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§1. Introduction. In this lecture I wish to consider the modular func-
tion J(T) and the modular forms & = & (W, Wy, gy = g3(031,uJ2),
[§=[§(OJ1,u)2) from a point of view different from the usual one. Here
and in the sequel by QJ1,CU o, T are meant complex variables, subject to
the relations

W
(1.1) Wy £ 0, Ly £ 0, ’L’:a—‘—;-, In T > 0,

whereas g, 83, /A are understood to be defined by

!
1
gr = g-(W ,W,) = 60
2 2 1 2 Z(mw1+nw2)4

!
(1.2) gr = g1(W,,W,) =140 L
3 = 83(W4,WoH 2 (s

nu)2f6
A A ((4.)1,(*}2) = g%"27g§,

the summation being extended over all pairs of integers (m,n) # (0,0).

In the theory of elementary modular forms verious relations and proper-
ties for gz,gb, A\ and other modular forms are proved. For instance the
form /} possesses the remarkable property, that it can be expanded as the
following infinite product

00

(1.3) A = (%5192 T 77:-(1—rn)24, r = eQTTiT;
the infinite produit con?grges absolutely, since by (1.1) we have =<1,
In the classical presentation of the theory to a high degree use is made
of elliptic functions.

In order to illustrate this mode of procedure by a (rather important)
example, I sketch a possible classical proof of (1.3). The elliptic func-
tion

1 ! 1 1
QO(u) - EZ +2::{(u—mouj-ntu2)2 (mcu1+ncug)2%
satisfies the differential equation
{ga’(u)}z =,4'(;<>3(u) - g plu) - g

If we put Wy = ~Wy-W,, Jo(%ivi) = e; (i=1,2,3), then the zeros of
dﬁ%u) in the fundamental period parallelogram of yo(u), p'(u) are given
by u = %OJi (i = 1,2,3) and the values ey, e,, ey of Zo(u) are assumec
only in the points Wy, %402, %IMB respectively. So the numgers ey, €o,
93 are different; furthermore they are zeros of the cubic 4z ~8pZ—83.
The discriminant of this cubic form is egual to g%-27g§ =/\, yielding



o . v 2

JANE 16{(91—62)(82-63)(63—61); .

(Hence:ﬁ # 0 for any admissable choice of u)1,602). A further step in
the proof consists in considering the function

u G
TT/ u muqtnw, +2(mu>+nuJ)2}
O’(u) = u {(1-— m)e ' 1 2 ’
related to JO(u) by the formule

2

d

— logo(u) = Jo(u);

du jO ’

furthermore, in view of the periodicity properties of &m(u>, one finds

M (urg w.)
O (urwy) = —e * To(w o (1=1,2),
where 421,ﬂ22 arezcertain constants, Hence the function
q22u .U
~ T, YT o

e 2 O (u)
is left invariant under the transformation u— utWo,, so is a one-valued
271
function s(t) of t = e 2. Reguarding also the behaviour under the
277 1 %}l
transformation u— u+w,, i.e. t—e 2t = rt, one finds that the

zeros of s(t) are given by t = r° (n = 0,+1,+#2,...) and also that s(t)
is given by the infinite product

70% (1=tr™) (1=t~ %)
n=1 (1-2™)°
Another property of the function 7 (u) is the fact, that

- T (u+v) T (u-v)

oé(w) o?(v) |

in view of the behaviour of ¥ (u) under the above mentioned transforma-
tions, is an elliptic function in each of the variables u, vy in fact
this function is equal to

7w = plv).
Noting the relation jm(%ﬁwi)—ao(%(dj) = e;-e; we are now able to express
A as a fraction, both terms of which are finite products of certain va-
lues of O (u), such as CT(%u)1), cr(%wuz), (T(%%02+%Lu3), etc, Putting

e 1T q, implying q2 = T, these values correspond with t = q,1,q'1,etc.

&)2
S(t) = - 2——77—{(1-'t)

*

Carrying out carefully the calculations the result turns out to be asto-
nishing simple; in fact we find the above formula (1,3).

It is desirable to have a more natural proof of (1.3) and more gene-
rally a more satisfactory approach to the theory of modular forms without
long digressions about functions which, as to their nature and general
properties, have little to do with modular forms. In the following I shall
avoid completely the use of elliptic functions. Even the fact, that
A= gg~27g§ is a non-vanishing function, shall be proved in an entirely
different way. Of course I need a starting-point; as such I chose the
theory of theta series, these functions showing themselves modular prope
A em L i




In § 2 the transformation formulae for theta functions are deduced
and the well known expansions in infinite products are given, Here the
calculation of the factor C = C(T), leading f.i. to a simple proof of
the formula

® 00
)}1 (‘1--xn)3 =Z_. (—1)n(2n+1)x%n(n+1),
n= n=0

is performed in a direct way. Thereafter two functions f,(7), h(T),
closely related to €5 A , are constructed by means of theta series.

In the next section the modular group is introduced in a geometrical
way. The definition and some well known theorems on modular forms and
functions are given, e.g. concerning the class of integral modular forms
of a given negative dimension; the modular invariant J(T) is defined in
terms of fQ(T)., h(z).

In §4 I establish the connection between Eisenstein series, especial-
ly G2 and C—3, and modular forms, by means of the theorems proved in § 3.

A generating function for Eisenstein series is found in log 79%1 (z17T).

