ § Vp(R)=V5(20) } V4(Q)

il

~V(T) + A Dy A Dy
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We now apply twice the result of section 1. First, since Q'
possesses the propertics 12 - 42, we may deduce

V(P +Q') L V(P/TN)+V(Q') + V(BT )V, (Q)+V, (AT )V, (QY)
= ~V(T)+ atab + bib, + (aa+ dﬂ)b2 + (aé+c12)b1.
Hence, on account of (23), we get
V() + V() = V(RUAT + Q') - V(2)
3'454 + b1)(aé + b2)~V(1T) + a%aé + b1b2 + (a%+<$1)b2+(aé+ciz)b1
= -V(T7) +<x1bé + &,b,, hence on account of (24)
(26) V(P+Q) ~ V(By+Q) £ - V(7)) + Hyby + F 040
Secondly, since PO possesses the properties 12 - 43, we find
(27) V(By+Q) ¢ V(By) + V(Q) + V,(By)V,o(Q) + V(B V,(Q).
The relation (1) follows at once from (25), (26), (27).

3¢ Proof of the theorem in the case V12(P) = V12(Q)=1.

Let ¢ be a positive number. Therc exists a set P*‘, which is the
union of a finite number of rectangles
Risa, € Xy g€by 5 0y %X, 45 (i=1,2y000,k),
such that two different rectangles Ri ' Ri have no inner points In
1 2
common and such that
k
pep¥=s Rl,V( ) = 3 V(Ry) & V(P) + e
i=1 i=1
We may suppose that none of the intersections P r\Ri is empty and that
k is at least 2. For if k=1 for each choice of €& , then P reduces to
a single point, in which case the theorem is trivially true.
Consider a particular rectangle R. and put P.: P P\R.. Each point

of P. is P-connected with a point of the boundar{ of R s1nce k> 2
and P is closed and connected. Lct I(1 3) 4 be the four
sides of R. K let S (%) be the set of points x Wthh belong to P, and
are P—oonnected W1th a ?01nt of L(t) (t=1,2,3,4), and let i } be the
projection of S (t) on L t) (t=1,2,3,4).

Let t have a fixed value (1,2,3 or 4). The set S (t)ls closed, as
well as Tl(t). Now Ti(t) is a bounded subset of some straight line H.

Hence, on this line H, the set Ti(t)

() is Lebesque measurable, with
_t

measure A (Ti ), say. The complementary set }-I/E[‘j_(t ig an open

subset of H and consists of a finite or enumerable system of mutually
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disjunct, open intervals. Consequently T(t) can be overlapped by a
finite number of mtually disjunct, closcd intervals Igt), 1(t ),...

2
...,Igz), which are all contained in the side L(t) and which have a

total length
i P15 ol o Le

J=1
Let R( ), R(t),...,Rgt) be the rectangles with minimal area, which
i,1 i,2 lt t
are contained in R;y such that Igt)is a side of R(tg (j=1 2,...,1 )

and such that S( t) is contained in the union of these rectangles. Then,
if H is a horlzontal line, L(t) is one of the horizontal sides of R

and H intersects R(tg, H also intersects R(?grxP « If, on the other

hand, L( t) is one of the vertical sides of R, and H is a horizontal

i
line which intersects R§t§, then H also intersects R(t)
L)

i,3 r\Pi, except

when H contains a p01nt of the one-dimensional set

J=1
on the side L( t) with measure < _%E €.
Put 1

5, %= " W R(t)
t=1,2,3,4 J=1 113

Clearly P, is contained in Si* + Let H be an arbitrary horizontal o1
vertical line.and let K,, K,,...,K_ be the components of H r\Si*. These

components do overlap the components of H P\Pi and any coumponent Kr
has a non.empty intersection with Pi’ except possibly when L(t) is one

of the sides of R parallel %o H, Kr is contained in one of the

rectangles R(t%, R(t),...,R(t) and has a point in common with
i i,2 1,1t
Lo (8)y (%)
(\J IJ )/T . Hence we find
J=1
Vh(si*) <V (By) + 'E e (h=1,2).
Finally pus s*= \5 S{* + Then we have
i=1

*_ ok - *
Si = STM\R, P.-P{‘\RiC_Si.

it i
Hence it follows from the definition of V1, V2 and from the fact that

égi"‘Pj as a one-dimensional set is Lebesque measurable (i # j) that
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k
TV (S*) - v (sM =T T v.(sHmsX)
=7 B1 B (PEREP I R

k
Y 7 V. (P, AP, = V. (P.) - V. (P
¥ Eda BT & 'nlB n(P)s

-

hence

k

<V (P) + € (h=1,2).

The set S*is the union of a finite number of rectangles with sides
parallel to the coordinate axess Each of these rectangles contains a

point P; hence, since P is connected, s *also is connected. Since S ¥is

contained in \13' R. = P*, we have

i=1

(29) V(s¥) g V(P¥) < V(P) + & .
By enlarging slightly, if necessary, the rectangles of S*we can ensure
without disturbing (28) and (29), that the vertices of these rectangles
have rational coordinatess. Then for some rational )01 > O the set g *
possesses properties 12 and 22 of section 1. By the same argument we
can ensure that no two f’ 1-bea.ms have an intersection which consists
of a single point.

