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A note on certain oscillating sums 

by 

A.E. Brouwer and J. van de Lune 

N 
ABSTRACT: Let S(N,a) = l (-l)[naJ. 

n=l 

A characterization is given of all real a for which S(N,a) > 0 for all 

N. In addition it is shown that the set consisting of all these a has 

Lebesgue measure zero. 
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0. INTRODUCTION 

In this note we investigate sums of the form 

N 
((). 1) I 

n=l 

In particular we shall characterize the set P and the irrational eletTT 

ments of N where 

(0.2) for all N E lN} 

and 

(0. 3) for all N E lN}. 

These characterizations (see theorem 2.1 and 4.1) will be given in terms of 

the regular continued fraction expansions of the corresponding a. 

In addition it will be shown that P and N have (Lebesgue) measure 0. 

1. PREPARATIONS 

(1. 1) 

and 

( 1. 2) 

We start dealing with P. 
It is clear that 

0 E p 

a E P - a. + 2 E P. 

Hence, without loss of generality, we may assume that a> O. For the 

time being we also assume a. to be irrational. 

A simple counting process reveals that if a is positive then 

( 1. 3) 
M 

I (-l)k-l {[kB] - [(k-1)8]} + (-l)M {N-[MB]} 
k=l 
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I where M = [Na] and S = -. 
a 

Observe that for any ME 1N 

( I. 4) 
M 

I (- I) k- I { [kS] - [ (k- I) S]}. 
k=I 

It is easily seen that (for positive a) a E P if and only if 

( 1.5) 
2K 
I (-l)k-I {[kS] - [(k-l)S]} ~ 0 

k=l 
for all K E 1N. 

Since 2K is even (sic!) it follows that a E P if and only if for some 

z E Zl 

( I. 6) 

( I. 7) 

( I. 8) 

2K 
I (-l)k-l {[k(S+z)J - [(k-l)(S+z)J} ~ 0 

k=l 

If we choose S + z > 0 it follows that 

p I p. a E <=> S+z E 

In particular, taking z = - [SJ we obtain 

a E p <=> 
[ .!. J 

E p • 

a a 

for all K E 1N. 

For any irrational a with regular continued fraction expansion 

we define 

( I. 9) 



and 

( l. IO) pk(a) = < O; ~' ~+l' ~+2' ••• >, (kElN). 

It is clear that 

( I. l 1) 0 < pk (a) < l _ for all k E lN 

and 

(I. 12) 

so that 

(1.13) 

and 

(1.14) 

Hence 

( I. 15) 

LEMMA I.I. If a is positive and irra~ional then 

( I. 16) a E P ~ (g(a) E P and a0 - 0 (mod 2)). 

PROOF. ( .. )Leta E P. Then a0 = 0 (mod 2). Indeed, if a0 $ 0 (mod 2) we 

would have s 1(a) = - l so that a f P. 
Hence, by (l.2), it follows that a- a0 E P, so that by (l.8) we have 

3 
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(1.17) ------- E P. 

Since the left hand side of (1.17) equals g(a) this part of the proof is 

complete. 

(4=). If g(a) E P then by ( 1 .17) and ( 1 .8) we have that a-aO E P ~ Since 

a0 = 0 (mod 2) it follows from (1.2) that a E P. D 

Define 

"(I. 18) PN = {O <a< 1 I Sn(a) ~ 0 for all n ~ N}. 

From this definition it is clear that 

(1.19) 

and 

( I. 20) P n [0,1) 

Let FN be the Farey series of order N, restricted to the interval [0,1). 

LEMMA 1.2. PN is a (non-empty) union of a finite number of intervals of the 

form [a,b) with a< b where a and bare (rational) points of FN. 

PROOF. It is easily seen that 

(1.21) 

proving the "non-empty" part of the lemma. 

Now let a and b be consecutive points of FN. Then the proof is complete if 

we can show that 

( I. 22) 



By definition, a E PN implies that 

(I. 23) S (a)= 
n 

n 

I (- l) [ka] > 

k=l 

5 

0 for all n < N. 