2. Theta series,

Let 2z and T be complex variables with Im 7T > 0. Then we define
+00
2

2Pz |T) = Z: e71iTn

N=-0
and more generally for arbitrary integers g, h

eQW’izn

+00
. 2 .
A 1 1
n=-00
The series (2.1) is absolutely convergent on account of Im T > O.

Evidently we have the relation

(2.2) Vror nans(21T) = (D™ (2 17)  (x,5 integers),

showing that there are essentially only four theta functions, namely
’/f’oo(z IT), ﬂ’o,](z lT), ’)9?10(2 IT), 7}11(2 [T). The different theta func-—
tions are related to each other by the following formula, which is an im-—
mediate consequence of the definition (2.1),
. . 2 .

277igh ~Z77iTm _~-7izm z T ) .

(2.3) ’ﬂ“gh(g+—%—mf+%1|T) = o= 188 7% e g+m,h+1( e
Of great importance for our purpose are the transformation formulae

referring to the variable T

Y-
2.0)  W(zlTen) = TR P (2l
s Tr iz
Z 1y _ \/ i+ .—271igh T
(205) /ﬁ’gh.(?l.. ;Z:) - iT e = € 7}"1,1€(Zl’t’)7
where Re( /~iT ) is taken positive.

The first formula is verified at once. As to the second, in virtue
of Poisson's summation formula

+® +00 + _
E f(n) = Z /pe?nlnx f(x)dx,

N=~00 N=~-00 =0




we deduce

V|- 2 =

&

+
8
+
8

. . - — X+‘§g) 217i= ‘
e271*11'13( e7-rlhx o T o T dx =

- Z%ZL. {( X+3g) 2~2z(x+%g) -2 (n+3hkxt }
dx =

X
.

e

e-—?Tig(n+—%—h) Ve e." ?{(X“‘%g) "Z"(n*%h)’c}g e+ Z—f;-:-L- z+(n+%h)z}gdx=

i

Bl
N

5

==00
1,2 +0 5 ..Z’..
- o~37igh T S (=1)8 o 7it (n+sh) 2wlz(n+%h)/ adx=
n=-00

Wl 2

- Var e A L2 17).

A consequence of (2.3) is the fact that ’ﬂ’gh(z |T) is a quasi-perio-
diec function in 2z with periods 1,7T

Vi (z+11T) = (-MEFy (2T,
G2l T) = (=P T D (5] T),

Hence, integrating in the positive sense along the sides of a parallelo-
gram 77 with vertices G ,T +1 §+1+’C C+T, where§ is chosen in the
z-plane in such a way that ’29’ (z IT) # 0 on the boundary of 77 and deno-
ting differentiation with respect to z by n'", we find

7% o, (217) o (2T 1T) P, (217)
2#14//79§i(zlt) 2 J/’{ g%gh(z+tlT) l%zz(Z,T):}dﬁ +
r

e P (z+lT) B (zl7)
1 hn gh
+ ﬁig/{ T T ]~ (z»r)}dz =T

Henceforth the function ??’gh(zl’c) possesses exactly one zero in 77 .

i

. Now we direct our attention especially towards the function 7}'01(21’5).
Clearly we have ’1961 (3T!1T) = 0, So the zeros of ’29701(211:) are given by
m+(n+3)T with m,n = 0,+1,+2,... This leads to the consideration of the
(absolutely convergen‘b) infinite product

f%)(z ) = 77"(1 eQWIr(n—z) 2#12)(1 eznlf(n_;) —2ﬂiz)

“this product representlng a function with the same zeros. The quotient
‘ﬁm(zlf) {Jg(z T)l is an analytic function. Moreover, as is easily
verlfled this quotlent is left invariant under the transformations
'z—y z+1 and z—> z+7T, Hence it only depends on T . This means that there
exists a function C(T), such that

®
(2.6) 79"0'] (z ) C(”C)7T(1-e27rit(n"%) ezvriz) (1_627711(1:1-%) e"27riz);

; n=1
or putting et T = a,
oo
(2.7) ?951(231‘) = C(T)7T(‘l-—2q2n"1 cos 27Tz+q4n"2).
n=1

We proceed to determine the factor C(T). Each funection ﬁgh(z',’t) sa-
tisfies the differential equation '



2
93 U (eln) = g —g—g (2.

2n-1 4n—2)

S0 in particular we find, in view of —7)2-)—5(1—2q cos 27T z+q = 0,

=0

2 |
1og?9’ (01T) = sorm { L J ’29’01(211)]2:0 =

471 | 9994 (21T) 3,2

o)
_ 1 [Z +8772q‘2n'1cos 2Tz J -
471 | n=1 1—2q2n-1 cos 27T z+qts’n":2 =0

5 @ 2n-1

i —2771%1; (hq%n")g
2n

=..2mr);--ﬂ—-g+2mi——“lm 752

By the last formula already C(T) is determined. In order to find a neat
expression we proceed as follows., On account of

|

]

