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On the measure of the V__§ctorial sum of two-dimensional point sets. 
by 

C.G. Lekkerkerker. 

Let P,Q be two bodies in Rn and let P+Q be the vectorial sum • 
.Prof. van der Corput raised the question, whether one can derive an 
upper bound for the volume of P+Q in terms of quantities, each of which 
Gnly depends on one of the sets P,Q. Actually he thought of the 
quantities V. . . ( P), etc., defined below. This led to the 

1 1 ' 1 2 ' • • • ' 1 k 

conjecture that such an upper bound is given by the relation (2) (D0e 

below). In this report we give the proof of this formula in the cas0 
n=2 and also make some general remarks. 

1/e consider point sets in the plane, We u~e a fixed Cnrtesian 
coo~~inate system. Points will be denoted by x=(x1,x2), y=(y1 ,y2), et1° 
We write x+y for the vectorial sum of x and y and denote by \ x l the 
distance from x to the origin. 

The notion of component of a point set is important for our 
purpose. Here it may be defined as follows. Two points x,y of a point 
set P are called P-connected, if for each ~) 0 we can find a finite 
chain(~! points x(O)=x,x( 1), ••• ,:J./n)= Y,. such that l x(k+ 1)_ x(k)\ <: 
and x ~ P for k=0,1, ••• ,n-1. This relation bGtween two points 
of P determines uniquely a subdivision of Pinto subsets, such that 
two points of Pare connected if and only if these points-belong to 
the same subset; these subsets ate called the components of P. The 
number of components of a point set P may be denoted by v12 (P); it may 
be finite or infinite. 

Next we define for each point set P two quantities which as to thoir 
nature stand between the measure of P and the above defined quantity 
v12(P). Let the coordinates of a point x be denoted by x 1,x2 • For ea 0 h 
real c let lT 1(P;c) be the intersection of P ~nd the vertical line 
x 1==c and put 

The least upper bound of the integral J: f(t)dt for those non-negativo 
measurable functions f(t), which vanish outside a finite interval and 
which satisfy the relation 

for all t, 

will be denoted by v1(P). Thus, if m1(P;t) is a measurable function 
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of tt then v1(P) simply is given by 

V1 (P) = 1:m1(P;t)dt. 

Similarly we define -rr 2( P; c) as the intersection of P and the horizontal 
line x2=c and denote by v2(P) the least upper bound of 

1: f(t)dt 

for the non-negative, measurable functions f(t), which vanish outside 
a finite interval and for which 

0 ~ f ( t ) .{._ m2 ( P ; t ) = V 12 ( lT 2 ( P ; t) ) • 

We remark that the quantities v1(P), v2 (P), v12 (P) may be infinite 
even if Pis bounded. 

Finally we use the outer measure of P. In the case that Pis boupn°~ 
this outer measure is defined as the lower bound of the area of tho 
point sets P ~ , which contain the point set P and which consist of a 
finite number of rectangles with sides parallel to the coordinate axes, 

We now can state the theorem a proof of which is tho main object 
of this note. 
Theorem. Let P,Q be two bounded, closed point sets in the plane. 
Suppose that P and Q have a finite or enumerable system of components~ 
Let the quantities v1(P), v2(P), v12 (P) be defined as above, and 
similarly the quantities v1 (Q), v2(Q), v12 (Q). Let V(P), V(Q), V(P+~) 
be the outer measures of P, Q, P+Q respectively. 

Then we have 
( 1 ) V ( P+ Q) ~ V ( P) V 1 2 ( Q) + V 1 ( P) V 2 ( Q) + V 2 ( P) V 1 ( Q) + V 1 2 ( P) V ( Q) , 

if in the right hand member we use the convention O. oo =0, a. o<i= oo if 

a > O. 

Remark 1. With the above convention tho theorem is no longer true if wo 
omit the condition that the number of components of P and Q is at most 
enumerable. For let P be the set of points x=(x 1 ,x2) with O ~ x 1 ~ 1, 

0 ~ x2 ~ 1, such that both x 1 and x 2 can be written as an infinite 
decimal in the scale of 3, where the digits are all O or 2 ( so tht:-.t 
the projections of Pon the x 1-axis and the x 2-axis form the so-cali~~ 
discontinuum of Cantor). And let Q be the set of points y:::;(~,-,~2) wit;~ 
0 f y 1 ~ 1, 0 ~ y2 f 1, such that both y 1 and y2 can be written as an 
infinite decimal in the scale of 3, where the digits are all O or 1~ 

The number of components of P and of Q is not enumerable. It is 
evident that each point z=:=( z 1 , z2 ) of the square O ~ z 1 ,~ 1, 0 ~ x2 .(. 1 

can be written as z=(x1 ,x2)+(y1 ,y2), where x 1 ,x2 ,y1 ,y2 have the form 
specified above. Hence P+Q·overlaps this square,so that V(P+Q) > =1 
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Further the sets P,Q are bounded, closed and have Jordan measure O. 
Likewise the projections of P and Q on the coordinate axes have, as 
one-dimensional sets, Jordan measure O. Hence, according to our 
definitions, the numbers v1(P), v2(P), Vj(Q), v2(Q) are all equal 
to zero. Hence, according to our convention, the right hand member 
of (1) must be interpreted to be equal to zero. Consequently (1) is 
not true for the pair P,Q. 
Remark 2. In the inequality (1) the· equality sign cannot be omitted 
For if P and Qare rectangles with sides parallel to the coordinate 
axes with sides a,b and c,d respectively, then, as is easily verified: 
both members of (1) arc equal to (a+c)(b+d). A less trivial example 
is obtained as follows. 

