stichting
 mathematisch centrum

A.E. BROUWER \& J. VAN DE LUNE

A NOTE ON CERTAIN OSCILLATING SUMS

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

A note on certain oscillating sums
by
A.E. Brouwer and J. van de Lune

ABSTRACT: Let $S(N, \alpha)=\sum_{n=1}^{N}(-1)^{[n \alpha]}$.

A characterization is given of all real α for which $S(N, \alpha) \geqq 0$ for all N. In addition it is shown that the set consisting of all these α has Lebesgue measure zero.

KEY WORDS \& PHRASES: exponential sums, continued fractions
0. INTRODUCTION

In this note we investigate sums of the form
(0.1) $\quad S_{N}(\alpha)=\sum_{n=1}^{N}(-1)^{[n \alpha]},(\alpha \in \mathbb{R})$.

In particular we shall characterize the set P and the irrational elem ments of N where
(0.2) $\quad P=\left\{\alpha \in \mathbb{R} \mid S_{N}(\alpha) \geqq 0 \quad\right.$ for all $\left.N \in \mathbb{N}\right\}$
and

$$
\begin{equation*}
N=\left\{\alpha \in \mathbb{R} \mid \mathrm{S}_{\mathrm{N}}(\alpha) \leqq 0 \quad \text { for all } \mathrm{N} \in \mathbb{N}\right\} \tag{0.3}
\end{equation*}
$$

These characterizations (see theorem 2.1 and 4.1) will be given in terms of the regular continued fraction expansions of the corresponding α. In addition it will be shown that P and N have (Lebesgue) measure 0 .

1. PREPARATIONS

We start dealing with P.
It is clear that
(1.1)

$$
0 \in P
$$

and

$$
\begin{equation*}
\alpha \in P \Leftrightarrow \alpha+2 \in P_{0} \tag{1.2}
\end{equation*}
$$

Hence, without loss of generality, we may assume that $\alpha>0$. For the time being we also assume α to be irrational.

A simple counting process reveals that if α is positive then

$$
\begin{equation*}
S_{N}(\alpha)=\sum_{k=1}^{M}(-1)^{k-1}\{[k \beta]-[(k-1) \beta]\}+(-1)^{M}\{N-[M \beta]\} \tag{1.3}
\end{equation*}
$$

where $M=[N \alpha]$ and $\beta=\frac{1}{\alpha}$.
Observe that for any $M \in \mathbb{N}$
(1.4)

$$
S_{[M \beta]}(\alpha)=\sum_{k=1}^{M}(-1)^{k-1}\{[k \beta]-[(k-1) \beta]\}
$$

It is easily seen that (for positive α) $\alpha \in P$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{2 K}(-1)^{k-1}\{[k \beta]-[(k-1) \beta]\} \geqq 0 \quad \text { for all } K \in \mathbb{N} . \tag{1.5}
\end{equation*}
$$

Since 2 K is even (sic!) it follows that $\alpha \in P$ if and only if for some $z \in \mathbb{Z}$
(1.6) $\quad \sum_{k=1}^{2 K}(-1)^{k-1}\{[k(\beta+z)]-[(k-1)(\beta+z)]\} \geqq 0 \quad$ for all $k \in \mathbb{N}$.

If we choose $\beta+z>0$ it follows that
(1.7)
$\alpha \in P \Leftrightarrow \frac{1}{\beta+z} \in P$.

In particular, taking $z=-[\beta]$ we obtain
(1.8)

$$
\alpha \in P \Leftrightarrow \frac{1}{\frac{1}{\alpha}-\left[\frac{1}{\alpha}\right]} \in P
$$

For any irrational α with regular continued fraction expansion

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right\rangle=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

we define

$$
\begin{equation*}
g(\alpha)=\left\langle a_{2} ; a_{3}, a_{4}, a_{5}, \ldots\right\rangle \tag{1.9}
\end{equation*}
$$

and
(1.10) $\quad \rho_{k}(\alpha)=\left\langle 0 ; a_{k}, a_{k+1}, a_{k+2}, \ldots\right\rangle, \quad(k \in \mathbb{N})$.

