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§1. Introduction. In this lecture I wish to consider the modular func­
tion J(T) and the modular forms g2 = g2 (0.1 1 , w2), g3 = g3(cd1 ,w 2), 
6=6(W1 ,W 2 ) from a point of view different from the usual one. Here 
and in the seq_uel by W 1 , W 2 , 'T are meant complex variables, subject to 
the relations 

( 1 • 1 ) 

whereas 

( 1 • 2) 

the summation being extended over all pairs of integers (m,n) J (0,0). 
In the theory of elementary modular forms ve,rious relations and proper­
ties for g2 , g3 , 6 and other modular forms are proved. For instance the 
form.6 possesses the remarkable property, that it can be expanded as the 
following infinite product 

00 

( 1 • 3) ,6 = (2:;12 r 7T (1-rn)24, 
2 n=1 

the infinite product converges absolutely, since by ( 1. 1) we have l ::."I< 1. 
In the classical presentation of the theory to a high degree use is made 
of elliptic functions. 

In order to illustrate this mode of procedure by a (rather important) 
example, I sketch a possible classiral proof of (1.3). The elliptic func­

tion 

;p(u) = -¾ +['{-( -,-_,1_w_)..,.. - ( 1 1.·' )2 ( 
· u u-mc-v 1-n 2 mw1+n A,. 2 J 

satisfies the differential equation 

{tP'(u)}2 = 4(i'o3(u) - g2p(u) - g3, 

If we put w3 = -w1-Lt)2 , p(½C.JJi) = ei (i = 1,2,3), then the zeros of 
p'( u) in the :fundamental period parallelogram of p( u) 1 J?' ( u) are given 
by u = i·Wi (i = 1,2,3) and the values e1 ) e2 , e3 of p(u) are assumec. 
only in the points ½W1 , ½ w 2 , ½ W3 respectively. So the numbers e 1 , e2 , 
e3 are different; furthermore they are zeros of the cubic 4z3-g2z-g3 . 
The discriminant of. ihia cubic form is equal to ~-27 g~ =/j , yielding 



~ = 16f (e1-e2 )(e2-e3)(e3-e1 )} 2 •. 

(Hence f.j t O for any a.dm_issable choice o·f u.J 1 , w2). A further step in 

the proof ::::s:s u :~{:~:ideri:g th:
8 
::;~::2 + 2(mw1::w2)~}' 

mw 1+nw2 . 

related to f(u) by the formula 

d2 
~ logQ"(u) = J.?(u); 
du Q 

furthermore, in view of the periodicity properties of f(u), one finds 

cr(u+wi) = -e "?i(u+twi) O'(u) (i = 1,2), 

where ~ 1 , 7- 2 are 2 certain constants. 

- ~ 2u +77i ~ 
Hence the function 

2 u..i 2 w 2 
e (Y ( u) 

is left invariant under the transformation u-+ u+ w 2 , so is a one-valued 
277" i u 

w2 
function s(t) oft= e Reguarding also the behaviour under the 

277. w 1 
l. 0..,l 

transformation u~ u+w 1 , i.e. t ~ e 2 t = rt, one finds that the 
zeros of s(t) are given by t = rn (n = o,~1 ,~2, ••• ) and also that s(t) 
is given by the infinite product 

s(t) = - ~(1-t) -fr (1-trn)(1-t-1rn). 
-rr 1 n= 1 ( 1 -rn) 2 

Another property of the function rr(u) is the fact, that 
0-( u+v) O' ( u-v) 

- (12 ( u) 0'2 ( V) ' 
,in view of the behaviour of O'(u) under the above mentioned transforma-
tions1 is an elliptic function in each of the variables u, v; in fact 
this function is equal to 

p(u)-p(v). 

Noting the relation p( ½ 1-•·\ )-p( ½ {d j) = e1-e j we are now able to express 
6 as a fraction, both terms of which are finite products of certain va­
lue~ of O'(u), such as C1(½w1 ), cr(½ 1,J2 ), O"(iw 2+½l.<l 3), etc. Putting 
e 771 T = q, implying q2 =-r 1 these values correspond with t = q,1,q-1 ,etc. 
Carrying out carefully the calculations the result turns out to be asto­
nishing simple; in fact we find the above formula (1.3). 

It is desirable to have a more natural proof of (1.3) and more gene­
rally a more satisfactory approach to the theory of modular forms without 
long digressions about functions which, as to their nature and general 
properties, have little to do with modular forms. In the following I shall 
avoid completely the use of elliptic functions. Even the fact, that 
/J. = ~-27g~ is a non-vanishing function, shall be proved in an entirely 
different way. Of course I need a starting-point; as such I chose the 

theory of theta series, these functions showing themselves modular p:ro 



In§ 2 the transformation formulae for theta functions are deduced 
and the well known expansions in infinite products are given. Here the 
calculation of the factor C = C(T), leading f.i. to a simple proof of 
the formulaco 00 

7T (1-xn) 3 =L. . (-1)n(2n+1)x½n(n+1 ), 
n=1 n=O 

is performed in a direct way. Thereafter two functions f 2 (--r), h(r), 
closely related to g2 , ~, are constructed by means of theta series. 

In the next section the modular group is introduced in a geometrical 
way. The definition and some well known theorems on modular forms and 
functions are givenj e.g. concerning the class of integral modular forms 
of a given negative dimension; the modular invariant J(~) is defined in 
terms of f 2 (T)~ h(--C). 

In § 4 I establish the connection between Eisenstein series, especial­
ly G2 and G3 , and modular forms, by means of the theorems proved in§ 3. 
A ge1:-era ting function for Eisenstein series is found in log#, 1 ( z Ir). 

2. Theta series. 
Let z and 7: be complex variables with Im 7:) o. Then we define 

+oo 
.,..Q., 1 ~ e 77 i -r n2 e27Tizn 
'L/' ( z 1 r) = '---

n=-ro 
and more generally for arbitrary integers g, h 

+oo 2 
( 2 • 1 ) ,& h ( z j 1; ) = L.. ( _ 1 ) nh e 77 i 'T ( n +½ g) e 2 rr i z ( n +½ g) • 

g n=-oo 
Tne series (2.1) is absolutely convergent on account of Im re> O. 