Let S(p,q) be the square p ~ x 1 ~ p+1, q ~ x2 ~ q+1 and let k and 1 bo 

positive integers. Then let Q be the square S(O,O) and let P consis' 
of the kl squares 

I -7-_r--1 .T-1 --o ·7- t__r- ··1__-1 r S (O,O) , 

S (0,2) , 

S'(?,O) , 

s (~,2) , 

S (4,0) , ••• 

s (4,2) f I•• 

, S ( 2k-2, 0) , 

, S ( 2k-2 , 2 ) , r-J--CJ-{:=J 
1I1-o-c--, 
I -~--- ~ S(0,21-2), S(2,21-2), S(4,21-2), ••• , S(2k-2,2l-2)r 
- . 1-0-LJ } l=J which are connected by a number of horizontal or 
ili.-1. (.-...,. l, L: '-I 
vertical" line-sequents in such a way that this number is minimal and 
that P is connected ( see fig. 1). Then P+i2 is a rectangle with sideri 
2k,21, so that V(P+~) = 4kl. We further find 

V(Q) = V1(n) = V2(q) = v12(q) = 1, 

V(P) = kl 

V1(P) = (2k-1)1', v2(P) = kl+l-1. 

Consequently for these sets P,Q the right hand mcmber of (1) has tho 
value 

kl+ (2k-1)1 +kl+ 1-1 + 1 = 4kl. 

Hence (1) holds with the equality sign. 

We shall say a few words about the corresponding problem in 
Rn ( n ~ 3). Let P, Q be two bounded point sets in Rn. We use a fixed 
Cartesian coordinate system and denote the points of Rn by 
x = (x1 , x2 , ••• ,xn), etc. We define P+Q in the same way as in the 
two-dimensional case, 

Consider a set of positive integers i 1 , i 2 , ••• ,ik with 

1 ~ i 1 < 12 < • .. < ik ~ n (k=1,2, ••• ,n-1). Thon for any roal numbers 

c 1 , c2 , ••• ,ck we denote by mi 1 , i 2 , ••• ,ik(P;c 1, c2 , ••• ,ck) the number 
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of components of the k-dimonsionnl intersoction of P and the subspace 

xi 1= c 1, xi2= c 2 , ••• ,x1k= ck. Assign in a suitable way a value to tho 

integrnl 

. . ( P; t 1 , t 2 , ••• , tk) d t 1 d t 2 ••• d tk, 
12' •.. ' lk 

such that this integral ruduces to tho Lobesquo (or Riemann) integrnl, 
if theso integrals exist, and denote this value by V. . . (P). 

J. 1 ' i 2 ' • • • ' 1 k 

In this terminology it is natural. ·to denote by V( P) the number o:l° 
components of P and by v12 ( P) the measure ( contrary to our • ,. • n 
definitions in tho two-dimensional case). In tho samo way 

V ( (1) ' V. . . ( Q) , V 12 ( Q) ' V 1 2 ( J?+ (2) J.1' 12,••·,1.k ••• n ••• n 

can be defined. We now state the following 
QonjeC?,.t"\ff'e• If P and Q are n-dimi::msional point sets, which satisfy 
certain not too restrictive conditions, then we have the formula 

(2) V 1 2 ( P+ Q) < "'> -- V . . . ( P) V . . . ( '~) , 
• • • n " L- 1 1 ' J. 2 ' • • • ' 1 k J 1 ' J 2 ' • • • ' J n-k 

where the sur~ is extended over all sets of positive integers 

i 1 , i 2 , ••• ,ik; j 1 , j 2 , ••. ,jn-k (k=0,1,2, ••• ,n) with 

1 ~ i 1<i2 

iP,/. jq 

<. 0 • 

for p= 1 , 2, •.. , k; 

1 ~ j 1 < j 2 < • · · ( j n-1c ,,, n' 

q= 1 , 2 , • • • , n - k • 

We remark that the conjecture is riG;ht in the case of bounc1ed 
convex bodies. In this case the intersection of P(Q) and a subspace 
consists of at most one component a Let J? * be the ;;:;mallest parallelotopG 
a. ~x . .s:_b.(i=1,2, .•• ,n), which contains P. In the same way defir 
1., J., l 