It is clear that
(1.11) $0<\rho_{k}(\alpha)<1$ for all $k \in \mathbb{N}$
and
(1.12)

$$
\frac{1}{\rho_{k}(\alpha)}=\left\langle a_{k} ; a_{k+1}, a_{k+2}, \ldots\right\rangle
$$

so that
(1.13)

$$
\frac{1}{\rho_{k}(\alpha)}=a_{k}+\rho_{k+1}(\alpha)
$$

and
(1.14)

$$
\left[\frac{1}{\rho_{k}(\alpha)}\right]=a_{k}
$$

Hence
(1.15)

$$
\frac{1}{\frac{1}{\rho_{k}(\alpha)}-\left[\frac{1}{\rho_{k}(\alpha)}\right]}=\frac{1}{\rho_{k+1}(\alpha)}=a_{k+1}+\rho_{k+2}(\alpha)
$$

LEMMA 1.1. If α is positive and irrational then
(1.16) $\quad \alpha \in P \Leftrightarrow\left(g(\alpha) \in P\right.$ and $\left.a_{0} \equiv 0(\bmod 2)\right)$.

PROOF. (\Rightarrow Let $\alpha \in P$. Then $a_{0} \equiv 0(\bmod 2)$. Indeed, if $a_{0} \neq 0(\bmod 2)$ we would have $\mathrm{S}_{1}(\alpha)=-1$ so that $\alpha \notin P$.
Hence, by (1.2), it follows that $\alpha-a_{0} \in P$, so that by (1.8) we have
(1.17)

$$
\frac{1}{\frac{1}{\alpha-a_{0}}-\left[\frac{1}{\alpha-a_{0}}\right]} \in P
$$

Since the left hand side of (1.17) equals $g(\alpha)$ this part of the proof is complete.
(\Leftrightarrow). If $g(\alpha) \in P$ then by (1.17) and (1.8) we have that $\alpha-a_{0} \in P$. Since $a_{0} \equiv 0(\bmod 2)$ it follows from (1.2) that $\alpha \in P$. Define

$$
\begin{equation*}
P_{N}=\left\{0 \leqq \alpha<1 \mid S_{n}(\alpha) \geqq 0 \text { for all } n \leqq N\right\} \tag{1.18}
\end{equation*}
$$

From this definition it is clear that
(1.19)

$$
P_{1} \supset P_{2} \supset P_{3} \supset \ldots
$$

and

$$
\begin{equation*}
P \cap[0,1)=\bigcap_{N=1}^{\infty} P_{N} . \tag{1.20}
\end{equation*}
$$

Let F_{N} be the Farey series of order N, restricted to the interval $[0,1)$.
LEMMA 1.2. P_{N} is a (non-empty) union of a finite number of intervals of the form $\left[\mathrm{a}, \mathrm{b}\right.$) with $\mathrm{a}<\mathrm{b}$ where a and b are (rational) points of F_{N}.

PROOF. It is easily seen that

$$
\begin{equation*}
\left[0, \frac{1}{\mathrm{~N}}\right) \subset P_{\mathrm{N}} \text { and }\left[\frac{\mathrm{N}-1}{\mathrm{~N}}, 1\right) \subset P_{\mathrm{N}} \tag{1.21}
\end{equation*}
$$

proving the "non-empty" part of the lemma.
Now let a and b be consecutive points of F_{N}. Then the proof is complete if we can show that

$$
\begin{equation*}
a \in P_{N} \Rightarrow[a, b) \subset P_{N} . \tag{1.22}
\end{equation*}
$$

By definition, $a \in P_{N}$ implies that

$$
\begin{equation*}
S_{n}(\alpha)=\sum_{k=1}^{n}(-1)^{[k \alpha]} \geqq 0 \text { for al1 } n \leqq N \tag{1.23}
\end{equation*}
$$

Since for every fixed $k \leqq N$ the function [$k x$] is constant on each of the intervals $\left[0, \frac{1}{k}\right),\left[\frac{1}{k}, \frac{2}{k}\right), \ldots,\left[\frac{\mathrm{k}-1}{\mathrm{k}}, 1\right)$ and since $[\mathrm{a}, \mathrm{b})$ is always contained in one of these intervals, the lemma follows from (1.23) by a right-continuity argument.

COROLLARY 1.1. P is left-closed. In óther words:
If $\left\{\alpha_{n}\right\}_{n-1}^{\infty}$ is a non-increasing sequence in P with limit α then also $\alpha \in P$.