\ 00
n X
nx- = —— (1xl< 1)
n=1 (1-—1)
we deduce © ZO—O—‘ o 0 0 .
S nx? mn Z } myn 5 X
/ = nx = nix = """""'—?'.
n=1 1-x2 n=1 m=1 m=1 n=1 m=1 (1-—1)
Hence we find
n ©
1og79'1(01'c) = {2 Z; s Z; 2n
n= 1 -
2

long (1-g

q
Since for ¢ —0, i.e. T — i, by (2. 1) the function ?}’m(ol‘c tends to

1, we may conclude

it

L © n, 2
79’ ,(ol) = clr) 77—(1 -T2 - 77; ii_.g‘z%‘
n= -q
hence @® @®
_ (1~Qn)2 1 } _ {(1-qn)2 1-g2n 2} .
¢(z) = g{ 1_q2n (1_q2n-1)2 Z___-_C 1__(JL21'1 (1__qn)
So we have (00)
(2.8) c(T) ='75: (1-¢2%)
n=
©
(2'9) «29‘) (Z'T) - 771‘{(1_{12n)(1_q2n—1 627712)(1_q2n~16—27712)
n=

Applying (2.3) with g =0, h = 13 m =1, n = 0, we deduce
—t 7T -
Y2 (anitle) = 271 208 (2ln),

4 (217) %mﬂﬂw%m“mW1%“mﬂ

n=1

(2.10)
_ q—}(em_z -1712)77’{(1 an)(1 q2n 27?12)(1 qLE"n 2771@

Applying (2.3) with g =0, h=1Tandmn=0, n==-1orm=1, n= -1,



~ I

we find in the same way
00

(2.11)  Pyolzl) = TT {(1-07) (140271 F745) (14g707 172722
n=1
(2.12)  fo(aln) = aF(MH4e mﬂT{m—q ) (1+07762712) (149206272

Some well known formulae are an easy consequence of our conslidera-
tions, First we have, by (2.10) and (2.1) respectively,

(00)]
19;'1(olr) = 27Tiq% ”1(1-qzn)3
n=

and 00 132
Y1, (017) = -,C?-Z-(D-nn o(7*2)" 2 sin(272(n+d) Jz:O -

n=0

(00]
1
27riq* Z (-1)n(2n+1)qn(n+1),
yielding n=

(2.13) 77(1 -®™)3 = i( 1)%2n+1) g2 (Jql< 1)

Secondly by (2 9), (2.11), (2.12) we have

’ﬂ' (o!r)ﬂ“ orr)ﬁ‘o(oi'c) =

29* 771'{< 1292 (12721201202 (1402 W 102) (1402™)2) -
n=

© @

29% ] {(1-q2n)3(1—q2n”1)2(1+qn>2} = 2% TT (1-07%)3,
n=1 n="1

o o 2

TL{0-a""" (™ =TT tz‘nn} =1

n=1 n=1\{1-q

1

|

since

so we find

(2.14) ?9’1'1(o|1:) =7Ti7/050(ol7:) ?,951(ol'c) ’z}ﬁ’o(olr).

We are now in a position to construct two functions which are of the
utmost importance for our further treatment. Since from now on we need
theta functions only with z = 0, for brevity we put

(2.15) Q%h(olf) = ?ﬂ”gh(f) (g,h = 0,05 0,15 1,05 1,1).
We define
(2.16)  242,() ~79"OO(T)+2981(€)+29180(’C)

(2.17)  256n(T) = W0 (D)5, (1)2%, (7).

The behaviour of the functions fQCr)9 h(T) under the transformations
T —=7T+1 and T— -‘% easily can be deduced from the formulae (2.4),
(2.5), (2.2), For we have

/ﬂvoo('r"'1 ) = #61 () 7960(- %:) = \/-iT 7}60(?)
Pt = Y @) Y- D = VaET R,

Hence we find
(2.18) f,(r+1) = £,(7), 1,(~ 1) = Thep(D),



(2.19) n(t+1) = h(r), n(- %—) = 7'%n(7).

Finally, inspecting the proof of (2,14), we find for h(r) the follo-
wing infinite product

: 0
(2.20) n(t) = q° 77;(1-«:.12”)24 (q = 7Ty,
N=

This shows that h(T) is a regular function, different from zero for
finite T .

3. The modular group. Modular forms,
Let W4, W, be two complex numbers with

W
(3.1) Wy £0, W, £o0, Imm—;->0.

Plotting down the numbers in the complex plane, the numbers mw1+nw2
(m,n integers) form a lattice, /\ say, for which Wy, W, constitute a basis.

Let w], W) be two complex numbers with ()] £ 0, wi £ 0,
Inwj}/s > O, which generate the same lattice /\ ., Then, since Wy, Wi
themselves are lattice points, we can write

W] = Wi+BW,, W} =duw1+é‘w2,

where X ,ﬁ, %/, cf are integers, On the other hand, since w%,wé generate
the lattice y Wy and w2 are expressible in terms of u){ and wé in
an analoguous manner, So we have 5-/3/: +13 the minus sign can be re-
jected on account of Im w1/‘4)2’ Im w{/wé > 0,

The transformations
(3.2) W1 = WPy, W) = W+l

where & ,ﬁ, , d are integers wi’cho(cf—/ﬁ/ = 1, evidently form a group,
[ say. Putting T=W/w,, T'=Wl/w), this group [7 induces a group
Fof linear fractional substitutions ' = %. The mapping /' —» r
!is a homomorphism with a kernel of order 2: we have T = 3—%—% for allT
with Inm T >0, if and only if B = J =0, x=d = +1 or -1.