* Q • Then -we find 

(3) * . . ( p ) ' 
l 2 ' ••• 'lk 

for each set of positive integers 1 1 , 12 , ••• ,ik with 

Now we use a result of the theory of convex bodies 1) which runs as 

1) See T. Bonnesen-W. Fenchel, Theorie der konvexen KBrper, Chelsea 
(1948), in particular P• 38, formula (1) and p. 41, property 5. 
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follows. Let )., , }.A- be positive numbers, let ~ P be the set of 

points ).. x with x l. P and let JA ... Q be the set of points µ, x with 

x t.. Q. Then there exist non-negative numbers A0 (P,Q) ,A 1(P,Q), ••• ,An(:P 1 (2) 1 

not depending on A , µ. , such that 

n 
(4) V ( A P+ µ.,Q) = L AJ.. ( p, Q) 

12 ••• n i=O 
Ai n-i 

J-,>.... • 

Furthermore, if P I and ')' are bounded, convex bodies with p P 1 , Q ·l' .. 
then we have 

Ai ( p' Q) ~ Ai ( p I ' Q I ) • 

Taking ~ = p ... = 1 we find 

n-1 
( 5) V 12 • • • n ( P+ '2) - V 12 ••• n ( p) - V 12 ••• n ( Q) ~ ~ Ai ( p *' Qt.) • 

J:'or, if A or µ... tend to zero we get from ( 4) 

V12 ••• n(P) = An(P,Q), v12 ••• n(Q) = Ao(P,Q). 

Similarly we have 

* ' j ¥ * ~ *) 
(6) V12 ••• n(P) = An(P ,Q ), V12 ••• n(Q) = Ao(P ,Q • 

* '». Applying (4) with .~ = ~ =1 and with P 1 Q replaced by P , Q we furt'1 

get 
if: ~ n * * V 1 2 ••• n ( P + Q ) = -~ Ai ( P , Q ) • Hence, in virtue of ( 5) 

1 = (6), we find 

and 

(7) V 12 ••• n ( P+Q)-V 12., ~. n ( :e )-V 12 ••• n ( ,)) ( V 12 & ". n ( lJ* +Q:lt') .... v 12 • • • n ( p~ )-

- V 

Denote by d1 , d2 , ••. , d the lengths of the edges of P * and by 
.n ¥ 

e 1 , e 2 , ••• , en the lengths of the edges of Q • Then P ;¥. + Q"¥- is a 

rectangular paralleloto:pe with edges di+ (\• Hence we get, using (7), 

( 8 ) V 1 2 ••• n ( P+ Q) - V 1 2 ••• n ( p) - V 1 2 ••• n ( Q) 

n n n s.. -\T (d.+ e.) - lf d. - 1f e .• 
' i= 1 1 J. i= 1 1 i= 1 J. 

Vie further find for k=1, 2, ••• , n-1 

(9) V. . . (Pf)= a.. d .•• $d. , 
1. 1 ' 1. 2 ' • • • ' 1 k 1. 1 1 2 1 k 

V. . . ( Q*) = e. , e. • • o e. • 
J1, J2,·••,Jn-k J1 J2 Jn-k 

Denoting by 1: 1 a sum over all Rets i 1, i 2 , ••. ,ik; j 1 , j 2 , ••• ,jn-k 

(k=1,2, ••• ,n-1) with 

j 1 <_ j 2 :: • • • / J' ~ n, ,.., n-k -
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ip -J jq for p=1,2, ••• ,k and q=1,2, ••• ,n-k, we find, using (3) and (9), 

(10) 

= "IT ( d. + e. ) - ·l\-- d1. - 1f e1 .• 
i=1 1 1 t~1 i=1 

The inequality (2) follows at once from (10) and (8). 

Finally we remarl:: that it is easy to :find 11.10re -climonsionnl point sc+" 

o.nalogu.ous to tho point sets treated in remark 2, :for which (2) ho16..., 
with the equulity sign, 
Proof of the theorem. 

1 • a.,oof for s ~"!;§_ P, 9 of_ a s,ne cj.--?,l farm. 

Let p be a positive number. In the following we call a f -~l 
each square 

(11) pf .~ x 1 ~ (p+1) f ( p, q integral), 

denoted by S(p,q; .f ). We write S(p,g_;1) = S(p,q), 

Suppose that, for some j>O>P is the union of a finite number 
of _f -cells. The intersGction of P and the strip q0 y ~ x2 ~ ( q0+1) f' 
( ~ integral) is the union of the f -cells S( p, ci;y) of P with g_=g_0 • 

The components of this intersection will be called f -beams of P. 
In this section we consider sets with the following properties• 

1£ the set is connected 
2g for some _r > 0 it is the union of a finite number of f -cells 
3£ the intersection of two different f -beams never consists of a 

single point 
4£ the boundary of the set is connected (or, stated otperwise, the 

set is simply connected). 
And we shall prove the relation (1) in the case that P ,E_osse~es the 
properties·1£ - 4g and Q rnsesses the properties 1g - 2&. 

