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Absoluteness of Intuitionistic Logic
by

Daniel Leivant

ABSTRACT

We say that a logical calculus L is absolute for a class C of number-
theoretic sentences, if for every schema F in the languages of L,
Fé¢lL = F ¢ C for some arithmetical instance F* of F. So when C is the
class of all true sentences (according to a given truth-definition), then
"L is absolute for C" reads "L is (weakly) complete (for the given notion
of truth)".

We deal here with intuitionistic propositional and predicate logics
(LO and Ll resp.), for which we prove absoluteness for intuitionistic
(Heyting's) arithmetic A, and for certain extensions of A,
(The term "absoluteness' is used here rather than "completeness' because
"completeness" refers traditionally to a notion of semantic truth. "L is

absolute for C" is sometimes expressed as "C is faithful to L".)

KEY WORDS & PHRASES: Predicate logic, absoluteness, de Jongh's theorem,

regular number theories.






1. INTRODUCTION

1.1. STATEMENT OF THE RESULTS

When F[p,,...,p, ] is a scheme of L, with (at most) the k propositional
Py K , 0
letters shown, and when Al""’Ak are arithmetical sentences, write
F[Al,...,Ak] for the sentence which comes from F[p],...,pk] by substituting
n n
A. for every occurrence of p. (i=l,...,k). When F[P 1,...,P k] is a scheme
i i 1 k 5.
of L] with (at most) the k predicate letters shown, where Pil is
n.

ni—place, and Ail is an arithmetical formula with n, free variables
(i=1,...,k), write F[A],.
F[Pl,...,Pk] by replacing every atomic subformula Pi(xl""’xni) by

..,Ak] for the formula which comes from

A.(X e sX, )
il n;
Regular and strongly regular number theories are defined in 1.4 below.

It will be shown elsewhere that the class of strongly regular number theo-
ries embraces the arithmetical fragments of the majority of intuitionistic

formal systems.

THEOREM I (Locally uniform Z?

Let A" be a regular number theory. For every k < w there are Z? sentences

Al""’Ak s.t.

*
Ly I Flpy».--»p, ] = A |7‘F[A],...,Ak].

absoluteness for LO).

Or more precisely: there is a quantifier—free (q.f.) formula Eo(x) s.t.

k ~_ A
}K VkVXL —le(x)[ﬁBELO(x) & v(x) <k — ﬂgﬁA*(EEEXO(X, E, )]

0 1

where



L -Fml(x) := "x is the g.n. of a schema in the language of L.";

—-0—
Pr, 18 a (fized) provability predicate for LO;
0
v("F ) := "the number of propositional letters occurring in F",
and bk0 is a prim. rec. function which satisfies

]

—

sub ( F[pl,...,pk]ﬂ, Eoﬁ) = rF[ExEO(k,x),...,3xE0<k,x>]ﬂ

21

THEOREM II (Globally uniform Hg absoluteness for LI)

Let A* be a strongly regular number theory. There are HO predicates

J
{A 1}1,3<w s.t.

n. n n
¥ Ppl,L K] - A b rra.l,... a5,
1 1 1 1
1 k 1 k

Or more precisely: there is a q.f. formula E](x) s.t.

7\ A& ~Fml (x )[7E£L1(X) 4’725A*(SUbH0(X’ E) ))}
2

where sub 0 18 a prim. rec. function which satisfies

I,

n e} n
sub O(FF[P]],...,PkkJ“, "E) = FF[Q]],...,QEk]ﬂ.

Ty

where

n,
Qil(z) = vx3dy E (x,y,l n. (z))

1.2. HISTORICAL NOTE

D.H.J. DE JONGH has proved already in 1969 the absoluteness of L for
A (and extensions A< of A with transfinite induction over some prim.rec.
well-ordering <). C. SMORYNSKI ([72]) proved that the substitution may be
chosen to be Z?, but not uniformly in the logical schemata. H. FRIEDMAN
([72]) proved that there is a globally uniform Hg substitution for the ab-
soluteness of LO. This last result is essentially a corollary of our

theorem II.



All the results just mentioned were obtained in classical metamathe-
matics. It seems, however, that they can be reformulated in intuitionistic
metamathematics, in particular in view of the recent discovery by
W. FELDMAN and H. DE SWART of intuitionistic completeness proofs for
Kripke's semantics.

So the main novelty of theorem I is the locally uniform Z? substitu-
tion. Nevertheless, we present this result in some detail, for two reasons.
Firstly, it may be used as an expository introduction to the proof of theo-
rem II; secondly, the method employed might turn out te be helpful in
solving a number of other problems concerning the relation between LO and A.

As to predicate logic, DE JONGH proved (unpublished) the (local) ab-

soluteness (for A ) of the disjunction-free fragment of L.,; he also proved

];

the absoluteness of full L., but where in each formula all quantifiers are

1’
restricted to a fixed unary predicate. These two restrictions allow a model
theoretic treatment using Kripe models with a constant universe, and a
special notion of "forced realizability" which utilizes results from the

theory of Turing degrees.

1.3. DESCRIPTION OF A”.

By a sentence we mean a closed formula of A built up from O, f;
(i,j=0,1,...), =, 1, &, v, -, V, 3 and bounded variables. A sequent is a
syntactical object of the form a = F where a is a finite set of sentences

and F is a sentence.

Propositional rules of A”:

[T] a=F where F ¢ a

i::FO 3=>F1 i:bFo&F1
[&I] — = T &F 5 [&Ei] ~ ST (i=0,1)

a 0 "1 = i

a,F=¢G a=F>G a=F
[-I] €-=>—F—->—G 5 [»E] 253

(where a,F stands for a u {F})

3=>Fi §_=>FOVF] 3,F0=>G i,F] = G
[VIi] —i——;—F—O;,—IE,T (1=0,]); [VE] i“" G

a=1
[1]

= F

| o



Quantification and arithmetical rules of A%

[TE] a=E where E is a true equation when every function-
symbol £t is interpreted as the j'th i-place prim.

rec. function.

a=EkE
[FE] a1 where E is a false equation.
(a=TF(n))
<w
[VI] a = VxF(x)
a = VxF(x) a = F(t)
[VE] m (t a term); [31] m
a = 3xF(x) <(a,F(n) = G)
[3E] L

a=6G

A function ¢ is a derivation of A~ (notation: Derw(¢)) if

(1) ¢ describes a tree: o¢u =0 — ¢(uxnl)) = 0,
¢p(un)) = 0 — ¢(uxn+l1)) = 0;

(where * denotes concatenation of sequent numbers).

(2) For every u (= the code of a node in the universal spread) (¢u)O is
the code of one of the inference rules p above (under some fixed en-
codement), while (q)u)1 and (¢(u*(n)))] (n<w) are codes of sequents
which relate as the conclusion and the premise sequents of p (and

when no n'th premise is required, (q:(u*(n)))1 = 0),

(3) ¢ is well-founded: Vx3x ¢(X(x)) = 0.

EXAMPLE. The ("informal") derivation

[T] {A} = A [TE] {A} > 0=0

[&1] {A} > A &0=0
is formalized by the function ¢ defined by

o) ("e17, "{AY > A & 0=0"

o0 :=<¢"T7, T{A} = AT

o1 :=("TE7, "{A} 0=0"

0 for every u ¢ {(),(0),{1)}.

]

du



A number d is a recursive derivation of A” (notation: Der:ec(d)) if {d}

is a total function (i.e. - VxdyT(d,x,y)) and clauses (1)-(3) above hold

when ¢ and = are replaced by {d} and =~ respectively.

A derivation ¢ is normal (notation: §2255(¢)) if:

(1) No major (i.e. — leftmost) premise of an elimination rule in ¢ is
derived by an instance of an introduction rule;

(2) No major premise of an elimination rule nor a premise of an instance of
[31I] or [FE] is derived by an instance of [vE], [3E] or [l].

The central property of normal derivations is the subformula property:

every formula occurring in a normal derivation is a subformula of the

derived sequent. We shall assume this property of normal derivations with-

out proof.

EEE?(¢,FFﬂ) := ngf(¢) & o) = "SF ', Predicates like EBEE:ec(d)’

© [t ) .
NPrfrec(d, F ) etc. are defined analogously.

1.4, REGULAR NUMBER THEORIES
Let T be a theory in the language of analysis. Write

A[TI  := {F | T } 3¢ NPrf (¢, F )}

foe]

A LT1 = (F | 3d [T F NPrf_ (d,"F )1}

or, otherwise stated,

pr_ (FH) = gET'"aqp Nprf (¢, F )
ALT]

Pr _ ("F"y := 3d pr."NPrf. (d, F ).

A [T —T —rec

rec

* . . .
An r.e. set A" of arithmetical sentences, closed under Modus Ponens, is a

regular number theory when for some consistent r.e. T 2 VO + BI,
*

AT c A

= r
can be identified with the theory H of HOWARD-KREISEL [66]; BI stands for

(o]

ec[T]. Here VO stands for intuitionistic elementary analysis, and

the schema BID of bar-induction for decidable predicates on p.336 there.
For T as above, let
*

_ -C 0
T =T +AC00 +n1



where TC is the classical completion of T, AC00 is the schema
Vx3IyA(x,y) — JaVxA(x,ax),

and ﬂe is the set of all true HO sentences. Formally, we define the proof

1
predicate Prf by
T
Prf *(p,rFﬁ) := 3x<p "x encodes a conjunction of instances of
the rule of excluded third, of instances

of ACOO and of true 10 sentences"
& PrfT(p,imp(x,rFﬂ))
where imp is a prim. rec. function which satisfies
rLt o

imp("F',” 6" ="F>G..