Since for every fixed k ~ N the function [kx] is constant on each of the 

intervals [O,½), c!, t),- ... , [k~l, I) and since [a,b) is always contained 

in one of these intervals, the lennna follows from (1.23) by a right-conti­

nui ty argument. 0 

COROLLARY I.I. Pis left-closed. In other words: 

If {a }00 

1 is a non-increasing sequence in P with limit a then also a E P. n n-

COROLLARY 1.2. Pis (Lebesgue) measurable. 

LEMMA 1.3. Let a be irrational and positive. 

lf 

13 = a' ME 1N, N = [2Ml3], z E iZ, 13 + z > o, K = [2M(l3+z)] 

then 

( I. 24) 

PROOF. This is a simple consequence bf (1.4). D 

If we choose z = -[13] in lennna 1.3 then 

( 1 • 25) K = [2M(l3-[13])] < [2Ml3] = N. 
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2. CHARACTERIZATION OF P 

THEOREM 2.1. Let a be irrationa.l and positive with regular continued frac­

tion expansion 

Then 

(2. 1) a E P <=> (a2i = 0 (mod 2) for all i > O). 

PROOF. (=>). Let a E P. Then, by lennna' 1. 1 we have a0 - (mod 2) and g(a) E P. 

Observing that g(a) = < a 2 ; a3 , a4 , ••• > we must have a 2 = 0 (mod 2) etc. 

(4=). Now assume that a 2i = 0 (mod 2) for all i > 0. Suppose that a 4 P. 

Then also p 1 d~f a - a0 4 P. 

Hence 

(2.2) 

Choose N such that the inequality in (2.2) holds true and such that N is 

minimal. Since O < p 1 < I we may consider the position of p 1 with respect 

to the Farey series of order N. 

For every n E 1N such that n ~ N, the function [nx] is constant on the 

canonical (= smallest) intervals of the form [a,b) corresponding to FN. 

Hence, since pl is irrational, there exists an open interval I containing 

pl such that 

(2. 3) SN(y) < 0 for ally EI. 

Because of the minimality of N there exists an ME 1N such that N = f2Ml 
LP1J' 

From continuity arguments concerning regular continued fractions it follows 

that there exists an£ E 1N such that all irrational numbers x > 0 defined 

by 

(2.4) 

(with m. E 1N, J > 2 H I ) 
J 



are such that 

(2.5) X E I and rL2M] = N. 
pl 

Observe that (since a2i - 0 (mod 2)) 

(2.9) S.,_T 
r, l 

Without loss of generality we may assume that N1 is the smallest natural 

number for which 

Continuing this reduction we will ultimately find a natural number Ni such 

that 

(2. IO) SN (<O;N,l,l,l, •.. >) < 0 with Ni< N. 
i 

On the other hand, since 

(2. 11) < O;N,l,l,l, ..• > 

for some 6 > 0 and since Ni< N we have 

( 2. 12) SN ( <O; N, l , I , I , ..• >) > O. 
i 

Since this contradicts (2. 10) the proof is complete. 

7 
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THEOREM 2.2. If a is rational then a E' P if and only if the canonical con­

tinued fracti'.on expansion of a is of the form 

(2. 13a) 

with 

(2. 13b) a 2i - 0 (mod 2) for all O < 1 < Jl. 

-PROOF. Suppose a satisfies (2. 13). 

Then 

(2. 14) a< aN for all NE lN 

where 

(2. 15) 

Observing that Pis left closed and that 

(2. 16) lim aN = a and aN E P. 
N• -oo 

it follows from (2. 14) that a E P. 

Now assume that (2. 13) is not satisfied. Observe that if a is positive 

and rational then (compare (1.3)) 

(2. 16) 

where 

M 

= lim J I (-l)k {[k(S-E)] - [(k-I)(S-E)]} + 
E+O L k=I 

lim [N(a+E)] = [Na]. 
E+O 



From this we obtain that (for positive· a) a€ P if and only if for all 

K € 1N 

(2.17) 
2K 

lim l ( - l l- l { [k ( a-e:) J - [ (k-1 )( a-e:) ]} > 0 
e:+O k=l 

so that, similarly as in·section l, for a> 0 and a€ Q we have 

(2.18) l 
a E P <=> <a+z € P for some z € 22). 