Evidently we have the relation 

(2.2) ~+2k,h+2 /z 1-r) = (-1 )hk,..i97gh(z 1-r) (k,j integers), 

showing that there are essentially only four theta functions, namely 
?J.,00 (z /-r), -i-9701 (z 1-r): fo10 (z 1-r), ?9'11 (z 1--c). The different theta func­
tions are related to each other by the following formula, which is an im­
mediate consequence of the definition (2.1), 

(2.3) 

Of great importance for our purpose are the transformation formulae 
referring to the variable T 

(2.4) I (J.., I J,_ 7T i g2 /\ (J.., l 
"//gh(z 'r+1) = e 4 u·g,g+h+1 (z 1:) 

rriz2 

(2.5) 19-'gh<~!-;) = \!=rt e-½'1Tigh e "r." ?Jhg(z\1:), 

where Re( v:r:i?) is taken positive. 
The first formula is verified at once. As to the second, in virtue 

of Poisson's summation formula 

°'L... f(n) = C j e2 TTinx f(x)dx, 
n=-oo n=-co -a, 



we deduce 

vghc~l- ~) 
+oo 

=L 
n=-ro 

+ro rri 2 2711. !_(x+ig) 
I 6 27Tinx e7Tihx 6--r(x+½g) -r 

.J e dx = 
-ro 

CX) 

=L .J2 - ~{(x+tg) 2-2z(x+½g)-2(n+½h)x:~} 
..J e dx = 

n=-ro -ro 

{'°· o/ - 7'.;_i{(x+½g)-z-(n+1°h}-r}2 + ~ifz+(n+/!h}if 
= e-1rig( n+½h) J e e l ~ dx= 

n=-oo -oo 
Tri 2 +co 

= e-t7Tigh e rz L (-1) gn 
n=-co 

7Ti 2 

077it:-(n+-ib) 2 e27riz(n+½h) J e-~\2 dx= 

-ro 

\ ~ J; . gh -z _,,Q., 
= v-11: e 2 rr1 e '?;. z;hg( z 1-r). 

A consequence of (2.3) is the fact that '29,gh(z 1--r-) is a quasi-perio-
die function in z with periods 1 ,--C 

vgh(z+1 ltt") = (-1)g-&g11<z 1-r), 

#gh ( z+'t" fr) = (-1 )h e-m:r e-277iz ?}'~h ( z 1-r) • 

Hence, integrating in the positive sense along the sides of a parallelo­
gram 7T with vertices t;, t; +1 , t; +1 + 'r, t_; +-r, where½ is chosen in the 
z-plane in such a way that #gh ( z I T) ft O on the boundary of TT and deno­
ting differentiation with respect to z by 11 111 1 we find 

1 ;..-6¢ gh ( z 1-r) 1 t;j+1{,&11gh ( z+'C IT) 1_9,,gh ( z 1-c-) l 
2rri ~gh ( z 1-r:) dz = - 211i z9,gh ( z+-c- 1-r) - -z9igh ( z 1-r-) j d£ + 

7T c;; 
1 t;j·+T{. ?J,1 h ( z+1 I "1:") V,' · ( z \-r)} 

+ 271\; #gh ( z+i t-r) • -iJ,:( z t-r) dz = 1 , 

Henceforth the function ~gh(zlr) possesses exactly one zero in 7T. 
~ Now we direct our attention especially towards the function ~ 1(zl~). 
Clearly we have ,J01 (trlT) = o. So the zeros of # 01 (zl~) are given by 
m+(n+½)-r:- with m,n = 0,~1 ,~2, •.• This leads to the consideration of the 
(absolutely convergent) infinite product 

00 

lfJ (z,-r) = 7T(,-e211i-r(n-½) 8 27Tiz)( 1-e2rri-r(n-½)e-2"7'iz), 
J n=1 · 

:this product representing a function with the same zeros. The quotient 
f i901 (z!-r) {,SO (z, 7: )}-1 is an analytic function. Moreover~ as is easily 
iverified; this quotient is left invariant under the transformations 
'z-; z+1 and z ~ z+ --r:. Hence it only depends on -r: • This means that there 
exists a function C('C'), such that 

00 

,J,01 (zl-r) = c(~)7f(i-e27TiY(n-½)e21Tiz)( 1-e2~ir(n-½)e-2~iz); 
n=1 

(2.6) 

or putting e7Ti t = q, 

(2.7) 1.9;1 ( z 1-r) 
00 

= C("t) 1T ( 1-2q2n-1 cos 2 'TT z+g_4n-2). 
n=1 

We proceed to determine the factor C(T). Each function 19'gh(zlr) sa~ 
tisfies the differential equation 



a _a._ 1 c> 2 ,,,().., 
cJ-r: -Vgh(zl!") = 47Ti T;J llgh(z 1-r). 

So in particular we find; in view of %z(1-2q2n-1cos 27Tz+q4n-2 )z=O = O, 

d "0.. 1 f 1 o2 ,., 0.. J 
dTlogV61(olr) = 4'Tfi L#o1(z1-r:) ""J7 vo1(2.IT) z:::O = 

_ --Lft.. +8 rr 2f2n-1 cos 21Tz ]· = 
- 41T 1 _n=1 1-2q2n- cos 27Tz+q4n-2 z=O 

co 2n-1 
= -2TTi L ~ -

n=1 (1-q n-1)2 -

= -27Ti r qn 2 + 27Ti t_ q2n 
~ (1-qn) n=1 (1-q2n)2 

By the last formula already C('t') is determined. In order to find a neat 
expression we proceed as follows. On account of 

we deduce 

Hence we 

00 r nxn = x 2 ( Ix I < 1 ) 
'n;-:j (1-x) 

00 00 00 

> nx:=LL 
n=1 1-x n=1 m=1 

find 

c)~ logi%1 (OIT) = 7Ti{2 f- -nqn - r­
~ 1-qn 1l=i 

r') 

= _£_log 1T (1-qn)2. 

