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Absoluteness of Intuitionistic Logic 

by 

Daniel Leivant 

ABSTRACT 

We say that a logical calculus Lis absolute for a class C of number­

theoretic sentences, if for every schema Fin the languages of L, 
Fi L ~ F* ~ C for some arithmetical instance F* of F. So when C is the 

class of all true sentences (according to a given truth-definition), then 

"L 1.s absolute for C" reads "Lis (weakly) complete (for the given notion 

of truth)". 

We deal here with intuitionistic propositional and predicate logics 

(L0 and L1 resp.), for which we prove absoluteness for intuitionistic 

(Heyting's) arithmetic A, and for certain extensions of A. 
(The term "absoluteness" is used here rather than "completeness" because 

"completeness" refers traditionally to a notion of semantic truth. "Lis 

absolute for C" is sometimes expressed as "C is faithful to L".) 

KEY WORDS & PHRASES: Predicate logic, absoluteness, de Jongh's theorem, 

regular number theories. 





I . INTRODUCTION 

I.I. STATEMENT OF THE RESULTS 

When F[p 1, ••. ,pk] is a scheme of L0 with (at most) the k propositional 

letters shown, and when A1, ••• ,~ are arithmetical sentences, write 

F[A1, ••• ,~J for the sentence which comes from F[p 1, ••• ,pk] by substituting 
. n1 nk . 

A. for every occurrence of p. (i=l, ••• ,k). When F[P 1 , .•• ,Pk J is a scheme 
l. l. n, 

of L1 with (at most) the k predicate letters shown, where P. 1 is 
n. l. 

n.-place, and A. 1 is an arithmetical formula with n. free variables 
]. ]. ]. 

(i=l, ..• ,k), write F[A1, ••• ,~J for the formula which comes from 

F[P 1, ..• ,Pk] by replacing every atomic subformula Pi(x 1, ••• ,Xui) by 

Ai (xi' ..• ,xni). 

Regular and strongly regular number theories are defined in 1.4 below. 

It will be shown elsewhere that the class of strongly regular number theo­

ries embraces the arithmetical fragments of the majority of intuitionistic 

formal systems. 

THEOREM I (Locally uniform L~ absoluteness for L0 ). 

Let A* be a regular number theory. For every k < w there are L~ sentences 

A1 , ••• ,~ s. t. 

Or more precisely: there is a quantifier-free (q.f.) formula E0(x) s.t. 

~A VkVxL -Fml(x)[,PrL (x) 
-o- 0 

where 
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~(x) == "x is the g.n. of a schema in the language of L0"; 

PrL is a (fixed) provability predicate for L0; 
0 

v(rF') := "the nwnber of propositional letters occurring in F", 

and subk0 is a prim. rec. function which satisfies 
:t I 

k (r [ ]' rE ') sub O F P1,··•,Pk ' 0 = 
:ti 

r -, 
F[3xE0< k,x), ••• ,3xE0( k,x)] • 

THEOREM II (Globally uniform IT~ absoluteness for L1). 

Let A* be a strongly regular number theory. There are IT~ predicates 

{A~}. . s.t. 
l. i,J<w 

ni ~ 
L1 ~ F[P. , ••• ,P. J 

1. I 1.k 

Or more precisely: there is a q.f. for>mula E1(x) s.t. 

where sub O is a prim. rec. function which satisfies 
IT2 

b (r [Pnl ~]' rE ') = 
~ 0 F I '•••,Pk ' I 

IT2 

where 

1.2. HISTORICAL NOTE 

D.H.J. DEJONGH has proved already in 1969 the absoluteness of L0 for 

A (and extensions A~ of A with transfinite induction over some prim.rec. 

well-ordering~). C. SMORYNSKI ([72]) proved that the substitution may be 
0 chosen to be :t1, but not uniformly in the logical schemata. H. FRIEDMAN 

([72]) proved that there is a globally uniform IT~ substitution for the ab­

soluteness of L0 • This last result is essentially a corollary of our 

theorem II. 
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All the results just mentioned were obtained in classical metamathe­

matics. It seems, however, that they can be reformulated in intuitionistic 

metamathematics, in particular in view of the recent discovery by 

W. FELDMAN and H. DE SWART of intuitionistic completeness proofs for 

Kripke's semantics. 

So the main novelty of theorem I is the locally uniform L~ substitu­

tion. Nevertheless, we present this result in some detail, for two reasons. 

Firstly, it may be used as an expository introduction to the proof of theo­

rem II; secondly, the method employed might turn out te be helpful in 

solving a number of other problems concerning the relation between L0 and A. 
As to predicate logic, DEJONGH proved (unpublished) the (local) ab­

soluteness (for A) of the disjunction-free fragment of L1; he also proved 

the absoluteness of full L1, but where in each formula all quantifiers are 

restricted to a fixed unary predicate. These two restrictions allow a model 

theoretic treatment using Kripe models with a constant universe, and a 

special notion of "forced realizability" which utilizes results from the 

theory of Turing degrees. 

1.3. DESCRIPTION OF A00
• 

By a sentence we mean a closed formula of A built up from O, f~ 
J 

(i,j=O,1, ••• ), =, ~, &, v, +, V, 3 and bounded variables. A sequent is a 

syntactical object of the form a=> F where a is a finite set of sentences 

and Fis a sentence. 

00 

PropositionaZ ruZes of A: 

[T] a=>F where FE 

[&I] 
~ => FO ~=>Fl . [&E.J 

~ => FO&Fl ' l. 

~,F => G 
[+I] 

a => F + G 
[+E] 

(where ~,F stands for au {F}) 

[vI. J 
l. 

[~] 

a=> F. 
l. 

a => ~ 

a=> F 

(i=O, I) ; [vE] 

a -
~ => FO&Fl 

(i=O, I) a=> F. 
l. 

a => F • G a=> F 

a => G 

~ => F O vF I ~' F O => G ~'FI => G 

a => G 
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Quantification and ar>ithmetical rules of A00
: 

[TE] where Eis a true equation when every function­

symbol f~ is interpreted as the j'th i-place prim. 
J 

rec. function. 

a=> E 
[FE] 

a => .L 
where Eis a false equation. 

[VI] 

[VE] 

[3E] 

( a => F(~)} 
- n<w 
!:: => VxF(x) 

!:: => v'xF(x) 

a=> F(t) 

!:: => 3xF(x) 

(ta term); 

(_a,F(~) => G} n<w 
a=> G 

[31] 
!:: => F(t) 

!:: => 3xF (x) 

00 00 

A function~ is a derivation of A (notation: Der(~)) if 

( 1) ~ describes a tree: ~u = 0 -+ ~ ( u'k( n}) = 0, 

~(u*(n}) = 0-. $(u'k(n+l}) = O; 

(where* denotes concatenation of sequent numbers). 

(2) For every u (= the code of a node in the universal spread) (~u) 0 is 

the code of one of the inference rules p above (under some fixed en­

codement), while (~u) 1 and (~(u*(n})) 1 (n<w) are codes of sequents 

which relate as the conclusion and the premise sequents of p (and 

when no n'th premise is required, (~(u*(n))) 1 = O). 

(3) ~ is well-founded: VX3x, ~(X(x)) = O. 

EXAMPLE. The ("informal") derivation 

[T] {A}=> A [TE] 

[&I] {A} => A & 0 = 0 

is formalized by the function~ defined by 

~( ) : = ( r & I .. .., r-{A} => A & 0 = O') 

~( 0} : = ( r T-,, r {A} => A-,} 

r , ~ - --, 
~( 1 } : = ( TE , {A} => 0 = 0 } 

{A} => 0 = 0 

~u := 0 for every u c! {( ),( O},( 1 }}. 



A number dis a recursive derivation of A')O (notation: Der00 (d)) if {d} 
--rec 

is a total function (i.e. - Vx3yT(d,x,y)) and clauses (1)-(3) above hold 

when <P and= are replaced by {d} and!::,! respectively. 
00 

A derivation <Pis normal (notation: NDer (<j,)) if: 

(1) No major (i.e. - leftmost) premise of an elimination rule in <P is 

deriv12d by an instance of an introduction rule; 

5 

(2) No major premise of an elimination rule nor a premise of an instance of 

[31] or [FE] is derived by an instance of [vE], [3E] or [.l]. 

The central property of normal derivations is the subformula property: 

every formula occurring in a normal derivation is a subformula of the 

derived sequent. We shall assume this property of normal derivations with­

out proof. 
oo r ., 

Prf (<j,, F ) : = 00 () I""" -, , 00 Der (<j,) & <P = ~F. Predicates like NDer (d), --rec 
NPrf')() (d,r-F') etc. are defined analogously. 
--rec · 

1.4. REGULAR NUMBER THEORIES 

Let T be a theory in the language of analysis. Write 

A00 [TJ : ::: 
rec 

{F I 3d [T ~ NPrf00 (d,,..F')]} 
rec 

or, othenNise stated, 

Pr (rF') 
- 00 

A [TJ 
rec 

r- 00 r- -, -, 
:=:: PrT 3<j, Nprf (¢, F ) 

I oo ~ ~ , 

:=:: 3d PrT NPrf (d, F ) • - --rec 

A* . An r.e. si~t of arithmetical sentences, closed under Modus Ponens, is a 

regular number theory when for some consistent r.e. T 2 Y0 + BI, 

A* c A00 [TJ. Here Y0 stands for intuitionistic elementary analysis, and - rec 
can be identified with the theory Hof HOWARD-KREISEL [66]; BI stands for 

the schema BID of bar-induction for decidable predicates on p.336 there. 

For T as above, let 
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C where T is the classical completion of T, AC00 is the schema 

Vx3yA(x,y)-+ 3aVxA(x,ax), 

and TT~ is the set of all true TI~ sentences. Formally, we define the proof 

predicate Prf by 
-T 

3x < p "x encodes a conjunction of instances of 

the rule of excluded third, of instances 

of AC00 and of true n° sentences" 
r- -, I 

& Prfy(p,imp(x, F )) 

where imp is a prim. rec. function which satisfies 

A* . A theory as above is defined now to be strongly regular if there is an 

T T* · · A* A00 * r.e. theory s.t. is consistent and ~ [T ]. rec 
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2. RECURSION THEORETIC SOLUTION OF A REDUCED FORM OF THEOREM I. 