We call two numbers 7 ,7 ' in the upper halfplane equivalent, if and

only if there exists a relation

(3.3) ! = 3.:_% (X ,/3},,//, 5 integers with o (S\—ﬂ/;—. 1),

A fundamental region for the group [ of transformations (3.3), operating
in the upper half of the T -plane, is obtained easily, Given a number T
chose W, ,W,, satisfying (3.1) and the relation T = w‘l/"OZ (e, g.
Wy =1, Wy =7T). Determine a basis W], w} of the cvorresponding lattice
/\ by the following procedure:

1. chose w3}, such that lwil is minimal,

2. thereafter, out of the set of numbers (J !I" generating together
with Ldz' the lattice N , chose ou1' so as to satisfy

(3.4) -3 < Re(wi/w)) < 3.

The definition of w.{,wé is unique, unless we have lw{l -.:fa)él. In that
~case, replacing W3, W] by Wi, ~W; (this being in fact an integral
;;unimodular transformation) if needed, we can fulfill the addition&l re-




quirement

3. Re(wy/wi) <L O.
The choice of W {sws is still ambiguous if Wy = iUJé or if W =pw}
(}9=:—%+%ib/§, the point of intersection of ReT= =%,/ Tl= 1), In the
first case we may replace W4, W] by W], -w} = 1wy (P,B-—>B,P,); both
choices lead to the same value T = i, In the second case we may replace
Wh,wi vy W, -(cu1'+w2',) or by -(w1'+wé),wé (P,A> A,Ay or P,A->ADs
all three choices lead to the same value
T =70. We have the result: to each num-
ber T there corresponds exictly one

equivalent number in the region

(3.5) G: ~b<ReT<3, !'tl{?"' if Re T <0

R E P > 1 if Re 7 > 03
: ,/O Wa. notwithstanding for some T € G there
L/ exists a non-identical transformation L
Al of the form (3.3) with L(Z) =7 € G, name-
ly for 7 = i the transformation T ' = —,% and for TT=10'the transforma-~
tions 7' = ~&Fl and 7' = -,Cl .

The region G is the required fundamental region; the transforms of G
by all possible transformations (3.3) cover the upper halfplane complete~
ly end without overlappings (each image of i or/O occurring two and three
times respectively). If S and T are the transformations T' = -,% and ]
7' = T+1 respectively, then evidently the transforms of G by S, T, T
are the only neighbouring regions of G, We shall prove now that S,T ge-~
nerate the group r.

First we remark that the set of images of the points i and/O has no
points of accumulation above the real axis (if 770 were such a point,
then also the equivalent point in G), Hence we can join an arbitrary
given point 7 with Im T > O withrnthe equivalent point T ' in G by a path,
which avoids the images of i and/O , and which only passes through a
finite number of transformed regions. If a certain region is obtained
on applying to G a transformation V &€ 7;, then the three neighbouring
regions are found if we apply the transformations VS, VT, VT~1 on G.
Hence there exists a transformation, built up from the transformations
S, T, T“1, which transforms T ' into T, c.q. G into a region which con-
tains T .

Summerizing we have found that the group 73, consisting of the trans-
formations (3.3), has G, given by (3.5) for a fundamental region, and is
generated by the transformations =<' = - %’ ' =T+1, The group Fois
called the modular group; the transformaetions (3.3) are called modular
transformations.

Definition. A modular function is a function f(z), which is not identi-

cal zero and which possesses the following properties. i
1, f(r) is regular for Im T > 0, except for poles,



2. f(T) is invariant for the modular transformations; in particulax
f(¥) is a one-valued function g(r) of . r = e2vit = q2,

3. the function g(r) is regular or has a pole at r = 0, i.e.T = i
Definition. A modular form is a function f(T), which is not identiecal
zero and which possesses the following properties,

f(7) is regular for ImT > O, except for poles,
2'., there exists a real number -k, which is called the dimension of

f(7), such that for each modular transformation (3.3) we have

(3.6) (Sl LLy o (p7+8)¥ £(2),

FTHS .
implying that £(7) is a one-valued function g(r) of r = 27T q2 1)

3', the function g(r) is regular or has a pole at r = 0, i.e, T = ioo.
Definition. A modular form f(T) is called an integral modular form, if
f(7) is regular for each T with Im 7 > 0, and if also g(r) is regular
for r = 0.

?

If £(7) is a modular form with dimension -k, then consider the func-
tion F(w,,Wy,) = oug £(z), where (,,W, are non-vanishing complex
numbers with T = UJ.]/U)Q Tet X ,ﬁ J/ 8 be integers with o S-ﬂdu_ 1.
Then on account of (3,6) we have

F(o«ou1+pw2,/w1+§w2 (//w1+o°w )~K £

o<'t:+ﬂ)

ﬂl/

= (/wﬁﬁwz)‘k.(dum S)E £(7) = w3E £@) = Flwy,wy).
Hence the property 2! is equivalent with

2", the function 3@01,a)2) = ajgk f((U1/L02) is invariant for the
transformations (3.2).
Deflnltlon. If f(z) is 2 modular form of dimension -k, then F(w,,Ww,) =

~cu2 f(L01/U)2) is also called a modular form of dimension -k,
Theorem 1. The dimension of a modular form is integral and even, If a
‘function f(r) satisfies 2' with even k for the transformations S and T,
and if moreover 1' and 3' hold, then f(7) is a modular form of dimension
k.

Proof. Applylng (3.6) w1th/6 00=:0,<X =4 = -1, we obtain f(r) =

= (-1) f(r). Since f(r) is not identical zero, this implies that k is
even, This already proves the first part of the theorem.