-2nq2nJ-
1 2n -
-q 

a?: n=1 1-q2n 

Since for q -4 0, i.e. T --t ioo f by ( 2. 1) the function # 01 ( 0 /1;) 

1, we may conclude 
~ oo co n2 

--l.9701 (olr) = c(r) 1T(1-q2n-1 )2 = TT (1-q2A , 
n=1 n=1 1-q 

TTCD { ( 1 -q n) 2 1 J - TTco { ( 1 -g,n) 2 
C('r) = 2n · 2n-1 2 - 2n 

n= 1 1 -q ( 1 -q ) n= 1 1 -q 

hence 

So we have oo 
(2.8) C('i) = T{ (1-q2n). 

n=1 
00 

tends to 

(2.9) -f,01 (zlt) = 7f{( 1-q2n)( 1-q2n-1 6 27Tiz)( 1-q2n-1 8 -2TTiz) • 
n=1 

Applying (2.3) with g = O, h = 1; m = 1, n = O, we deduce 

~ 1 ( z+frl-z;) = e-·¼'TTir e-77"iz i9'; 1 ( z 1-r;), 

00 

?J,. ( z l't) = 4-i·0TTiz 7f { ( 1 _q2n)( 1 _q2n0 2TTiz) ( 1 _42n-2 8 -277iz)1 = 
11 . n= 1 j 

00 
= q ¼ ( e 11iz _ 8 -17iz) 7T { ( 1 _q_2n) ( 1 _q2n0 277iz) ( 1 _42ne-27Tiz} 

n=1 

(2.10) 

Applying (2.3) with g = O, h = 1 and m = O, n = -1 or m = 1, n = -1, 



we :t:"ind in the same way 
00 

(2.11) V'1oo<zl1:) = rr {c1-q2n)(1+q2n-1e27Tiz)(1+q2n-1e-27TiZ)l 
n=1 '1 

00 

( 2. 12) ~ O ( z l-c-) = q_ ¼ ( eiTiZ +e-7Tiz) 1T {c 1-g_ 2n) ( 1 +q2ne21Tiz) ( 1 +q 2ne-2tiz~. 
n=1 

Some well known formulae are an easy consequence of our considera­
tions. First we have, by (2.10) and (2.1) respectively, 

a:, 

V1 1 ( o Ir) = 2 rrig_ ¼ TT< 1-q2n) 3 
n=1 

[
00 1 2 ] 'V'11 (ol-r) = gz L(-1)n q(n+2 ) 2 sin(27Tz(n+½)) z=O = 

n=O 
and 

00 

= 27Tiq¼ ~::::a (-1 )n(2n+1 )qn(n+1 ), 

yielding 

fl; ( 1-q2nl 3 = ~o (-1 )n(2n+1 )qn(n+1 l. ( I q I< 1 l (2.13) 

Secondly by (2.9), (2.11), (2.12) we have 

~ 0 (ol~) cJ;1(ol-r) -z.9;0 (ol-r) = 
co 

= 24¼ TT{( 1-q2n) (1-q2n-1 )2( 1-q2n) ( 1+42n-1)2(,-q2n) ( 1+q2n)2t= 
n=1 ~ 

a:, 00 

= 2q¼ JT{( 1-q2n)3( 1-q2n-1)2( 1+qn)2} = 2q¼ 7T(,-q2n)3, 
n=1 n=1 

since 
fr.{c1-q2n-1)(1+qnJJ = fr{1-4;n 1-q!n} = 1; n=1 n=1 1-q 1-q 

so we find 

(2.14) #; 1 Colr) = 7Ti0;0 (olr) #a1 (ol1:) i,9;0 (olt). 

We are now in a position to construct two functions which are of the 
utmost importance for our further treatment. Since from now on we need 
theta functions only with z = O, for brevity we put 
(2.15) ~h(olr) = #gh(-r) (g,h = o,o; 0,1; 1 1 0; 1,1). 

We define 
(2.16) 

(2.17) 

24f2(r) = ,.,J,6o(r)+ -&~1 ('7:)+,&,~o(-r) 

256h(r) = -z9'~0 (r)1J.~1 (~)1.9,~o(-r) • 

The behaviour of the functions f 2 (-r), h(r) under the transformations 
T • T+1 and-r-.-~ easily can be deduced from the formulae (2.4), 
(2.5), (2.2). For we have 

--z9,00 (-r+1) = i%,cr) 
#01 (-r-+1 ) = 1Poo<r) 

1,_7r· .,,.,a., #io<r+1) = e4 i_v1o(T) 

Hence we find 
(2.18) f 2 (r+1) = f 2(r), 

\/-i'r #co ( -r-) 
V-iT 1J10C1:) 

1/-i:r 1Jo1 (r). 



(2.19) h('t+1) = h(T), h(- l) = -r1 ~h(r). 
't' 

Finally, inspecting the proof of ( 2. 14) • we find for h(-r) the :follo­
wing infinite product 

00 

(2.20) h('r") = .q2 7T(1-q2n)24 (q = e~-r). 
n=1 

This shows that h(r} is a regular function, different from zero for 
finite "t". 

3. The modular group. Modular forms. 
Let W 1 , w2 be two complex numbers with 

uJ1 
(3.1) w 1 ~ O, W2 j O, Im-) o. 

W2 
Plotting down the numbers in the complex plane, the numbers mw1+nw2 
(m,n integers) form a lattice,/\ say, for which w1 ,w2 constitute a baaie. 

Let w1, w2 be two complex numbers with w1 .j o, w~ J o, 
Im w1/ w2 ) O, which generate the same lattice /\ • Then, sinoe w1, w2 
themselves are lattice points, we can write 

w.; = ex w1 +pw2 , w2 = rf w1 +8w2 , 

where o< , fa, )', d are integers. On the other hand, since w1, w2 generate 
the lattice 1\, W 1 and W 2 are expressible in terms of W,f and W 2 in 

an analoguous manner. So we have 0( 8 -/.> J1 = .::,1; the minus sign can be re­

jected on account of Im w1/ <A.J 2 , Im w1/ w 2 > O. 
The transformations 

(3.2) w 1 =cJ.W1+pw2 , w 2 =fW1+Jw2 , 

where 0( , j3, f, d are integers wi thcx cf -/1/ = 1, evidently form a group, 
[say. Putting 7:= W1/w2 , ?:' =W1/w2, this group r induces a gro~ 

r of linear fractional substitutions -r' = ~~ :q. The mapping r :--+ r 
I is a homomorphism with a kernel of order 2: we have '!" = ~~ =~ for all 'C 

with Im 7: > 0 , if and only if j3 = I = 0 , CX = d = + 1 or -1 • 
We call two numbers r , -r' in the upper halfplane equivalent, if and 

only if there exists a relation 

(3.3) -r:' = ;~:1 (ex ,p ,f, i integers withr,. 0-/3{= 1). 