A theory A* as above is defined now to be strongly regular if there is an

* . . * *
r.e. theory T s.t. T 1is consistent and A" c K;ec[T 1.



2. RECURSION THEORETIC SOLUTION OF A REDUCED FORM OF THEOREM I.

2.0. We wish to find Z? sentences Al""’Ak s.t.

(%) !fLO Flp5..-5p, 1 = VA* FLA 5 eees8 T

If the theories L0 and A" are replaced by their classical completions, the
solution could be based on truth-values arguments, using recursion-theoretic
methods only, as was done (independently) by KRIPKE [63] and MYHILL [72].
The complication for the intuitionistic case depends mainly on the presence
of implications in the schema F, or more precisely — on negative nestings

of implications. It is in such cases that the usual intuitionistic inter-
pretation of connectives uses a notion of impredicativity (''for every con-
struction.... there is a construction....').

Let us count the negative nestings of implications by a measure u,

uer := for atomic F,

ur-F&G_1 1= uroGj i= méz[uer,urij,

W E>G i= Egg[urF1+l,urGﬂ]; and for the full language of Ll’
WVxF = Wl axF ! o= WTF

We shall see that for schemata F s.t. uer < 1 the classical recursion-
theoretic methods work. The complexity involved in the growth of the
u-measure is further illustrated by the fact (cf. LEIVANT [74]) that the

consistency of Ak is provable in Ak+1 for every k, where

Ak := A restricted to formulae F s.t. u' F ' < k.



2.1. STATEMENT OF THE REDUCED SOLUTION

We define a sequence Uk of propositional schemata, where

= U T < £ :
U, = Uk[pl,...,pk] and u U 1 as follows

U0 = 1

Ul[p]

PvVap.

Assuming Uk to be defined, let

i _
Uk[p]’."’pk+1] .= Uk[p]’...’pi*]’pi+]"..’pk+1]

W [p; ~ U11<]'
i=1,...,k+1

Uk+l[pl""’pk+]] :

We shall solve in this section (*) for the schemata U, , i.e. -

k

k

PROPOSITION. We can uniformly construct ZO sentences Allc,. .. ,Ak s.t.

1

*, U LA, AT (cw).

Here A” may be taken to be any consistent r.e. extension of A which satis-—

fies disjunction instantiation (the so-called "disjucntion property"), i.e. -

l_’.A* Av B = [1—A*A or I'-A*B].

2.2. Actually proposition 2.1 gives a solution of (%) for all schemata F

s.t. u'_F1 < 1, on account of the following

PROPOSITION. For any schema F of L, s.t. VF <,

liO F[pl,...,pk] = hT)F - Uk.

SKETCH OF PROOF. Use a primary induction on k (= the number of proposition-

al letters occurring in F), secondary induction on the length of F, and

ternary induction on the length of the left main subformula of F. []

2.3. LEMMA. (propositional logic. Compare KLEENE [52] §33).
[al]l If G 28 a positive occurrence of a subformula of F (see e.q. PRAWITZ

[65] p.43 for the definition of positive and negative occurrvences) then



E| 6+-H = E'|—L F -~ F[H/G]
0 0

(where F[H/G] comes from F by replacing the occurrence G by H)

[a2] If G is a negative occurrence in F, then
E |—L0 G-H = E ]—LO F[H/G] +~ F

(bl Let FI be the propositional schema which comes from F by replacing

(simultaneously) every occurrence of some (fixed) propositional letter

p tn F by pvq, where q is a fixed propositional letter. Then

aq rlo Fd > F.

PROOF .

[al: Straightforward by induction on the length of F (simultaneously for
[al] and [a2]).

[b]: Since q -10 pvq we get by repeated application of [all

(%) Pl FU F, where F4” comes from F by replacing only negative
0
occurrences p in F by pvq. But -q Ll pvq > p, sSo we get by iterated

application of [a2]: (*%) g Fl F1 5> F97. (%) and (x%) yield [b]. [J
0

2.4, SIMPLIFIED DEFINITION OF EFFECTIVELY INSEPARABLE R.E. SETS
It is just to smoothen the exposition that we use the following

LEMMA. Two disjoint r.e. sets A,B are effectively inseparable iff there

18 a recursive function f s.t.

=
=)
[

1

)
¢‘f = f(i,j) ¢ wi u KG

=
)
=}

]

PROOF .

I. The "if" direction is trivial, since the function f satisfies more
than what is required from a function of effective inseparability (cf. e.g.

ROGERS [67] p.94).

II. Let, on the other hand, f1 be a function of effective inseparability

for A,B and let i,j satisfy
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(1) AnW. =0, BnW, =6@.

By the reduction principle (cf. ROGERS [67], p.72) there are functions

g,h s,t.
(2 ety S Vi3 Wheg) S Y5
(3) wg(i) U wh(j) =W, u wj and
(4 wg(i) n Wh(j) = @,
Take now
() Woriy T V(i) VB Whargy) T Mg U A
Then
while by (4), (2), (1) and the assumed A n B = @,
(7 wg,(i) n wh,(j) = [wg(i) n wh(j)] U [wg(i) nA]u
U [wh(j) n B] u [A n B] = g,

For the f defined by
£(i,5) = £,(g'(1),h'(§))

we have now, by (6) (7) and the choice of f] that £(i,j) ¢ Wi U Wj as re-
quired. [

2.5. DEFINITION OF THE DESIRED Z? SENTENCES

The following construction generalizes the method of MYHILL [72]. Let
A,B be r.e. sets, effectively inseparable (in the sense of 2.4) through the

. * . . .
function f, and let A" be any consistent r.e. extension of A. Following
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SHEPHERDSON [60] we may define (explicitly) a 2? formula F(a) = SXFO(x,a)

s.t.
(1 A=fm ||, F@}; B=in| [, -F@)

(To see that this holds also intuitiouistically, either inspect Shepherdson's

proof, or observe that the equations above are formalizable as HO statements.)

2
. e e e k
We construct now, by recursion on k, an infinite sequence {Ai}i<w s.t.

(2) b&* Uk[AE ,...,A? ] for every distinct i ,...,1i,.
1 k

. . * . *
Basis: By the assumed properties of A" there is a Rosser sentence R for A" ;

set Ai := R for every 1i.

Recursion step: Assume A?, i < w to be defined and to satisfy (2). We de-

fine a sequence of sentences {G?}j<w s.t. no finite boolean combination of
S k
the Gj s implies in A Uk[Ai ""’Ai ] for some distinct Liseeesiy. (By a
1
boolean combination we mean here a set {Hj}j where Hj is either G? or ﬂG?-)

Sub-basis: Let

_ . . . - k k
(3) wg(],k) = {m [ 3 distinct Lyseeesiy for which F(m) IA* Uk[Ai],...,Aik]}
4) W = {m | 3 distinct i, ,...,i, for which -F(m) |- U [AX ,...,A% 7
h(1,k) 177777k A* K i]’ ’ik
Now wg(l,k) nA=¢ and wh(l,k) nB=@>by (1) and (2). Hence

£(8C1K)R(1,K)) & Wy 1y U Wy gy

Define
ko .
G] .= F(f(g(l’k)sh(lak))’
then
) ek
(5) li* Uk[Ail,...,Aik] as required.

-G
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Sub-recursion step: Assume that G?,..-,G? are defined, and satisfy

(6) el [if Uk[A? ,...,A? ] for every boolean combination ¢ of
1 k k k . L. . .
Gl""’Gl and every distinct 1]""’1k'
Define
.. . . = * k k
wg(1+1,k) := {m | 3 distinct ipseeesiy sot. F(m), G |A* Uk[Ail""’Aik]

for some boolean combination G* of GT,...,G?}

- * k k
wh(1+]’k) e {m l LR _'F(m)’ G l_A* Uk[Ail,o--,Aik] o-o}-

As in the treatment of the sub-basis we have here

nA=0; wh(1+l,k) nB=0.

Mg (1+1,k)
So, defining

k

G1+] : = F(f(g(1+1,k),h(1+]sk))),

we have

* k k . . * k k
G ljf Uk[Ail’°'°’AikJ for every boolean combination G of G],...,G1+1.

. . . . + .
Main recursion-step continued: Define now A? : to be (the purely Z? equiva-

lent of) A? v G?. To conclude the proof, assume

+ o e .
- U [Ak+],...,AF : ] for some distinct i
A* k+]l 1

ge sl .
1 lk+1 1 k+1

. . . . . *
By the disjunction instantiation property of A" we get, w.l.g.,

k+1 k+1
AT T,

R (A L
2 e+ 1

A* 11 k

. + . . .
But recalling the definition of A? ], this implies
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G? ., Uk[AE v G? o AS v dE
1 A 2 2 T+l Tr+1
which by 2.3 [b] implies
G? ,ﬂG? ,---,ﬂG? . Uk[A§ ,...,A? 1,
1 2 k+1 A 2 k+1

. s . k
contradicting the construction of the sequence Gj. Hence

k+1 k+1
l£ U [A, . .,A, 0 ]
A* k+1 1, e

as required. [J

Note, finally, that the above construction can be rendered totally
uniform. That is - every A? can be presented as EXFO(f'(i,k),x) for a suit-
able total recursive function f'. This formula does not belong, strictly
speaking, to the formalism of A, But it is equivalent to the following for-

mula of prim. rec. arithmetic:
3z T(e,<i :k>’(z)0) & FO(U((Z)O)’(Z)]),

where e is the g.n. of the function f', T and U are Kleene's computation-
predicate and result-extracting function respectively. We thus obtain from

the above construction the full power of theorem I for schemata F s.t.