COROLLARY 1.2. P is (Lebesgue) measurable.

LEMMA 1.3. Let a be irrational and positive.
If

$$
\beta=\frac{1}{\alpha}, M \in \mathbb{N}, N=[2 M \beta], z \in \mathbb{Z}, \beta+z>0, K=[2 M(\beta+z)]
$$

then

$$
\begin{equation*}
S_{N}(\alpha)=S_{K}\left(\frac{1}{\beta+z}\right) \tag{1.24}
\end{equation*}
$$

PROOF. This is a simple consequence of (1.4).
If we choose $z=-[\beta]$ in lemma 1.3 then

$$
\begin{equation*}
\mathrm{K}=[2 \mathrm{M}(\beta-[\beta])] \leqq[2 \mathrm{M} \beta]=\mathrm{N} . \tag{1.25}
\end{equation*}
$$

2. CHARACTERIZATION OF P

THEOREM 2.1. Let a be irrational and positive with regular continued fraction expansion

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right\rangle
$$

Then
(2.1) $\quad \alpha \in P \Leftrightarrow\left(a_{2 i} \equiv 0(\bmod 2)\right.$ for all $\left.i \geqq 0\right)$.

PROOF. (\Rightarrow). Let $\alpha \in P$. Then, by lemma 1.1 we have $a_{0} \equiv(\bmod 2)$ and $g(\alpha) \in P$. Observing that $g(\alpha)=\left\langle a_{2} ; a_{3}, a_{4}, \ldots\right\rangle$ we must have $a_{2} \equiv 0(\bmod 2)$ etc. (\leftarrow). Now assume that $a_{2 i} \equiv 0(\bmod 2)$ for all $i \geqq 0$. Suppose that $\alpha \notin P$. Then also $\rho_{1}{ }^{\text {def }} \alpha-a_{0} \notin P$.
Hence
(2.2) $\quad S_{N}\left(\rho_{1}\right)<0$ for some $N \in \mathbb{N}$.

Choose N such that the inequality in (2.2) holds true and such that N is minimal. Since $0<\rho_{1}<1$ we may consider the position of ρ_{1} with respect to the Farey series of order N.
For every $\mathrm{n} \in \mathbb{N}$ such that $\mathrm{n} \leqq \mathrm{N}$, the function [nx] is constant on the canonical (= smallest) intervals of the form $[a, b)$ corresponding to F_{N}. Hence, since ρ_{1} is irrational, there exists an open interval I containing ρ_{1} such that

$$
\begin{equation*}
S_{N}(\gamma)<0 \text { for all } \gamma \in I . \tag{2,3}
\end{equation*}
$$

Because of the minimality of N there exists an $M \in \mathbb{N}$ such that $N=\left[\frac{2 M}{\rho_{1}}\right]$. From continuity arguments concerning regular continued fractions it follows that there exists an $\ell \in \mathbb{N}$ such that all irrational numbers $\mathrm{x}>0$ defined by

$$
\begin{align*}
& x=\left\langle 0 ; a_{1}, a_{2}, \ldots, a_{2 \ell-1}, a_{2 \ell}, m_{2 \ell+1}, m_{2 \ell+2}, \ldots\right\rangle \tag{2,4}\\
& \text { (with } m_{j} \in \mathbb{N}, j \geqq 2 \ell+1 \text {) }
\end{align*}
$$

are such that

$$
\begin{equation*}
x \in I \text { and }\left[\frac{2 M}{x}\right]=\left[\frac{2 M}{\rho_{1}}\right]=N \tag{2.5}
\end{equation*}
$$

Observe that (since $\left.a_{2 i} \equiv 0(\bmod 2)\right)$

$$
\begin{align*}
& S_{N_{1}}\left(\frac{1}{\frac{1}{x_{0}}-\left[\frac{1}{x_{0}}\right]}\right)=S_{N_{1}}\left(\left\langle a_{2} ; a_{3}, a_{4}, \ldots, a_{2 \ell}, N, 1,1,1, \ldots\right\rangle\right)= \tag{2.9}\\
& \left.=S_{N_{1}}\left(<0 ; a_{3}, a_{4}, \ldots, a_{2 \ell}, N, 1,1,1, \ldots\right\rangle\right)=S_{N_{1}}\left(\rho_{3}(\alpha)\right) .
\end{align*}
$$