In particular we use (2. 18) with z -- [SJ. 

Assuming that a€ P we would ultimately obtain that< a21_2 ; a21_ 1 > € P 
so that we must have a21_2 = 0 (mod 2) and hence 

(2. 19) < O; a2i-l > = --- € P. 
a2i-l 

However, it is easily verified that P does not contain any of the numbers 
I - , n € 1N. 
n 

CASE 2. a=< a0 ;a1,a2, ••• ,a2t-l'a2t > 

with a2i f O (mod 2) for some i. 

Repeated use of (2.18) reveals that a 4 P. D 

3. THE MEASURE OF THE SET P. 

THEOREM 3.1. The set P has measure O. 

PROOF. Define p* = {P\Q} n [0,1). 

9 

Let (a.,b.) be some countable system of open intervals such that O < a. < b. 
i i i i 

for all i and 
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(3. 1) def "" p*. E = .U 1 (a.,b.) => 
i= ]. ]. 

From the characteriization of the irrational points belonging to Pit is 

clear that 

(3.2) 

so that 

(3.3) 

p* = 
00 

u 
k a=l 
' * XEP 

{ 
- t l 
k + 2a + x J 

p* c oo J 2a+x } 
k,M=t l k(2a+x)+l • 

XEE 

Since for all fixed k, a E lN the function 

(3.4) 
2a+x 

k(2a+x)+l ' 
(x>O) 

is increasing we obtain that (A. denoting Lebesgue measure) 

(3.5) 
oo { 2a+b. 2a+a. } 

" ( p*) < ~ i i = 
l k(2a+b.)+l - k(2a+a.)+l 

-i,k,a=l i i 

~ b.-a. 
= 

; ]. ]. 

2 {k(2a+b.)+I}{k(2a+a.)+l} < 
i,k,a=l i i 

It follows that 

(3.6) 
4 7 

>.(P*) < 2!:___ >.(E) < -10 >.(E). 
= 144 



l l 

Since p* is measurable and E may be chosen such that 

(3. 7) * A(E) < A(P) + E, 

it follows easily that we must have 

(3.8) 

and hence 

(3.9) A(P) = O. 

4. THE SET N 

THEOREM 4.1. If a ~s irrational then 

( 4. l) a E N <=> - a E P. 

PROOF. Observe that 

( 4. 2) [x] + [-x] = -1 for all x E lR\7l. 

Hence, if a is irrational then 

(4. 3) 
N 

I (-l)[na] = 
N l (-l)-1-[-na] = 

n=l n=;J 

N 
(-I) -[-na] 

N 
( _ 1 ) [ n (-a) J = -I = I 

n=l n=l 

so that 

(4.4) SN(a) < 0 <=> SN(-a) > 0, = = 
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proving the theorem. 

REMARK. In general, formula (4.1) does not hold true for a E Q as may be 

seen from the following example: l E N, -1 ~ P. 

COROLLARY. The set N has measure zero. 

5. ONE MORE PROPERTY OF P (resp. N) 

THEOREM 5.1. For every irrational a E P we have that 

(5. 1) SN(a) = 0 for infinitely many N E JN. 

In order to prove this we use the following 

LEMMA 5.1.If the positive integers p and q are such that pis even and 

(p,q) = l then 

(5.2) S (E.) = 0. 
q-1 q 

PROOF. Consider the q-1 numbers 

£. 2p (q-l)p 
q q , ... , q 

Since (p,q) -- 1 none of these numbers is an integer and since p is even 

q is odd so that q-1 is even. 

Since p have for 1 
q-1 the integers is even we < r < - 2- that 

= = 

[r E.] and [ (q-r) • E.] 
q q 

have different parity from which it is clear that S (E.) = 0. 
q-1 q 

PROOF OF THEOREM 5 . 1 . 

