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Although dimension theory for separable metric spaccs was established
about 30 years ago by Brouwer, Menger, Urysohn, Alexandroff and

other mathematicians, 1t had been supposed to be very difficult to
establish a dimension theory for non-separable cascs. In about 1950,
the sum-theorem, which took a leading role in the old dimension
theory, was extended to normal spaces by K. Morita 1)
mathematicians. Following that development, a satisfactory dimension
theory was established for non-separable mectric spaces by M. Katétov
(1952) @) and K. Morita (1954) 3). The main part of their theory
consists of extensions of thecorems that werc well known for separable

and other

metric spaces, but we must notice that thosc extensions are possible
by virtue of the latest development in gcneral topology and especial-
ly in the theory of coverings.

To begin with let us give three definitions of dimensions.

Definition 1. (Menger-Urysohn's weak inductive dimension)

i ind dim @ = -1

ii if for any ncighbourhood U (p) of any point » of a topo-
logical space R , there exists an neighbourhood V (p) of p
satisfying nev(p)e U(p),
ind dim of the boundary of V(p) s n-1, then

ind dim Rgn.

Definition 2. (Strong inductive dimension)

i Ind dim @ = -1
ii if for any closed sets F, G with PG = ¢,

there exists an open set Lksuch that U < lkc r-G,
Ind dim of the boundary of i £ n-1, then
Ind dim R g n.

Definition 3. (Lebesgue's covering dimension)

If for every finite open covering U of R therc exists an open cover-
ing ¥ withX < ¥, order ¥ g n+1, then dum Rgn.

Def.2 and Def .3 are espccially important for the latest dimension
theory. Actually Def.2 = Def.3 for every metric space R' was proved
by Katétov and Morita, but whether Def.1 = Def.2 for every metric
space or not, is as yet a difficult open problem.




Fron now forth we will concern oursclves only with metfric spaces.
The following nrincipal theorems are extended from separable metric

. - - M ] .
snaces to general metric spaces in Katetov-Morita's theory.

Sum-theorem. Let Ri’ i=1,2... be closed subsets with dim Rig n, then
[09)
dim U R. g1,
i=1 *
Decomposition-theorem, dim Rgn if and only if thg;% exist n+1 O-
™
dimensional subspaces Ri’ i=1...n+1 such that R = U Ri'
i=1

Product-theorem. dim qu<R?§ dim R1 + dim R2°

On the other hand, the following is Menger-Urysohn's inbedding theorem
whose extension to non-separable spaces was left open even in Kat&tov-

Morita's theory.

Imbedding-theorem. A separable metric space R has dimension ¢ n 1f and
only if it is homeomorvnhic to a subset of the set Egn+1 of points in
E

one at most n of whose coordinates are rational.

h
This problem was recently solved by the speaker ) by imbedding every
metric space R with dim Rg¢n into a subset Sn of thc generalized Hil-

bert space H, which was set up by C.H. Dowkcr.

Although most of the abovementioned thcorecms are Just extensions of
theorems that have been well known for scparable metric spaces, there
are also quite new types of theorems that had been unknown even for
separable spaces and were established for general metric spaces guite
recently.

The speaker will devote the rest of his lectures to those ncw develop-
ments of the theory.

First of all let us recall some 2f the new test theorems for n-dimension-
ality. K. Morita proved in 1954 3) the following theorem.

Theorem 1. dim R g¢n 1f and only if there exists an open base 2¢ such

[€0)

that 22 = U Z%i s z@i is a locally finite system of open sets, order
_ i=1

‘{[I—[I[U &Qﬂ}g n., It is very interesting to find an analogy between

this theorem and the metrizabllity theorem due to Yu. M. Smirnov and
the speaker,

The following test theorem due to the speaker in 11956 5) has also a
remarkable analogy with the metrizability theorem of P. Alexandroff and
P. Urysohn.