2.0. We wish to find L~ sentences A1, ••• ,~ s.t. 

If the theories L0 and A* are replaced by their classical completions, the 

solution could be based on truth-values arguments, using recursion-theoretic 

methods only, as was done (independently) by KRIPKE [63] and MYHILL f72]. 

The complication for the intuitionistic case depends mainly on the presence 

of implications i~ the schema F, or more precisely - on negative nestings 

of implications. It is in such cases that the usual intuitionistic inter­

pretation of connectives uses a notion of impredicativity ("for every con­

struction •••• there is a construction •••• "). 

Let us count the negative nestings of implications by a measureµ, 

i.e. -

:= for atomic F, 

µrF+G7 := 

µrVxF7 := 

r 7 ~ , r 7 µ FvG := ~[µ F ,µ G ], 
[ r , r , L maxµ F +I,µ G ]; and for the full language of 1, 

µr3xF7 := µrF7 

We shall see that for schemata F s.t. µrF 7 ~ I the classical recursion­

theoretic methods work. The complexity involved in the growth of the 

µ-measure is further illustrated by the fact (cf. LEIVANT [74]) that the 

consistency of~ is provable in ~+I for every k, where 

Ak == A restricted to formulae F s.t. µrF 7 ~ k. 
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2.1. STATEMENT OF THE REDUCED SOLUTION 

We define a sequence Uk of propositional schemata, where 

Uk - Uk[p 1, ••• ,pk] and µ~Uk~ 5 I as follows· 

uo :::= ..L 

U I [ p J : = pv,p . 

Assuming Uk to be defined, let 

: = Uk [ p I ' ••• 'pi-'- I 'pi+ I ' • • • 'Pk+ 1 J 

Uk+ I [ p I ' • ' • 'Pk+ 1 J : = i 
[pi • Uk]. 

i=l, ••. ,k+I 
w 

We shall solve in this section (*) for the schemata Uk, i.e. -

0 k k PROPOSITION. We can unifoY'lTIZy construct ~I sentences A1, ••• ,Ai s.t. 

(k<w). 

* Here A may be taken to be any consistent r.e. extension of A which satis-

fies disjunction instantiation (the so-caUed "disjucntion property")., i.e. -

I- AV B 
A* 

=> [ r A or r BJ. 
A* A* 

2.2. Actually proposition 2.1 gives a solution of(*) for aZZ schemata F 
r 7 • s.t. µ F 5 1, on account of the following 

PROPOSITION. For any schema F of L0 s.t. µrF 7 5 I, 

It F [ p I , ••• 'pk J 
0 

SKETCH OF PROOF. Use a primary induction on k (= the number of proposition­

al letters occurring in F), secondary induction on the length of F, and 

ternary induction on the length of the left main subformula of F. D 

2.3. LEMMA. (propositional logic. Compare KLEENE 152] §33). 

[al] If Q is a positive occurrence of a subformuZa of P (see e.g. PRAWITZ 

165] p.43 for the definition of positive and negative occurrences) then 



E 1-L G+H 
0 

E ~1 F-+ F[H/G] 
0 

(where F[H/GJ aomes from F by replaaing the oaaurrenae Q by H) - ' 
[a2] If Q is a negative oaaurrenae in F, then 

E 1-L G+H 
0 

·E ~1 F[H/G]-+ F 
0 
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[b] Let Fq be the propositional sahema whiah aomes from F by replaaing 

(simultaneously) every oaaurrenae of some (fixed) propositional letter 

pin F by pvq, where q is a fixed propositional letter. Then 

PROOF. 

[a]: Straightforward by induction on the length of F (simultaneously for 

[al] and [a2]). 

[b]: Since q 11 pvq we get by repeated application of [al] 
0 

(*) 11 Fq--+ F, where Fq- comes from F by replacing only negative 
0 

occurrences£. in F by pvq. But 7q 11 pvq + p, so we get by iterated 
0 

application of [a2]: (**) 7q 11 Fq + Fq-. (*)and(**) yield [b]. D 
0 

2.4. SIMPLIFIED DEFINITION OF EFFECTIVELY INSEPARABLE R.E. SETS 

It is just to smoothen the exposition that we use the following 

LEMMA. Two disjoint r.e. sets A,B are effeatively inseparable iff there 

is a reaursive funation f s.t. 

PROOF. 

wi n A = 0 j 
wj n B = 0 J ... f(i,j) ~ w. u w. 

l. J 

I. The "if" direction is trivial, since the function f satisfies more 

than what is required from a function of effective inseparability (cf. e.g. 

ROGERS [67] p.94). 

II. Let, on the other hand, f 1 be a function of effective inseparability 

for A,B and let i,j satisfy 



10 

( I) An W. = 0, B n W. = 0. 
1. J 

By the reduction principle (cf. ROGERS [67], p.72) there are functions 

g,h s.t. 

(2) w (") C W.; Wh(j) C W~, g.i - 1. - J 

(3) wg(i) u Wh(j) = w. u w. and 
1. J 

( 4) wg(i) n wh(j) = 0. 

Take now 

(5) w g, < i) : = w g < i) u B; wh, < j ) : = wh ( j ) u A. 

Then 

(6) 

while by (4), (2), (I) and the assumed An B = 0, 

(7) 

u [Wh(j) n BJ u [A n BJ = 0. 

For the f defined by 

f(i,j) := f/g'(i),h'(j)) 

we have now, by (6) (7) and the choice of f 1 that f(i,j) ¢ Wi u Wj as re­

quired. D 

2.5. DEFINITION OF THE DESIRED L~ SENTENCES 

The following construction generalizes the method of MYHILL [72J. Let 

A,B be r.e. sets, effectively inseparable (in the sense of 2.4) through the 

function f, and let A* be any consistent r.e. extension of A. Following 



SHEPHERDSON [60] we may define (explicitly) a L~ formula F(a) _ 3xF0(x,a) 

s.t. 

( 1) A = { m I IA* F Ci) } ; B = {m I I- ,F(i)} 
A* 
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(To see that this holds also intuitiouistically, either inspect Shepherdson's 

proof, or observe that the equations above are formalizable as IT~ statements.) 
k We construct now, by recursion on k, an infinite sequence {A.}. s.t. 
i i<w 

(2) I k k 
f Uk[A. , ..• ,A. ] for every distinct i 1, .•. ,ik. 
A* il ik 

* * Basis: By the assumed properties of A there is a Rosser sentence R for A ; 

set A. == R for every i. 
1 

Recursion step: Assume A~, i 

fine a sequence of sentences 

< w to be defined and to satisfy (2). We de­
k 

{G.}. 
J J<w 

s.t. no finite boolean combination of 

the G~'s implies in A* k k Uk[A. , ... ,A. ] for some distinct i 1, ... ,ik. (By a J . 

boolean combination we 
i I ik 

mean here a set k k {H.}. where H. is either G. or -,G •• ) 
J J J J J 

Sub-basis: Let 

(3) {m I :B distinct i I ' ... , ik for which F(i) IA* 
k k w := Uk[A. , ... ,A. g( I ,k) 11 1 k 

]} 

(4) {m I :B distinct i 1 , ••• 'ik for which 7F(i) IA* 
k k 

Wh( I ,k) := u k[A. , ... ,A. ]} 
i I ik 

Now Wg(J,k) n A= 0 and Wh(l,k) n B = 0 by (I) and (2). Hence 

f(g( I ,k) ,h( I ,k)) q: wg( 1 ,k) u wh( I ,k). 

Define 

k G1 == F(f(g(l ,k) ,h(l ,k)); 

then 

(5) 
k k Uk[A. , ... ,A. ] 
i I ik 

as required. 
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k k 
Sub-recursion step: Assume that G1, •.. ,G1 are defined, and satisfy 

(6) 
k k [A. , ... ,A. ] for every 
it ik k k 

G1,·••,G1 

. . * boolean combination G of 

and every distinct i 1, ••• ,ik. 

Define 

w g(l+l ,k) 
* k k := {m I :II distinct i 1 , ••• ,ik s.t. F(m), G I- Uk[A. , ... ,A. J 

A* it ik 

* k k for some boolean combination G of G1 , •.. ,G1} 

wh(l+l ,k) := {m I -,F(i), c* ~A* Uk[A~ , ••• ,A~ ] ••• }. 
il ik 

As in the treatment of the sub-basis we have here 

W n A= 0; g(l+I ,k) wh(l+l,k) n B = 0. 

So, defining 

G~+l ·= F(f(g(l+l,k),h(l+l,k))), 

we have 

G* If [ k k J . . * f k k 
A* u,. A. , ... ,A. for every boolean combination G o G1 , ••. ,G1+l • 

1': i I ik 

. . . . k+ I ( 0 . Main recursion-step continued: Define now Ai to be the purely L 1 equiva-
k k lent of) A. v G .. To conclude the proof, assume 
i i 

I k+l k+l 
- U [A A J for some distinct i 1, ••• ,ik+l' 
A* k+ I i ' ... ' i 

I k+I 

* By the disjunction instantiation property of A we get, w.l.g., 

k+ I k+ I 
Uk[A. , ... ,A. ]. 

1.2 1-k+ I 

k+I 
But recalling the definition of A. , this implies 

J 



Gk. I k k k - Uk[A. v G. , ••• ,A. 
1 A* 1 1 1 1 2 2 k+l 

which by 2.3 [b] implies 

k k k I k k G. ,,G. , •.• ,7G. - Uk[A. , ••• ,A. ] , 
1 1 1 A* 1 1 1 2 k+ 1. 2 k+ 1 

k contradicting the construction of the sequence G .• Hence 
J 

I k+l k+I 
fA* Uk 1[A. , ••• ,A. J 

+ il ik+l 

as required. D 

Note, finally, that the above construction can be rendered totally 
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k uniform. That is - every Ai can be presented as 3xF0(f'(i,k),x) for a suit-

able total recursive function f'. This formula does not belong, strictly 

speaking, to the formalism of A. But it is equivalent to the following for­

mula of prim. rec. arithmetic: 

where e is the g.n. of the function f', T and U are Kleene's computation­

predicate and result-extracting function respectively. We thus obtain from 

the above construction the full power of theorem I for schemata F s.t. 