W F <.
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3. PROOF THEORETIC REDUCTION OF THEOREM I

3.0, Here we prove, for a regular number theory A* c A°ITI,

PROPOSITION. If |+L F[p »+eesp ] and l-* F[A ,...,A ], then
0 A

I—Am U LA ,ee0sh ]

rec
or an ZO sentences A
I Yz 1""’Ak'

Combined with the solution given in section 2 for the schemata Uk’ this
implies theorem I.

The proposition is proved as follows. In 3.1 - 3.7 below we prove
(for some prim.rec. f)

l""l)

B oo r =
M by app Rry CFD & Nexfy (5 TFTA, -0 h D)

o - =
— Nprf ec(fd, Uk[A],...,Ak] ).

So, for a theory T > VO + Bl and a proof-predicate EET for it which 1is

proved in A to be closed under Modus Ponens,

- = r oo r b N |
@) K Pr. .,!ILO( F) & Prp Nerf (d, F[A;,...,A 1)

r © r i ]
— Pro NPrf  (£d, U [A ,...,A )"

But 21{ is a prim.rec. predicate, so (2) implies
0

r.- r = r N
(3) h& 7BELO( F) & 'EEA*( F[A],...,Ak] ) — Pr ;ec[T]( Uk[Al,...,Ak] )

[o0]

for any A cA_ [T].
rec
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3.1, HEURISTICAL CONSIDERATION LEADING TO THE REDUCTION

3.1.1, Assume the premise of 3.0(1). It means that a normal derivation d of
F in A:ec is given where some quantification or arithmetical rule must
occur, because 1££L0rFﬂ. We "climb up" in the proof-tree d in search for
such an occurrence, starting at the root ().

To allow a smoother semi-formal exposition. let us write - for a node u-

pd’u for the inference rule encoded by ({d}u)o, and

Sd,u - E‘d,u:Fd,u

for the sequent encoded by ({d}u)]
At every stage of our search in d we arrive to some node u where the

0
sentence Fd’u is a Zl substitution of a schema of L 0’ and where
ﬂPrL ("s d uq), i.e. d u Fd’ cannot be proven u51ng the rules of LO

only.

Suppose now that a node u is '"selected" at a given stage of the search.

d,u . o .
If o> is a propositional rule, then at least one of the premises uxn),

v-du*(n)—: r-du—y)

< 2 of u in d must satisfy ﬂPrL (s ), because ﬂPrL (

since u is "selected". We "climb up" to the leftmost of these premises.
pd’u cannot be [VI] or [VE], by the subformula property of d, because
V does not occur in F[A ,...,Ak]
d,u ! s d,ux 0)= . . . .
If p is [3E], and -Pr O( ) (i.e. - the major premise 1is
not provable using propositional rules only), then we climb up to ux 0,

Else, we proceed simultanuously to all minor premises uxn+l), n < w.
d,ux 0)

The major premise F Z: 3zCz must be a Z? sentence, by the sub-

formula property. So, for every n,

Sd,u*(n) - gﬁ’u,CE - pdou

- . . d,u . 0 . . ..
where Cn is an equation, and F >~ is a Z substitution of a prop031t10na1

schema. It is easy to see (3.3 below) that if PrL ('—ad v C =>F ) for

~ d, u_ d u-
some n, then PrL ( a ), which contradlcts our assumption that the

node u is selected. It follows that all nodes ux{(n+1) corresponding to

d,u . o
>~ satisfy our conditions on "selected" nodes.

the minor premises of p
Now since d is a well founded tree, the search described above must

terminate along every branch of the universal spread. It cannot stop at a
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top node of d, because
(1) 1if pd’u [TE] then Fd’u is an equation, and so u is not selected;
(ii) if p [T] then P_rLO("sd’“")

Hence the search determined by any successive choice of minor (or major)

d,u

. . d . .
premises of instances of [3E] must stop at some node u s.t. p *Y is either

[31] or [FE].

3.1.2. Let us now consider how this information on the 'search' described
. oo

above may be used to construct a proof in Arec for Uk[A],...,Ak]. To start

with, take the simplest case, where k = 1, F = F[3xEx] , and let u be some

terminating node of the search.

Case 1. pd’u = [31]
pd,u*(O) a = Et
the node (u)— ©[31]  a = 3xEx
d,ux( 0}

Obviously, the inference rule p cannot be an introduction rule. If

pd,u*(O) is [+E], then we have the configuration

a= G > Et §.=-G
the node a = Et

But no subformula of F[A],...,Ak] has the form G*Et where Et is an equation.

So pd,u*(O) cannot be [+EJ], and the cases [&E] and [VE] are ruled out like-
d,ux(0)

wise. p cannot be one of [1], [VvE], [JE], by our definition of nor-

mality. We are thus left with the case that ux0) is a top node of d, and

pd,u*(O) is [TE] or [T]. In the first case we may construct

[TE] = Et
[31] = JxEx

[vIO] = IxEx v =3xEx

So we have obtained a derivation for U][HxEx].

On the other hand, the case pd’u*<0) = [T] is ruled out as follows.
d,ux(0)

Assume that p = [T]. Then Et € a, and since d derives a sequent =F
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with an empty precedent, Et must be '"discharged" in d somewhere below the
node u. Again by the subformula property of d, this discharge cannot be at
an instance of [+I] or of [vVE], and so it must be at an instance of [JE],

and we should have the following configuration (where t = ﬁ).
a= En

@—» a = IxEx

b = 3xEx b,En = B

()  [3E] b=B

Here the two indicated occurrences of Z? formulae must be identical for the

case considered. Since the node u is selected, so must be v, but not v¥0),
This means that ﬂPrLO(7§=3xExﬁ), but EELO(fE?BXExq). From the configuration

just shown we must have, however, b c a, and this is a contradiction.

Case 2. pd’u = [FE], a=E say.

[FE] a=1

As in case 1, we find that uxX0) must be a top node of d, and since E here

d,ux(0)
i

is a false equation, we are left with the case that p s [T]; so we

must find in d the following configuration:

[T] a=E

b = 3xEx b,En = B

(v)» [3E] b=B

and we may assume w.l.g. (by the well-foundedness of d) that the configura-

tion of the type shown does not repeat itself within any of the subderi-
vations Zm. Since u is selected, so must be v, and hence vX m+l1) for every
m < w., Each search in a subderivation Zm must come to an end at some node
u s and the argument of case 1_ (about ruling out pd,u*(O) = [T]) shows that

since vx(0) is not selected, p *'m is not [3I], and must therefore be [FE].
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Hence we can extract from the configuration above the derivation:

[T] 3xEx,En = En

[T] 3xEx = 3IxEx [FE] 3xEx,En = 1 <a
[3E] IxEx = L
[~I] = -3xEx
[vI]] = JxEx v =3xEx

and again we found a derivation in A:ec for Ul[HXEx]. This concludes our

1, F = F[3xEx].

observation on the case that k

3.1.3. Consider now the case k = 2, i,e., — F = F[3IxE x,HxElx]. Here the

0
following configuration may occur

a= EXEOX {Zn}n<w

@—* [JE] a=B

where the node u is selected, and the search continues to the minor sub-

derivations L (i.e. - fzio(rg_='3xE0xﬁ)). But now, from our argument for
the case k = 1 it is clear that, for the node u at which the search in the
minor subderivation Zm terminates Fum $ Bxon (m<w). So we may apply the
argument for the case k = 1 to each of the minor subderivations separately,
and extract from each of these a derivation Z; for ﬂxElx v ﬂixElx. Since

the method of doing this is uniform, we can actually collect the derivations

Z; to yield the following derivation of A: .

ec
*
z
m
[T] 3xEOx = Exon Hxon = HxElx v ﬂﬂxElx <0
[3E] EXEOX = ExElx v ﬂaxElx
[»I] = BXEOX - ExElx v ﬂSXElx
[vIOJ ='U2[3XEOX,3XE1X]

Iterating this process, with some technical symmetrization arguments, we

obtain 3.0.(1).
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3.2. NOTATIONS

d

Subordinated (d,u,v) := 3w,n<v [ v=wx{0) & w™ntld)<u & »p - [SE]]

"v is a major premise node of an instance of [3E]

1]

in d, and u is a node in one of the minor sub-

derivations of this instance".
Here < stands for the initial-segment relation (between sequent-numbers).

Selected (d,u) := "Fd’u is not q.f." & 12£LO(FSd,u") &

)
Yw<u [ Subordinated(d,u,wx( 0}) - EL (rsd,w*<0 ) ]
0

<) - = 0 [
When NPrfrec(d’ F[Al""’Ak] ) (Al""’Ak Z] sentences) write

Eé’u = {Fd’V I Subordinated(d,u,v)}

aU o {E € gé’u | E an equation}

Ud’u = U[A A. ] where {A cosA, T = {A ,... J IR\ bd’u
= m i 9000y i i 9 e ° 3 im 1’ ’Ak —_—

1 m 1

(set-theoretic difference)

3.3, LEMMA, Let A]”"’Ak be Z? sentences, let a = G be formed of sub-
formula of F[Al”"’Ak] only, and let E be an equation. Then

L

Pr, (3,E=¢") = Pr; ("a=G).
0 o0

PROOF. Let Il be a normal proof for a,E=G which uses propositional inference-

* o . .
rules only, and let I come from I be eliminating E from all precedents of
sequents in II. Check by inspection on cases for inference rules that H* is
a correct derivation. (Note that by normality no formula of the form E -+ H

may occur in ). [

. o - -
3.4, LEMMA, (in A) Assume NPrfrec(d, F[Al,...,Ak] )H

pd,u d,

(a) Selected(d,u) — [ =[31] v oY = [FE]l v 3n<2 Selected(d,u*(n)) }

d’ -Sd,u*( 0)=

(b) Selected(d,u) & p

Y- [3E] & Pr, ( )
—lo

— ¥n>0 Selected(d,ux{n)) .
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PROOF. Assume od’u # [311,[FE] and the premise of (a), and consider cases

for pd’u. pd’u cannot be [T] or [TE], because Selected(d,u). pd’u is not

[VI] or [VE] by the subformula property of d. If pd’u is a propositional

. .. . . d,u
inference-rule, the proof is immediate. We are left with the case that p ’

r d,u*(0>'l
S

is [3E]. If wBELO( ) then we are done (for part (a)). Else, then

Selected(d,ux{0)) for every n > 0 by 3.3. [J

3.5, ASSIGNMENT OF DERIVATIONS TO THE SELECTED NODES

Assume, as above, Nprf:ec(d,rF[A],...,Ak]ﬂ). We define a function
{a(d,u)} recursively in {d} and u by the conditions given below. By the

s.m.n.~theorem a(d,u) is then a prim.rec. function.

