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A note on certain oscillating sums

by

A.E. Brouwer and J. van de Lune

ABSTRACT: Let S(N,a0) = (-ptned,

n

o~z

1

0 for all

N. In addition it is shown that the set consisting of all these o has

A characterization is given of all real o for which S(N,a)

nv

‘Lebesgue measure zero.
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0. INTRODUCTION

In this note we investigate sums of the form

N
(0.1) sg(@) = 1 (-1

n=1

[na]’ (acR).

In particular we shall characterize the set P and the irrational elem

ments of N where

- (0.2) P={aeR| Sy (@) 20  for all N e NN}
and
(0.3) N={aeR| Sg () <0  for all N e N}.

These characterizations (see theorem 2.1 and 4.1) will be given in terms of
the regular continued fraction expansions of the corresponding a.

In addition it will be shown that P and N have (Lebesgue) measure O.

1. PREPARATIONS

We start dealing with P.

It is clear that

(1.1) 0eP
and
(1.2) o€ P = o+ 2¢eP.

Hence, without loss of generality, we may assume that o > 0. For the
time being we also assume o to be Zrrational.

A simple counting process reveals that if o is positive then

DR ikl - [a-ne1r + DM (N-[M 1}

1

I~

(1.3) S.. (a) =
N K



2

where M = [Na] and B = %.
Observe that for any M ¢ WN
M k-1
(1.4) Sryg () = kgl (-7 {[ke] - [(k-1)B1}.

It is easily seen that (for positive o) o € P if and only if

2K

(1.5) ) =1
: k=1

%1 (kg1 - [(k-1)81} 0 for all K ¢ W.

Since 2K is even (sic!) it follows that a € P if and only if for some

| . |
(1.6) ] D! {[k(B+2)T - [(k-1)(B+2)7} 20  for all K ¢ N.
k=1

If we choose B + z > 0 it follows that

1

(1.7) o€ P = 7z € P.
In particular, taking z = - [B] we obtain
(1.8) a € P ——l————-e P.
1 1
- = [=]
a )

For any irrational a with regular continued fraction expansion

@ =< ags a;, 8y, 85, ... > = a5+

we define

(1.9) g(a) = < 353 dg5 3, gy eee >



and

(1.10) pk(a) = <053, a 15 8,95 00 > (keﬁo.

It is clear that

(1.11) 0 < pk(a) <1 for all k e N
and
(l 12) _.'__]__=< H a >
y 01 () 8 a1 a2 v
so that
(1 13) 1 -4 s o, ., (a)
' pk(a) k “k+1
and
(1.14) [— 1=a
: pk(a) k’
Hence
(1.15) 1 = ! = + p,, ()
. ] 1 o (1) Zk+1 k+2'%/,
- L ] k+1
pk(a) pk(a)
LEMMA 1.1. If o is positive and irrational then
(1.16) a € P <= (glad) ¢ Pand a, = 0 (mod 2)).

0

PROOF. (=) Let o ¢ P. Then a, 0 (mod 2). Indeed, if a, # 0 (mod 2) we
would have § (a) = - I so that a ¢ P.

Hence, by (1.2), it follows that a- a, € P, so that by (1.8) we have

0



(1.17)

1 [ ]

a-ay  [a-ag]

Since the left hand side of (1.17) equals g(o) this part of the proof is
complete.
(«¢). 1If g(a) € P then by (1.17) and (1.8) we have that a-ay € P. Since

ay = 0 (mod 2) it follows from (1.2) that a € P. [
Define '

(1.18) Py=10ca<1]8(a) 20 forall n g N

From this definition it is clear that

(1.19) P] > P2 > P3 > ...

and

(1.20) Pnrl0,1) = N P..
N=1 N

Let FN be the Farey series of order N, restricted to the interval [0,1).

LEMMA 1.2. PN 18 a (non—empty) union of a finite number of intervals of the

form [a,b) with a < b where a and b are (rational) points of FN.