-Theorem 2, dim Rsn if and only if there exists a sequence zmi, i=1,2..

of open coverings such that

i > W™ 3 ¥ v
i z/c,] 5 > 2/12> 3 > 3

ii { S (p,zmi)] i= 1,2...j is a neighbourhood base of each point



P of R.
iii order LQig n+1, i=1,2...

6)

W. Hurewicz and C.H. Dowker also proved in 1956 a similar theorem.

Theorem 3. dum R g¢n if and only if there exists a scquence bmi,

i=1,2... such that

i for every lj£2%i+1 there exists V éU% satisfying T c V,
ii mesh i = max. diameter {T | T e md} — 0 as 100,
iii order'&ig n+1, i=1,2,... .

We must notwice the fact that thesc thecorems have greatly simplified
the test for n-dimensionality of metric swaces, because it sufficces
to show jJust the cxistence of a scquence of covering to prove the n-
dimensionallity of a metric space by virtuc of these theorems.

On the othew hand, if we restrict ourselves, for example, to the
definition of covering dimension, then we must show the existence of
a refinement 2 with order s n+1 for every open covering U .

To review some of the results deduced from these new test theorems,

let us recall some definitions.
Definition “u_A space R is called countably dimensionalwitlh rezvact

to the decoumposition theorem, if it 1s expressed as a union of count-
ably many O-dimensional subspaces.

Definition 5. Let £ be a set. Let N(L) = i(X1’X2’°°')l x; € £,
i:ﬂ,éa.nh}. We define a metric f(x,y) for two points x=(x1,x2,...)
and y:(yq,ygy,,,) of N(£) by p(x,y) =

s £ 5 L ’
min ¢ 1% _+#y.
in {ilw, #y.5
Then N(£. ) makes a O-dimensional metric space angkgalled a generalized
s

Baire's O-dimensional space.

The spealier succeeded in 1958 7) by virtue of theorem 1 to extend a

dimension thooary from finite dimensional metric spaces to countably
dimensional metric spaces, which had been an onen droblem till then
even for separable metric spaces. The following 1s one of his vrin-
cinal reoults,

Theorem %, A metric space R is countably dimsnsional if and only af
there exists a subset S of N(£) for suitable .0 and a closed con-

£ of 5 onto R such that for zach point » of R, the

Tinuous mapping
e

inverse image W(p) consists of finitely many points.

It is also an interesting problem how to characterize the dimension
of a metric space by the metric which the space allows. This idea was
realized, as for general metric spaces, first by J. de Groot and

H. de Vrics 8) who proved the following theorem in 1955.



Theorem &, A metric space R is O-dimensional if and only if it allowus

a non-Archimedean metric.,

-
The speaker generalized this theorcem by virtue of theorem 2, in 1956 5)
ag follows,
Theorem 6. A metric space R has dimension s n if and only if 1%
allows a metric p(x,y) such that for every & -0 and for every point
p of R,
Q . o~ 3 Ky

pls,, (o up)ee . i=ii. e
imply p(e 3qi)f:a for some i, J with i # j. where Sg/g(p) denotes the
% neighbourhood with the center at p.

J. de Groot simplified this theorem in 1958 9) as follows.
Theorem 7. A seperable metric space R has dimension < n if and only

if it allows & metric p(x,y) such that for every & »0 and for every

point p of R,
) < = 1= 1...n42

imply f(qi,qj)< e for some i,j with i#j].

Theorem 1 and theorem 2 or 3 arc showed to be useful for proving some
types of imbedding theorems, too.

inally the speaksr would like to inform of new progresses in the
theory on dimension and mapping which are due to K. Nagami and J. Su-

1O>A One of their results is the following which refines the well-

zuki
known theorem of . Hurewicz.

Theorem 8. Lot £ he a closed continuous mapping of a metric space R

onto a metric space S such that f"q(q) consists of just k points for
every point o of S; then dim R = dim 8.