Now let V be a modular transformation T' = E;%;%ﬁ?. Then V is a fi-
nite product of factors S, T, T"1, To each transformation V, S, T, T~ -
there correspond two transformations, say V¥, S*, T*, (T“1)* respective~
ly, of the type (3.2) for the pair QJ1,602 Also V* is a product of fac-
tors S T*, (T'1) . Now consider the function F(au1,602) =
= Q)2 f(Luﬂ/u) ). This function is invariant for the transformations
S* T*‘ (7~ )* by our assumptions, hence also for the transformation
V*. So F(u)1, 2) possesses the property 2". This proves the last part

of the theoremn.

o — — — - — o~ — - Vo S~ - V- p—

1) For we have f(z*bﬂ) = f(r) for each integer}@.



Theorem 2. The functions fQCt) and h(t), defined in § 2 by (2.,16), (2.17),
are integral modular forms of dimensions ~4, -12 respectively, The quo-
tient

(3.1, 3@ = {5} {n)}
is a modular function, which in the fundamental region G takes each value
in exactly one point.

The first part of the theorem follows from the relations (2.18),
(2.19) and theorem 1; the regularity finite T is immediate and the re-
gularity in r £ O follows, since £5,(T), h(7) are regular for 2 £ 0 and
continuous for r -0,

By the remark at the end of § 2 the function J(T) is regular for fi-
nite T . From (2.18), (2.19), (3.7) it follows that J(T) is a modular
function, Inspecting the formulae (2.1) or (2,9) - (2.12), we see, that
for T —ioo, i.e. r—>0, the functions 7?60(1), 7}51 (7), 2};0(?) behave as
follows: N 1mie

Voot ~1, Tty 1, 0) ~2a® = 2657,

24£,(T)~ 2, 256n(T)~ 2%,  T()~ g

hence

So J(T) has a simple pole at T = i, measured in the parameter r.
Let a be an arbitrary complex number # J(i), J@p). In view of
lim_J(T) = o we can chose a real number Y > 1, such that we have
T-—>»10

J(T) # a for Im?,'zy , i.e. Irl < e 27 Y .| let in the T -plane R = R(Y)

be a path, joining successively i, ~/5'= 2431 \/ 3, iy, ~%+i>/,/0, i

[y haly along the unit-circle and the straight

' lines Re T = +%, Im T =>/. If R contains
some points 7 with J(Z) = a - since R con-

“I/z“"éy‘

sists of pairwise equivalent segments and
y) 54y c)/3 Since a A J(i), J(ﬁ), such points always oc-
e \ cur in pairs of equivalent points -~ then in
’ — \ the neighbourhood of such "bad" points mo-
dify R by inserting pairs of equivalent

small circles avoiding these points. Now
we have J(T)-a £ O on R, whereas the number
N of zeros of J(T)-a, each zero being counted according to its multipli-
city, in the interior of R is given by

Nzﬁég{%dz-:?lﬂéd log{J(’t)—a}e

Applying successively the substitutions 7! =T+1, T' = -‘%, T = ezﬁlf,
we find for the different parts of this integral
~%+iY +3+1Y

4 d log {J(’L‘)-a}.z _/5/ d log{J(’C)—a},
1 1
)o/d 1og{J(T)—a} = :/éd log{J(’l‘)-a},



~-&+1iY
a 1og{ J(’L’)—a}: C/d log{g(r)—-a} ,

2miT

iy
where g(r) is defined by g(e ) = J(T) and where the last integral is
taken along the circle Ci:lrl= e~2TY in the negative sense, In view of the
simple pole of g(r) at r = O we get N = 1, Now let D,E be small circles
with radius & | surrounding/@ , 1 respectively, D, the part of D contain-
ed in G, E1 the part of E contained in G and D2 the reflection of I)1 in
the imaginary axis. Let a be equal to J(p) or J(i) and let J(r)-a pos-
sess a p-tuple zero at T =/O (hence also at T = -/5) and a g-tuple zero
at T = 1. Noting the angles of G at the points/O, i, -/5, we see (the
circles being described in the negative sense)

lim e g('l(.ﬁ;za aT = -4q.

£—0 271 3

By the above method we find
1 1 J ' (T
N = _/d log {g(xr)~-a} + f aT
27ivg { } 271 D, +E,+D, “\T/"# ’

hence %—p-r%q+16p = 1-N, If a = J(/O) . then we have p > 3 (sec below), so ps3,
qQ =0, N=03 if a = J(i), we find p = 0, ¢ = 2, N = 0. So we have found
that for each complex number a there exists exactly one point T € G with
J(T) = a. This proves the theorem,

If ’C‘o is the zero of J(T) in G, then on accoumt of

1@) = {5} { @)}, nem) £o

we see that ’Z’o is at least a triple zero of J(T). Regarding the last
part of the proof of theorem 2 and putting J(i) = b we may conclude:

(3.8) J(/O) =0, b =J(i) £ 0 /O is a triple zero of J(T);
i is a double zero of J(T)-b.
Since J(T)-b has only double zeros and h(T) has only a single zero &
T — i, the function WJ('C)-—b}h(T is regular for finite T (ImT > 0)
and also for T— i . Moreover {J(’c)-—t%h(’r) __’7'7?'8' if T7— io0. Hence the
function f (), defined by 2)

(3.9) \/5_'; f3(T) :\/—{J(’C)-%}h(t'), f3(’L’) positive at T = im ,

is determined uniquely. The function f?(’t) is an integral modular form
of dimension -12. Describing the boundary of G from T = i onwards in
both directions, we see that f3(?:) has the same value in equivalent
points of the boundary of G. Thus we find

(3.10) £4(T) is en integral modular form of dimension -6.