Let r be a positive number and let P,Q 
with x ~ P and the set of points rx with x 
members of (1) are multiplied by r 2 , if we 

' without loss of generality, we may suppose 

be the set of points rx 
~ Q respectively. Both 
replace P,Q by P,Q. So, 
p =1 • Then both P and Q 
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consist o:f 1-cella or of 1-beam.a ( briefly oalled cells and A!MsJ. 

Denote ~Y P+Q the union of the colla S(p,q), tor which there 
exist two cells S(p•,qi), S(p 11 ,q 11 ) with 

S(p',q')(P, S(p 11 ,q 11 )C.Q, (p',q') + (p 11 ,q 11 ) = (ptq). 
Put 

"-1 Q = p( 1 ) + Q, where p( 1 ) = S( 0, 0) v S( 1 , 0) 
(2) (2) ~2Q = P + Q, where P = S(O,O) vS(0,1). 

We arrange the beam.a of Pinto a soquonoe B1, ::a2 , ••• ,\: in the 
following way. Choose ::a1 arbitrarily and, if B1, ::a2 , ••• ,::a1_ 1 are 

chosen, take as Bi one of the remaining beams, suoh th.at the inter
section of B1 and 2:,-1 ,Bj is not empty (i=2,J, ••• ,k). On account 

j=1 

of 3g this intersection is a line-segment, the length of which is a 
positive integer; it never happens that Bi is connected with two of 
the beams B1, B2 , ••• ,Bi_1 for otherwise tho boundary of 6 Bj, and 

j=1 k 
in view of the maximality of the boumo nloo the boundury of U Bj~ 

j=1 

should not be connected. Consequently each set 0 
j=1 

Bj (1=1,2, ••• ,k) 

possesses the properties 1g - 4£. 
Let Q ~ be an arbitrary set which possesses tho properti•s 1& aJ"I•' 

2£ (with jt:=1). Denote the beams of Qj:_by c 1, c2 , ••• ,c1• Let L bt; ... 

set of pairs li,j) of positive integers i,j with 1 ~ i ( j ~l, such 
that Ci and Cj have a non-empty intersection. Let 1• be the number 
of these pairs. According to the connectedness of Q ~ we havo the 
relation 
(12) 1 • ~ 1-1 . ,. 

Let c1 consist of mi cells (1=1,2, ••• ,1) and for { 1, j ) t L let ni, j 

of c1 and Cj (so that n1 ,j is a denote the length of the intersection 
non-neg~t~vc integer). Clearly 

* 1 
( 13 ) V 1 ( Q ) = i~ mi - = 1. 

The set t 1 Q 'i< is obtained from Q ~ by adding to each of the l beams 
one new cell to the :r:ight of it. As a first consequl;)nce we concluo" 
from this fact and the second relation (13) that 

(14) V( ""t 1c?) - V(Q*) = V2 (Q;$:), V2 ( -c 1Q*) ~ V2(Q*). 

Next we find 
1 

= i~ (D½_+1) -
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Henco, on account of (13) -and (12), we obtain, 

* . t. l 
( 15) V 1 ( -c 1 Q ) - V 1 ( Q ) = .L 1 - L. 3 :::: 1-1 • . ~ 1 • 

1= 1 ti t j } f... L ' ~ 
For reasons of symmetry the formulae, obtained from (14) and (15) by 
permuting tho indices 1 and 2, aro also true. only . ,cud the relation 

( 14 ' ) V ( "t 2 ()* ) - V ( Q :t- ) = V 1 ( Q * ) . 
Now by induction on tho number of beams of P, we sh.all provo the 

following fort:itula 

(16) V(P+Q) ~ V(P) + VC1) + v1(P)V2 (r1) + V2 (P)V1(q). 

First suppose k=1. Put v1(I) =a.Thon, apart from. a translation, 

PlQ is the set "'t 1 a-1 Q ( if -t 1 °(l .= Q, '"t. ~Q .= 't 1 ( -t:.. ~-1Q) for 

n=1,2, ••• ). Now for n=0,1,2, ••• tho set 1:.~ Q possossos the :pro:_?ortie8 

1g, 2~L Hence we find, by ropeatcd application of both relations ( 14), 

V(PiQ) = V("t~-\~) = V(-t:~-2Q) + v2 (-c~-2Q) 

~ V( t ~-2 Q) + V 2 ( 1) ~ ... 
~ V( Q) + ( a-1) V 2 ( Q) • 

On tho other hand the right hand r.<1.ernber of ( 16) bocomes 

a+ V(Q) + aV2(Q) + V1(Q) ) V(Q) + (a-1) V2(Q). 

This proves (16) in the case k=1. 