1FF1 S 1. 
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3. PROOF THEORETIC REDUCTION OF THEOREM I 

* 00 3.0. Here we prove, for a regular number theory A ~ A [T], 

0 
for any I: 1 sentences A1, ••• ,1\. 

Combined with the solution given in section 2 for the schemata Uk, this 

implies theorem I. 

The proposition is proved as follows. In 3.1 - 3.7 below we prove 

(for some prim.rec. f) 

(I) 

So, for a theory T.::: Y0 + BI and a proof-predicate Pry for it which is 

proved in A to be closed under Modus Ponens, 

( ) L r > r -, -, r oo ( r [ ]')' 2 'A Pry -iLE.L ( F ) & Pry NPrfrec d, F A1, ••• ,1\ 
0 

r oo r -, ~ 
-+ PrT NPrf (fd, Uk[A 1, ••• ,A_ ] ) • - --rec k 

But PrL is a prim.rec. predicate, so (2) implies 
0 

A* for any ~ 
00 

A [TJ. 
rec 
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3.1. HEURISTICAL CONSIDERATION LEADING TO THE REDUCTION 

3.1.I. Assume the premise of 3.0(1). It means that a normal derivation d of 

Fin A~ is given where some quantification or arithmetical rule must 
rec 

occur, because -,PrL r-F-,. We "climb up" in the proof-treed in search for -o 
such an occurrence, starting -at the root ( ) • 

To allow a smoother semi-formal exposition. let us write - for a node u -

pd,u for the inference rule encoded by ({d}u) 0 , and 

d,u _ d,u ,,,d,u 
s =a =>x 

for the sequent encoded by ({d}u) 1• 

At every stage of our search ind we arrive to some node u where the 

Fd,u · ~0 b · . f h f L d h sentence is a ~ 1 su stitution o a sc ema o 0 , an were 

P (r- d, u-,) . d, u Fd' u b . h 1 f L --i__!_Lo s , i.e. a => cannot e proven using t e ru es o 0 
only. 

Suppose now that a node u is "selected" at a given stage of the search. 

If pd,u is a propositional rule, then at least one of the premises U*(n), 
( r d u~ n h (r- d u-, n ~ 2 of u ind must satisfy ,PrL s ' ), because ,PrL s' ) -o -

since u is "selected". We "climb up" to the leftmost of thes2 premises. 
d u p' cannot be [VI] or [VE], by the subformula property of d, because 

V does not occur in F[A1, ••• ,~J. 
If pd,u is [3E], and ,Pr (rsd,u~O),) (i.e. - the major premise is 

-o 
not provable using propositional rules only), then we climb up to u*(O). 

Else, we proceed simultanuously to all minor premises u~n+l ), n ~ w. 

The major premise Fd,u~ O) == 3zCz must be a :r0 sentence, by the sub-
I 

formula property. So, for every n, 

d,u~ n} _ d,u C- Fd,u s =.!!, ,n=> 

h C · . d Fd,u. ~0 b . . f . . 1 were n is an equation, an is a ~ 1 su stitution o a propositiona 

schema. It is easy to see (3.3 below) that if PrL (rad'u,Cn=>Fd,u,) for 
-o -

some n, then PrL Cad,u=>Fd,u,), which contradicts our assumption that the -o -
node u is selected. It follows that all nodes u*(n+I) corresponding to 

the minor premises of pd,u satisfy our conditions on "selected" nodes. 

Now since dis a well founded tree, the search described above must 

terminate along every branch of the universal spread. It cannot stop at a 
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top node of d, 

(i) if Pd,u = 
because 

[TE] then Fd,u is an equation, and sou is not selected; 
rd u-, (ii) if pd,u = [T] then PrL ( s ' ). -o 

Hence the search determined by any successive choice of minor (or major) 

· f · f [3E] d pd,u i's ei't.her premises o instances o must stop at some no e u s.t. 

[ 31] or [FE]. 

3.1.2. Let us now consider how this information on the "search" described 
• 00 

above may be used to construct a proof in Arec for Uk[A 1, ••• ,1\J• To start 

with, take the simplest case, where k = I, F = F[3xEx] , and let u be some 

terminating node of the search. 

Case 1. pd,u = [3I] 

a~ Et 

the node@-- [31] a~ 3xEx 

· ' f 1 d ' u*( O ) b . d . 1 f Obviously, the in erence rue p cannot e an intro uction rue. I 
d, U*( 0 ) . [ J h h f . . p is +E, then we ave t econ iguration 

a~ G + Et a~ G 

the node~ a~ Et 

But no subformula of F[A 1, ••• ,1\J has the form G+Et where Et is an equation. 
d U*( 0 > Sop ' cannot be [+E], and the cases [&E] and ['v'E] are ruled out like-

wise. pd,u*(O) cannot be one of[~], [vE], [3E], by our definition of nor­

mality. We are thus left with the case that u*<O) is a top node of d, and 
d,u*(O) p is [TE] or [T]. In the first case we may construct 

[TE] ~ Et 

[3I] ~ 3xEx 

[vI0 ] ~ 3xEx v ,3xEx 

So we have obtained a derivation for u1[3xEx]. 

On the other hand, the case pd,u*(O) = [T] is ruled out as follows. 
d, u*( 0) 

Assume that p = [T]. Then Et E ~' and since d derives a sequent ~F 
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with an empty precedent, Et must be "discharged" ind somewhere below the 

node u. Again by the subformula property of d, this discharge cannot be at 

an instance of [ • I] or of [vE], and so it must be at an instance of [3E], 

and we should have the following configuration (where t = n). 

a=> En 

a=> 3xEx 

b => 3xEx E_,En => B 

[3E] b => B 

0 Here the two indicated occurrences of LI formulae must be identical for the 

case considered. Since the node u is selected, so must be v, but not v>\-(0). 

This means that ,PrL (~a=>3xEx~), but PrL (~b=>3xEx~). From the configuration 
0 - -o 

just shown we must have, however, E. ~~,and this is a contradiction. 

~ 2 d,u [ J vase • p = FE, a=> E say. 

[FE] a=> .L 

As in case I, we find that u>\-(0) must be a top node of d, and since E here 
d,u,i.-( O) 

is a false equation, we are left with the case that p is [T]; so we 

must find ind the following configuration: 

[T] a=> E 

a => .L 

E 
n 

b => 3xEx E_,En => B 

[3E] b => B 

E n+l 

and we may assume w.l.g. (by the well-foundedness of d) that the configura­

tion of the type shown does not repeat itself within any of the subderi-

vations E. Since u is selected, so must be v, and hence v~m+l) for every 
m 

m < w. Each search in a subderivation E must come to an end at some node 
m . d u>\-( O) 

ruling out p ' = [T]) shows that u, and the argument of case I (about 
m d,°m . 

since V*(O) is not selected, p is not [31], and must therefore be 1FE]. 
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Hence we can extract from the configuration above the derivation: 

[T] 3xEx => 3xEx 
rTJ 

[FE] 

3xEx,E: ~ E;} 
3xEx, En => .L 

n<w 

[3E] 3xEx => .L 

[ +I] => ,3xEx 

[vI 1] => 3xEx v ,3xEx 

and again we found a derivation in A00 for u1[3xEx]. This concludes our 
rec 

observation on the case that k = I, F = F[3xEx]. 

3.1.3. Consider now the case k = 2, i.e. - F _ F[3xE0x,3xE 1xJ. Here the 

following configuration may occur 

a,=:, 3xE x 
- 0 

0:: } 
n n<w 

@--+- [3E] a=> B 

where the node u is selected, and the search continues to the minor sub­

derivations r (i.e. - PrL (ra => 3xE0x')). But now, from our argument for 
n -o -

the case k = I it is clear that, for the node u at which the search in the 
u m 

minor subderivation rm terminates Fm$ 3xE0x (m<w). So we may apply the 

argument for the case k = I to each of the minor subderivations separately, 

and extract from each of these a derivation r: for 3xE 1x v ,3xE 1x. Since 

the method of doing this is uniform, we can actually collect the derivations 

r* to yield the following derivation of A00 

m rec 

{3xE0x ~ 
* L m 

[T] 3xEox => 3xE0x 3xE 1x V ,3xE1x} 
m<w 

[3E] 3xE0x => 3xE 1x V ,3xE 1x 

[+I] => 3xE0x + 3xElx v ,3xE 1x 

[vl] => u2[3xE0x,3xE 1xJ 
0 

Iterating this: process, with some technical synnnetrization arguments, we 

obtain 3.0.(1). 
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3. 2. NOTATIONS 

Subordinated (d,u,v) == 3w,n<v [ v=w.ir<O) & w.ir<n+l),<u & pd,w = [3E]] 

"vis a major premise node of an instance of [3E] 

ind, and u is a node in one of the minor sub~ 

derivations of this instance". 

Here ~ stands for the initial-segment relation (between sequent-numbers). 

Selected (d,u) := "Fd,u is not q.f." & -,PrL (r-sd,u-,) & 
-o 

:= 

:= 

\/w<u [ . ( ( ) ) p (r- d, W*( 0 )"'"I) ] Subordinated d,u,w* 0 + ....!.Lo s • 

0 (A1, ••• ,~ E 1 sentences) write 

{Fd,v I Subordinated(d,u,v)} 

{E E ad,u I E an equation} 

::: U [A. , ••• ,A. ] where 
m 1 1 1m 

(set-theoretic difference) 

0 
3.3. LEMMA. Let A1, ••• ,~ be E1 sentences, let a~ G be foPmed of sub-

formula of F[A1, ••• ,~J only, and let Ebe an equation. Then 

PROOF. Let IT be a normal proof for,!_,~ which uses propositional inference-

* rules only, and let IT come from IT be eliminating E from all precedents of 

sequents in rr. Check by inspection on cases for inference rules that rr* is 

a correct derivation. (Note that by normality no formula of the form E + H 

may occur in IT). D 

3.4. LEMMA. (in A) Assume 
m ~ , 

NPrf (d, F[A1, ••• ,A.] ); -rec -le 

(a) Selected(d,u)-+ [ pd,u = [3I] v pd,u = [FE] v 3n~2 Selected(d,u*(n)) ] 

(b) Selected(d,u) & pd,u = [3E] & 

-+ Yn>O Selected(d,u*(n)) • 
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PROOF. Assume pd,u I [3I],[FE] and the premise 

for pd,u. pd,u cannot be [T] or [TE], because 

of (a), and consider cases 
d u Selected(d,u). p ' is not 

[VI] or [VE] by the subformula property of d. If pd,u is a propositional 

inference-rule, the proof is innnediate. We are left with the case that pd,u 

is [3E]. If -,~0 (~sd,u*(O),) then we are done (for part (a)). Else, then 

Selected(d,u*(O)) for every n >·o by 3.3. D 

3.5. ASSIGNMENT OF DERIVATIONS TO THE SELECTED NODES 

~ ~ , 
Assume, as above, Nprfrec(d, F[A 1, ••• ,~J ). We define a function 

{a(d,u)} recursively in {d} and u by the conditions given below. By the 

s.m.n.-theorem a(d,u) is then a prim.rec. function. 