2) In §4 we 'again shall find, in an independent way, an integral modular
form of dimension -6, which referring to the proof of theorems 3 and
4 can serve the same purpose as f3(z').



Theorem 3, A modular function is a rational function of J(T).

Proof., Let Jo be an arbitrary complex number, Th_e function J(T) assumes
the value Jo in a set of equivalent points TO. In Each of these points
’L’O the modular function f(Z) has the same value, f(Jo) say. Then f(JO)
is de'termined_uniquely by Jo’ whereas for each ’C’O of the gbove set we
have f(’L‘o) = f(J(’L’O)). Thus f(Zz) is a’ one=valued function f(J) of J.

Now assume J A0, b, o, Let T, be a point with J(To) = J,. In the
neighbourhood of Tos in virtue of theorem 2, we can if_lvert the function
J(T) into a regular function T =T (J), Since we have £f(J) = f£(z(J)) and
£(T) (or ?-(-1%7 if T, is a pole of £(7)) is regular, we find that T(J),
c.q. DK is regular at J_ . In the points 0, b, o the (arbitrarily clo-
sen) %ranches T (J) and f(t), hence also f(J) are continuous (or the
reciprocals of these functions, as the case may be), We conclude, that
at each point of the J-plane, finite or infinite, the function F(J) or
its reciprocal is regular. Hence, by a well known result in the theory
of complex funetions, F(J) is a rational function., This proves the theo-
rem, |
Theorem 4, The integral modular forms of negative dimension ~k constitute
a ¥ -~dimensional linear set of functions, where VY is given by

(3.11) Y =[1]§2-] if k= 2(mod 12) \)=[-1]%] +1 if k%’?(mod 12).

-

Proof. We know already that k is an even integer. The six functions
fz"(’c)f; (7) with L= 0,1 or 2 and A= 0 or 1, evidently are modular
forms of dimension 4/u+6>\ =0, -4, -6, =8, =10, =14, Multiplying a given
modular form f(T) of dimension -~k with a suitable function fzﬂ'(’c)f;’ (T)
we obtain a modular form of dimension -k, = —(k+4/u,+6)) with k1':E O(mod 12).
Then the function _ 11«:
r(@)ef (02 () {n) T
is a modular function, which is regular for finite T and which has a
11—gk1-'buple pole at T = i (measured in the parameter r). Applying theorem
3 we find that this function is expressible as a polynomial in J(T) of
degree -112-1:1. Or, otherwise stated,

(3.12) f(’t‘)fz'u(’c)f;\ (7) =Zblmf%(’c)frg(’c),
where blm are constants and 1, m are non-negative integers with 41+6m =
= k4. By (3.7), (3.8) and theorem 2 we know

f2(0) =0, £,(3) £0;
by (3.9), (3.10) and theorem 2 we see

f3(/0) £ 0, f3(i) = 0.
Hence, if (4> 0, then the left hand member of (3.12) vanishes for T =0,
hence also the right hand member. So the only possible term in the right
hand member of (3,12) with 1 = O actually does not occur, i.e, this sum
contains a factor f,(T); hence in (3.12) we can delete a factor f,(7T).
Repeating the argument if f«> 1, or A > 0 (in the last case with £y (r),
i instead of f,(7) ,/0), we find



(3.13) £2(T) =) _cqp f%('c)fgl(’() .

where Cqpy aTe constants and 1, m are non-negative integers with 41+6m = k
This proves the theorem with a non-negative integer V , equal to the
number of solutions of the diophantine equation 41+6m = k§ from the last
fact (3.12) is an eaéy consequence, In particular there does not exist
an integral modular form of dimension ~2, whereas there exists essential-

ly one integral modular form of dimension -k, if k has one of the values
4, 6, 8, 10, 14,

4, A generating function for modular forms. Eisenstein series.

In the foregoing section the theory of elementary modular forms was
based upon the expressions (2.16), (2,17). However the connection between
theta functions and modular forms is not exhausted by the considerations
of § 3, Ve expand log’}%’ﬂzl’t) as a power series in z 3), starting from
the infinite product for 'ﬂ’”(zlr) (see (2.10)). We have

log ?9171(211‘) = log 2 +7£-i + %- log r + log sin7z +

(0.¢)
+Z{l°8(1-rn)+ log(1-rne27rlz)+ 10g(1-rne'27712)} .
n=1

In view of @ 1 ) 1
. k
log sinTrz = logWz - Zk—’1 o) 2 (0<lzl<ty 85y = - ,;?E)’
= © =
log(1-rPe® %)+ 10g(1-rPe™271%) - _Z;{%rmnGva1z+ %rme"2m”lz}=
m=
= -2 (=1)%(2rz)?K - p2k=1mn
B A o R
we find ©
(4.1) 1087}' (zlT) = - ! (277)2kc (’27)22k+ log7mz (0<lzl<1),
11 — 2K k

where co('t), ¢y (),... are soms functions of T , which for k2 2 are
given by 4)

28 k
2k -1) 2k~1_mn
e, (T) = + 4k’%TET 2 m r o=
k (2m) %% ' 1
o)

" m,n=
k X
-1 2hmitT _ 2k=-1
~ N LN M)
(em) k=1 i
Let us now apply the transformations z,7— z, T+1 and z,’C——>E,
to both members of (4.1). In view of (2.4) we find

(4.2)

i
+
>
3

-1
T

00
-~ Zk—-o ,2]1?(277)21{ ck(t+1)zzk+ log7z = log’lj.h(zl'l‘ﬂ) =

00
2k
= 371+ log ’ﬂh(zlz) =£7i - Zk 5 511;(277)2]‘ ¢, (T) 2"+ logTrz,

|
| o oo i s st ot e 00 s W o e s G O S

' 3) Cf. B, VAN DER POL, On a non-linear partial differential equation sa-
: tisfied by the logarithm of the Jacobian theta-functions, with arithme
. tical applications,Proc.Kon,Ned.Akad.v.W, 54(1951), 261-284.