PROOF. It is easily seen that

1 N-1
(1.21) [O,EQ c PN and [—ﬁ_’ 1) c PN

proving the '"non-empty'" part of the lemma.
Now let a and b be consecutive points of FN' Then the proof is complete if

we can show that

(1.22) ace PN = [a,b) < PN.



By definition, a € P,\I implies that
A

n
(1.23) S (a) = ) (-1
n k=1

P> 0 for a1l n < N

Since for every fixed k < N the function [kx] is constant on each of the
intervals [0,%), [%3 %), cee [E%l, L) and since [a,b) is always contained
in one of these intervals, the lemma follows from (1.23) by a right-conti-

nuity argument. O

COROLLARY 1.1. P s left-closed. In other words:

If {an}:_] 18 a non—increasing sequence in P with limit o then also o e P.

COROLLARY 1.2. P s (Lebesgue) measurable.

LEMMA 1.3. Let o be irrational and positive.

If

g = éw MeN, N=[2MB], z e Z, B +2z >0, K=[2M(8+2)]
then
(1.24) 5(e) = sK(E{;o.

PROOF. This is a simple consequence 6f (1.4). gd

-[B] in lemma 1.3 then

If we choose z

(1.25) K = [2M(B-[B1)] ¢ [2MB] = N.



2. CHARACTERIZATION OF P

THEOREM 2.1. Let a be irrational and positive with regular continued frac-
tion expansion ‘

o = < a.,

O’ a]’ az’ a

LR

Then

(2.1) a € Pe= (aZi 0 (mod 2) for all i > 0).

0 = (mod 2) and g(o) € P.
vaserVipg that g(a) = < a3 855 35 e > we must have a, = 0 (mod 2) etc.

= 0 (mod 2) for all i > 0. Suppose that o ¢ P.

PROOF. (=). Let a ¢ P. Then, by lemma 1.1 we have a

(«=). Now assume that a,.
' def 21
Then also p, "= a - a, ¢ P.

Hence
(2.2) SN(pl) < 0 for some N ¢ NN.

Choose N such that the inequality in (2.2) holds true and such that N is
minimal. Since 0 < p; < | we may consider the position of Py with respect
to the Farey series of order N.

For every n € IN such that n < N, the function [nx] is constant on the
canonical (= smallest) intervals of the form [a,b) corresponding to FN'
Hence, since ol is irrational, there exists an open interval I containing

oy such that

(2.3) SN(y) < 0 for all vy ¢ I.

[ 21]

Because of the minimality of N there exists an M ¢ IN such that N = LE—J.
1

From continuity arguments concerning regular continued fractions it follows

that there exists an £ € IN such that all irrational numbers x > 0 defined

by

(2.4) x = < 03 a;, a >

22 2 8op 10 B9 Mooiqs Mogene o
(with mj e W, j > 29+1)



are such that

aM] _ [aM]
Cana [2] - 2]
( ) X € an I_X Lle
Observe that (since ay; = 0 (mod 2))
1
(2.9) S / \ =S (< a,3 a,, a,50005a, ,N,1,1,1,...>) =
N\l N 2” %32 %4 28
X, LxOJ

= SN] (< 0;a3,a4,...,azk,N,l,l,l,...>) = SN] (p3(a)).

Without loss of generality we may assume that N] is the smallest natural

number for which

SNl (03(0)) < 0.

Continuing this reduction we will ultimately find a natural number Nz such

that

(2.10) S (<O;N,1,1,1,...>) < O with N, < N.
NZ L =

On the other hand, since

1 1

= s

(2.11) < 03N, 1,1,1,... > )

for some § > 0 and since Nz < N we have
(2.12) SN (<O3N,1,1,1,...>) > O.

L

Since this contradicts (2.10) the proof is complete.



THEOREM 2.2. If o is rational then o € P if and only if the canonical con-—

tinued fraction expansion of o is of the form

' (2.13a) O = < a538,58550005850 15835, >
with
(2.13b) a,. =0 (mod 2) for all 0 £ i < 2.