(i) If ,Selected(d,u), then {a(d,u)} = O. 

(ii) Else, and pd,u = [31], then {a(d,u)} describes the finite derivation 

[pd,u~ O)J ~,u u bd,u => Fd,u~ O) 

[ 3!] ~,u u £.d,u => Fd,u 

instances of [+I]} 

and of [vl] 

d,u bd,u Ud,u !o u_ => 

Note that, by the argument of 3.1.2, Fd,u i bd,u and that pd,u~O) is 

either [TJ or [TE]. 

(iii) Else, and pd,u = [FE]. Let {a(d,u)} describe formally 

[T] d,u bd,u Fd,u~ O) !o u_ => 

[FE] d,u bd,u .l !o u_ => 

[.i] d,u bd,u Ud,u !o u_ => 

(iv) Else, and pd,u is a propositional inference rule. Let u*(n) be the 

leftmost premise of u ind s.t. Selected(d,u*(n)) (cf. 3.4.(a)), and 

let {a(d,u)} := {a(d,u*(n))}. 



(v) 

[T] 

d u J Else, and P ' = [3E; 

Subcase A: If ~PrL (~sd,u-k(Q},), let a(d,u) := a(d,u*(O}) •. 
-o 

E Fd,u*( O} 1 bd'u, 1 { (d )} Subcase B: Else, and 3x x == ~ then et a ,u 

describe 

d u d u 
~, u b ' ,3xEx.,. 3xEx { d,u*( n} bd,u 3xE Ud,u-k(n) } !!n U_ , X _,. 

--u O<n<w 

[3E] 

[+I] 

instances of} 
[vI] 

d,u bd,u 3 E Ud,u-k( I} 
~ u_ ,xx-. 

d, u bd, u 3xE Ud, u-k( I) a u => x+ 
-=o -

d,u bd,u Ud,u 
~ u_ => 

Here, if r: is described by {a(d,u-k(n})}, then r:' comes from r: by 
n n n 

joining the formula 3xEx to all precedents. Note that by the case's 

conditions 

bd,u*<n) = bd,u u {3xEx} 

d,u-k( n} d,u u {En-} 
~ =~ for n > O. 

Ud,u*( n) _ Ud,u-k( I} 
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Subcase C. As subcase B, but 3xEx E bd,u. Then let {a(d,u)} describes 

d u d u 
~' u £_ ' , 3xEx .,. 3xEx 

[3E] 

r:' n 

{ d,u-k( n} bd,u 3xE Ud,u JL 
~ u_ ' x => O<n<w 

d,u bd,u Ud,u !a u_ => 

d u*( n} d u 
Note that here U' = U' for every n. 
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3.6.I. PROPOSITION. 

& Selected(d,u) -+ 

3.6.2. COROLLARY. 

r .., 
NPrf (d, F[A1, ••• ,A.]) --rec -K 

oo r -, 
NPrf (a(d,( )), ..Uk[A1, ••• ,A.] ) • --rec -lt 

PROOF. Use 3.6. I, for u = ( ). 0 



4. STRUCTURE OF THE PROOF OF THEOREM II 

4.1. PRELIMINARIES 

4.1.1. Fix a q.f. formula E(x) := f(x)=O (where f is a fixed prim.rec. 

function). Write 

where (, ••• ,>is a fixed encodement for finite sequences 

(cf. e.g. TROELSTRA [73], p.24). 

E* :: Vi,u,zVx3y E(x,y,i,u,z} 

BE[w] ·= V(i,n,z} [ Ineq(( i,n,z},w) -+ Vx3y E( x,y,i,n,z} ] 

where Ineq(a,b) is an equation which expresses the inequality a f b. More 

intuitively, 

i.e. 

E _._ 
B[(j,m,<s»J :: 

_._ n _._ 
V(i,n,( t» E. (t) 

..... _,_ i 
( i,n,( t}}j(j,m,( s» 

E 
s [w] :::: B[w] ~ Vx3y E(x,y,(w) O,(w) 1,(w) 2 > 

(w) 1 

B[w] ~ E(w)O ((w)2,0'"".,(w)2,(w)l) 

E _._ 
s [ (i,n,( z) )] -

__,._ m__,._ n-'-
Vj,m,w E.(w) ~ E.(z). 

...... ..... J i 
( j,m,w)/(i,n,z} 

23 

The sequents s[w] play here the same role as the schemata Uk in the treat­

ment of L0 above. 
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PROOF. Assume ~ u E_ ~L A F, and let /J,. be a normal derivation of L1A for 
I 

~ u E_ ~ F (cf. PRAWITZ [65]). By induction on the length of fl, using the 

subformula property and the definition of E-atoms. one prove easily that 
0 every formula occurring in fl is either an E-sentence or an open I:1 or q.f. 

formula. Hence formulae in bare actually not used in fl, and so~ ~LA F. 0 
I 

4.2.2. LEMMA. Let ~,F be closed formulae of L1• Then 

=> a ~L F 
I 

where 

E E 
a := {G I Ge~}. 

PROOF. Let fl be a normal derivation (in the sense of 1.3) of L1A for 

aE ~ FE and let G be an occurrence of a formula in fl, G not an E-sentence. 

By the subformula property of !J,., G must then have one of the forms 

[a] E(u,v,i,n,z) or [b] 3y E(u,y,i,n,z). 

By the normality of /J,. (defined as in 1.3) this instance must either 

(i) be a top formula of /J,. (in case [a]), or 

(ii) occur immediately below a top formula, or 

(iii) occur as a premise of 3E derived by VE (in case [b]). 

Note now that E1: is defined :So that the order of variables in each 
i 

E-atom is fixed, so that the two first variables of the matrix are bounded 

by the V3 quantifiers preceding it. Furthermore, two E-atoms formed from 

distinct E1: are syntactically distinct. Hence every occurrence Gas above 
i 

must occur in a configuration of the form 

( 1) 

E(u,v,i,n,z) 
3I 

[ 
3yE(u,y,i,n,z> 

] VI 
L Vx3yE(x,y,i,n,z) 

J 

Vx3yE(x,y,i,n,z) r 
VE 

3yE(u,y,i,n,z) H 
II ( 1) 3E 

H 
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4.1.2. An E-sentence is a sentence built up using the formation rules of L1 
Only' Wl..th En. taken 1.·n place of the pred1.0 cate letter Pn (" 0 I ) A . 1., n= , , • • • • n 1. 1. 
E-atom is an E-sentence of the form E~(t 1, ••• ,t ). We call the implicitly 

1. n 
indicated occurrences oft. 

1. n ...... 
in the E-atom above (i=I, ••• ,n) the formal 

occurrences in E.(t). Since the order of formally-occurring terms in each 1. 
E-atom is fixed, by the very definition of E7, it is uniformly decidable 

whether two E-atoms are instances of the same E~. 
1. 

Let d be a normal derivation of A00 for an E-sentence. By the sub-
rec 

formula property of d, every formula occurring ind is either an E-sentence, 

an E-atom or a L~ sentence with an E-atom as a matrix. It is easily seen 

that if we replace every formal occurrence of each term t (in some formula 

1.n d) by the numeral ii s.t. n=t, we get a correct and normal derivation 

of the same E-sentence. We call such a normal derivation an E-derivation. 

Notation: E-Der(d); E-Prf(d,rF,). Since we deal with E-derivations only, 
n - -we shall assume that each E-atom has the form E.(m1, ••• ,m ). If 

n 1 n 1. n 
F[P. , ••• ,P.q] is a schema of L1 whose predicate-letters are 

i I i q E Ill Ilq 
among those 

shown, we write F for F[E. , ••• ,E. ]. 
1. 1 1.q 

~ E, ~, r, 
So F = sub o( F, E ). 

-II2 

4.1.3. We write [3E 1] for an instance of [3E] whose major premise (i.e. 

the antecendent of the leftmost premise sequent) has a q.f. matrix. For an 

instance of [3E] which does not satisfy this we write [3E*]. 

4.2. DERIVATION OF E-SENTENCES IN L1A 

Let intuitionistic predicate logic L1 be formally generated by Gentzen's 

system of natural deduction (cf. PRAWITZ [65]). The system L1A is defined 

as follows. The language of L1A is the language of A extended with letters 

for parameters (i.e. - free variables). The rules of inference of L1A are 

exactly those of L1• 

4.2. I. LEMMA. Let every formula in !!:,,F be eithe1~ an E-sentence, an open 

L~ formula or an open equation. Let b be a set of closed equations. Then 

MA-lHEMATIS(:rl Ct:t-JrnUM 
A!"'.S'i-fcRD/.\M 
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Replace the subderivation IT of~ by 

[ 
I: 

] . 
,1, 

Vx3yE(x,y,i,n,z} 
IT ·= J 

r 
H 

Note that rr* is normal. Repeating this operation we get, by induction on 

the number of occurrences of I:~ formulae in~, a derivation~* where all 
* n ...,_ occurrences are of E-formulae. Replace in~ every occurrence E.(v) of an 1. n ...,_ 

E-atom (including occurrences as a subformula) by P.(v), and the result is 1. 
a correct derivation of L I for ~ ~ F. D 

4.3. We wish to prove theorem II, which may be restated 1.n the following 

form. 