Without loss of generality we may assume that N_{1} is the smallest natural number for which

$$
S_{N_{1}}\left(\rho_{3}(\alpha)\right)<0
$$

Continuing this reduction we will ultimately find a natural number N_{ℓ} such that

$$
\begin{equation*}
\left.\mathrm{S}_{\mathrm{N}_{\ell}}(<0 ; \mathrm{N}, 1,1,1, \ldots\rangle\right)<0 \text { with } \mathrm{N}_{\ell} \leqq \mathrm{N} . \tag{2.10}
\end{equation*}
$$

On the other hand, since
(2.11) $<0 ; N, 1,1,1, \ldots>=\frac{1}{N+\delta}\left(<\frac{1}{N}\right)$
for some $\delta>0$ and since $N_{\ell} \leqq N$ we have

$$
\begin{equation*}
\left.\mathrm{S}_{\mathrm{N}_{\ell}}(<0 ; \mathrm{N}, 1,1,1, \ldots\rangle\right)>0 \tag{2.12}
\end{equation*}
$$

Since this contradicts (2.10) the proof is complete.

THEOREM 2.2. If α is rational then $\alpha \in P$ if and only if the canonical continued fraction expansion of α is of the form
(2.13a)

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots, a_{2 \ell-1}, a_{2 \ell}\right\rangle
$$

with
(2.13b) $\quad \alpha_{2 i} \equiv 0(\bmod 2)$ for $a 110 \leqq i \leqq \ell$.

PROOF. Suppose α satisfies (2.13).
Then
(2.14) $\quad \alpha<\alpha_{N}$ for all $N \in \mathbb{N}$
where
(2.15)

$$
\alpha_{N}=\left\langle a_{0} ; a_{1}, a_{2}, \ldots, a_{2 \ell-1}, a_{2 \ell}, 2 N, 2 N, 2 N, \ldots\right\rangle
$$

Observing that P is left closed and that
(2.16) $\quad \lim _{\mathrm{N} \rightarrow \infty} \alpha_{\mathrm{N}}=\alpha$ and $\alpha_{\mathrm{N}} \in P$.
it follows from (2.14) that $\alpha \in P$.
Now assume that (2.13) is not satisfied. Observe that if α is positive and rational then (compare (1.3))
(2.16)

$$
\left.\left.\begin{array}{rl}
S_{N}(\alpha)= & \lim _{\varepsilon \downarrow 0}\left\{\sum_{k=1}^{M}(-1)^{k}\{[k(\beta-\varepsilon)]\right.
\end{array}\right)[(k-1)(\beta-\varepsilon)]\right\}+\quad .
$$

where

$$
M=\lim _{\varepsilon \downarrow 0}[N(\alpha+\varepsilon)]=[N \alpha]
$$

From this we obtain that (for positive α) $\alpha \in P$ if and only if for all $K \in \mathbb{N}$

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \sum_{k=1}^{2 K}(-1)^{k-1}\{[k(\beta-\varepsilon)]-[(k-1)(\beta-\varepsilon)]\} \geqq 0 \tag{2.17}
\end{equation*}
$$

so that, similarly as in section 1 , for $\alpha>0$ and $\alpha \in Q$ we have

$$
\begin{equation*}
\alpha \in P \Longleftrightarrow\left(\frac{1}{\beta+z} \in P \text { for some } z \in \mathbb{Z}\right) \tag{2.18}
\end{equation*}
$$

In particular we use (2.18) with $z=-[\beta]$.
CASE 1. $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots, a_{2 \ell-1}\right\rangle$
Assuming that $\alpha \in P$ we would ultimately obtain that $<a_{2 \ell-2} ; a_{2 \ell-1}>\in P$ so that we must have $a_{2 \ell-2} \equiv 0(\bmod 2)$ and hence

$$
\begin{equation*}
<0 ; a_{2 \ell-1}>=\frac{1}{a_{2 \ell-1}} \in P \tag{2.19}
\end{equation*}
$$

However, it is easily verified that P does not contain any of the numbers $\frac{1}{n}, n \in \mathbb{N}$.