Next suppose k > 1 and suppose that ( 16) holds if P is replaced 
by a set P l\f,, which has the properties 1g - 4£ and consists of k-1 

beams. Arrange the beams of P, such as is explained above and put 
·)\(_ k-1 

P = 'v B .• Then ~ has a non-empty intersection with exactly one 
j= 1 J 

of tho beams of P "ll: ; denote this beam by B. Without loss of gcncra.li ty 

we may suppose that WG have the situation, given by figure 2. Denote 
cells of Bic, which have a sidu in common with by~ th;; 

~ 
! 

let s be 

union of 

~ 

1 [ 

fig 2 

the la.st 

thu 

coll 

a cell of B, and denote by B' tho union of the 
J corresponding cells of B. Denote by~ the 

union of tho remaining cells of~• Further 
let a,b be tho number of cells of~,~ 
rospoctivcly; we have a) o, b ~ o. Finally 

of~ and put P*~ = P~ v~. 

A cell of P * t -+ rh which does not belong to P~ + Q, must be a 
cell of~+ Q; furthermore this cell certainly does not belong to 
B' .f. Q CF*+ Q. 



Hence we find . 
V(P* 1 + Q) -·V(P*i Q) ~ V((Bi vB~~ .f. Q) -V(B' .f. Q). 

Evidently 
(1P vBk) + q= t. 2 (B' .f. Q) 

and, apart from a translation, 

B • + Q = "t. 1-1 Q • 

Hence, a.J;,:plying (14') arid (15)t wo find 

V((B• u 1¾) .f. Q) - V(B' .f- Q) ;;: V(--t 2 "t.~- 1q) ~ V(1: ~-1q) = 

henco 
V(:l?)l<--t + Q) - V(P~ + Q) ~ V1(Q) + a-1, 
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Similarly a cell of P + Q, which does ~ot belons; tq P .._ .__ -f. Q, 

is a cell of~+ Q, which is not contained in S l Q• 
So we find 

V(P -T- Q) - V(P"";(. .f. Q) ~ V( (S u ~) + Q) - V(S .f. q) 

= V( t ~ Q) - V( Q) , 

hence, applying the rolation (14) 

V(P + Q) - V(p'lf-'X .f- Q) ~ bV2 (Q). 

Summarizing we get 

(17) V(P + Q) - V(P~+ Q) <a+ v,(Q) + b V2(q)~ 

On tho other hand P * possesses properties 1£ - 4g · and consists of 
k-1 beams. So, by the induction hypothesis,we have 

(18) V(P)l(.f. Q) ~ V(P""") + V(Q) + v,(P.)V2(Q} + V2(p¥-)v,(Q). 

The right hand members of (16) and (18) differ by 

\_v(P) - V(P'i() 1 + f V1(p) ... v,(P"')} V2(t1)+ {v2(P)-V2(_P*)} V1{C2),. 

which is at least equal to 

a+ b + b V2(Q) + V1(Q) ) a+ v,(Q) t b V2(Q), 

·using this fact and the relations (17) and (18) we obtain (16). 
This completes the proof of (16). 

Since f and Qare connected, the numbers v12(P), v12 (Q) arc equal t~ 
.Hence the right hand members of ( 16) and ( 1) are identical. It rcmatnn 
'to prove, that in (16) we may replace the quantity V(P + Q) by V(P + .~:, 
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Let N boa positive integer. 

~et PN be tho sot of points Nx with x f.. P and ~ the set of point-s 
Nx with x ~ Q. Thes0 sots arc the union of a finite number of cells. 
Clearly PN possesses the properties ,g - 4g and~ tho properties 

0 0 ) 1=, 2=. Hence we got from (16 

(19) ~ V(PN + ~) ~ V(P) + V(Q) + v1(P) V2(Q) + V2(P) V1(q), 
N 

Consider tho sots P+Q, PN+~ = (P+Cl)N. These sets consist of a 
finite numbGr of cells, Denote by ~ the length of th0 boundary of 
P+Q. Then PN+ ~ has a boundary of length N ~. Each cell of PN i ~ 

is a cell of PN+ ~ and a cell of PN+ ~, which does not belong to 
PN +~'necessarily falls along tho boundary of PN +~•Hence tho 
number of these cells is at most equal to N ~. Henceforth 

0 ~ V(P+Q) - ~ V(PN + ~) ~ J A , 
N 

which implies 

(20) lim ~V(PN f QN) = V(P + Q). 
N ~ oo N 

Tho relation (1) is a consequence of (19) und (20). 

2. Elimination of tho condition 4g, 

In this section we prove the relation (1) in the case that P and 
Q possess properties 1g - 3£ (with.f =1). 

The boundary of P consists of a finite number of line-segments. 
On account of 3g no three of these line-segments have a common end
point. So the boundary of P consists of a finite number (at least 1) 
of closed curves (broken lines) without double-points. Since Pis 
connected, one of these closed curves, r 0 say, has the property, 
that the other ones, let us say\ 1, r 2 , ••• , rt (t ~ O), lie insir~ 

f·0 • Consequently there exists a point set P0 , which possesses the 
jroperties 1g - 4£, such that Pis obtained from P0 by removing from 
its interior a finite number of open point sets P1, P2, ••• ,Pt (t ~ 0), 
each of which has a closure which possesses the properties 1g - 4~L 

In the case t=O the assertion holds, in virtue of the result of 
section 1. So we may suppose t > 1. Put ~ P. =if, so that P = P0/1\, 

,, . 1 J. 
l.= 

Since Q is connected and closed, the projections of Q on the x 1-axis 
and the x2-axis are closed intervals. From the definition of 
v1(::-J), v2(Q) it follows that the lengths of these int.ervals are at 

r•ost equal to v1(Q), v2(Q) respectively. Hence there exists a 
~rectangle Q' with Q c. Q', such that the sides of Q' are parallel to the 
~}coordinate axes and have length V 1 ( Q), V 2 ( Q) • 
~i{' 
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Clearly 

(21) v1(Q') = v1(Q), v2(Q') = v2(Q). 