A fundamental region for the group r of transformations (3.3), operating 

in the upper half of the '7: -plane, is obtained easily. Given a number '7:' 
chose w 1 ,w2 , satisfying (3.1) and the relation 'C = W1/1..0 2 (e.g. 

W 2 = 1 , W 1 = 'l") • Determine a basis W 1 , w2 of the oorNsponding lattief, 

/\ by the following procedure: 

1. chose W 2, such that lw21 is minimal, 
2. thereafter, out of the set of numbers W 1•, generating together 

with W 2 the lattice/\, chose w 1 so as to satisfy 

1 (3.4) -i ~ Re( w1/w2) < i. 
l The definition of w 1, w2 is unique, unless we have lw ~ I == f w2 f.. In tha* 
Lease, replacing w2, w1 by W;, -w2 ( this being in fact an integral 
~~imodule.r transformation) if needed, we can fulfill the additio~ 



quirement 
3 • Re ( W 'I t.AJ •·) ~ 0. 1 2 -.....:: 

The choice of uJ 1, w2 is still ambiguous if W 1 = iW2 or if w; = _f) u., 2 
(JJ = -½+½i V3, the point of intersection of Re -c- = -½, I 7; / = 1). In the 
first case we may replace W 2, w1 by w1 i -w2 = 1w-1 (P ,B • B,P1 ); both 
choices lead to the same value T = i. In the second case w_e may replace 
w 2,w1 by W 1, -(w1+w~p or by -(W 1+w2),w2 (P,A • A,A1 or P,A • A.i;Eh 

all three choices lead to the same value 
--c = J' . We have the result: to each num-
ber 7: there corresponds ex'lctly one 
e~uivalent number in the region 

( ) ..1. _1_ I I { ~ 1 if Re -c- ~ O 3.5 G: -~~ReT<~, "r ;::, 1 if ReT >0; 

notwi thetanding for some --C- E G there 
I I 

• 1 exists a non-identical transformation L A ,, 
, of the form (3.3) with L('t") ='t"E G, name­

ly for T = i the transformation 1:' ' = - 1 and for --C- = IJ the transforma-
. r+1 1 '!:' I 

tions -r' = --;:z:- and -r' = - ~+1 • 
The region G is the required fundamental region; the transforms of G 

by all possible transformations (3.3) cover the upper halfplane complete­
ly and without overlappings (each image of i or,P occurring two and three 
times respe~tively). If Sand Tare the transformations --Z::-' = - ,i; and 
?; 1 ='l+1 respectively, then evidently the transforms of G by S, T, T-1 

are the only neighbouring regions of G. We shall prove now that SfT ge­
nerate the group .F. 

First we remark that the set of images of the points i and)° has no 
points of accumulation above the real axis (if '7:"0 were such a point, 
then also the equivalent point in G). Hence we can join an arbitrary 
given point 7: with Im 7: > 0 wi thnthe equivalent point --c- ' in G by a path, 
which avoids the images of i and_,P, and which only passes through a 
finite number of transformed regions. If a certain region is obtained 
on applying to Ga transformation VE F) then the three neighbouring 
regions are found if we apply the transformations VS, VT, VT-1 on G. 
Hence there exists a transformation, built up from the transformations 
s, T, T-1 , which transforms "!:"" 1 into "'i", c.q. G into a region which con­
tains --Z:- • 

Summarizing we have found that the group r, consisting of the trans­
formations (3.3) 2 has G2 given by (3.5) for a fundamental region, and is 

1 -generated by the transf orma ti ons 1:' = - F, "!'. ' = 't .± 1 • The group r ~ 
called the modular group; the transformations (3.3) are called modular 
transformations. 

Definition. A modular function is a function f(r), which is not identi­
cal zero and which possesses the following properties. 

1. f('t:°) is regular for Im 7: > O, except for poles, 



2. f(r) is invariant for the modular transformations; in particular 
277'?; 2 f(T) is a one-valued function g(r) of. r = e 1 = q, 

3. the function g(r) is regular or has a pole at r = O, i.e.?:= im 
Definition. A modular form is a function f(r), which is not identi~al 
zero and which possesses the following properties. 

1 '. f(?.:) is regular for Im'"r > O, except for poles, 
2'. there exists a real number -k, which is called the dimension of 

f(T), such that for each modular transformation (3.3) we have 

(3.6) ( 0<'r+/3 ( .<:' k 
f tf-C+t) = /T+o) f('t), 

( 2rrit 2 1) implying that f(T) is a one-valued function gr) of r = e = q , 

3' • the function g( r) is regular or has a pole at r = 0 t i.e. 7: = ioo. 
Definition. A modular form f(~) is called an integral modular form, if 
f(,z;) is regular for each"'t' with Im T > 0, and if also g(r) is regular 
for r = o. 

If f(r) is a modular form with dimension -k, then consider the func­
tion F((..J 1 ~w 2 ) = w2k f(c:), where w 1 ,w2 are non-vanishing complex 

numbers with --C = w1/ w2 • Leto< , /3 , f, d be integers with o< 8 -(3 / = 1. 
Then on account of (3,6) we have 

F(cxw1+pw2 ,rf Wi+Ew2 ) = (fw,+8w2 )-k f(/;~1) = 

= <t w 1 + () w 2 ) -k (JI'[+ J' ) k f ( 't) = (-<) 2 k f (-z;) = :B' ( w 1 I w 2 ) • 

Hence the property 2 1 is equivalent with 

2". the function :.~{1»1 , W 2 ) = W 2k f ( W1/ W 2 ) is invariant for the 
transformations (3.2). 
pefinition. If f("'l:') is a modular form of dimension -k, then F(w 1 ,w 2) = 

=r..u 2k f( w 1/w 2 ) is also called a modular form of dimension -k. 