THEOREM II (restated). For any T ~ Y0 + BI there is a q.f. E(x) s.t. 

where 

* A + CMP(T) + RfnC (T) + Con(T ) , 
0 

C~(T) := Vx,y [ Pry(imp(x,y)) -+ 

RfnC (T) != Vx [ PrT(x) 
0 

& "x encodes a formula 1.n C" 
0 

-+ .'E!:c (x) ], 
0 

0 0 
a:nd where C0 is the class of foY'TITUlae of the form rr2-+-i,r:2, and .'E!:co is a 

truth definition for C0• 

* Con(T) == \Ix [ "x encodes a conjunction of instances of 

excluded-third, of instance of AC00 and of true 

rr0 sentences" -+ ,Pr *(neg(x)) ]. 
I -r -



4.4. THE PROOF THEORETIC REDUCTION 

Fix E as above. We define a (classically) IT~ predicate Crit(d,u) for 

which we prove 

( 1) ~y +Bl E-Prf(d,,...F') 
0 

Since T ~ Y0+BI we get from (1) 
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(2) 
L ,... ,...-,-, 
'A+cMr(T) PrT E-Prf(d, F) - ,... * 

PrT [E & -PrL A'F' + -,-,3u Crit(d,u)J-, 
I 

and so 

(3) & & 
,... -, 

-,PrL AF 
I 

-+ 

-,-,3u Crit(d,u). 

On the oth,er hand we prove 

(4) ~ E-Der(d) 
Y~+AC00 

& Crit(d,u) & Res(d,u,x) 
oo r-E -, 

--+ 3¢ NPrf (¢, s [x]) 

where 

Res(d,u,x) :::: Vy [ T(d,u,y) --+ 

. r* Since 

n ....._ ....._ 
"if antecedent((Uy).) encodes E.(t) then x=(i,n,(t))" ]. 

l. l. 

--+ CMP(T*) trivially, we get from (4) 

(5) ~ PrT,...E-Der(d)-, --+ 
A+CMP(T) 

,... oo ,... E -, -, 
Pr ( Crit(d,u) & Res(d,u,x) • NPr ( s [x] ) ). -,-* --

0 But Crit(d,u) and Res(d,u,x) are classically n1, so 

(6) ~A+CMP(T) PrT,...E-Der(d)' & Crit(d,u) & Res(d,u,x) --+ 
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We have however, trivially, 

~A "{d} 1.s total" -+ 3x Res(d,u,x) 

and so 

~A+CMP(T)+RfnC (T) Pr(E-Der(d)' 
0 

Hence we get from (6) 

(7) 

Combining (3) and (7) yields 

(8) 

But from 4.2.2 we have 

so 

(9) 
I r , 
1A+CMP (T) +RfnC (T) ,Pr L F 

0 I 

-+ 

& 

3x Res(d,u,x). 

3u Crit(d,u) -+ 

r- cor E ,_:. 
3x Pr NPr s [x] • 

& 

-*--T 

& 7~ ArF-, ~ 
1 

r- cor E 7-, 
,,3x Pr NPr s [x] . 

-r*--

(Fa schema of L1) 

& 

This completes the proof theoretic reduction. Note that for any 

predicate Crit (not necessarily IT~) for which (I) and (4) hold, we could 

prove a statement (7+) similar to (7), but with Pr *r-3x NPr oor sE[xJ'' as the 

antecedant. r* is however a highly non-constructivI theory, so there is no 

way to pull the existential quantifier out of the provability symbol here. 



4.5. SOLUTION OF THE REDUCED PROBLEM 

0 In this part we prove for every L 2 theory S the existence of a q.f. 

E(x) s.t. 

(JO) 
'E , 

rA+Con(S)+Comp 0 (S) Vx ,PrS s [x] & 

L2 

* -,,E 

where PrS is a fixed L~ provability predicate for S, and where 

( 11) -+ PrS(x) ]. 

Here Tr 0 (x) is a (canonical) truth definition for L~ sentence. We wish 
--r2 

00 * * to apply (JO) to S = A [T ], where T and T are as in 1.4. First, note 

( I 2) 

so 

(13) 

ry 
0 

00 * -+ Con(A [T J). 

Also, for L~ sentences F we have directly 

and since r* ~ Y0 , and quite trivially CMP(T) + CMP(T*), this implies 

( 15) 
L r, 
'A+CMP (T) Pr * F -+ 

- T 

By the very definition of Pr however 
-r* 

-+ Pr r-F, 
-r* 

and so 

(16) h F Pr 'F-, 
A+CMP(T) ->- -y* 

0 for every rr 1 F, 

for every L~ F. 

29 
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Hence we get from (15) and (16) 

(I 7) ~A+CMP(T) F 
--+ Pr r-F-, 

-A''"[r*J 
0 for every L2 formula F. 

Now observe that steps (15)-(18) can be uniformly formalized (within A), 
i.e. - (II) holds for S = A00[T*]·, as wanted. 

We now proceed to prove (I) and (4) (the proof theoretic reduction), 

and (I) (the recursion theoretic solution) which together imply as we have 

just seen theorem II. 
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5. THE PROOF THEORETIC REDUCTION FOR THEOREM II 

5.1. LEMMA. Let the nwneral n not oaaur in,!, F, 3xGx. 

(i) If ( 1) !!_,Gn ~LA F then 
I 

(2) !!_,Gv rL A F where Vis a parameter whiah does not oaaur 
I in ,!, Gn, F. 

(ii) If!!. rL A Gn then!!. rL A Gv (for V as above). 
I I 

PROOF. Given a normal derivation of L1A for (I) replace every occurrence of 

n by v, and observe, by inspection on cases for the inference rules, that 

the result is a correct derivation. The proof of (ii) is similar. D 

5.2. SEMI FORMAL HEURISTIC OUTLINE OF THE REDUCTION 

5.2.1. Preliminary notations. 

R1 (d, u) == 
R2(d,u) ·-·= 
R3 (d,u) :: 

R4 (d, u) :: 

R5 (d,u) :: 

Note that each 

Start(d,u) := 
Crit 1(d,u) := 

r d,u-, 
,PrL As • 

I 
"all equations in d u a' are true". 

"Fd,u is an E-sentence". 

"Fd,u is an E-atom, and p 
d,u is [VI]". 

"Fd,u is 0 a :r:1-sentence". 

Rj(d,u) may be formally defined as a IT~ predicate. Example: 

Vy [ T(d,u,y) ---+ "antecedent((Uy) 1) is the g.n. of an 

E-sentence" ]. 

~ R. (d,u). 
i=I,2,3 l. 

~ R. (d,u). 
i=l,2,4 l. 
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5.2.2. Locating an arithmetical inference in E-derivations 
( the predicate Cr it) • 

We want to define a predicate Crit and to prove for it 4.3(1),(4). The 

idea is that when E-Der(d) and Crit(d,u) ("u is a critical node in the 

proof-tree described by d") then.the subderivation du of d (where 

{du} := ;>..x,{d}(u*x)) has sufficiently nice properties so as to enable the 

extraction from it of a derivation for s[w] for some w. 

As a first attempt to define such a predicate we try, as in the proof 

of theorem I, to look, when E-Prf(d,r-F,) and ,PrL 1A(r-F,), for a "genuine" 

use of an arithmetical inference ind. A starting node for such a search 

up may be any node v of d s.t. Start(d,v). When Start(d,v) we can weakly 

find (i.e. - -,-,3) a node V*(n} s.t. Start(d,v*(n}), using lennna 5.1 when 

pd,v is [VI] or [3E*], and E* and 4.2.1 when pd,v is [3E 1J (leI!llila 5.4 below). 

Thus the search up in d may continue. The only cases where this process 

stops are when R4 (d,v) or when Pd,v i·s [FE]. In the 1 h d f .. ast case, t e e ini-

tion of normality of 1.3 implies (as in 3.1.2) that a false equation occurs 
. d,v d .. in~ , contra icting R2(d,v). Thus, by the well-foundedness of the proof­

tree d, we find a node u~v s.t. Crit 1(d,u) • 
. ( ) 11 f" d . h bd . · du*(m} When Cri1~1 d,u we can actua y in in eac su erivation an 

inference of the form 

G 

(G is a true equation and Fd,u*W 

yield a derivation of the form: 

d U*(m} 
- F' ). So these can be collected to 

[VI] 

d u n _,,_ 
where F' == E.(t), 

i 

(I: ) 
m m<w 

_,,_ n _,,_ 
B[ (i,n, (t} )] ~ E. (t) 

i 

and each I: is 
m 

(schematically) of the form(*), 

Unfortunately, the crude statement that the situation above occurs is 
0 

not rr 1, essentially because there is no bound on the length of thew corre-

sponding to each m<w. A certain refinement of the argument is therefore 

necessary. 



5. 2. 3. HeUl'istia for the disjunation-free fragment 

Assume, again, E-Der(d) and Crit 1(d,u). The subderivation du of d 

takes then the form 

(I) 

{ a .. 3y::m,y,i,n, <t»} 
- m<w 

..,. 
[VI] !. ~ Vx3yE(x,y,i,n,(t)) 

where each E is formally described by du*(m>. 
m 

00 

From each E we wish to extract a derivation of A for 
m 

(2) B[ (i,n, (t))J ~ 3yE(m,y,i,n, (t». 

Fix some m, and let us analyse the structure of E. 
m 

We assume first that dis a derivation for a disjunction-free 
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E-sentence; this implies, by the subformula property, that disjunction does 

not occur in the derivation d, and in particular - in the subderivation E 
m 

we are looking at. 

In addition we may assume 

(3) Vw>-u*(m) -,Start(d,w). 

Because if Start(d,w), w•u then we could start our initial search afresh; 

this could not be iterated indefinitely, because dis well-founded. 
d,u*(m) B Consider now the main inference rule of E, p • y the subformula 

m 
property of d we have to consider the following cases only. 

(l..) d,u*(m) [.LJ h d,u*(m,O) = a--.L d S (d ( O)) t p = . ; tens ..... an so tart ,u* m, con ra-

dieting (3). 

(ii) [VE]; 

(4) 

k..,. 
a~E.{s) 
- J - _,._ 

[VE] !. ~ 3yE(m,y,i,n,(t)) say. 
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k->- - • _,,_ 
Recall that E.(s) = Vx3yE(x,y,J,k,(s)), and so necessarily 

..... J ->-
(i ,n, <t)) = (j,k,(s)) (syntactical identity). Therefore 

sd,u*<m,O} = sd,u and so Start(d,u*<m,O)), contradicting (3) once 

again. 