Without loss of generality we may suppose that the origin is the left 
lower vertex of Q'• 

Further let P' be a rectangle with Pc P' and with sides parallel 
to the coordinate axes (see fig. 3). Put 

t .•••••••••••••••••••••••••••••••••••••• -- ••••••••••••••••••••••••••••••••••••••••••••• ~ . 
' P" = P' + Q' 

p' 
1\1 = ( P+Q) I'\\\. 

112 = (P'/1\+ Q').r--.\\. 

On account of P c P' /ii , Q C Q 1 we have 
f- ~ 2; 

(22) 1\1 C if 2• 

Clearly (P•,fn- + Q' );1T = (P' + Q' )/[ , 

hence 
p I /lT + Q 1 : ( p I 11{ + QI ) /l'r V ( p I Irr + Q I ) (""\ 1T 

hence 

(23) V(P'/rr +Q') = v(P 11 ) - v(--n) + V('\\ 2). 

Since ( P+Q) Irr is contained in ( P0+ Q) ;1T , we have 

P+ Q = ( P+ Q) Irr u ( ( P+ Q) ~ ii ) c. ( PO+ Q) /1\ v ~ 1 , 

hence 
V ( P+ (2) ~ V ( PO+ 1) ... V ( if) + V ( ,r 1 ) • 

So on account of (22) we get 

( 24) V(P+Q) - V(l?0+q) ~ - V('1r) + V( ~ 2 ) • 

For shortness write 

V h ( P) == ah t V h ( P' ) = ah, V h ( ii ) = d.h, V h ( Q) = V h ( Q' ) = bh ( h= 1 , 2) • 

Then we clearly have 

V(P 1 ) = a1a2 , V(Q 1 ) = b 1b2 , V(P") = (a1 t b 1)(a2 + b 2), 

V h ( PO) = ah - oeh , V h ( P' /1T ) = a~ + ,i:,c. h ( h= 1 , 2) • 

We further get 

(25) {v(P)+V(Q)+V,(P)V2(Q)+V2(P)V,(Q)} - {v(Po)+V(Q)+v,(Po)V2(Q) + 

+ v2 (P0)V1(Q)j 

= V ( p) - V (Po) + \ V 1 ( p) - V 1 ( p O) ~ V 2 ( Q) + t V 2 ( p) - V 2 ( p O )~ V 1 ( Q) 

= - V ( ,r ) + oL1 b 2 + o... 2 b 1 • 
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We now.apply twice the result of section 1. First, since Q' 
possesses the properties 1g - 4£, we may deduce 

V(P'/rr +Q') ~ V(P 1 /,r)+V(Q 1 ) + V1(P'/\\ )V2(Q)+V2(P'/if )V1(Q') 

= -V( ii)+ a 1a 2 + b 1 b2 + (a1+ dv1 )b2 + (a2+ o(..2 )b1 • 

Hence, on account of (23), we get 

-V(if) + V(7i2) = V(P1,1f + Q 1 ) - V(P") 

~-(a1 + b 1)(a2 + b2)-V(1't) + a 1a 2 + b 1b2 + (a1+QC.1)b2+(a2+d2)b1 

• -V(if) + d...1b2 + °'2b 1, hence on account of (24) 

( 26) V(P+Q) - V( P0+Q) ~ - V( 1f) + ~ b2 + ~ 2b 1 • 

Secondly, since P0 possesses the properties 1g - 4g, we find 

(27) V(Po+Q) ~ V(Po) + V(Q) + V1(Po)V2(Q) + v2<Po)V1(Q). 

The relation (1) follows at once from (25), (26), (27). 

3. Proof of the theorem in the case v12 (P) = v12 (Q)=1• 

Let l be a positive number. There exists a set P ';ii( , which is the 
union of a finite number of rectangles 

Ri: ai ~ x1 ~ bi , Ci ~x2 ~ di (i=1,2, ••• ,k), 

such that two different rectangles R. , R. have no inner_points in 
1 1 l.2 

common and such that 
k 

= L V(R.) <. V(P) + E. • 
. 1 l. J.= 

We may suppose that none of the intersections P l""'\R1 is empty and that 
k is at least 2. For if k=1 for each choice of~, then P reduces to 
a single point, in which case the theorem ic trivinlly true. 