CASE 2. $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots, a_{2 \ell-1}, a_{2 \ell}\right\rangle$
with $a_{2 i}$ 丰 $0(\bmod 2)$ for some i.
Repeated use of (2.18) reveals that $\alpha \notin P$.
3. THE MEASURE OF THE SET P.

THEOREM 3.1. The set P has measure 0 .
PROOF. Define $P^{*}=\{P \backslash Q\} \cap[0,1)$.
Let $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right)$ be some countable system of open intervals such that $0 \leqq \mathrm{a}_{\mathrm{i}}<\mathrm{b}_{\mathrm{i}}$ for all i and

$$
\begin{equation*}
E \stackrel{\operatorname{def}}{\underline{=}} \underset{i=1}{\infty}\left(a_{i}, b_{i}\right) \supset P^{*} \tag{3.1}
\end{equation*}
$$

From the characterization of the irrational points belonging to P it is clear that

$$
\begin{equation*}
P^{*}=\underset{\substack{k, a=1 \\ x \in P^{*}}}{\infty}\left\{\frac{1}{k+\frac{1}{2 a+x}}\right\} \tag{3.2}
\end{equation*}
$$

so that
(3.3) $\quad P^{*} \subset \underset{\substack{k, ⿹ 勹 a \\ x \in E}}{\infty}\left\{\frac{2 a+x}{k(2 a+x)+1}\right\}$.

Since for all fixed $k, a \in \mathbb{N}$ the function
(3.4)

$$
\frac{2 a+x}{k(2 a+x)+1}, \quad(x>0)
$$

is increasing we obtain that (λ denoting Lebesgue measure)

$$
\begin{align*}
\lambda\left(P^{*}\right) & \leqq \sum_{i, k, a=1}^{\infty}\left\{\frac{2 a+b_{i}}{k\left(2 a+b_{i}\right)+1}-\frac{2 a_{i} a_{i}}{k\left(2 a+a_{i}\right)+1}\right\}= \tag{3.5}\\
& =\sum_{i, k, a=1}^{\infty} \frac{b_{i}-a_{i}}{\left\{k\left(2 a_{i}\right)+1\right\}\left\{k\left(2 a+a_{i}\right)+1\right\}} \leqq \\
& \leqq \sum_{i, k, a=1}^{\infty} \frac{b_{i}-a_{i}}{4 k^{2} a^{2}}=\frac{1}{4}\left(\frac{\pi^{2}}{6}\right)^{2} \cdot \lambda(E) .
\end{align*}
$$

It follows that
(3.6) $\quad \lambda\left(P^{*}\right) \leqq \frac{\pi^{4}}{144} \lambda(E)<\frac{7}{10} \lambda(E)$.

Since P^{*} is measurable and E may be chosen such that

$$
\begin{equation*}
\lambda(E)<\lambda\left(P^{*}\right)+\varepsilon, \tag{3.7}
\end{equation*}
$$

it follows easily that we must have
(3.8) $\quad \lambda\left(P^{*}\right)=0$
and hence
(3.9) $\quad \lambda(P)=0$.

4. THE SET N

THEOREM 4.1. If α is irrational then
(4.1) $\quad \alpha \in N \Longleftrightarrow-\alpha \in P$.

PROOF. Observe that
(4.2) $[x]+[-x]=-1$ for al1 $x \in \mathbb{R} \backslash \mathbb{Z}$.

Hence, if α is irrational then

$$
\begin{align*}
S_{N}(\alpha) & =\sum_{n=1}^{N}(-1)^{[n \alpha]}=\sum_{n=1}^{N}(-1)^{-1-[-n \alpha]}= \tag{4.3}\\
& =-\sum_{n=1}^{N}(-1)^{-[-n \alpha]}=-\sum_{n=1}^{N}(-1)^{[n(-\alpha)]}
\end{align*}
$$

so that
(4.4)

$$
\mathrm{S}_{\mathrm{N}}(\alpha) \leqq 0 \Leftrightarrow \mathrm{~S}_{\mathrm{N}}(-\alpha) \geqq 0,
$$

proving the theorem.

REMARK. In general, formula (4.1) does not hold true for $\alpha \in Q$ as may be seen from the following example: $1 \in N,-1 \notin P$.