Similarly for each §g' v O we can find a set U*Which overlaps Q,
for some rational ¢ o Dbossesses properties 1-9-, 23, 32 and which
gatisfies the relations

(28") v (U™) < Vp(Q + € (h=1,2)

(291') V(U*) «V(Q + ¢

Let pXbe a submultiple of . and @ ,o Then 5*and U™ votn
possess properties 19., 2_9-, 32 with P = f*. Consequently we have,
by the result of section 2,

V(K U%) VEE®) & V(UF) & V(SHTLUY + T,o(5H)V (T,
Obviously P+Q.is contained in s* U*, on account of P C S*, Q cU*
This gives
(30) V(B+Q) V(5% + V(U*) + V,(SH)V,(U¥) + V(s*)V (U9
In order to deduce (1) from (30) we distinguish three cases.

1) Vh(P), Vh( Q) (h=1,2) all are finite. Then the required result

follows at once from (28), (28'), (29), (29%), (30), if we let ¢ , ¢ '
tend to zero. '



- 15 -

2) exaotly one of the guantities Vh(P), vy (Q) is infinite; suppose
v (P) oo« We remark that the gquantities V (S*), % (U*) all are

flnlte. IfV (Q) > 0, nothing has to be proved. If Vz(Q) = 0, then we
find by lettlng g¢' tend to zero

V(P+Q) € V(S¥) + V() + V (S%)V,(0) + V,y(s™V,(0)
= V(8™ + V() + V(M) (Q);

next letting € tend to zero, the required result follows.

3) at least two of the numbers Vh(P), Vh(Q) are infinite. We may
suppose that exactly two of these numbers are infinite and the two
remaining numbers are equal to zero, since otherwise the right hand
member of (1) is infinite and nothing has to be proved. If V1(P) =

= Vz(P) = oo, V1(Q) = VZ(Q) = O then, since Q is connected, Q reduces
to a single point; hence V(P+Q) = V(P), from which the relation (1) is
a trivial consequence. If VZ(P) = VZ(Q) = 0, then both P and Q arc linc-—
segments, so that the case V,(P) = vV, (Q) = oo, Vo (P) = V,(1) = 0 does
not occur. If V1(P) = V2(Q) = oo, then the right hand member of (1)
is infinite.The other cases can be treated analoguously.

The assertion is now proved completely.

4+ Proof of the theorem in the general cases

First suppose that V12(P) and V12(Q) are finite. Let P(1>, P(Z),

..,P(k) be the components of P and let Q(1), Q(z),...,Q(l) be the
components of Q.

A limit-point of a componecnt P( 1) belongs to P and is P-~connected
with the points of P(l). Hence each P( y and similarly each Q(J) is
closed.

Consider two different components P(i), P(j)'of P. Suppose that the
distance of these components is equal to zero. Then there exist two

() ) e 21, y(n) p(3)

sequences of points x ), y (n=1,24¢4.) with x(

lx(n) _ )

i?creasing scquence of positive integers Nyy Nogensy such that x K y
n .

¥y E converge if t -»ec0e But then the points of P(l)

with the points of P(J), which is a contradiction. Hence P(l and P(J)

have a positive distance. The same conclusion holds for the components

of Q. In view of our definition of the volume of a bounded point set

it follows from this fact that

k
(1) V() = 2 V(B . V() = Z v(Qy) .

i=1

y‘n)\~*>o as n —» oo« Since P is bounded, therc exist an(n

are P-connected

i
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On account of the relation

mh(P(i)\J P(j) ic) = mh(P(i); c) + mh(P(j); e)

(h=1,2; 1 €1 <j gk; ¢ real)
and a similar formula for the components of Q wc have

(32) T.(B) = 5 v (p(i) = (3)

3 p(B) = i;, V(P70 Vi(Q) = 3221 V(e 7) §h=1,2)-
Clearly

/" ) v ) LS (1) = (J)

(23 12(13 =k = 1§V12<P )y v12(q) =1 = j;vm(g ).

Write 4
F(P,Q) = V(B)V.,(Q) + V,(B)Vh(Q) + Vo(B)V,(Q) + V,(R)V(a),

(e, 903y = vy () v, v, elE)y
+ V2(P<i))V1(Q(j)) + Vm(P(i))Vm(Q(j)) (i=1y2,000,k3 32152, 000,1)
Then it follows from (31), (32), (33) that

k 1 . .
(34) F(P,Q) = S r(p(1), old)y,
157 551
Clearly _
P+ = _/ (P(l) + Q(J))
i=1,2,+¢44k
521,20, 0 0eyd
hence X 1 _ .
(35) V(P+Q) ¢ ZT 21 v(p(l) 4 o3y,
i=1  j=

To each pair of sets P(i), Q(j) we may apply the result of section 3. Then,
in the case V12(P), V12(Q)<\Cﬂ, the rclation (1) follows from (34) and

(35).
Next let the nuwmber of components of P and Q be finite or enumerabdle
%Denoting by Pﬁ the union of the first components of P and by Qn the union

iof the first n components of Q we find by the above result
% V(R + Q) g F(Byy Q) <F(30).
Letting m,n tend to oo (k), oo(l) we get
V(P+Q) = 1lim V(Pm + Qn) é F(P,Q),
%hich is the required result.

This completes the proof of the theorem. -

L