(i) If —Selected(d,u), then {a(d,u)}

0.

dsu _ [31]1, then {a(d,u)} describes the finite derivation

pd,u*(O)] d,u .d,u =_Fd,u*(0)

(i1) Else, and p

C N ub
[31] Eg’ulJbé’u== Fd’u
instances of [-I] °
and of [vI]
2g,uuhd,u - Ud,u
Note that, by the argument of 3.1.2, Fd’u 4 Eé’u and that pd’u*(O) is

either [T] or [TE].

(iii) Else, and pd,u = [FE]. Let {a(d,u)} describe formally

[T] 33’“ updst o pdoux 0’
[FE] _a_g’uuhd’u -1
[1] 3g,uu_b.d,u =_Ud,u

u . . .
>~ is a propositional inference rule. Let uxn) be the

(iv) Else, and p
leftmost premise of u in d s.t. Selected(d,uxn)) (cf. 3.4.(a)), and

let {a(d,u)} := {a(d,ux(n))}.



(v) Else, and pd’u = [3E];
Subcase A: If wPrL (rsd’u*<0)1), let a(d,u) := a(d,ux0))..
- -0
Subcase B: Else, and 3IxEx := Fd’u*(0> ¢ Eé’u, then let {a(d,u)}
describe
z'
n
d,u _d,u [ d,uxn) . d,u d,uxn) |
[T] 3y’ ub™’",3xEx = 3xEx 1_&_10 ub ? ,3xEx = U [ 0<n<w
[3E] gg’u 0pdY, 3xEx » v D
[+1] Eg,u‘ Eé,u o JxEx > Ud,u*( 1)
instances of °
[vI] .
Eg,uuhd,u - Ud,u

Here, if Zn is described by {a(d,uxn))}, then Z; comes from Zn by

joining the formula 3xEx to all precedents. Note that by the case's

conditions
E.d,u*(n) _ Eé,u U {3xEx} h
gg’u*<n> = gg’u u {En} %
Ud,u*(n) = Ud,u*( 1) )

Subcase C. As

for n > O.

Z'
n
d,u .d,u [ d,uxn) _d,u d,u |
3, ub ’,3xEx = 3xEx 1 2, ub "’ ,3xEx = U f 0<n<w
[3E] Eg,u Ed,u - Ud,u
Note that here Ud,u*(n) = Ud’u for every n.

21

subcase B, but IxEx ¢ Eé’u. Then let {a(d,u)} describes
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3.6.1., PROPOSITION.

b BI ﬁEEE:ec(d,PFEAI,-..,Ak]’) & Selected(d,u) —
0 —

© r dy,u ,d,u _d,un
NPrfrec(a(d,u), 3 ub™’ =U )

3.6.2., COROLLARY.

NPrf_  (d,"F[A[,...,A 1) & 1g£LO(’F“) —
o - -
Nerf  (a(d, (), =0, [A,...,A T) .

PROOF. Use 3.6.1, for u=<¢(), [
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4, STRUCTURE OF THE PROOF OF THEOREM II

4,.1. PRELIMINARIES

4,1.,1, Fix a q.f. formula E(x) := £(x)=0 (where f is a fixed prim.rec.

function). Write

m

n .
Ei(z],...,zn) Vx3y E(x,y,l,n,(z],...,zn))

where (,...,) is a fixed encodement for finite sequences

(cf. e.g. TROELSTRA [73], p.24).

E" := Vi,u,zVxdy Kx,y,i,u,z’

B°[w] := V{i,n,z) [ Ineq((i,n,z),w) — Vady Kx,y,i,n,z) ]

where Ineq(a,b) is an equation which expresses the inequality a # b. More

intuitively,
BEL (5,m,( 5107 12 W{i,n,(t) N OERD)
(i,n,eN#(G,m(s)) T
sE[w] += Blw] = Vx3y E(x,y,(w)o,(w)],(w)z)
),
= Blw] = E(w)o((w)Z,O"°"(W)Z,(w)l)
i.e.

sE0¢i,n,(20)]

Vi,mw IRACORESHOP
(j,myw)#(i,n,z) 3

The sequents s[w] play here the same role as the schemata Uk in the treat-

ment of L0 above.
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PROOF. Assume a U E-Fl A Fs and let A be a normal derivation of LlA for
1

avu E_F- F (cf. PRAWITZ [65]). By induction on the length of A, using the
subformula property and the definition of E-atoms. one prove easily that
every formula occurring in A is either an E-sentence or an open Z? or q.f.

formula. Hence formulae in b are actually not used in A, and so a Fl A F. 0O
' T
4,2,2. LEMMA, Let a,F be closed formulae of Ll' Then
E
a’haF = ah F

where
E

PROOF., Let A be a normal derivation (in the sense of 1.3) of L]A for

EF F FE and let G be an occurrence of a formula in A, G not an E-sentence.
By the subformula property of A, G must then have one of the forms

[a] E(u,v,i,n,z?> or [b] 3y E(u,y,i,n,z).

By the normality of A (defined as in 1.3) this instance must either

(i) be a top formula of A (in case [al), or

(ii) occur immediately below a top formula, or

(iii) occur as a premise of JE derived by VE (in case [b]).

Note now that E? is defined %o that the order of variables in each
E-atom is fixed, so that the two first variables of the matrix are bounded
by the V3 quantifiers preceding it. Furthermore, two E-atoms formed from
distinct E? are syntactically distinct. Hence every occurrence G as above

must occur in a configuration of the form

(1)

E{u,v,i,n,z)

JI
JyE{u,y,i,n,z’
| “ |

z vx3ayE{(x,y,1i,n,2) ;
Vx3IyE{(x,y,1i,n,2) r
VE
IyE(u,y,1,n,2’ H
n = (1) 3E
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4,1,2, An E-gentence is a sentence built up using the formation rules of L]
only, with E? taken in place of the predicate letter P? (iy,n=0,1,...). An
E-atom is an E-sentence of the form E?(tl""’tn)' We call the implicitly
indicated occurrences of t. in the E-atom above (i=l,...,n) the formal
occurrences in E?(?). Since the order of formally-occurring terms in each
E-atom is fixed, by the very definition of E?, it is uniformly decidable
whether two E-atoms are instances of the same E?.

Let d be a normal derivation of A:ec for an E-sentence. By the sub-
formula property of d, every formula occurring in d is either an E-sentence,
an E-atom or a Z? sentence with an E-atom as a matrix. It is easily seen
that if we replace every formal occurrence of each term t (in some formula
in d) by the numeral n s.t. n=t, we get a correct and normal derivation

of the same E-sentence., We call such a normal derivation an E-derivation.

Notation: E-Der(d); E-Prf(d, PFﬁ) Since we deal with E-derivations only,

we shall assume that each E-atom has the form E- (ml,...,m ).
F[P yooss lq] is a schema of L whose predicate-letters are among those
1]

q - -
shown, we write FE for F[E, :,..., q] FE-1 = sub 0( F rEﬂ)
1q

4.1.3. We write [BEl] for an instance of [3E] whose major premise (i.e.
the antecendent of the leftmost premise sequent) has a q.f. matrix. For an

instance of [JE] which does not satisfy this we write [SE*].

4.2, DERIVATION OF E-SENTENCES IN LlA

Let intuitionistic predicate logic L] be formally generated by Gentzen's
system of natural deduction (cf. PRAWITZ [65]). The system L]A is defined
as follows. The language of L]A is the language of A extended with letters
for parameters (i.e. - free variables). The rules of inference of L]A are

exactly those of L].

4.2.1, LEMMA. Let every formula in a,F be either an E-sentence, an open

Z? formula or an open equation. Let b be a set of closed equations. Then

auv B.FLIA F = E.FllA F

BIBLIOFREER  MATHEMATISCH  CENTRUR
' AMSTERDAM
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Replace the subderivation II of A by

b3
« [ VxIyE(x,y,i,n,2) ]j
: r
H

Note that T is normal. Repeating this operation we get, by induction on
the number of occurrences of Z? formulae in A, a derivation A* where all
occurrences are of E-formulae. Replace in A* every occurrence E?(g) of an
E-atom (including occurrences as a subformula) by P?(g), and the result is

a correct derivation of L] for a F F. O

4.3. We wish to prove theorem II, which may be restated in the following

form.

THEOREM II (restated). For any T > VO + Bl there Zs a q.f. E(x) s.t.

AT F‘ 72£L (rFﬂ) - TEE . (EEE O(FFﬂ’rEﬂ))
1 Arec[T] I,
where
AT .= A+ (M + REn, (T) + Con(TY),

Co
Ce(T) := Vvx,y [ Prp(imp(x,y)) — (Prp(x) > Pro(y)) I,

o= n . [1]
an3 (T) := vx [ EET(X) & x encodes a formula in CO

= Ir, (®) 1,
0
. 0 0 .
and where CO 18 the class of formulae of the form H2+ﬂw22, and IECO 18 a
truth definition for CO.