Without loss of generality, we may assume that O <a< 1. 



Let a = < O; a I 'a2' ••• > and let 

AO 0 Al A2 a2 A n -- T' - , -- a 1a 2+I ' 
. . . 

' 
, .... 

BO Bl al B2 B n 

be the corresponding convergents. 

Since a E P we have that. a 2i = 0 (mod 2) for all 1 > I from which it is 

easily seen that A2 is even for all n. n . 

13 

In order to prove the theorem it suffices to show that for all n E 1N 

(5. 3) 

Since A2n is always even it follows from lemma 5.1 that 

(5.4) 

A 
B -I r k Zn l 

2n L B2 J 
l (-I) n = O, 

k=l 

so that our proof will be complete if we can show that 

(5. 5) [ka] = rk Aznl for I < k < 

L B2nJ 

We proceed by contradiction. 
A . 2n 

If (5.5) is not true then (note that -- < a) 
B2n 

(5.6) 
A 

k Zn < m < k "' f ]N "" or some m E • 
B2n 

Hence 

(5. 7) 
A2 A2n A2n I 

k_E.<ka-k--=k(a---) < (B -1) •--< 
B2n B2n B2n Zn B2 

2n 
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This contradiction completes the proo,f. 

COROLLARY. For every irrational a EN we have that 

(5.8) SN(a) = 0 for infintely many NE lN. 

ADDENDUM. 

During the preparation of this note J. VAN DE LUNE and H.J.J. TE RIELE 

proved the following (more general) 

THEOREM. If a is irrational then Sn(a) = 0 for infinitely m~ny n E lN. 

REMARK: From now on all fractions.£. are assumed to be irreducible. 
q 

In order to prove the theorem we use the following 

LEMMA. If pis odd then S (E.) = O. 
2q q 

PROOF: Observe that the numbers 

s; r s; q 

have different parity. • 

In addition we will use the following well-known 

THEOREM (of HURWITZ). If a E lR is irrational then there exist infinitely 

many rationals E. such that 
q 

la-E. I < _I_ 
q lrs . 

PROOF OF THE THEOREM. Let H be the set of all fractions¼ such that 

p 1 la--1 < -2-/ . 
q q rs 



It is clear that the proof will ·be complete if we can show that for every 

! EH we have either Sq_1(a) = 0 or s2q(a) = O. 

We consider a number of cases. 

CASE 1. ,R E H p even. q , 

Then we have S 1(a) = 0. q-
In order to see this it is clearly sufficient to prove that S 1(a) = 

q-
S l(l?.). q- q 
Hence it is sufficient to show that 

[ka] < k < q_-1. 

15 

Assuming this does not hold true we have for some k, 1 < k < q-1, that there = = 
exists an m E 7l such that either 

kp < m < k a (in case£< a) 
q = q 

or 

k a< m < k £ (in case£> a). 
q q 

Since 1 < k < q-1, equality in the above cases is impossible and thus 

-1 < I k p I k I p I q- 1 1 m - •- < a - - < -- < -
q = q q q2/s q' 

which is a contradiction. 

CASE 2 • .E. EH, p odd. 
q 

In this case we have s2q(a) = O. In order to see this we need only 

show that s2q(a) = s2q(!). 

CASE 2.1. ,R < a, p odd. 
q 
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It suffices to show that 

[ka] = [kl:] 
q 

for < k ~ '2q. 

Since this may be established similarly as 1.n case I we consider 

CASE 2. 2. .E.. > a, p odd'. 
q 

and 

We observe that 

= p, [ 2q 1: J = 2p 
q 

[qa] = p-1, [2qa] = 2p-l 

so that (since pis odd) it suffices to show that 

[ka] < k < 2q, k # q, k # 2q. 

Since this may be shown similarly as before the proof 1.s complete. D 

REMARK. From the above considerations it is easily seen that 

(i) if p l.S even then s (1:) = n for all n E ]N. 
nq q 

(ii) if p is odd then s2nq <¾) = 0 for all n E ]N. 