(iii) [3E 1J; since dis normal, E must then have the form 
-m 

(5) 
[VE] 

k ...._ 
a .. E.(s) 
- J 

a.,. 3zCz p<w - ..... 
~ => 3yE(m,y,i,n,(t)) 

First, if (j,k,(;)) = (i,n,<t>> then Start(d,u*(m,0,0)) as in (ii), 

contradicting (3). 

(iv) If, in (iii), 3zCz is true, let p := µz.Cz, and consider - in place 

of E - its subderivation r (formally described by du*<m,p+t>). 
m p 

d u* <m> 1 • 
Before concluding the case p ' = [3E] let us turn first to case 

(v) 

(vi) 

(6) 

d U* (m) * - • If p ' is [3E ], let p be the first numeral which does not occur 
. d u*<m> d u*(m O) 
in the sequents s' , s ' ' and consider (as in case (iv)) 

. . du*<m,p+l) the subderivation . 

If pd,u*(m) is [3E 1], and (iii) and (iv) do not apply, then in (5) 

(j,k,(;)) f (i,n,(t)) and 3zCz is false; so we can extract from (5) 

the following derivation of Am for (2): 

[VE] 

[VE] 

->-
B[ (i,n, (t))J 

k _,_ 
E. (s) 

J 

3zCz 

[FE] 

Cp 

J_ 

- ->-
[j_J 3yE(m,y,i,n,(t)) 

3yE (;,y, i,n, (t)) 

(here we dropped the precedents of sequents). 

<w 

Finally we have the case 

(vii) [31]; then since every equation in a is true, we get as in 3.1.2 that 
. d u*(m 0) -

the equation F' ' is true, and we have (2) for them considered. 
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These are all the cases in the absence of disjunction. Cases (i)-(iii) 

rule out possible failures of the construction; cases (iv),(v) allow the 

search to continue, while cases (vi) and (vii) yield the required deriva­

tion for (2). 

Note that if E* is true, then 3zCz in (6) is also true, and so case 

* (vi) is excluded. Our argument here must however be independent of E 

(cf. 4.4(4)-(6)), and so case (vi) is considered throughout, 

In order to clarify a bit the form of a search which proceeds through 

(iv),(v), let us consider by example the outcome of case (v), and suppose 

that now case (ii) applies tor (:= the derivation formally described by 
u*(m p+l) . P 

d ' ). I.e.- the following configuration occurs: 

a=> 3zCz 

the node~ 

- n ..... 
~• Cp => E. ( t) 

i 

- ..... 
[VE] ~,Cp => 3yE<m,y,i,n, (t)) 

* - ..... [3E J a=> 3yE(m,y,i,n,(t)) 

Here (3) implies, as in (i)-(iii) 

and 

which by 5.I(i) and the choice of p give 

r p+l 

contradicting Crit 1(d,u). So we have adapted the argument of (ii) to the 

case that a search for a proof of (2) proceeds via case (v). Other arguments 

are adapted in about the same way, and this allows the iteration of the 

search through (iv)-(v) above. 

By the well-foundedness of d the process must terminate, that is 

one of cases (vi),(vii) ultimately appears, and we obtain a proof for (2), 

as wished. 

5.2.4. Disjunction reconsidered 

When disjunction does occur in the derivation d above, we must add to 

(i)-(vii) above another case: 

(viii) 
d,u*(m) r is I vE]. We then consider simultanuously both minor premises 

of pd,u*(m), i.e. - the nodes U*(m+I) and u*(m+2). 
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As in the last paragraph of 5.2.3, let us see what happens if case (ii) 

applies now to both u*(m,I} and u*(m,2}. We have then the following config­

uration: 

rl r2 
n ~ n ~ 

.!:'GI => E. (t) a,G2 => E. (t) 1. - 1. 

a=> G v G2 - I 
[VE] .!:'GI => 3yE ( ••• } [VE] .!:,G2 => 3yE ( ••• } 

- ~ 

[vE] a=> 3yE(m,y,i,n,(t}} 

As 1.n the last paragraph of 5.2.3 

and so 

contradicting Crit 1(d,u). 

This argument may be generalized to conclude that, at least for one 

successive choice of minors of [vE] in the search described by (iv),(v),(viii) 

the construction leads to a node falling under one of the cases (vi),(vii) 

thus allowing a construction of a proof of A00 (incidently - of A00 
) for (2). rec 

The assertion that this 1.s the case is now seen quite easily to be 

formalizable as a II~ predicate (over d,u). 

5.2.5. Remark;· why does the presence of disjunction necessitate an additional 

argument 

We have seen 1.n 5.2.4 that the presence of disjunction 1.n d requires an 

extra argument which is not needed for the treatment of the existential 

quantifier. It might be in place to note here that v 1.s, 1.n L1, in a way 

indeed more complex than 3; or - roughly - v implies the presence of 

"plurality" in ways that are not implied by 3. This is illustrated by the 

following facts. 

[A] For a schema VxF (x) of L 1 

r-L VxF(x) 
I 

rL 3xF(x). 
I 

This 1.s of course not the case with & and v. 
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[BJ Kripke models with a constant domain are complete for the disjunction­

free fragment of_L 1, but not for the existential-free fragment. 

5.3. FORMALIZATION OF THE PREDICATE Crit 

Step(d,w,p) == W Step. (d,w,p) 
i=l ,2,3--1. 

where 

Step 1 (d,w,p) . - 11 d,w = [ 3E I], and if Fd,w*(O) 
== 3zCz then = µz.Cz+I " ·- p p 

Step2 (d,w,p) := 11 d,w p = [3E*], and if Fd,w* (O) =· 3zCz then pis 

I + "the numeric value of the first numeral which does not 

occur in d,w d,w* (O >11 s ,s II 

S (d ) - "pd,w = [vE] and I _< p <_ 2". tep3 ,w,p == 

These three predicates correspond to cases (iv), (v) and (viii) in 

5.2.3/4, where the search described there proceeds to the p'th premise of 

the node w. It should be noted that Step is a fi.~ predicate. For example 

Step 1 (d,w,p) 'vx,y [ T(d,w,x) & T(d,w*(O),y) - A(x,y,p) J 

3x,y [ T(d,w,x) & T(d,w* (0) ,y) & A(x,y,p) ] 

where 

A(x,y,p) := & 

& 

~Fis a (fi.~) truth predicate for equations, and inst is a prim.rec. func­
. h' h ' f' ' (~3 ~ ) ~ -, tion w 1.c satis 1.es inst xGx ,n = Gn. 

Selected(d,v) == 'vi<lth(v) Step(d, (vii), (v) i) 

where 

(for i:,; lth(v)) 
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Final(d,v) := W Final.(d,v) 
i=l ,2,3 i 

where 

Final 1(d,v) ::: Selected(d,v) & p 
d,v = [1.] or [VE] 

Final 2 (d,v) := Selected(d,v) & p 
d,v = [3E 1] 

Final 3 (d,v) .-·= Selected(d,v) & p 
d,v 

= [3I]. 

These predicates correspond to the cases in 5.2.3 where the construc­

tion may stop, whether successfully or not. 

. + ( r- ') Final d,v, A 

where 

. +(d r- ') := Final2 ,v, A 

n(-'-) d,u . +( r ') When for 5.2.3 A= E. t = F then Final d,v, A expresses the 
i 

conclusion of the construction by one of (vi), (vii), or possibly its con-

tinuation through (iv). In any case, a "failure" through one of (i)-(iii) 

is excluded. It is important to note that Final and Final+ are both~~ 

predicates. 

Let us use the binary encodement of finite sets of numbers. The pre­

dicates n Ex, x = 0 etc. are then just prim. rec. numeric expressions. 

Bar(d,x) == x / 0 & 

VwEx { Final(d,w) & u [ d ,u vu,y<x p = [vE] 

& 3w' EX3z<x w' 

I.e. - a "bar'' for d is a finite non-empty set of "final" nodes, which 

intersects both minor subderivations of each instance of vE if it intersects 

one of them. 

Crit(d,u) ·= Crit 1(d,u) & Crit2 (d,u). 



Note that Crit is intuitionistically equivalent to a TT~ predicate. 

. ++ r, 
Final (d,v, A) 

where 

. ++ r-, 
Final2 (d,v, A) 

. ++ r-, Final3 (d,v, A) 

·­. -

·= 

• ++ r-, Final2 (d,v, A) 
. ++ r- -, 

v Final3 (d,v, A) 

+. r , 
Final2 (d,v, A) 
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Final++ corresponds to a real termination of the search described in 5.2.3. 

Contrary to Final+ however Final++ is a TT~ predicate, and not a~~ one. 

5.4 - 5.6. PROOF OF 4.4(1): the existence of a critical node 

(first part of the proof theoretic reductions) 

5.4. LEMMA. 

~y +BI [ E* & E-Der(d) & Start(d,u) J ~ ,,3w>-u Crit 1(d,w). 
0 

PROOF. Denote the formula to be proven by R(u). First, we prove below by 

BI, and using the well-foundedness of the proof-treed, the (open) formula 

S(u) :: [ E* & E-Der(d) & Start(d,u) & ,R4(d,u) J -
-,-,3w >,u Start(d,w). 

Assuming VuS(u), we can now prove R(u) by a second use of BI, where S(u) is 

to be used for the induction step. 

Towards proving S(u) by BI, assume the premise of S(u), assume 

VnS(u*(n)), and consider cases for pd,u, which by the normality of d 

only the following: 

(i) pd,u is [T]. This contradicts R1(d,u). pd,u is also not [TE] by 

R/d,u). 