* . . .
Con(T") vx [ "x encodes a conjunction of instances of

excluded-third, of instance of ACOO and of true

H? sentences" — ﬂEET*(neg(x)) 1.
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4,4, THE PROOF THEORETIC REDUCTION

Fix E as above. We define a (classically) H? predicate Crit(d,u) for

which we prove
(1 l-y0+31 E-Pri(d,"¥) — [E & ﬂP_rLlA("F") — ==3u Crit(d,u) 1.
Since T 2 VO+BI we get from (1)

P "E-Prf(d,"F)7 — Pr [ & -Pr; ,F > +ndu Cric(d,w)]”

) Buewp(my B2 |

and so

- e N -7
) Feoup(Ty+ren, (1) REy EBLEWFD T & BD & oPr) g ED
T 0

==3u Crit(d,u).

On the other hand we prove

4) F.C E-Der(d) & Crit(d,u) & Res(d,u,x) — 3¢ NPrfm(¢,FsE[x]ﬂ)
v +AC -
0 00
where
Res(d,u,x) := Vy [ T(d,u,y) —

"if antecedent((Uy)i) encodes E?(E) then x=(i,n,(?>)" 1.
Since T > V8+ACOO and CMP(T) — CMP(T™) trivially, we get from (4)

(5) hA+CMP(T) E Der(d) —

r *(FCrit(d,u) & Res(d,u,x) - NPrw(FsE[x]ﬂ)ﬂ).
. . 0
But Crit(d,u) and Res(d,u,x) are classically Hl’ S0

(6) }_A+CMP(T) 7 E-Der(d)” & Crit(d,u) & Res(d,u,x) —

EE *FNPrwrSE[X]ﬂﬂ.

T
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We have however, trivially,

EA "{d} is total" — 3x Res(d,u,x)
and so

-

EET E-Der(d)’ — 3x Res(d,u,x).

hAfEER(T)+anCO(T)

Hence we get from (6)

Pr"E-Der(d)’ & 3Ju Crit(d,u) —

™ Favcp(T)+ren, () BET EDer

—
0 ro...or E -
I3x Pr NPr s [x] .
— o e—
T
Combining (3) and (7) yields

- a7 * 7
®  Buaemeren, (1) 2 EPLEEFD D& B & Py g
T 0

E
+=3x Pr *PNPrmrs [x] " .

T
But from 4.2.2 we have
A r_EA (F a schema of L)
F -Pr, F' — =Pr, , F 1
A L1 ——i]A
so
E- *
o k -pr, "FT & Pr_ P & BN —
A+CMP(T)+anCO(T) Ll A° [T]
rec
==3x _111; - PSE[X]-’

ATIT ]

This completes the proof theoretic reduction. Note that for any
predicate Crit (not necessarily H?) for which (1) and (4) hold, we could

prove a statement (7+) similar to (7), but with Pr T3x NPrm'r.sE[x]-H as the

*
*x . . .
antecedant. T 1is however a highly non-constructive theory, so there is no

way to pull the existential quantifier out of the provability symbol here.



4.5, SOLUTION OF THE REDUCED PROBLEM

In this part we prove for every Zg theory S the existence of a q.f.

E(x) s.t.

. r E = *
(10) Pscon($)+0omp () Y TEEg 8 [x] T & ~oE
>

2

where EES is a fixed ZO provability predicate for S, and where

2

(11) Comp ,(S) v [ Ir (x) — Pro(x) 1.

> )

Here Tr 0(x) is a (canonical) truth definition for Zg sentence., We wish

2 P
to apply (10) to S = A [T*], where T and T~ are as in 1.4. First, note

(12)  -NerT(TLT),

0
so
(13) h& Con(T*) — Con(Am[T*]).

0 .

Also, for 22 sentences F we have directly
(14) Fy F — EE%rFﬂ

0

and since T~ o) VO, and quite trivially CMP(T) - CMP(T*), this implies

= r_=
(15) vy Pr 'F — Pr _ F.
A+CMP (T) * A [T*]
By the very definition of Pr . however
T
r.o 0
F F — Pr 'F for every I, F,
A — % 1
T
and so
= 0
(16) EA+CMP(T) F — Pr 'F for every 22 F.

29
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Hence we get from (15) and (16)

(17) EA+CMP(T) F — EEAw[T*]FFﬂ for every Zg formula F.
Now observe that steps (15)-(18) can be uniformly formalized (within A),
i.e. = (11) holds for S = Aw[T*j, as wanted.

We now proceed to prove (1) and (4) (the proof theoretic reduction),
and (1) (the recursion theoretic solution) which together imply as we have

just seen theorem II.



5. THE PROOF THEORETIC REDUCTION FOR THEOREM II

5.1. LEMMA. Let the numeral n not occur in a, F, 3xGx.

(i) If (1) a,6n }1 A F then
1

(2) a,Gv Fl A F where v is a parameter which does not occur

l in a, Gn, F.

(ii) If a Fl]A Gn then g_fllA Gv (for v as above).

31

PROOF. Given a normal derivation of LIA for (1) replace every occurrence of

n by v, and observe, by inspection on cases for the inference rules, that

the result is a correct derivation. The proof of (ii) is similar. [

5.2, SEMI FORMAL HEURISTIC OUTLINE OF THE REDUCTION

5.2.1. Preliminary notations.

R](d,u)
Rz(d,u)
R3(d,u)
R4(d,u)

Rs(d,u)

Note that each

R3(d,u)

Start(d,u)

Critl(d,u)

~ d,un
-|—P£L1A S °

d,u

"all equations in a are true",

d,u .
"F’" is an E-sentence".

"Fd’u is an E-atom, and pd’u is [VI]".

d,u . 0
>" is a Y. -sentence".

"
F 1

Rj(d,u) may be formally defined as a H?

vy [ T(d,u,y) — "antecedent((Uy)l) is the g.n. of an
E-sentence" 1].

A R
i=1,2,3 ;(dw.

N R 4,u.
i=1,2,4 1

predicate. Example:
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5.2.2. Locating an arithmetical inference in E-derivations
(the predicate Crit).

We want to define a predicate EEiE and to prove for it 4.3(1),(4). The
idea is that when E:Egz(d) and EEiE(d,u) ("u is a critical node in the
proof-tree described by d'") then.the subderivation d" of d (where
{d"} := ax.{d}(u*x) ) has sufficiently nice properties so as to enable the
extraction from it of a derivation for s[w] for some w.

As a first attempt to define such a predicate we try, as in the proof
of theorem I, to look, when E:Ezg(d,rFﬁ) and TEELIA(FFﬂ)’ for a "genuine"
use of an arithmetical inference in d. A starting node for such a search
up may be any node v of d s.t. Start(d,v). When Start(d,v) we can weakly
find (i.e. - =-n3) a node vx{n) s.t. Start(d,v+(n)), using lemma 5.1 when
pd’v is [VI] or [EE*], and E* and 4,2,1 when pd’v is [BE]] (lemma 5.4 below).
Thus the search up in d may continue. The only cases where this process
stops are when R4(d,v) or when pd’v is [FE]. In the last case, the defini-
tion of normality of 1.3 implies (as in 3.1.2) that a false equation occurs
in éé,v’ contradicting Rz(d,v). Thus, by the well-foundedness of the proof-
tree d, we find a node u}v s.t. E£i£l(d,u).
ux {m) an

When Crit](d,u) we can actually find in each subderivation d

inference of the form

G
(%)
G i3y e
(G is a true equation and Fd’u*W = Fd,u*(m)). So these can be collected to

yield a derivation of the form:

19
m m<w

[vI] B[(i,n,(t))] = E‘i‘(?)
d,u _ n,~ . .
where F =: Ei(t)’ and each Zm is (schematically) of the form (%).

Unfortunately, the crude statement that the situation above occurs is
0 . .
not H], essentially because there is no bound on the length of the w corre-
sponding to each m<w. A certain refinement of the argument is therefore

necessary.
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5.2.3. Heuristic for the disjunction—free fragment

Assume, again, E-Der(d) and Critl(d,u). The subderivation d" of d

takes then the form

z
m
a = IyElm,y,i,n,(t)) <a
(1
[vi] §_='Vx3yE(x,y,i,n,(?)>
where each Zm is formally described by du*(m).
From each Zm we wish to extract a derivation of A" for
(2) B[ (i,n, {t))] = IyE{m,y,i,n, t)).

Fix some m, and let us analyse the structure of Zm.

We assume first that d is a derivation for a disjunction-free
E-sentence; this implies, by the subformula property, that disjunction does
not occur in the derivation d, and in particular - in the subderivation Zm
we are looking at.

In addition we may assume
(3) Vw pux(m) =Start(d,w).

Because if Start(d,w), wru then we could start our initial search afresh;

this could not be iterated indefinitely, because d is well-founded.

d,u*(m)

Consider now the main inference rule of Zm, o) . By the subformula

property of d we have to consider the following cases only.

(i) pd’u*<m> = [L1]; then sd’u*(m’O) = a=1 and so Start(d,ux(m,0)) contra-
dicting (3).
(ii) [VE];

a= EIJC(_S\)

(4) [VE] §_=.3yE(ﬁ,y,i,n,(g)) say.
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Recall that E?(g) = VxﬂyE(x,y,j,k,(;)), and so necessarily
(i,n,(?)) = (j,k,(§)> (syntactical identity). Therefore
Sd,u*(m,O) = sd’u and so Start(d,ux{m,0)), contradicting (3) once

again.