COROLLARY. The set N has measure zero.
5. ONE MORE PROPERTY OF P (resp. N)

THEOREM 5.1. For every irrational $\alpha \in P$ we have that
(5.1) $\quad S_{N}(\alpha)=0$ for infinitely many $N \in \mathbb{N}$.

In order to prove this we use the following

LEMMA 5.1. If the positive integers p and q are such that p is even and $(p, q)=1$ then
(5.2) $\quad \mathrm{S}_{\mathrm{q}-1}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)=0$.

PROOF. Consider the q-1 numbers

$$
\frac{p}{q}, \frac{2 p}{q}, \ldots, \frac{(q-1) p}{q} .
$$

Since $(p, q)=1$ none of these numbers is an integer and since p is even q is odd so that $\mathrm{q}-1$ is even.
Since p is even we have for $1 \leqq r \leqq \frac{q-1}{2}$ that the integers

$$
\left[r \frac{p}{q}\right] \text { and }\left[(q-r) \cdot \frac{p}{q}\right]
$$

have different parity from which it is clear that $\mathrm{S}_{\mathrm{q}-1}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)=0$.
PROOF OF THEOREM 5.1.

Without loss of generality, we may assume that $0<\alpha<1$.

Let $\alpha=\left\langle 0 ; a_{1}, a_{2}, \ldots\right\rangle$ and let

$$
\frac{A_{0}}{B_{0}}=\frac{0}{1}, \frac{A_{1}}{B_{1}}=\frac{1}{a_{1}}, \frac{A_{2}}{B_{2}}=\frac{a_{2}}{a_{1} a_{2}+1}, \ldots, \frac{A_{n}}{B_{n}}, \ldots
$$

be the corresponding convergents.
Since $\alpha \in P$ we have that $a_{2 i} \equiv 0(\bmod 2)$ for all $i \geqq 1$ from which it is easily seen that $A_{2 n}$ is even for all n.

In order to prove the theorem it suffices to show that for all $n \in \mathbb{N}$
(5.3)

$$
\sum_{k=1}^{\mathrm{B}_{2} \mathrm{n}^{-1}}(-1)^{[k \alpha]}=0
$$

Since $A_{2 n}$ is always even it follows from lemma 5.1 that

$$
\begin{equation*}
\left.\sum_{k=1}^{B_{2 n}^{-1}}(-1)^{\left[k^{A_{2 n}}\right.}{ }^{B_{2 n}}\right]=0 \tag{5.4}
\end{equation*}
$$

so that our proof will be complete if we can show that
(5.5) $\quad[k \alpha]=\left[k \frac{A_{2 n}}{B_{2 n}}\right]$ for $1 \leqq k \leqq B_{2 n}-1$.

We proceed by contradiction.
If (5.5) is not true then (note that $\frac{A_{2 n}}{B_{2 n}}<\alpha$)

$$
\begin{equation*}
\frac{A_{2 n}}{\mathrm{~B}_{2}}<\mathrm{m}<\mathrm{k} \alpha \text { for some } \mathrm{m} \in \mathbb{N} . \tag{5.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{1}{B_{2 n}} \leqq m-k \frac{A_{2 n}}{B_{2 n}}<k \alpha-\frac{A_{2 n}}{B_{2 n}}=k\left(\alpha-\frac{A_{2 n}}{B_{2 n}}\right)<\left(B_{2 n}-1\right) \cdot \frac{1}{B_{2 n}^{2}}<\frac{1}{B_{2 n}} . \tag{5.7}
\end{equation*}
$$

This contradiction completes the proof.

COROLLARY. For every irrational $\alpha \in N$ we have that

$$
\begin{equation*}
S_{N}(\alpha)=0 \text { for infintely many } N \in \mathbb{N} \tag{5.8}
\end{equation*}
$$

ADDENDUM.

During the preparation of this note J. VAN DE LUNE and H.J.J. TE RIELE proved the following (more general)

THEOREM. If α is irrational then $\mathrm{S}_{\mathrm{n}}(\alpha)=0$ for infinitely many $\mathrm{n} \in \mathbb{N}$.
REMARK: From now on all fractions $\frac{p}{q}$ are assumed to be irreducible.

In order to prove the theorem we use the following

LEMMA. If p is odd then $\mathrm{S}_{2 \mathrm{q}}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)=0$.