Consider a particular rectangle R1 and put P1= P r-\R1 • Each point 

of P. is P-connected with a point of the boundarf of R1 ( since k ~ 2 
and~ is closed and connected. Lot L( 1), L( 2), L 3), L 4 ) be the four 
sides of R., let S.(t) be the set of points x which belong to P. and 
are P-conn!cted wi~h a ~oint of L(t) (t=1,2,3,4), and let Ti(t} be the 
projection of Si(t)on L(t) (t=1,2,3,4). 

Lett have a fixed value (1,2,3 or 4)., The set S.(t)is closed, as 
well as T.(t). Now T. (t) is a bounded subset of som~ straight line H. 
Hence, on1 this line t, tho set T.(t) is Lebesque measurable, with 
measure µ. ( T1 ( t) ) , say, The com~lemcn tary set H/Ti (t) is an open 
subset of Hand consists of a finite or enumerable system of mutually 
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disjunct, open intervals. Consequently Tft) can be overlapped by a 
finite number of mu.tu.ally disjunct, closed intervals I~t), rit>, •.. 
•••tiit), which are all contained in the side L(t) and whioh have a 

t 
total length 1 r ,-i--,(I(t)} ( »-(T(t)) + j_ €... 

j=1 j i ~ 

Let Ri; ~, Rl t 1, • •. ,Rl ti be the rectangles with ,ninima.1 area, which 
' ' t 

are contained in Ri' such that I~t)is a side of R1!~ (j=-1,2, ••• ,lt) 

and such that sit) is contained in the union of these reota.nglea. Then. 
if His a horizontal line, L(t) is one of the horizontal aides of R1 

and H intersects Rltj)' H also intersects Ritj)r,P1 • If, on the other 
L( t) ' , 

hand, is one of the vertical sides of R1 and His a horizontal 

line which intersects R~ tj), then H also intersects R( t) f"\ P except 
1, i,j 1' 

when H contains a point of the one-dimensional set 

( ;:_,t 1 (t))/T(t) 
j=1 j i 

on the side L(t) with measure < -i1c t,, 

S.~= '-...J O R(t) 
l t=1,2,3,4 j=1 i,j• 

Put 

Clearly Pi is contained in s1*. Let H be an arbitrary horizontal 01 

vertical line. and let K 1, K2 , ••• ,K8 be the components of H "s1 ""• These 

components do overlap the components of H 19\ Pi and any cornponent Kr 

has a non-empty intersection with Pi, except possibly when L(t) is one 

of the sides of R1 parallel to H, Kr is contained in one of the 
(t) (t) (t) rectangles R. 1, R. 2 , ••• ,R1. 1 and has a point in common with 
1, 1, , t 

( ~t 1( t)) /T~ t). 
j=1 j J. 

Hence we find 

Vh(S/') < Vh(P1 ) + i½ E. ( h=1, 2). 

'llli 11 .._ S ..,._ k S ;11.. Th ha ~ na y pu .. = v 1 • en we ve 
i=1 

1; Si~= s*r"\Ri t pi = p f'\Ri c.. s~ 
,,, 

;fence it follows from the definition of v1, v2 and from the fact that 

ti '"'-pj aa a one-dimensional set is Lebesque measurable (i /. j) that 
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k 
~ L I:. vh ( P. " P . ) = I:_ vh ( P1. ) - vh( P) , 

1~i<j~k 1 J i=1 
hence 

(28) 

(h=1,2). 

The set S 'J(.. is the union of a finite number of rectangles with sides 

parallel to the coordinate axes. Each of these rectangles contains a 

point P; hence, since P is connected, S * also is connected. Since S * is 

contained in 6 R. = P ~, we have 
i=1 1 

(29) V( S *) ~ V( P -~) < V( P) + 'i.. • 

By enlarging slightly, if necessary, the rectangles of S 'ii-we can ensure 

without disturbing (28) and (29), that the vertices of these rectangles 

have rational coordinates, Then for some rational J° 1 ) 0 the set S * 
possesses properties 1g and 2g of section 1. By the same argument we 

can ensure that no two f 1-beams have an intersection which consists 

of a single point. 

* Similarly for each f. 1 > 0 we can find a set U which overlaps Q, 

for some rational y 2 possesses properties 1g, 2g, 3£ and which 

satisfies the relations 

( 28 I) 

( 29 I) 

Vh(U*) < Vh(Q) + €. 

V ( U * ) < V ( Q) + E.. 

(h=1,2) 

Let _p~be a submultiple of f 1 and f 2 • Then s*and u*both 

possess properties 1 g, 2g, 3£ ·with f = f ')(...• Conseq_uently we have, 

by the reS'Ll.lt of section 2 1 

v(sl-+ u'~') ~ v(s*) + vcu-t:") + V,{S~~v2(u*) + v2(s*)v1(~). 

Obviously P+Q. is contained in s*+ U *, on account of P c s~, Q c. U')lf.. 

This gives 

(30) V(P+Q) ~v(s-Jf.) + V(U~) + v1(s~)V2(u*) + V2(S'Jf.)V1(ul-). 