(iii) [HE]]; since d is normal, Zm must then have the form

A
k -
i’_"Ej(S) Pp
[VE] a = 3zCz a,Cp = 3yEm,y,i,n, (t))

P<w

(5) - Y
a = JyE{m,y,i,n, (t))

First, if (j,k,(g)) = <i,n,(?)) then Start(d,u*{m,0,0)) as in (ii),

contradicting (3).

(iv) If, in (iii), 3zCz is true, let p := pz.Cz, and consider - in place
of Zm - its subderivation Fp (formally described by du*(m,p+]>).

d,u*{m)

Before concluding the case p = [SE]] let us turn first to case

pd,u*(m) is [BE*], let 5 be the first numeral which does not océur

d,u*{m) Sd,u*(m,O)

(v) If

in the sequents s and consider (as in case (iv))

3
the subderivation du*(m,p+])'

pd,u*(m) is [3E]], and (iii) and (iv) do not apply, then in (5)

(vi) 1If
(j,k,(g)) # (i,n,(?)) and 3zCz is false; so we can extract from (5)

the following derivation of A" for (2):

B[ (i,n, (t))] Ccp

[VE] EIJ( (s) [FE] L
[VE] 3zCz [1] 3yEm,y,i,n, (t))
[3E" ] IyE{m,y,1i,n, {(t))

(here we dropped the precedents of sequents).
Finally we have the case

(vii) £3I]; then since every equation in a is true, we get as in 3.1.2 that

d,u*{m,0)

the equation F is true, and we have (2) for the m considered.
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These are all the cases in the absence of disjunction. Cases (i)-(iii)
rule out possible failures of the construction; cases (iv),(v) allow the
search to continue, while cases (vi) and (vii) yield the required deriva-
tion for (2). ‘

Note that if E" is true, then 3zCz in (6) is also true, and so case
(vi) is excluded. Our argumeﬁt here must however be independent of E"

(cf. 4.4(4)-(6)), and so case (vi) is considered throughout.

In order to clarify a bit the form of a search which proceeds through

(iv),(v), let us consider by example the outcome of case (v), and suppose

that now case (ii) applies to T'_ (:= the derivation formally described by
ux {m,p+1)> P

d ). I.e.- the following configuration occurs:
I‘P
- n .~
2,Cp = E2 () Tl
a = 3zCz [VE] a,Cp = 3yE(m,y,i,n,(t))

the node [EIE*] a = 3yE (El,y,i,n, )

Here (3) implies, as in (i)-(iii)
-— nA
ﬂﬂEEL]A(h§$azCzﬁ) and ﬁ"BEL]A(FE’CpaEi(t)ﬂ)
which by 5.1(i) and the choice of p give
r n,>"
ﬁﬂEEL]A( EﬁEi(t) )

contradicting EEiE](d’u)' So we have adapted the argument of (ii) to the
case that a search for a proof of (2) proceeds via case (v). Other arguments
are adapted in about the same way, and this allows the iteration of the
search through (iv)-(v) above.

By the well-foundedness of d the process must terminate, that is -
one of cases (vi),(vii) ultimately appears, and we obtain a proof for (2),

as wished.

5.2.4. Disjunction reconsidered

When disjunction does occur in the derivation d above, we must add to
(i)-(vii) above another case:
d,ux{(m)

is | vE]. We then consider simultanuously botk minor premiscs
d,ux{m)
p

(viii) p

of , 1.e. - the nodes ux(m+1) and ux{m+2).
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As in the last paragraph of 5.2.3, let us see what happens if case (ii)

applies now to both ux{m,1) and ux{m,2). We have then the following config-

uration:
Pl F2
n,~ n, -~
A E’Gl = Ei (t) E’GZ = Ei (t)
§_=-Gl v G2 [VE] E’Gl = 3IyE(...) [VE] 3,02 = JyE(...)

[VE] a = 3yEm,y,i,n,{t))

As in the last paragraph of 5.2.3

- - [ n,~. " - n,>"
TPry gCa6v6y 0, Py (2,638 (00, By 4(2,6,78;(0) ),
and so

ﬂjgzL A(Fgﬁﬁg(?)q), contradicting Crit](d,u).
1

This argument may be generalized to conclude that, at least for one
successive choice of minors of [VE] in the search described by (iv),(v),(viii)
the construction leads to a node falling under one of the cases (vi),(vii)
thus allowing a construction of a proof of A" (incidently - of A:ec) for (2).

The assertion that this is the case is now seen quite easily to be
formalizable as a H? predicate (over d,u).

5.2.5. Remark: why does the presence of disjunction necessitate an additional

argument

We have seen in 5.2.4 that the presence of disjunction in d requires an
extra argument which is not needed for the treatment of the existential
quantifier. It might be in place to note here that v is, in Ll’ in a way
indeed more complex than 3; or - roughly - v implies the presence of
"plurality" in ways that are not implied by 3. This is illustrated by the

following facts.

[A] For a schema VxF(x) of L]

H o VEF(x) e |—L 3xF (x) .
1 1

This is of course not the case with & and v.
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[B] Kripke models with a constant domain are complete for the disjunction-

free fragment of Ll’ but not for the existential-free fragment.

5.3. FORMALIZATION OF THE PREDICATE Crit

Step(d,w,p) := W = Step.(d,w,p)
i=1,2,3 1
where
Step](d,w,p) = "pd’w = [EEl], and if Fd’w*(0> =: 3zCz then p = pz.Cz+1 ",
Stegz(d,w,p) = "pd’w = [BE*], and if Fd’W*(O) =: 3zCz then p is
1 + "the numeric value of the first numeral which does not
. d,w d,wx(0?}, ,,
occur in s ,S .
§£§£3(d,w,p) = "pd’w = [vE] and 1 <p<2".

These three predicates correspond to cases (iv), (v) and (viii) in
5.2.3/4, where the search described there proceeds to the p'th premise of

the node w. It should be noted that Step is a A? predicate. For example

Stepl(d,w,p) vx,y L T(d,W,X) & T(d,W*(O)’Y) - A(x,y,p) ]

Ix,y [ T(d,w,x) & T(d,wx{0),y) & A(X,y,p) ]

where

_r 15 . =
(Ux)0 = 3E & EEQF(lnst(antecedent((Uy)]),p 1))

A(x,y,p)

& Vq<p 7I£QF(inst(antecedent((Uy)]),qil)).

Tr F is a (A?) truth predicate for equations, and inst is a prim.rec. func-
Q .o

tion which satisfies inst(rﬂxGxﬁ,n) = Gn

Selected(d,v) := Vi<lth(v) Step(d,(vli),(v)i)
where

(v|i) := ((V)gseeen (W), 0 (for i <1th(v))
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Final(d,v) := W Final. (d,v)

1= H 3 1
where
Finall(d,v) := Selected(d,v) & pd’V = [1] or [VE]
Finalz(d,v) := Selected(d,v) & pd’v = [BE]]
Fina13(d,v) := Selected(d,v) & pd’v = [31].

These predicates correspond to the cases in 5.2.3 where the construc-
tion may stop, whether successfully or not.
. + [l _ . + - .
Final (d,v, A ) := Flnalz(d,v, A) v F1na13(d,v)

where

d,V*(0,0) *

FinalZ(d,v,rAﬂ) = Finalz(d,v) & F A.

d,u

When for 5.2.3 A = E?(;) F then Final+(d,v,FAﬂ) expresses the

conclusion of the construction by one of (vi), (vii), or possibly its con-

tinuation through (iv). In any case, a ''failure" through one of (i)-(iii)
0

is excluded. It is important to note that Final and Final® are both Al

predicates.
Let us use the binary encodement of finite sets of numbers. The pre-

dicates ne x, x=0 etc. are then just prim.rec. numeric expressions.

Bar(d,x) := x# 0 &
Vwex { Final(d,w) & WVu,y<x [ pd’u = [vE]

& w= u*(;)*y — Jw'exIz<x w' = u*(%)*z 1 1.

I.e. — a "bar" for d is a finite non-empty set of 'final" nodes, which
intersects both minor subderivations of each instance of vE if it intersects
one of them.

u* {m) ux{m) r~_d,u=

Critz(d,u) := Vm,x [ Bar(d ,X) — Jwex Fina1+(d ,w, F ) ]

Crit(d,u) := Critl(d,u) & Critz(d,u).



e s s e e s . 0 .
Note that Crit is intuitionistically equivalent to a TI, predicate.

1
.+ ] ++
Fina1++(d,v,rAﬁ) := F1na12+(d,v,FAﬂ) v F1na13 (d,v,"A")

where

d,vx{(0)4

+
Finalz+(d,v,rAﬁ) := Finalz(d,v,rAﬁ) & 1IEXO(PF )
1
S - = o - r.d,vx{0)-
Flnal3 (d,v, A) := F1na13(d,v, A) & Tr:F( F )
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++ . . . .
Final corresponds to a real termination of the search described in 5.2.3.

. 0
predicate, and not a A, one.

. + . ++ . 0
Contrary to Final however Final is a Tl 1

1

5.4 — 5.6. PROOF OF 4.4(1): the existence of a critical node

(first part of the proof theoretic reductions)

5.4. LEMMA.
ke © E* & E-Der(d) & Start(d,u) ] — =m3wpu Crit (d,w).
0 -

PROOF. Denote the formula to be proven by R(u). First, we prove below by

BI, and using the well-foundedness of the proof-tree d, the (open) formula

S(u) := [ E* & E-Der(d) & Start(d,u) & R, (d,u) 1 —

-=3w >u Start(d,w).

Assuming VuS(u), we can now prove R(u) by a second use of B], where S(u) is

to be used for the induction step.