(ii) pd,u is [FE]. As in 3.1.2, the normality of d implies then that 

pd,u*(O) is [T], and so Fd,u € ad'u, contradicting R2(d,u). 

are 
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(1·1·1·) pd,u 1·s · · 1 1 [3I] [VE] If P (r d,u*(n),) a propos1t1ona rue, or • "Tl_E_L A s 

(iv) 

(v) 

,... d U, • I 
for all n<3, then of course ,,PrL1A s ' , since all the rules con-

sidered in this case are (isomorphic to) rules of L1• This contra-
. ,- d u*(n), . 

diets R1 (d,u). So ,,3n<3 ,PrLiA ( s ' ) • For the cases considered 

the subformula property of d implies trivially R. (d,u) ---+ R. (d,u*-<n)) 
J J 

for j = 2,3, and so we conclude that ,,3n<3 Start(d,u*<n>). 

d u * -p ' is [3E ]. Let p be the first numeral which does not occur 1n 
d,u d,u*(O) d s , s , an prove 

like in (iii), using 5.l(i). That is, for the u considered 

-+ 

while by the choice of p and 5. I (i) 

& P r d, U* (p+ I ) , 
_E_L A s 

I 
-+ P r d, u, 

_E_L A s 
I 

,Start(d,u). 

Since this contradicts the assumed premise of S(u), one gets (*) by 

intuitionistic prop. logic (cf. KLEENE [52], p.119,*60i,g). 

d, u - . . d, u 
p is [VI]. Let p be the first numeral which does not occur 1n s , 

and proceed to prove ~,Start(d,u*(p+I)) like in (iii), using 5.l(ii). 

(vi) pd,u 1s [3E 1J, Fd,u*(O) :::: 3zCz, where Cz is q.f.. Since R 1(d,u), 
r- d,u, 

1.e. - ,PrLiA s , we get from 4.2.1 VmR 1(d,u*(m+I)). R3 (d,u) im-

plies VmR3 (d,u*(m+l)) trivially. Finally, for each m R2(d,u) and Cm 

imply outright R2 (d,u*(m+I)). Summing up we hence get 

Start(d,u) & 3zCz -+ 3z Start(d,u*(z)). 

But by the subformula property of d 3zCz is a subformula of the IT~ 

sentence E*, and so E* - 3zCz, while by the assumed VnS(u*(n)), 

-+ ,,3w ;>-u*(z) Crit 1 (d,w) 



41 

So we get from(*) 

Start(d,u) & E* _. ..,..,3w >-u Crit 1 (d,w) 

as wished. D 

5 • 5 • l • LEMMA. 

ry +BI E-Der(d) & Crit 1 (d,u) & ,3v ~u Start(d,v) ~ Crit2(d,u). 
0 

We prove this lennna as a corollary of 

5.5.2. LEMMA. Let A be an E-sentenae. Then 

ry +BI E-Der(d) 
0 

& Crit 1(d,u) 
U* (m) 

Selected(d ,z) 

& Vv>-u ,Start(d,v) w 
& Bar(d ,x) 

& 
• + w rd u, VyEx ,Final (d ,y, F' ) 

P (r d,w Fd,u,) _. ,,_E_L A !!. => 
) 

5.5.3. Proof that 5.5.2 implies 5.5.1 

Assume the premise of 5.5.1. For each m E w this implies the first five 

conjuncts of 5.5.2 for w = U*(m}, z = (), and also 

-,PrL A(r!!_d,u*(m)=>Fd,u,) 
) 

d,u*(m} d,uh since a = a ere. So, by the contrapositive of 5.5.2, and quan-

tifying over m, 

-+ 3 F . 1+(du*(m) rFd,u,) J yEx ina ,y, 

(note that Final+ is decidable); i.e. - Crit2(d,u) as required. D 

5.5.4. Proof of 5.5.2 

Write S(w) for the formula to be proven. By BI the problem reduces to 

showing 
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So assume 

( I) 

(2) 

\fn S(w*(n)) and 

the premise S (w) of S(w). 

Note first that the definition of Selected implies, by a trivial induction 

on lth(w) 

(3) 

(4) 

Fd,w = Fd,u*(m> = 3y E(i,y,i,n, (~)) 

(d ) II 11 . . d 'w II R2 ,w =~ a equations in a are true. 

d,w 
Consider now cases for p 

(i) [T], Then Fd,w E ad,w_ But by the subformula property of d no L~ sen­

tence may be discharged ind, because an E-sentence has no subformula 

of the form GvH, G-+H or 3zG where G is L~. So this case is ruled out. 

A similar argument excludes the cases [&E] and [+E]. 

(ii) 
d, W* (0) d w 

[.L]. Thens = ~' =>J., while ,Start(d,w*(O)) implies (by (4)) 

r d,w , 
,,_Pr L A ( ~ =>J. ) ' 

1 
so 

P ( r d,w Fd,u,) 
.,, _ _E_L A ~ => • 

1 

(iii) ['v'E]. Then (3) implies 

(5) 

On the other hand ,Start(d,w*(O)) implies 

(6) ]~ (r d,w*(Q).,) 
,,_:_E_L A s • 

1 

d,w*(O) d,w () () . Here a · = a so 5 and 6 yield P ( r d,w Fd,u,) 
,,__E_L A ~ => • 

I 

. + w rd u, -
Subcase [a]. ()Ex. Then ,Final (d ,(), F ' ) by S (w), and so by 

. + . d W*(O O) du 
the definition of Final for this case F ' ' = F ' , and we get 

as in (iii) 

I> (r d,w Fd,u,) 
,,__E_L A ~ => • 

I 



(v) 

(7) 

Subcase [b]. ()ix. Then, since x I 0 by the definition of Bar, we 
U* (w) 

must have 3zCz and so for some p Step(d ,z,p). We thus get by 

the BI hyp. (1) applied to w*(p) 

r d,w - d,u7 
77PrL A(~ ,C(p)=1>F ). 

1 

But C(p) is here an equation, so by 4.2.J 

P (r d,w Fd,u7) ,,__.E_L A ~ =I> • 

I 
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* d,w*(O) [3E ], F == 3zCz. Let p~I be the first numeral which does not 
. d w d W*(O) 

occur in s ' ,s ' . We have then as in (iv)[b] 

P (r d,w C(-) Fd,u,) 
,,__.E_L A ~ ' P =I> 

I 

and as in (iii) we get 

P (r d,w*(O),) _ (r d,w , 
,,__.E_L A s = ,-,PrL A ~ =1>3zCz) 

I I 

which together with (7) yields 

P (r d,w.......,,d,u,) 
-,-,__.E_L A ~ ..,,.r: • 

1 

(vi) [vE], Fd,w*(O) =! G1 v G2 . Let 

(8) 

X (j) == { y I (j )*y E X } (j=l,2). 

Then, by the definition of Bar, S (w) implies 

& 
(') VyEX J F . l+(dw*(j) rFd,u,) -, ina ,Y, 

while trivially 

U*(W) . 
Selected(d ,z*(J)) (j=l,2). 

Apply now, as in (iv) and (v), the BI hyp. (I) to w*(j) (j=l,2), to 

yield 

P ( r d,w d,u7) 
77__.E_L A ~ , G j=i>F 

I 
(j=l,2). 

On the other hand we get as in (iii) 
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which together with (8) yields 

P (r d,w Fd,u,) 
,,_!..L A !!. => • 

I 

(vii) [31]. Then the definition of Bar implies 

(9) 
w Bar(d ,x) --+ x = {()}. 

For this case, Final+(dw,(),'Fd,u,) automatically, while by S-(w) 

(9) implies ,Final(dw,(),rFd,u,), so this case is ruled out. D 

5.6. PROPOSITION. 

f-y
0

+BI E* & E-Der(d) & Start(d,u) -+ ,,3v,>-u Crit(d,v). 

PROOF. Straightforward from 5.4 and 5.5.1 using BI and the well-foundedness 

of the proof-treed. D 

Applying proposition 5.6 to u = () we get assertion 4.4.(I). 

5.7 - 5.11. PROOF OF 4.4(4). (Second part of the proof theoretic reduction) 

5.7. LEMMA. 

f-y +Bl E-Der(d) 
0 

& R5(d,w) w 
--+ 3x Bar(d ,x). 

PROOF. Straightforward by BI and the well-foundedness of d. D 

5.8.1. LEMMA. 

1-y +BI E-Der(d) 
0 

& Crit(d,u) U*(m) 
Selected(d ,z) 

--+ 3w F . 1++(dv rFd,u,) ,, ina ,w, 

PROOF. Fix v, assume the formula to hold for v', v' ~v, and assume the 

premise for v. By 5.7 then 

V Bar(d ,x) 

and so by Crit2 (d,u) 

for some x, 



\ 

\ 

\ 

\ 

I 
I 

\ 

I 
I 
I 
\ 
\ 
\ 

\ 

\ 

\ 
\ 

\ 

' 

' ' 

' 

' 

' 

w' 

.... 

w 

..... 

z 

\ 

I 

\ 
I 
\ 

\ 

' 

\ 

\ 

\. 

\ 
\ 

'-
' ' 

/ 
/ 

/ ,, 
I 

I 

V*Wk(p+I) 

/ 
/ _.,. 

V 

/ 
/ 

ti*( rn) 

- () 

,, ,, 

/ ,, 

/ 
/ 

I ,, 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

dv/ 
I 

I 
I 

I 
I 

dt*< rn) 

I 
I 

I 
I 

I 

I 

I 

d, 
I 
I 

45 



46 

. + V rd u, 
3wEX Final (d ,w, F' ). 

d,V*W Fix w, and observe the two possible cases for p • 

(i) If pd,V*W [3E I], Fd,V*W*(O) =-·· 3 C = z z, assume 

(I) ( r -, 
v Tr O 3zCz ). 

I:I 

( r -, 
If -,Tr O 3zCz) then 

-"I I 
Final;+(dv,w,rFd,u-,) by definition. If 

Tr 0 (r3zCz,) let p := µz.Cz; then 
~ 

V Selected(d ,w*(p+l}), hence 

1 u*(m} Selected(d ,z*w*(p+I)) and so by BI hypothesis 

Since Selected(dv,w*(p+I }) this implies 3w 1 Final++(dv,w',rFd,u,). 

Hence we have 

3w ' F. l++(dv 'rFd,u-,) ,-, ina ,w, 

without assumption (I) (cf. KLEENE [52], p.119 *58b-c,*51a). 

(l.'1.") d,V*W [ J er d,v*(O}-,) ... If p = 31, assume ,~F F . By our def1.n1.tion of nor-
d V*W*(O) mality (cf. 1.3) p ' cannot be[~], and by the subformula 

property it cannot be other than [T] (see 3.1.2). But this contradicts 

R2(d,v), which is seen outright to hold because R2(d,u*(w)) and 

Selected(du*(w>,z). Since TrQF is a decidable predicate we thus get 

T (rFd,w*(O},) d F" 1++(dv rFd,u-,) • ~F an so 1.na 3 ,w, . 