Th~orem 1. The dimension of a modular form is integral and even. If a 
'function f(-r) satisfies 2' with even k for the transformations Sand T, 
and if moreover 1' and 3' hold 9 then f(-r) is a modular form of dimension 
-k. 

:Proof. Applying ( 3. 6) with j3 = / = 0, ex = E' = -1, we obtain f(T) = 
= (-1)k f(,z;-). Since f(T) is not identical zero, this implies that k is 
even. This already proves the first part of the theorem. 

t . ' o<-r+/.3 Th V. f. Now let V be a modular transforma ion -r = J'"t: + 6 • en is a i-

ni te product of factors s, T, T-1 . To each transformation V, S, Tj T-1 
. :16 S * T ,1e ( T-1 )* t . there correspond two transformations, say V, , , respec ive-

ly, of the ty:pe ( 3. 2) for t~1.e pair W 1 , w2 . Also V * is a product of fac­
tors S~, T*, (T-1 )*. N0w consider the function F(w 1 ,w 2) = 

= v..J 2k f( w 1/ w 2 ). This function is invariant for the transformations 
s*, T~, (T-1 )*, by our assumptions, hence also for the transformation 
V#. So F( w 1 , w 2 ) possesses the property 2". This proves the last part 

of the theorem. 

------------~~--~ 
1) For we have f ( -r: + J3) = f (z-) for each integer /3 . 



Theorem 2. The functions f 2 (-i-) and h(-z:-), defined in § 2 by (2.16) 1 (2.17) 1 

are integral modular forms of dimensions -4, -12 respectively, The g_uo­
tient 

(3.7). 

is a modular function, which in the fundamental region G takes each value 
in exactly one point. 

The first part of the theorem follows from the relations (2.18), 

(2.19) and theorem 1; the regularity finite 't" is immediate and the re­
gularity in r JO follows, since f 2 (r), h(z) are regular for 2 ft O and 
continuous for r--? 0. 

By the remark at the end of§ 2 the function J(r) is regular for fi­
nite re. From (2.18), (2.19), (3.7) it follows that J('T) is a modular 
£unction. Inspecting the formulae (2.1) or (2.9) - (2.12), we see, that 
£or -r • ioo , i.e. r ~ O, the functions # 00 (T), iJ;1 (-r), fr, 0 ('r) behave as 
£allows: 

ffooCr) ,-._J 1, 
hence 

1 
J (~) --v 1728r· 

So J(~) has a simple pole at '7: = ioo, measured in the :parameter r. 
Let a be an arbitrary complex number ft J(i), J(j). In view of 

lim00 J(-c) -= ro we can chose a real number y > 1, such that we have 
T~ 1 

J('T) ft a for Im 7: ~ y , i.e. Ir I~ e-211Y . Let in the T -:plane R = R(y) 
be a path, joining successively i, -JJ == ½+½i VJ, ½+iy, -½+iy ,/J, i 

l 

fl 
/ 

/ 

I 
I ~-

I 

along the unit-circle and the straight 
lines Re T == +½, III1: -r = Y. If R contains 
some points Twith J('t) = a - since R con-
sists of pairwise equivalent segments and 

-== 1/.i+'l~i\/5 since a ft J(i), J(_/J), such point3 always oc-
' cur in pairs of equivalent points - then in 

\ 
\ 

\ 
\ 
I 

the neighbourhood of such "bad" :points mo­
dify R by inserting pairs of equivalent 

0 small circles avoiding these points. Now 
we have J(r)-a t O on R, whereas the number 

N of zeros of J(r)-a, each zero being counted according to its multipli­
cityi in the interior of R is given by 

I 

1 / J' (T) 1 J { } N = 2-rri R J(--t)-a d't:°== 27Ti Rd log J(1:)-a . 

Applying successively the substitutions 7;'' == t+1, T 1 ::::: 

~e find for the different parts of this integral 
-½+iY +½+iY 

.1. d log {_J("t)-a1 = -/ d log { J(T)-a}, 
'P' J -p 

i i 

/ d log [ J(r)-a} ~ J d log { J(T)-a], 

; 

1 
- - r 

't' ' 

277''7: = e i 
1 



-i+iY 
J d log { J(-r)-a} = f d log { g(r)-a} , 

1+iY C 
27T'T where g{r) is defined by g(e 1 ) = J(7:) and where the last integral is 

taken along the circle C:lrl = e-2rry in the negative sense. In view o:f the 

simple pole of g(r) at r =Owe get N = 1. Now let D,E be small circles 
with radius£, surrounding,P, i respectively, D1 the part of D contain­
ed in G, E1 the part of E contained in G and D2 the reflection of D1 in 
the imaginary axis. Let a be equal to J(f) or J(i) and let J('t")-a pos ... 

se91. a p-tuple zero at T = f (hence also at -r- = -J) and a q-tuple zero 
at -r = i. Noting the angles of G at the points_!, i, -J, we see (the 
circles being described in the negative sense) 

c~o :Jr f ~(,g!a d-r = l~o :Jr1(J'H,. d~ = - t\P, 
1 ~d 

. 1 / <l_' (T) g~o 21ri ' ~ d"t = -½g_. 
1 

By the above method we find 

N = 2;,i Jd log { g(r)-a} 1 2; 1 J ~iJ)!., d'!:, 
C D1+E1+D2 

1 1 
hence 0p+j-q+bp = 1-N. If a= J(J); then we have p ~ 3 (e~~ below), so p==3~ 
q = O, N = O; if a= J(i), we find p = 0, q = 2, N = O. So we have found 
that for each complex number a there exists exactly one point '7: € G with 
J(~) = a. This proves the theorem. 

If 7:0 is the zero of J(-r) in G, then on accowat of 

J("t") = {f2 (T)} 3 { h(-r)}-1, h('t") j 0 

we see that 'r0 is at least a triple ~ero of J(-r). Regarding the last 
part of the proof of theorem 2 and putting J(i) = b we may conclude: 

(3.8) J(_/J) = O, b = J(i) j O; f> is a triple zero of J('t'); 

i is a double zero of J(-r)-b. 