Towards proving S(u) by BI, assume the premise of S(u), assume

vnS(u*x{n)), and consider cases for pd’u, which by the normality of d are

only the following:

(1) pd’u is [T]. This contradicts Rl(d,u). pd,u is also not [TE] by
R3(d’u)'

(ii) pd’u is [FE]. As in 3.1.2, the normality of d implies then that

. d .
pd’u*<O> is [T], and so Fd’uqu ,u’ contradicting Rz(d,u).
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(iii) p

(iv)

(v)

(vi)

»u rsd,u*(n)ﬂ)

is a propositional rule, [3I] or [VE]. If ﬂjEELIA(

- d,u--'

for all n<3, then of course ﬁjEEL A S , since all the rules con-

sidered in this case are (isomorphic to) rules of Ll' This contra-

d,ux{n) .
g n ﬂ). For the cases considered

dicts Rl(d,u). So ==3n<3 jEEL]A(
the subformula property of d implies trivially Rj(d,u) — Rj(d,u*(n))
for j = 2,3, and so we conclude that -~3n<3 Start(d,ux{n)).

pd’u is [HE*]. Let 5 be the first numeral which does not occur in

sd’u, sd’u*<0), and prove

(*) -m[ Start(d,ux<0)) v Start(d,ux{p+1)) ]

like in (iii), using 5.1(i). That is, for the u considered

~Start(d,ux¢j)) — R, (d,ux(i))

N _‘-’_EEL rsd,u*(J>'1

1

while by the choice of p and 5.1(1i)

' d,U*(O)-x

Pr < & Pr rsd,u*(p+l)ﬁ - rd,un
——i]A

—"ilA EELIA s — aStart(d,u).
Since this contradicts the assumed premise of S(u), one gets (*) by
intuitionistic prop. logic (cf. KLEENE [52], p.119,x60i,g).

d . = . . .
o % is [VI]. Let p be the first numeral which does not occur in sd’u,

and proceed to prove -mStart(d,ux{p+1)) like in (iii), using 5.1(ii).
pd’u is [BEIJ, Fd’u*<0) =: 3zCz, where Cz is q.f.. Since Rl(d,u),

i.e, - jEEL]Arsd’Uﬂ, we get from 4.2.1 VmR](d,u*<m+l)). R3(d,u) im—
plies VmR3(d,u*(m+l)) trivially. Finally, for each m Rz(d,u) and Cm

imply outright Rz(d,u*<m+1>). Summing up we hence get
(») Start(d,u) & 3FzCz — 3Jz Start(d,ux(z)).

But by the subformula property of d 3zCz is a subformula of the Hg

sentence E*, and so B — 3zCz, while by the assumed VnS(ux{(n)),

Start(d,ux(z)) — ==3w>ux(z) Critl(d,w)
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So we get from (x)
Start(d,u) & E  — --dw>u Crit (d,w)
as wished., [

5.5.1. LEMMA.

FVO+BI E-Der(d) & Crit](d,u) & =3v)u Start(d,v) — Critz(d,u).

We prove this lemma as a corollary of

5.5.2. LEMMA. Let A be an E-sentence. Then

F E-Der(d) & Crit,(d,u) & w = ux{m)xz & Selected(du*(m)’z)
V0+BI = DIt

& Vvjpu =Start(d,v) & Bar(dw,x)

& Vyex ﬂFina1+(dw,y,er’uﬂ)

—  oPr (rad,ngd,uﬂ)
I A2

5.5.3. Proof that 5.5.2 implies 5.5.1

Assume the premise of 5.5.1. For each mew this implies the first five

conjuncts of 5.5.2 for w = ux{m), z = (), and also

—Pr (Pad,u*<mZ$Fd,Uﬂ)
=LA E
d,uxm) _ ad’u here. So, by the contrapositive of 5.5.2, and quan-

since

tifying over m,

u* {m) ux{m) r_d,u=

vm,x [ Bar(d ,X) — 3Tyex Fina1+(d ,Vs F ) ]

(note that Final+ is decidable); i.e. - Critz(d,u) as required. [

5.5.4. Proof of 6.5.2

Write S(w) for the formula to be proven. By Bl the problem reduces to

showing
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Vo S(wx{n)) — S(w).

So assume
(1) VYn S(wx<{n?)) and
(2) the premise S—(w) of S(w).

Note first that the definition of Selected implies, by a trivial induction

on lth(w)
) - -~
(3) pdo¥ o pdouxm) o i, (E))
4) Rz(d,w) := "all equations in éé,w are true".
. d,w
Consider now cases for p
(1) [T]. Then Fd’W € éé,w. But by the subformula property of d no Z? sen-
tence may be discharged in d, because an E-sentence has no subformula
of the form GvH, G*H or 3zG where G is Z?. So this case is ruled out.
A similar argument excludes the cases [&E] and [-E].
(ii) [1]. Then sd’w*«)> = éé’w=9l, while =Start(d,wx(0)) implies (by (4))
-~Pr A(rad AN ),
so
[l d W d u=
ﬂﬂPrL A( a ).
(iii) [VE]. Then (3) implies
(5) Fd,w*(O) = Fd,u‘
On the other hand -~Start(d,w*€0)) implies
- d wx {0 )
(6) -I-lprL A( )
Here gé’w*(0> = gé’w so (5) and (6) yield 1ﬂE£L A(réé’wéFd’Uﬂ).
1
(iv) [EE]], Fd’w*(O) =: 3zCz. Let Bar(dw,x).
Subcase [a]. () € x. Then ﬂFina1+(dw,( “F d, u.1) by S (w), and so by
+
the definition of Final for this case Fd W*<O 0) = Fd’u, and we get

as in (1ii1)

- d W, d un

aPr A( a ).
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Subcase [b]. () ¢ x. Then, since x # @ by the definition of Bar, we

must have 3zCz and so for some p Step(du*<W),z,p). We thus get by

the BI hyp. (1) applied to wx{p)

d,uq

d, -
—ﬁP_rL]A(rg YL e@m=E ).,

But C(E) is here an equation, so by 4.2.1

r d,q=Fd,uw)_

"L A

(v) [HE*], Fd’W*(O) =: JzCz. Let p*1 be the first numeral which does not

occur in sd’W,sd’W*(O). We have then as in (iv)[b]

r d,W d,u1

(7 ﬂﬂEELlA( a ,C(p)=F )

and as in (iii) we get

rsd,w*(0>1 r d,w

ﬂﬁEELIA( ) = 1ﬂB£L1A( a =3zCz )

which together with (7) yields

WjBEL A(rad,and,Uﬂ).
1

~vi) [vEl, P00 o 6y 6L Let

3 2 Ly | Gory e x (G=1,2).

Then, by the definition of Bar, S (w) implies

Bar(dw*<J>,x(J)) & Vyex(J) ﬂFinal+(dw*(J),y,er’uﬁ)
while trivially
Selected (4% 24 (5)) (=1,2).

Apply now, as in (iv) and (v), the Bl hyp. (1) to wx(j) (j=1,2), to
yield

r d,w d,uq

(8) 71££L1A( a ,Gj=F ) (i=1,2).

On the other hand we get as in (iii)

|

rsd,w*(0)1
12

ti

“mPr, A( )

1
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which together with (8) yields

1ﬂ£££ A(réé,ngd,01)‘
1

(vii) [31]. Then the definition of Bar implies

(9) Bar(d",x) — x = {03,

. . + . . -

For this case, Final (dw,(),er’Uﬂ) automatically, while by S (w)

() er,Uﬂ
b b

(9) implies —;Final(dW ), so this case is ruled out. [J

5.6. PROPOSITION,

FV +BI E* & E-Der(d) & Start(d,u) — ==3vpu Crit(d,v).
0

PROOF. Straightforward from 5.4 and 5.5.1 using Bl and the well-foundedness
of the proof-tree d. [

Applying proposition 5.6 to u = () we get assertion 4.4.(1).
5.7 = 5,11, PROOF OF 4.4(4). (Second part of the proof theoretic reduction)
5.7, LEMMA,
hy +B1 EDer(@ & Ry(dw) — 3x Bar(d”,m).

PROOF. Straightforward by Bl and the well-foundedness of d. [J

5.8.1. LEMMA.

Fy +BI E-Der(d) & Crit(d,u) & v = ux{m)*z & Selected(du*(m>,z)
0 EAblidi s

v r d,Uﬂ)

. ++
— 993w Final (d ,w, F

PROOF. Fix v, assume the formula to hold for v', v'}v, and assume the

premise for v. By 5.7 then
v
Bar(d ,x) for some x,

and so by Critz(d,u)



d
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Jwex Flnal (d ,w,r ds u-').
Fix w, and observe the two possible cases for pd,v*w.
(1) 1If pd,v*w = [EE]], Fd,v*w*(O) =: 3zCz, assume
(1) ("3zcz) v Tr ,(T3zcz ).
0 —0
z
1 1
If jzzzo(razCzﬁ) then Finalz+(dv,w, d u"') by definition. If

1
Tr O(rﬂzCzﬂ) let p := pz.Cz; then Selected(dv,w*(p+l)), hence

1
Selected(du*<m),z*w*(p+l)) and so by BI hypothesis

Jw' Final T(aVVF P oo rpdsuny

Since Eelected(dv,w*(p+l)) this implies 3Jw' Fina1++(dv,w',er’u7).
Hence we have
—3w' Final Tt (d",w', 7T
without assumption (1) (cf. KLEENE [52], p.119 %*58b-c,*51a).
(ii) 1f pd,v*w = [31], assume ﬂTrQF(er’V*(O>ﬂ). By our definition of nor-
mality (cf. 1.3) pd,v*w*(O) cannot be [1], and by the subformula

property it cannot be other than [T] (see 3.1.2). But this contradicts

R (d,v), which is seen outright to hold because R (d,ux{w)) and

Selected(du (W),z) Since TrQF is a decidable predlcate we thus get

(r d W*(O)ﬂ) and so F1nal§+(d JW Fd u-') 0

5.8.2. COROLLARY

by .p1 EDer(d) & Crit(d,u) — Vmrdw Final™* (@™ o, rrd vy,
0

PROOF. Apply 5.8.1 to v = ux{m). [

5.9. LEMMA. There are prim.rec. functions fj (j=2,3) s.t.

Fy E-Der(d) & Flnal "(d,v,"E] (t) )
0

=) . -~ - . -~ d
~ Pr_ (£,(d,v, Gyn, (€£)),7BL(,n, () ]+F 2V,
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(1) Let {fz(d,v,(i,n,(z)))} describe the tree