;4) The explicit form of the functions co(tﬁ, cq (T) is without interest

| for our purposes.



hence, eguating coefficients of z2k

9
(4.3) ¢ (T+1) = ¢ (T) for k = 1,2,.., .
On the other hand (2.5) yields

®
1 2k 1y/,2\2k
—Zzo E-E(ZTf) Ck(" ;5-)(%-) + log7rz = logT #

2
-.—. 1ogﬂ;1(;§[-«- 1) = log VoIT -7 4 ik 4+ log Vi (2lT) =

2 o
= log VV/ ~iT «371 + 7712 - Z gE(Zﬂ)Qk ck(f)z2k+ log7 z,
T k=0
hence
(4.4) c(-l)=T2kc(’t) for k = 2,3
. k T k 9 PRI o

Resuming we have the following result.
For k>2 the functions ckCr), given by (4.2), are integral modular forms
of dimension -2k. whereas log:ﬁﬁ1(sz) is a generating function for these
forms.
‘Theorem 5. The following relations exist between the functions 02(10,
c3(T), £,(T), £5(7), n(z)

(4.6 £,(7) = 60c,(7), £5(T) = 140c4(z),

;“(4-7) f%(’c)—27f§(f) = nh(r), i.e. b = J(i) = 1.

Proof. By (2.18) and (4.5) both functions fZCr), 02(T) are integral modu-
lar forms of dimension -4, By theorem 4 there is essentially one integral
‘modular form of dimension -4, so we have f,(T) =L<02(T) with a certain
constant k¥ . Regarding the behaviour for T — ico we find f% =L<254(276'4,
hence on account of

- (_1 )k+1

1 2k
sZk §(§k’ !'(ZW) BZk (k - 2,3’.‘.)’

1 1
B4 = = 109 B6 il - SRR
we get Kk = 42.7.90.24 = 60, Arguing the same way we find fBOt) = k'c30t)
with a certain constant k', On account of (3.9) we have ’
i 1 1 =3 ,=3 ; -3 4=3 -
o (T) ~o = . = 272,372 forT—> i, hence 27°.37° =k '.2s.(2m)7"° =
-3 V27" V1728 ’ 6

i: 2 ?TgTEZ’ k' = 140, So the relation; (4.6) gre proved,
By (3.7), (3.9) we have bh(t) = fz(f)-27f3(’c). By (4.2) and (4.6) we

?31have ® 100)

! Al

(4.8 50 =y 20l Ty, 1300 = g - T2 o5,
EHence

3 o v _ o1 1 1 1.7
fch)~27f3(f7 = (TES ~27A5?gg)+(3.;zg.20+27.2.ET€.3)r+...f\Jr.

%In the two-dimensional set of integral modular forms of dimension =12
%there occurs exactly one function, which vanishes at T = i and more-
over behaves as r (cf. theorem 4). Both members of the relation (4.7)

‘have this property, so they are equal,




Formula (1.3) now easily can be'provede Consider the so calléd
Eisenstein series G, , defined by

(4.9)  Glwy,w,) =) (mw,4mwy) 2 (x = 2,3,...),

where u)1,a)2 satisfy (1.1) and where the summation is extended over
all integral pairs m,n #Z 0,0. The well known connection with the series
okCt), defined by (4.2), can be deduced as follows, Differentiating the
first and the last member of the relation

00
32 +2——-—(x+ ) =7cotTTx = ~T7i(1+2 Z 32117713()
i n=1

2k-1 times with respect to x, one finds

@® o8]
E -2k 1 2k E 2k~1 _2nmix
(x+n) = m(zvl) = n e s

n=-00

hence, putting x = mT and summing over m,
00 00 ®©

k .
J_ ) _(mrem)E - wf-c-:l,-}—,(zm?k; Oy g (1) 27T,

m=1 ==
Thus we obtain, in view of «J /CUZ =T,

Gk(w1,w2) =W "2k[ Zn 2k+22: Z:. (m’C+n)"2k] =

m=1 n=-0
2 :
- (ilg)zk[(g;igk + 41{% 1) 7—021{ 1(h) QthT},
‘hénce
(4.10) G (Wq,W,) = (2”2)21‘ ¢, (T

Putting g, = 60G,, & = 140Gy, A = gg—27g§, vy (4.10), (4.6), (2.16),
(3.9), (4,7), (2.17), (2.20) we obtain

g (W, wy) = (B)*ey(0) = ;2%(%)4{7}80(1)”9%1(t)+7ﬁ§o(r)},

it

g3(wq,wp) = (G 5)05(7),
(277)12 n(T) - (277)12 r‘]‘f“ 24

Theorem 4, applied in the proof of theorem 5, is a source of many
other relations between modular forms, For instance each function ckCT)
can be expressed as a polynomial in cg(Zﬁ, c3(fﬁ, the coefficients can
be determined in a finite number of steps by using the expansions (4.2)
and equating a suitable number of coefficients, In view of the nature of
the series (4.2) this gives rise to many relations between divisor func-
tions. VAN DER POL in the paper cited above used a certain non-linear
partial differential equation for logiﬁa&ﬁtﬂ to establish other relations.
Examples.