2i

" PROOF. Suppose o satisfies (2.13).

Then

(2.14) o < oy for all N ¢ N

where

(2.15) ay = < 3p3a;,a 2N,2N,2N,... >.

220280 12890

Observing that P is left closed and that

(2.16) %ig ay = @ and ay € P.

it follows from (2.14) that a e P.
Now assume that (2.13) is not satisfied. Observe that if o 1is positive

and rational then (compare (1.3))

-DF {[k(B=e)T - [(k=1)(8-e) 1} +
1

o~ =

- 1im |
(2.16) SN(a) éig 1 .

s (=DM {N—[M(B—e)]}}
where

M = lim [N(o+e)] = [Nal.
€40



From this we obtain that (for pésitive'a) o € P if and only if for all

K e NN

2K

(2.17) %18 kzl -1)

K1 {Ik(B-e)1 - [(k-1)(B=)T} > O

so that, similarly as in section 1, for o > 0 and o ¢ Q we have

1
(2.18) oceP4=>(—B+—z-ePfor some z € Z).

In particular we use (2.18) with z =- [B].

CASE 1. a = < ao;al’aZ""’aZQ—l >

>e P

Assuming that o € P we would ultimately obtain that < a

= 0 (mod 2) and hence

20-2% 320-1

so that we st have a,
o t mu 20-2

1
(2.19) <0;a,, ,>=——¢cP.
221 aZZ—l

However, it is easily verified that P does not contain any of the numbers

l—, n € N.
n

CASE 2, o =< a 122 >

03812825287y 128

with ay: * 0 (mod 2) for some 1i.
Repeated use of (2.18) reveals that o % P. 0

3. THE MEASURE OF THE SET P.

THEOREM 3.1. The set P has measure O.

PROOF. Define P* = {P\Q} n [0,1).

Let (ai’bi) be some countable system of open intervals such that 0 < a; < bi

for all 1 and
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dgf' o

*
(3.1 E U, (b)) o PN,

. From the characterization of the irrational points belonging to P it is

clear that

1

(3.2) S D e
k,a=1 Lk~ 2a + x J
xeP

so that

* o [ 2a+x

(3.3) Prc kb1 | R [

xeE

Since for all fixed k, a ¢ N the function

2a+x

(3.4) K(2arx)+1 °

(x>0)

is increasing we obtain that (A denoting Lebesgue measure)

(3.5) AP < E [ 2y i TR
. i s 1k(2a+bi)+l k(za+ai)+1 f
= b.-a.
= z 511 <
i,k,a=1 {k(za+bi)+1}{k(23+ai)+]} =
© b.-a. 2.2
1 1 lf'n\
: —7 "5 \¢)  2®-
~ i,k,a=1 4k2a2 4 \'6 ),

It follows that

(3.6) A(PY)

HA



Since P* is measurable and E may be chosen such that
(3.7) AE) < A(PF) + ¢,

it follows easily that we must have

(3.8) A(P*) =0

and hence

(3.9) A(P) = 0.

4, THE SET N
THEOREM 4.1. If a s irrational then

(4.1) ae N < -aqac¢€P.

PROOF. Observe that

(4.2) [x] + [x] = -1 for all x € R\Z.

Hence, if a is irrational then

N N
(4.3) sN(a) = Z (_])[na] - Z (_l)-l—[—na] _
n=1 n=1
N N
= —z (_l)'[—na] = Z (_l)[n(—a)]
=1 n=1

so that

(4.4) SN(a) <0 <= SN(-a) >0,

11
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proving the theorem.

REMARK. In general, formula (4.1) does not hold true for a € Q as may be

seen from the following example: 1 ¢ N, -1 % P.

COROLLARY. The set N has measure zero.

5. ONE MORE PROPERTY OF P (resp. N)

THEOREM 5.1. For every irrational o € P we have that

(5.1) SN(a) = 0 for infinitely many N ¢ NN.