Since J("C")-b has only double zeros and h(-r) has only a single zero at 
't"" --4 ioo, the function V { J ('t")-b} h(-r) is regular for finite '"C' ( Im -r > 0) 

and also forT---tioo. Moreover {J(-r.:)-~h(r)-¼,h if-Z:---tioo. Hence the 
function f 3 (-r), defined by 2 ) 

(3.9) \/27 f 3(-r) = V{_{_J_(-r-)--b-~-h-(T-), f 3(r) positive at 'C = ioo, 

is determined uniquely. The function f~('t") is an integral modular form 
of dimension -12. Describing the boundary of G from 'r= i onwards in 
both directions, we see that t 3(r) has the same value in equivalent 
points of the boundary of G. Thus we find 
(3.10) t 3(r) is an integral modular form of dimension -6. 

---~---~--~-~----
2) In § 4 we again shall find, in an independent way, 

form of dimension -6, which referring to the proof 
4 can serve the same purpose as f 3(-r). 

an integral 10(>(1\Jl.­
of theorems 3 $'.ll{i 

ji 



Theorem 3. A modular function is a rational function of J(T). 
Proof. Let J 0 be an arbitrary complex number. The function J(r) assUmes 
the value J 0 in a set of equivalent points T. In each of these points 

0 - -'t 0 the modular function f(~) has the same value, f(J 0 ) say. Then f(J 0 ) 

is determined_uniquely by J 0 , whereas for each '7: 0 of the ~bove set we 
have f (T0 ) = f( J( rd). Thus f ('t) is a· one-valued function f (J) of J. 

Now assume J 0 -J. O, b, oo. LetT0 be a point with J(T0 ) = J 0 • In the 
neighbourhood of~0 ~ in virtue of theorem 2, we can invert the function 
J(-r) into a regular function '7:" ='T (J). Sinr:e we have f(J) = f('t(J)) and 
f('t") (or f(~) if T 0 is a :pole of f("r)) is regular, we find that f(J)) 
c.q. -(1J)' is regular at J 0 • In the point_:: 0~ b, ro the (arbitrarily cho­
sen) iranches 'l:' (J) and f(-r), hence also f(J) are continuous (or the 
reciprocals of these functions 1 as the case may be). We conclude, that 
at each point of the J-plane, finite or infinite 9 the function ?(J) or 
its reciprocal is regular. Hence 1 by a well known result in the theory 
of complex functions, r(J) is a rational function. This proves the theo­
rem. 
Theorem 4. The integral modular forms of negative dimension -k constitute 
a ~ -dimensional linear set of functions, where V is given by 

( 3. 11) )) = ( ~] if k == 2 (mod 12); )) = [ ~ J +1 i:f k / 2 (mod 12). 

Proof. We know already that k is an even integer. The six functions 
f 2µ(7:)f/ (-r) withµ= 0,1 or 2 and A= 0 or 1, evidently are modular 
forms of dimension 4µ+6A = O, -4 1 -6, -8, -10, -14. Multiplying a given 
modular form f('t") of dimension -k with a suitable function f 'i('t')f / (-r) 

we obtain a modular form of dimension -k1 == -(k+4F+611) with k 1:i=O(mod 12). 

Then the function 

is a modular functioni which is regular for finite?; and which has a *k1-tuple pole at -r: == ico ( measured in the parameter r). Applying theorem 
3 we find that this function is expressible as a polynomial in J("t) of 
degree *k1 • Or, otherwise stated, 

( 3 • 1 2 ) f ( T) fr (--C) f /' ( T) == L_ b lm f ~ ( 't") f) ('r ) , 
where blm are constants and 1 1 mare non-negative integers with 41+6m == 

== k1 . By (3.7), (3.8) and theorem 2 we know 
f 2 (_p) = O, f 2 (i) -J. O; 

by (3.9)s (3.10) and theorem 2 we see 

f3Cp) -J. o, f3(i) = o. 
Hence, ifµ> O, then the left hand member of ( 3. 12) vanishes for T ==/J 1 

hence also the right hand member. So the only possible term in the right 
hand member of (3. 12) with 1 == 0 actually does not occur 1 i.e. this sum 
contains a factor t 2 (T); hence in (3.12) we can delete a factor f 2 (-r). 

Repeating the argument if /.A..> 1j or/\) 0 (in the last case with f 3(-r), 

i instead of f 2 ('t"), f), we find 



(3.13) 

where elm are constants and 1, mare non-negative integers with 41+6m = k 
This prov_es the theorem with a non-negative integer)), eg_ual to the 

number of solutions of the dioph~ntine equation 41+6m = k; from the last 
fact (3.12) is an easy consequence. In particular there does not exist 
an integral modular form of dimension -2 1 · whereas there exists essential­
ly one integral modular form of dimension -k 1 if k has one of the values 
4, 6, 8, 10, 14. 

4. A generating function for modular forms. Eisenstein series. 
In the foregoing section the theory of elementary modular forms was 

based upon the expressions (2.16), (2.17). However the connection between 
theta functions and modular forms is not exhausted by the considerations 
of § 3. We expand log~ 1 ( z 1-Z-) as a power series in z 3), starting from 
the infinite product for # 11 (zl-r) (see (2.10)). We have 

In view 

we find 
( 4. 1 ) 

log #,1 (z 1-r) = log 2 + ;i + 1 log r + log sin7Tz + 
00 

+ L {1og(1-rn)+ log(1-rne277iz)+ log(1-rne.:.27Tiz)}. 
n=1 

of CD ~ 

log sin 7T z = log 7Tz - L ~s 2k z2k ( O<I zl < 1 f s 2k = L -h.,), 
~1 co ~1 n 

1 ( 1 n 27Tiz) 1 ( 1 n -2rriz) b{trmn6 2m-rriz+ 1rm9 -2m11t2:J-og -r e + og -r e :.:::: - m iii -
m= 

co k 2k co 
__ 2 ) (-1) ( 2rrz) ) m2k-1 rmn 
- 1C=1 (2k) ! m=1 

(o<lzl<1), 

where c0 (-z:-) 1 c1 (T), ••• are somsi functions of re , which for k ~ 2 are 

given by 4 ) 
29 2k (-1 )k ~ 2k-1 mn _ 

ck(-z;) = '2k + 4k(2k), l__. m r -
( 2rr) · m, n=1 

co 
2 s 2 k ( -1 ) k ~ er 2h rri -r cY ( ) 