PROOF: Observe that the numbers

$$
\left[\mathrm{r} \frac{\mathrm{p}}{\mathrm{q}}\right] \text { and }\left[(\mathrm{q}+\mathrm{r}) \frac{\mathrm{p}}{\mathrm{q}}\right], 1 \leq \mathrm{r} \leq \mathrm{q}
$$

have different parity.
In addition we will use the following well-known
THEOREM (of HURWITZ). If $\alpha \in \mathbb{R}$ is irrational then there exist infinitely many rationals $\frac{\mathrm{p}}{\mathrm{q}}$ such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2} \sqrt{5}} .
$$

PROOF OF THE THEOREM. Let H be the set of all fractions $\frac{\mathrm{p}}{\mathrm{q}}$ such that

$$
\left|\alpha-\frac{\mathrm{p}}{\mathrm{q}}\right|<\frac{1}{\mathrm{q}^{2} \sqrt{5}} .
$$

It is clear that the proof will be complete if we can show that for every $\frac{p}{q} \in H$ we have either $S_{q-1}(\alpha)=0$ or $S_{2 q}(\alpha)=0$.
We consider a number of cases.

CASE 1. $\frac{p}{q} \in H, p$ even.

Then we have $S_{q-1}(\alpha)=0$.
In order to see this it is clearly sufficient to prove that $S_{q-1}(\alpha)=$ $S_{q-1}\left(\frac{p}{q}\right)$.
Hence it is sufficient to show that

$$
[k \alpha]=\left[k \frac{p}{q}\right] \text { for } 1 \leqq k \leqq q-1
$$

Assuming this does not hold true we have for some $k, 1 \leqq k \leqq q-1$, that there exists an $m \in \mathbb{Z}$ such that either

$$
\mathrm{k} \frac{\mathrm{p}}{\mathrm{q}} \leqq \mathrm{~m}<\mathrm{k} \alpha\left(\text { in case } \frac{\mathrm{p}}{\mathrm{q}}<\alpha\right)
$$

or

$$
\mathrm{k} \alpha<\mathrm{m} \leqq \mathrm{k} \frac{\mathrm{p}}{\mathrm{q}}\left(\text { in case } \frac{\mathrm{p}}{\mathrm{q}}>\alpha\right)
$$

Since $1 \leqq k \leqq q-1$, equality in the above cases is impossible and thus

$$
\frac{1}{q} \leqq\left|m-k \cdot \frac{p}{q}\right|<k\left|\alpha-\frac{p}{q}\right|<\frac{q-1}{q \sqrt{5}}<\frac{1}{q}
$$

which is a contradiction.
CASE 2. $\frac{p}{q} \in H, p$ odd.
In this case we have $S_{2 q}(\alpha)=0$. In order to see this we need only show that $S_{2 q}(\alpha)=S_{2 q}\left(\frac{p}{q}\right)$.

CASE 2.1. $\frac{\mathrm{p}}{\mathrm{q}}<\alpha, \mathrm{p}$ odd.

It suffices to show that

$$
[k \alpha]=\left[k \frac{p}{q}\right] \text { for } 1 \leqq k \leqq ' 2 q
$$

Since this may be established similarly as in case 1 we consider
CASE 2.2. $\frac{\mathrm{p}}{\mathrm{q}}>\alpha, \mathrm{p}$ odd.
We observe that

$$
\left[\mathrm{q} \cdot \frac{\mathrm{p}}{\mathrm{q}}\right]=\mathrm{p},\left[2 \mathrm{q} \frac{\mathrm{p}}{\mathrm{q}}\right]=2 \mathrm{p}
$$

and

$$
[\mathrm{q} \alpha]=\mathrm{p}-1,[2 \mathrm{q} \alpha]=2 \mathrm{p}-1
$$

so that (since p is odd) it suffices to show that

$$
[k \alpha]=\left[k \frac{p}{q}\right] \text { for } 1 \leqq k \leqq 2 q, k \neq q, k \neq 2 q .
$$

Since this may be shown similarly as before the proof is complete.

REMARK. From the above considerations it is easily seen that
(i) if p is even then $S_{n q}\left(\frac{p}{q}\right)=n$ for all $n \in \mathbb{N}$.
(ii) if p is odd then $\mathrm{S}_{2 \mathrm{nq}}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)=0$ for all $\mathrm{n} \in \mathbb{N}$.