L ) (T g (T) =
‘If the left hand member were not identical zero, then on account of
;(2.16), (2.17) it should be an integral modular form of dimension -2, non'

Alw,,w,)



dentical zero. Since no such form exists, the above relation is esta-
‘blished. ok

#* 14
II,  Putting op(r) = %gg-k— (T (x=2,3,...),

we have ®
1-504 Zh 1 T, (n)eMT

@
1-262 g: U, (n)e®2™T
-

on account of (4.6), (4. 8), (4.2) ana (2#)'8238 = - BIV By = 3"155

I
'?“‘;'217) 102810 T%'T Biog = -56 Since there is essentially only one inte-~

?@-al modular form of dlmension -10, we may conclude 3)
5('5) = CZ(T)'OB(T)°

1}

0
c;_f(v:) - 14240 ) GB(h)ezh’”f, c’;(’c)
h=1

1]

o)
c:(‘t) = ?+4802 0'7(h)92h7’ir, c;(’r)
h=1

amir for T —ioo and

c;_k(’t) CZ(T)-{C?(T)}zr\_, (720+1008)92"it = 172862717 ,
3)
17280(2) = oj(t)cy(1)-{e](x)}2.
Iv. To give a somewhat different example I prove in a simple way
y%he well known formula

4.11) '19’00(?) = 1+4—7T7— —9-—- sin T
n=1 q

’;%ons:Lder the two functions 75! 1(zlz‘) 79'01 z1T) ’29701(217.‘)7.9"”(2!’(‘) and
ff;i"ﬁ”O(z)'r)ﬂ?]O(le) the accent denoting differentiation with respect to z,
Reflecting the formulae

R (z41T) = (-8 P (zlo),

III. In virtue of h(T)~ e

we have

i

Py (23710 = a oo e n(21T),
'1(z+%'tl’l') = -4 7712[77'11951 zlT) - ﬁ’m zlz')]
%51 (z+37T1T) = q"le'mz[—ﬁl’/ﬂ;1(ZIf)+7ﬂH(zlt)] ,

ve see that both functions are multiplied by -1 and q”%e'Qﬂlz, if we ap-
1y the substitutions z — z+1 and z—> z+37T respectively. Inspection of
the proof of (4.2) shows that we have the following Fourier expansion

?iEle)
W a-—log?}'” Z‘T) =

"

! . Z 1 2mn, 27izm  _-2Arizm, |

= E-E[log sin77z - A 7 (e +e )d =
=

®
oot 2-2 774 E q2rx1n( eZlez_e-mez) -
n,m=1

4.12)

[t}

]

m
7cotm z+47TZ: —3—715 sin 2m77 z,
m=1 1-q

Ind in the seme way

19" (zlT) : QO .
00 d ‘ 2n-1 2miz 2n-1 =2miz
_.___(-—-yoo =7 = 3z — {1og(1+q e Y+log(1+q e )}



- 17 =

00 ‘
m . .
- - dz E (=1) qm(2n—‘l ) (62m7712+e~2m7712) -

(4.13)

n,m=
0 m
= 4772 : ;(-'19%5 gin 2m77 z,
. = -q_

Now the zeros of ’Zﬂ’oo(z”t) ?ﬁo(zh‘) are given by the points z, which
are congruent with 4 modulo 1, 37T, Moreover, by (4.12) and (4.13) the
point z = 4 is a zero of 7971'1(211') ?}51(.2!?)-79'61(2]?) ’)}.‘l’.[(zlt). We may
conclude that the guotient of the two functions is a double periodic
function without poles, hence a constant, By (2.9), etc, we find

P14 (zlt) 24 (217)- B, (21T) U3, (21T)
7}00(2!1‘) 1}10(211)
11 (217) 5, (21) ]
T LB 00 (BIT) FplzlT) 1,
7 ﬁil‘ﬂ;l% i, (%)
= /7T i = 77 i T).
n=1 (1-—-q I’l) 01
Applying the substitution 7— 7+1 and using (2.4) +this becomes
V11 (217) P (217)- By (217) 944 (212)
7}’01(5'7) ’19‘11(237)
In this formula take z = 2. On account of ’1//160(%;11') = 7}61(%|t),
’ﬂ'.’”(%;,’f) = i?ﬁ.’lo(%—lr) and the relations (4.12), (4.13) we finally obta’

’ ﬁoo(%lr)ﬂh(%lr){yﬂh(%m 7%0&1@}

2 -
P00 ™ = 1 o TR | Fy F Foo Z1T)

(9]
1 ( Vs Z‘T m_(_oym 7
—-7—7‘\7700131-4' 4—7Tm= ET.;?%)— sin %—}:

}

Q0
s (1_q2n)2(1_q2n 1)2

= T15,(T).

00 00
2m, m m
= 1+ + . m 77' = 1 . m 77
4 m2=1 9-——-—%-—1“(1 — sin —— + Zmr-:‘l 'L.]_qm sin —5—.

This proves the formula (4.11).
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