= - 2k + 4k~L- 2k-1(h)e ' 2k-1 h 
( 21r) · k=1 

(4,2) 

=L. m2k-1 0 

mlh 
z 1 

Let us now apply the transformations z,7:~ z, 't'"+1 and z;r • ~, - F 
to both members of (4.1). In view of (2.4) we find 

i----------------ir3) Cf. B. VAN DER POL, On a non-linear partial differential equation sa-
!; tisfied by the logarithm of the Jacobian theta-functions, with ari thmP 
~. t tical applications,Proc.Kon.Ned.Akad.v.W. 54(1951), 261-284. 
t4) The explicit form of the functions c0 (7:), c1 (-r) is without interest 
~:: 
~.t for our purposes. 



hence, equating coefficients of z2k, 

(4.3) ck(T+1) = ck(T) fo~ k = 1,2, .•.•• 

On the other hand ( 2. 5) yields· 

hence 

(4.4) 

m 

- ) ~(277) 2k C (- 1) (~) 2k+ 10g7Tz .. log't" iii 
~ ~k k T T 

,..a., -~ 
::: ldg V 11 (~ I- ; ) = log ~· -½tri + W-if- + log 1J, 1 ( z l-r:) = 

2 00 

= log \/-=ii' ... ½?Ti +?Ti!_ -L ~(277) 2k ck(r)z2k+ log7Tz, 
T k=O ~K 

( 1) 2k ck - T = T ck ( r) f Or k = 2 ~ 3 ' . . • • 

Resuming we have the following result. 

Fork~2 the functions ck(-r):t given by (4.2), are integral modular forms 
of dimension -2k 1 whereas log?J; 1 (zl-z:-) is a generating function for these 
forms. 

T~eorem 5. The following relations exist between the functions c2(-z:-), 
c5(r), f 2 (r)) f 3 (-r), h(-r) 

4.6) f 2 (r) = 60c2 (r), f 3 (T) = 140c3 (-z:-)., 

4.7) f~(r)-27f~(T) = h(Y), i.e. b = J(i) = 1. 

Proof. By (2.18) and (4~5) both functions f 2(-r), c2(~) are integral modu­

lar forms of dimension -4. By theorem 4 there is essentially one integral 
modular form of dimension -4, so we have f 2 ('t") = k c2 (T) with a certain 

constant l{ • Regarding the behaviour for-r-; ioo we find TI" =l,(2s 4(2rr)-4 , 

hence on account of 
k+1 1 2k s2k = (-1) 2(2k)!(2~) B2k (k = 2,3, •.• ), 

1 1 
B4 = - j(J' B5 = ~' ... 

(We get l-< = ,&.;.90.24 = 60. Arguing the same way we find f 3 (--c-) = L< 1 c3 (-r) 

lwi th a certain constant I,( '. On account of ( 3. 9) we have 
l ( ) 1 1 - 3 -3 . -3 -3 , ( ) -6 !f3 'T. ""..J V 27 • V1728 = 2 .3 for-r~ioo, hence 2 .3 =k .2s6 2TT = 
I 1 
~= 2 2_6,42 , k' = 140. So the relations (4.6) ~re proved. 

By (3.7), (3.9) we have bh(~) = f~(-r)-27f3(~). By (4.2) and (4.6) we 

hi.ave 
~ 

!(4.8) 
i 

IR ;, __ ence 
1: 

= (~ -27.~)+(3.~.20+27.2.~.i)r+ .• , rvr. 
12 216 12 .:> 

hn the two-dimensional set of integral modular forms of dimension -12 

(~here occurs exactly one function, which vanishes at "'C = ioo and more-

1¾,ver behaves as r (cf. theorem 4). Both members of the re.lation (4. 7) 
~f: 

In.ave this property, so they are equal, 
tlr 



Formula (1.3) now easily can be proved. Consider the 
Eisenstein series Gk, defined by 

so called 

(4.9) r' -2k Gk(w 1 ,W 2 ) =_/_(mw 1+nw 2 ) .. (k = 2,3, •.• ), 

where L..J 1 ,w 2 satisfy (1,1) and where the summation is extended over 
all integral pairs m,n f 0,0. The well known connection with the series 
ck(t) 1 defined by (4.2), can be deduced as follows. Differentiating the 
first and the last member of the relation 

00 

1 2 1 i x + 1 (x+n + x=n:) = 7Tcot TTx = 
n= 

CX) 

-TTi(1+2 L e2n7'ix) 
n==i 

2k-1 times with respect to x, one finds 
00 CO 
~ ( )-2-k 1 ( .)2k ~ 
L,__ x+n = ( 2k_1)! 2711 L_. 
n=-oo ~1 

2k-1 8 2n7l'ix 
n ' 

hence, :putting x == mT and summing over m~ 
co oo k oo 

L. L{m-r+n)-2k == (2~=~ j ! (27T)2k) cr;k .. 1 (h)e2h1ri-r. 
m=1 n=-oo ~ 

Thus we obtain, in view of u.J1/ w 2 == T , 

hence 
(4.10) 

00 CO (X) ] 

Gk( w,, W2) = W22k[ 2 L n-2k+2 L L.,_ (m 'C+n)-2kj :: 
n=1 m=1 n=-oo 

= (~)2k[ 2s2k + 4kf 2B~ Loo 0- (h)e2h>Ti-r]' 
w 2 ( 2 7T)2k . h=i 2k-1 

Gk( W1 ~ W2) = (~: )2k ck(T). 
2 

Putting g2 = 60G2 , g3 = 140G3 ~ ~= g~-27g~ 9 by (4.10), (4.6), (2.16), 

(3.9), (4.7), (2.17), (2.20) we obtain 
2 rr 4 1 2 -rr 4{ s . ~°'s ,,g , 

g2(W1 ,W2) = ( w 2) f2(-r-) :; ~( w 2) 'Zfoo(-Z-)+·v'o1(r)+?Y,10(T)j' 

g3 ( u.) 1 ' w 2 ) = ( ,21T \ 6 ( 
\W2 ) f J 11, 

Theorem 4 9 applied in the proof of theorem 5i is a source of many 
other relations between modular forms. For instance each function ck(T) 
can be expressed as a polynomial in c2 (-r), c3 (-r), the coefficients can 
be determined in a finite number of steps by using the expansions (4.2) 
and equating a suitable number of coefficients. In view of the nature of 
the series (4.2) this gives rise to many relations between divisor func­
tions. VAN DER POL in the paper cited above used a certain non-linear 
partial differential equation for log-.. ~lztt) to establish other relations. 