5.8.2. COROLLARY 

PROOF. Apply 5.8.1 to v = u*(m}. • 

5.9. LEMMA. 'There are pr1,,m.rec. functions f. (j=2,3) s.t. 
J 

ry E-Der(d) 
0 

& 
. ++ r n ~-, 

Final. (d,v, E. (t) ) 
J I. 

oo ~ r ~ d v, 
-- Pr (f.(d,v,(i,n,(t)}), B[(i,n,(t)}]=>F' ). 

-rec J 
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(i) Let {f2 (d,v,(i,n,(t)))} describe the tree 

[T] B[].,. B[(i,n,(t))] 

[VE] B[J .,. ~( (j ,k, (t)), <i,n, (t))) • Fd,v* (O,O) [TE] B[] .,. ~( ) 

[• E] B[],. Fd,v*(O,O) 

(ii) 

where Fd 'v* (O' O) _ E~ (;) and Fd 'V* (0) = 3zCz, and where .. 
J 

..... - -[T] B[(i,n,(t))],Cm.,. Cm 

..,,_ -
r == m 

[FE] B[(i,n,(t))],Cm => ~ 

[~] 
..,,_ - d V 

B[(i,n, (t))],Cm => F' 

Let {f (d,v,(i,n,(t)))} 
3 

describe the tree 

..,,_ ... Fd' V* (0) [TE] B[ (i,n, (t) )] 

..,,_ .,. Fd,v [31] B[ <i,n, (t))] 

f.( ••• ) are indeces of functions recursive in {d}, and by the s.m.n.­
J 

theorem f. are indeed prim.rec. functions. The proof of the lennna for 
J 

these functions is now straightforward. The only less trivial detail 

is the correctness of the [TE] inferences in the definition of 
. ++ r n ..,,_ -, k ..,,_ n ..,,_ 

£2 • From Final2 (d,v, Ei(t) ) we only know that Ej(s) and Ei(t) are 

not syntactically identical, but this does not exclude, prima facie, 

that; and tare numerically equal. Recall, however, that by our 
..,,_ ..,,_ 

definition of E-Der in 4.1 t ands are tuples of numerals, and there-

fore their numerical equality implies their syntactical identity. D 

5 • I O. COROLLARY. 

~y +BI E-Der(d) & Crit(d,u) 
0 

& "Fd' u - E~(t) II 
1 

00 r ~ d u*(n), 
-• Vrn,-,3x Prf (x, B[(i,n,(t))]=1>F' ) 

--rec 
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PROOF. Innnediate from 5.8 and 5.9. 0 

5.11. PROPOSITION. 

r: C E-Der(d) & Crit(d,u) 
Yo+ACOO 

& "Fd,u = E:1(t)" 
1 

00 ,.. ..... -, 

-+ 3~ Prf (~, s[(i,n,<t»J ). 

PROOF. Note, first, that ~+AC00 ~ Y0+BI. Assume the premise. Then by 5.10 

and AC00 , for some function~ 

00 ,- • ..... d U* (m)-, 
'v'm Prf (~m, B[ <i,n, <t » ]=>F ' ) • ---rec 

Define now~ by 

r- .,,.. ...... ., 
~() := (VI, s[(1,n,(t))]) 

~((m)*u) := {~m}u 

and the antecedent follows from 5.10. 0 

Applying prop. 5.11 to u = <>, we get 4.4.(4). 
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6. SOLUTION OF THE REDUCED PROBLEM FOR L1 (proof of 4.5(10)) 

6, I. PROPOSITION (= 4.5(10)). Let S be a I:~ enumerated theory .. (with proof­

predicate 3XVY Prf8 (x,y,rF') say). Then there is a q.f. formula E(x) s.t., 

in the notation of 4.1, 

The proof given below is based on KRIPKE [63]. 

* ,,E . 

6.2. LEMMA. For Sas above, there exists a I:~ predicate J(x) s.t. 

(i) I-A Vx,y [ J(x) & J(y) --+ x=y J 

<ii) ~s .,J <iii) for every numeral m. 

PROOF. Let neg and sub2 be prim.rec. functions s.t. for every formula F 

where xis the numeral with numeric value equals to x, and where F[t/a] 

is the formula which comes from F by replacing every occurrence of the 

parameter-letter a by (the closed term) t. Define 

K(x,n,m) := Vy PrfS(x,y,neg(sub2(n,n,m))) 

L L(a,b) := 3x [ K(x,a,b) & Vz<xVw<z ,K(z,a,w) ] 



50 

(here the g.n. rL, is the code of the fixed 

formula L(a,b), while the defining symbol Lis 

understood as a predicate) 

Assuming that the g.n. of a syntactic object is larger than the g.n.'s 

of its partial syntactic objects, we have 

( 1) L(m,n) * +-+ L (m,n) 

where 1* is defined like L, except that the bounded quantifier Vw<z is re­

placed by an unbounded Vw. For suitable Godel numbering (e.g. - the standard 

ones) the property mentioned above is provable in A, hence 

(2) ~A Vx,y [ J(x) & J(y) --+ x=y ]. 

Now suppose 

(3) ~s -,J(m) for some m, 

i.e. -

Then 

(4) 
r r -, - -, 

,-,3m3x [ Vy Prf8 (x,y, ,L( L ,m) ) & Vz<x'r/w3y ,Prf8 (z,y,r-iL(rL",m)') J 

which is just -,,3m L(rL',m) by (1) and the definition of L. 

But by Comp 0 (S) --r: 
.2 

(5) 

while the definition of L implies 

(6) 

so (4), (5), (6) together imply ,,3xVy Prfs(x,y,r~,), contradicting 

Con(S). 0 
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6.3. LEMMA. For Sas above there is a L~ predicate M(x), s.t. for every q.f. 

predicate P(x) 

~S -iVx [ M(x) ++ P(x) ] • 

PROOF. Let U(n,x) be a binary q.f. predicate which enumerate all unary q.f. 

predicates (by Kleene's enumeration theorem, cf. e.g. KLEENE [52], §58), 

and let J be as in 6.2. Define 

M(x) ::: 3y [ J(y) & U(y,x) ]. 

By 6.2(i) then 

J(m) rA Vx [ M(x) ++ U(m,x) J for every numeral m. 

But by 5.2(ii) 

~s ,J<m>, 

so 

~S -,Vx [ M(x) ++ U(m,x) ] for every m, as wished. D 

6.3.2. LEMMA. Lemma 6.3.1 holds also when Mis required to be IT~. 

PROOF. Replace M by -iM. • 

6.4. PROOF OF 6.1 (concluded). Let M(z) be given by 6.3.2, and write M(z) 

as Vx3y E(x,y,z). 

(i) 

(ii) 

r-E -, • rE -, 
Assume now Pr8 s (n) for some n (1.e. - 3xVy Prf8 (x,y, s (n) ) ). 

E By the form of the sequent s (n) we have then 

~ VzliiM(z) -+ M(~) 

and therefore 

rs -,Vz [ zl~ ++ M(z) J 

contradicting 6.3.2. 

Assume -,E*, i.e. - ,VzM(z). Then, 

But taking P(z) ::: z=z in 6.3.2 we 

* So ,,E . [] 

by CompL0 (S), ,-,PrS(r,VzM(z)-,). 
2 

get ~S ,VzM(z), a contradiction. 
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7. CONCLUDING REMARKS 

7.1. A COUNTEREXAMPLE TO A CONJECTURE OF H. FRIEDMAN 

H. FRIEDMAN [73] has conjectured that every sequence of classically 

independent E~ sentences may serve as a (meta-) substitution for the abso­

luteness of L0 • This is however false already for schemata over two propo­

sitional letters. 

Construct a counter-example as follows. Let A,B be L~ sentences in­

dependent over A, and s.t. 

( 1) !--A A • ,B 

(such sentences exist, by KRIPKE [63]). 

Let c1 be A-independent over B, and define 

C ·= B & c1 D ::: A v C 

[ 1 J { B,D} is classically independent, because 

(i) B 1-- D => B 1-- A v C => B 1-- C => B 1-- Cl 
(by ( 1)) 

contradicting the choice of C 1 . 

(ii) D 1-- B => A 1-- B => 1-- ,A 
(by ( 1)) 

contradicting the choice of A. 

(iii) D 1-- ,B => Cl 1-- ,B => B 1-- -,Cl 

again a contradiction. 
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[2] r D ._. B v -,B, 

because A r- -,B and C r- B; {B,D} is therefore not a (meta-) substitu­

tion for the absoluteness of LO• A similar counter-example was dis­

covered independently by D.H.J. de Jongh. 

7.2. OPEN PROBLEMS 

7.2.1. Is L0 absolute (for A, say) with a universal L~ metasubstitution 

(independent of the number of propositional letters in a schema)? 

7.2.2. In LEIVAJ."i!T [75] it is shown that L1 is not absolute (for A, say) with 

L~ metasubstitutions. This is a pleasant bound on possible improvements of 

theorem II. There remains however the question whether the theorem holds 

with ~r metasubstitutions. More generally, the problem may be referred to 

a whole intuitionistic hierarchy of arithmetical predicates between L~ and 
0 0 0 0 0 0 0 

rr2, e.g. - Ill ._. LI' Ill v Ill' LI-->- rr2, etc. 

7.2.3. A more philosophically inclined (and hence - technically vague) 

problem is the following. 

Let us propose as a thesis that an arithmetical sentence is true only 

if it is provable is some (constructively acceptable) number-theory, 

belonging to some (fixed) constructively generated class of theories. This 

thesis is a claim for a proof-theoretic criterion for constructive truth, 

and thus establishes a connection between absoluteness of L 1 for the class 

of theories considered, and completeness of L1 for a more abstract notion 

of truth. 

To make our thesis precise, we have, however, to specifiy a class of 

theories, and to justify the claim of exhaustiveness of this class for con­

structive truth. The relevance of the results given above to the abstract 

completeness of L1 depends then on the relation between the proposed class, 

and the classes of regular and strongly regular number-theories. 

Some technical results related to the general problem above will be 

given elsewhere. 
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