[T] B[] = B[ (i,n, (t))]

[VE] B[] = Tneq(<j,k, £, (i,n, ) » rV*¢0:07 1059 517 o Tneq( )
GoE] BL] = 505 VE(050)
(ve] B[] = p3rV*(0) {rm}

(ae'] B[ G,n, (€))7 = F42Y

d,v*<0,0) pdsv*(0)

where F = E?(;) and = 3zCz, and where

[T] B[(i,n,(t))],Cm = Cm

r_ iz [FE] B[ (i,n, (£))],Cm = L
[1] B[ (i,n, t)],cm = 727

(ii) Let {f3(d,v,(i,n,(?)))} describe the tree

[TE] B[(i,n,(t)] = pd>V*<0)

[31] B[ (i,n,(&N] = F7

fj(...) are indeces of functions recursive in {d}, and by the s.m.n.-
theorem fj are indeed prim.rec, functions. The proof of the lemma for
these functions is now straightforward. The only less trivial detail

is the correctness of the [TE] inferences in the definition of
n
i
not syntactically identical, but this does not exclude, prima facie,

f2. From Fina1;+(d,v,rEg(€)ﬂ) we only know that E?(g) and E (E) are

that s and t are numerically equal. Recall, however, that by our
definition of E-Der in 4.1 t and s are tuples of numerals, and there-

fore their numerical equality implies their syntactical identity. [J

5.10, COROLLARY.

l_yo“|'BI E_—D_QE(d) & Crit(d,u) & lle,U = E?(-{;—)"

- Vm3x Prf:ec(x,rB[(i’n’(f))jaFd,U*<n)ﬂ

)
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PROOF. Immediate from 5.8 and 5.9. [J

5.11, PROPOSITION.

d,u

"c E-Der(d) & Crit(d,u) & "F

EI::(?_) n
VO+AC00

—~ 3¢ Prf (¢, s[¢i,n, &I

PROOF. Note, first, that y8+ACOO > V0+BI. Assume the premise. Then by 5.10
and AC

00° for some function Y

vm Pre”  (ym," B[ (i,n, (£))J=pdsU* (M7
—TecC

).
Define now ¢ by
6> 1= (w1, "s[(i,n, &)1

¢ ({m)*u) := {ym}u

and the antecedent follows from 5.10. [J

Applying prop. 5.11 to u = (), we get 4.4.(4).
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6. SOLUTION OF THE REDUCED PROBLEM FOR L, (proof of 4.5(10))

6.1. PROPOSITION (= 4.5(10)). Let S be a zg

predicate 3IRVy Prfs(x,y,rFﬂ) say). Then there is a q.f. formula E(x) s.t.,

enumerated theory. (with proof-

in the notation of 4.1,

- E - %
}—A‘“E?B(S)“Comp (g) VxPrg s (x) & k.

0
z)

The proof given below is based on KRIPKE [63].

6.2. LEMMA. For S as above, there exists a Zg predicate J(x) s.t.
(1) kK vy [Jx & J@» — x=y ]

(ii) |7€S -J (m) for every numeral m.

PROOF. Let neg and sub2 be prim.rec. functions s.t. for every formula F

neg(rFﬂ) = "F"

subz(rFﬂ,x,y) = "F[x/ally/b]"
where x is the numeral with numeric value equals to x, and where F[t/al]
is the formula which comes from F by replacing every occurrence of the
parameter—letter a by (the closed term) t. Define

K(x,n,m) := Vy Prf (x,y,neg(subz(n,n,m)))

L = L(a,b) := 3x [ K(x,a,b) & Vz<xVw<z -K(z,a,w) ]
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J(m) := L(rLﬂ,m) (here the g.n. "L7 is the code of the fixed
formula L(a,b), while the defining symbol L is

understood as a predicate)

Assuming that the g.n. of a syntactic object is larger than the g.n.'s

of its partial syntactic objects, we have
(1 L(m,n) <> L*(m,n)
where L is defined like L, except that the bounded quantifier Vw<z is re-

placed by an unbounded Vw. For suitable Godel numbering (e.g. - the standard

ones) the property mentioned above is provable in A, hence
(2) b voy LI & I — xy 1.
Now suppose

(3) }g -J (m) for some m,

ImIxVy Prfs(x,y,er(rLﬁ,a)ﬂ).
Then

(4) =~3m3x [ Vy Prfs(x,y,’wL("L",ﬁ)") & Vz<xVwly ~Prfs(z,y,’ﬂL("L“,ﬁ)’) ]

which is just =-=3m L(rLﬂ,m) by (1) and the definition of L.

But by Comp_(S)
>:2

(5) vm [ L("L7,m) — 3xvy Prfs(x,y,"L("L”,m)’) 1,
while the definition of L implies
(6) vm [ L("L7,m) — 3xVy Prfs(x,y,-w'-L('-L-',m)_') 1,

so (4), (5), (6) together imply --3IxVy Prfs(X,y,rlﬂ), contradicting
Con(S). 0O
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6.3. LEMMA. For S as above there is a Zg predicate M(x), s.t. for every q.f.
predicate P(x)

I?fg -vx [ M(x) <> P(x) 1.
PROOF. Let U(n,x) be a binary q.f. predicate which enumerate all unary q.f.
predicates (by Kleene's enumeration theorem, cf. e.g. KLEENE [52], §58),
and let J be as in 6.2. Define

M(x) := 3y [ J(y) & U(y,x) 1.
By 6.2(1) then

J(m) hl vx [ M(x) <« U(m,x) ] for every numeral m.

But by 5.2(i1i)

173 ~J (T.T:l) .
SO

VS vx [ M(x) <> U(El,x) ] for every m, as wished. [J

6.3.2. LEMMA. Lemma 6.3.1 holds also when M is required to be Hg.

PROOF. Replace M by -M. [J

6.4. PROOF OF 6.1 (concluded). Let M(z) be given by 6.3.2, and write M(z)

as Vx3y E{x,y,z).

(1) Assume now EESPSE(n)ﬂ for some n (i.e. - IxVy Prfs(x,y,rsE(n)ﬂ) ).

By the form of the sequent sE(n) we have then
k Vz#mM(z) — M(n)
and therefore
vz [ z#n — M(z) ]
contradicting 6.3.2.
(11) Assume ﬂE*, i.e. = -=VvzM(z). Then, by Comp O(S), 1ﬂPrS(rﬂVZM(Z)ﬂ).
s il

2
z=z in 6.3.2 we get I;‘S -¥zM(z), a contradiction.

But taking P(z)
So —E*. ]
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7. CONCLUDING REMARKS

7.1. A COUNTEREXAMPLE TO A CONJECTURE OF H. FRIEDMAN

H. FRIEDMAN [73] has conjectured that every sequence of classically
independent Z? sentences may serve as a (meta-) substitution for the abso-
luteness of LO' This is however false already for schemata over two propo-

sitional letters.

0 .
Construct a counter-example as follows. Let A,B be Zl sentences in-

dependent over A, and s.t.

(1) }-AA + -B

(such sentences exist, by KRIPKE [63]).

Let C1 be A-independent over B, and define

C := B & C1 H D := AvcC

(1] {B,D} is classically independent, because

(i) BFD = BFAvC = BFC = B} C
(by (1))
contradicting the choice of C].

(ii) DF B = AF B = F o-a
(by (1))

contradicting the choice of A.

(iii) D F -B = C]}--.B = Bl—ﬂC]

again a contradiction.
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(21 F D— Bv -B,

because A F- -B and C F— B; {B,D} is therefore not a (meta-) substitu-

tion for the absoluteness of L. . A similar counter-example was dis-

0
covered independently by D.H.J. de Jongh.

7.2. OPEN PROBLEMS

7.2.1. 1Is LO absolute (for A, say) with a universal Z? metasubstitution

(independent of the number of propositional letters in a schema)?

7.2.2. In LEIVANT [75] it is shown that L] is not absolute (for A, say) with

0 . . .. . .
Z] metasubstitutions. This 1s a pleasant bound on possible improvements of

theorem II. There remains however the question whether the theorem holds

with Ao metasubstitutions. More generally, the problem may be referred to

2
a whole intuitionistic hierarchy of arithmetical predicates between Z? and
0 0 0 0 0 0 0
Hz, e.g. Hl - Zl, H] v H], Z] — HZ’ etc.

7.2.3. A more philosophically inclined (and hence - technically vague)
problem is the following.

Let us propose as a thesis that an arithmetical sentence is true only
if it is provable is some (constructively acceptable) number-theory,
belonging to some (fixed) constructively generated class of theories. This
thesis is a claim for a proof-theoretic criterion for constructive truth,
and thus establishes a connection between absoluteness of L] for the class
of theories considered, and completeness of L1 for a more abstract notion
of truth.

To make our thesis precise, we have, however, to specifiy a class of
theories, and to justify the claim of exhaustiveness of this class for con-
structive truth. The relevance of the results given above to the abstract
completeness of L1 depends then on the relation between the proposed class,
and the classes of regular and strongly regular number-theories.

Some technical results related to the general problem above will be

given elsewhere.
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