Examples. 
I. -19'6o(1:)+'lJ,61(T)+-z9-ito(T) = O. 

If the left hand member were not identical zero 1 then on account of 
(2.16), (2.17) it should be an integral modular form of dimension -2, non 



cal zero. Since no such form exists, the above relation ie eata­
lished. 

II. 

tle have 

(k = 2,3,. .• ), 

00 

c;('t") = 1+240 L (I (h) e2hirir, c-Jt-3· ('t') = 
h=1 3 

CD 

1-504 L er (h)e2h»'i't , 
h=1 5 

co ro 
c*4·. (T) = 1+480 L er (h)e2h1li-Z-, a*(-r) = 1-262 r. ·.· tr (h)e2hlriT 

h=1 7 5 1i;1" 9 ' 

account of (4.6), (4.8), (4.2) and (27T)-82s8 = - 'ffr B8 = ~, 

) -10 1 1 5 . 
2rr 2s10 = 11IT B10 = 'TT5T·;t· Since there is essentially only one inte-

al modular form of dimension -10 1 we may conclude 3 ) 

c;(z-) = c;(-r).c;(--r). 

III. In virtue of h('t)-rv e2" 1r for 7:-tioo and 

c;(T)c:{1:)-!c;(i-)} 2"'-' ( 0+1008)e2111 't" = 1728e277':i:t, 
3 l 

j\ie have ) 

1728h(t) = c;(T)c:(-r)-{c;(-c)} 2 . 

IV. To give a somewhat different example I prove in a simple way 
known formula 

oo n 
-&,~0 (r) = 1 +47T J -½ sin ~­

t;-;; 1-q 

der the two functions 1_9,11 (zlr)1_i01 (zl-c)-i9i01 (zlr)~ 1(zl'r) and 
(z/-r.·)i9'; 0 (zlr), the accent denoting differentiation with respect to z. 

the formulae 

~ ( z+ 1 I r) = ( - 1 ) g 1~h ( z h::) I 

~gh(z+½'tlr) = q-ie-77iziJ, +1 h(zlr.)' g , 
#11 ( z+½·dr) = q-¼e- 7liz [ 7T i 1761 ( z It)- iS\:i1 ( z 1-i-)] 

1%1 (z+½-i-l-r) = q-¼e-7riz[-77i~ 1 (zl't")+~11 (zl't"U, 

te see that both functions are multiplied by -1 and q-½e-2"iz, if we ap­

\1y the substitutions z ~ z+1 and Z-'> z+½r respectively. Inspection of 

lhe proof of (4.2) shows that we have the following Fourier expansion 

4. 12) 

#11 ( z l't) d _a, 
--z.9'11 ( z 1-r-) = az log '&'11 ( z 1-r) = 

co 

= fz[1og sin TTz - L_ 
n,m=1 

co 
= 7Tcot7Tz-2 TTi L q2mn(e2m17iz_e-2m17iz) = 

n, m::1 
00 2m 

= TTcotTT z+47T L.. ~ sin 2m7T z, 
m=1 1-q 

in the same way 

( -&oo<z!T) = d L{1og(1+q2n-1e2TTiz)+log(1+q2n-1e-277'iz)t= 
1,9-,00 ( z Ir) az n=1 . J 



- 17 -
00 

= _ fz L, (-!)m qm(2n-1) ( e2m77iz+e-2m77'iz) == 
n,m=1 

(4.13) oo 
= 471' L. (-1 )mg_m( 2n-1 ) sin 2m7iz = 

n,m=1 
. oo . m 

= 47TL ~ sin ~m7T£ • 
. m=1 1-g_ 

Now the z.eros of 1.J'i00 (zl't) #, 0 (z!'t") are given by the points z, which 
are congruent with ½ modulo 1 , ½ T. Moreover, by ( 4. 1 2) and ( 4. 13) the 
point z =½is a zero of ,&,11(zlr) ~1(zl-r)-Vo1<zlt") ~1(z1-z:-). We may 
conclude that the quotient of the two functions is a double periodic 
function without poles, hence a constant. By (2.9), etc. we find 

# 11 (zit'") 'z%1 (z l-r)-~01 (z/T) ~ 1 (zit') 

· -z9i00 (z1r) -'&, 10(z1T) = 

-[#,11 (zlT) #o1 (zl-c-) J _ 7Ti 7T(,-g_2n)2( 1-q2n-1 )2 = 
- :i.s,.00 (z 1-c-) -z910 (z Ir) z=O - n=1 ( 1+q2n-1 )2( 1+q2n)2 

00 n 4 
7T . TT c 1-g_ ) rr. 1.9,2 ('t) 

= l. n= 1 ( 1 -g_ 2 n) 2 = · 1 O 1 • 

Applying the substitution -r. • -r+1 and using ( 2. 4) this becomes 

"2fo11 ( z Ir) #oo ( z IT)- ?fooo ( z 1-r) 151; 1 ( z It") 2 
-z9'io1 (z 1-z·) '29-11 (z IT) = TTi ?J,OO(T). 

In this formula take z = ¼. On account of ~ 0(¼1-r) = '29o1(¼1r)~ 
'19; 1 (¼1-r) = 11J; 0 (¼1i-) and the relations (4.12), (4.13) we finally obta~· 

#,2 ( 1 # 00 (¼lr) #, 1 (¼1r) {i9,11 (¼1-r) '7fo00 (¼1t)} 
oo -r) = rri -zp. 01 (-¼ Ir) 1.9,10 (-i•r) ,&,11 (¼Ii-) - ,&i00 (¼1r) = 

a, 

= i l( 7T cot l + 4n-) q2m_(2i)m sin !!1.f-} = 
~ 1-q 

~ 2m+ m r m 
= 1+4 L_ q ~m sin !-,J!- = 1+L-.. q sin fil2L. 

m=1 1-g_ m=1 1-~m 2 
This pxoves the formula (4.11). 
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