In order to de duce ( 1) from (3-0) we distinguish three cases. 

(h::;: 1, 2) all are finite. Then the required resul. t 

follows at once from (28), (28•), (29), (29 1), (30), if we let t, t 1 

,tend to zero. 
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2) exactly one of the quantities Vh(P), Vh(~) is infinite; suppose 
V 1 ( P) = (X)" '..Ve remark that the quantities Vh ( S~), Vh (~) all are 
finite. If v2 (Q) > O, nothing has to be proved. If v2 (Q) ~ o, then we 
find by letting ~' tend to zero 

V(P+Q) ~ v(s*) + V(Q) + V1(s*)v2(C2) + V2(S~)V1(Q) 

= V(S~) + V(Q) + V2(s*)v1(Q); 

next letting ~ tend to zero, the required result follows. 
3)_at least two of the numbers Vh(P), Vh(Q) are infinite. We may 

suppose that exactly two of these numbers are infinite and the two 
remaining numbers are equal to zero, since otherwise the right hand 
member of (1) is infinite and nothing has to be proved. If V (P) = 

1 

= V2(P) = oo, V1(Q) = v2(Q) = 0 then, since Q is connected, Q reduces 
to a single point; hence V(P+Q) = V(P), from which the relation (1) is 
a trivial consequence. If v2(P) = v2 (Q) = o, then both P and Qare linc
segments, so that tho case v1(P) = v1(Q) = 00, v2(P) = v2(.'2) = 0 does 
not occur. If v1(P) = v2 (Q) = oc, then the right hand member of (1) 
is infinite.The other cases can be treated analoguously. 

The assertion is now proved completely. 

4. Proof of tho theorem in the general cas_e •. 

First suppose that v12(P) and v12 (Q) are finite. Let p( 1), p( 2), •• 

• • ,p(k) be the components of P and let Q( 1), Q( 2 ), ••• ,</l) be the 

c-omponents of 1• 
A limit-point of a componont p(i) belongs to P and is ~-connected 

with the points of p(i). Hence each p(i), and similarly each Q(j), is 

closed. 
Consider two different components p(i), p(j) of P. Sup?ose that thu 

distance of these com~onents is equal to zero. Then there e~ist two . 
sequences o:f points x(n), y(n) (n=1,2, ••• ) with x(n) ~ p(i), y(n)E..p(J), 

\x(n) - y(n) \ ~O as n • 00• Since P is bounded, there exist an(n ) 
increasing sequence of positive integers n 1, n 2 , ••• , such that x t 

y(nt) converge if t-.+c-o• But then the points of p(i) are P-connected 
~ith the points of p(j), which is a contradiction. Hence p(i) and P(j) 

.have a positive distance. The same conclusion holds for the components 
of Q. In view of our definition of the volume of a bounded point set 
it follows from this fact that 

1 
(31) = L V(Q.). 

j=1 J 
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On account of the relation 

mh ( p( i) V p( j) ; C) = mh ( p( i) ; C) + ~ ( p( j) ; C) 

(h=1,2; 1 ~i <j ~k; c real) 
and a similar formula for tho components of Q wo have 

k (') 1 (·) 
( 3 2 ) V h ( P) = i~ V h ( P 1 ) , V h ( Q) = jf, V h ( Q J ) ( h= 1 , 2) • 

Clearly 

(.J 3) 

Write 
F(P,Q) = V(P)v12 (Q) + V1(P)V2(Q) + V2(P)V1(Q) + v12 (P)V(Q), 

F(P(i), Q(j)) = V(P(i))v12 (Q(j)) + V1(p(i))V2 (Q(j)) + 

+ V2 (P(i))V1(Q(j)) + v12(P(i))v12 (Q(j)) (i=1,2,,,.,k; j=1,2, ••• ,l), 

Then it follows from (31), (32), (33) that 
k 1 

(34) F(P,Q) = ~ "'.L, F(P(i), Q(j))._ 
i=1 j =1 

Clearly 
P+ Q = V ( p( i) + Q ( j ) ) , 

i=1,2,.,.,k 
j=1,2, ••• ,1. 

hence 
V(P+Q) ~ ½_ ½ V(P(i) + Q(j)). 

-..::: . 1 . 1 
(35) 

l.= J= 

To each pair of sets p(i), Q(j) we may apply the result of section 3. Then, 
dn tho case v12 (P), v12 (Q) < 00, the relation ( 1) follows from (34) and 
: ( 35) • 

Next let the number of components of P and Q be finite or enum.erablP
Denoting by Pm tho union of tho first components of P and by~ the union 

[of the first n components of Q wo find by the above result 

{ V(Pm + ~) ~ F(Pm' ~) <,F(P,Q). 

~etting m,n tend to 0<0 (k), c,o ( 1) we get 
i i V(P+Q) = lim V(Pm + ~) ~ F(P, Q), 

t, hich is the required result. 
· This com})letes the proof of the theorem. · 

. 