In order to prove this we use the following

LEMMA 5.1.If the positive integers p and q are such that p is even and
(p,q) =1 then

Py -
(5.2) Se-1 &) = 0.

PROOF. Consider the q-1 numbers

p 2 {a-Dp
g’ g T
Since (p,q) = 1 none of these numbers is an integer and since p is even

q is odd so that gq-1 is even. ;
q-1
2

A

Since p is even we have for 1 r < that the integers

(r %J and [(gq-r) -

Qo
—

have different parity from which it is clear that Sq— (%) = 0.

1

PROOF OF THEOREM 5.1.

Without loss of generality, we may assume that 0 < a < 1.
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be the corresponding convergents.

Since o ¢ P we have that. a,. = 0 (mod 2) for all i > 1 from which it is

2i =

easily seen that A, 1is even for all n.

2n
In order to prove the theorem it suffices to show that for all n € W

B, -1
2n

(5.3) I D
k=1

(kal _ 0.

Since A2n is always even it follows from lemma 5.1 that

A

2n]

B, -1 e

2n L anJ

(5.4) Y (-1) =0,
k=1

so that our proof will be complete if we can show that

[ 22n]
(5.5) [kal = Lk E——] for 1 <k ¢ an - 1.
2n

We proceed by contradiction. A

If (5.5) is not true then (note that 5 L,
2n
A2n
(5.6) kB <m<Xka for some m e N.
2n
Hence
A A. A
(5.7) S im - kR < ko - ket = k(am i) < (B, -1) + — < =
2n 2n 2n 2n B B2n
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This contradiction completes the proof.

COROLLARY. For every irrational a € N we have that
(5.8) SN(a) = 0 for infintely many N ¢ W.

ADDENDUM.

During the preparation of this note J. VAN DE LUNE and H.J.J. TE RIELE

proved the following (more general)

THEOREM. If o Zs zZrrational then Sn(a) = 0 for infinitely many n ¢ N.
REMARK: From now on all fractions %-are assumed to be irreducible.

In order to prove the theorem we use the following

LEMMA. If p Zs odd then qu(%) = 0.

PROOF: Observe that the numbers

Qo
IA
Na]

B
L

] and [(q+r)§], 1 <r

have different parity. O
In addition we will use the following well-known

THEOREM (of HURWITZ). If o € R <s irrational then there exist infinitely

many rationals %-such that

-2 | <

Q*/5

PROOF OF THE THEOREM. Let H be the set of all fractions %-Such that

1
¢*/5

-2 <
q
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It is clear that the proof will be complete if we can show that for every
P ; '
H have t = =
g € Hwe either Sq_l(a) 0 or quga) 0.

We consider a number of cases.

CASE 1.-% e H, p even.

Then we have Sq_l(a) = 0,
In order to see this it 1s clearly sufficient to prove that Sq_l(a) =
s (B,

q-1°q
Hence it is sufficient to show that

fkal = [k%] for 1 <k < q-l.

Assuming this does not hold true we have for some k, 1

HA

k < q-1, that there

exists an m € Z such that either

kE-g m < k a (in case %-< a)

q

or

kao<m<k P (in case 5 q).
= q q

Since 1 < k < g-1, equality in the above cases is impossible and thus

Lojm-wl|<k]a-2]c<
q =

£o
N
3
Q|-

which is a contradiction.
CASE 2. g-e H, p odd.

In this case we have qu(a) = 0. In order to see this we need only

P
show that S a) = S =).
2q(® = S5

CASE 2.1. l;-< a, p odd.
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It suffices to show that

HA

[kal = U&%] for 1 <k <'2q.

Since this may be established similarly as in case | we consider
CASE 2.2, %> a, p odd.
We observe that

2 Pro o
[q q] P [2qq] P

and
[qal = p-1, [2qal = 2p-1
so that (since p is odd) it suffices to show that
[kal = Uﬁ%]for 1 <k< iq, k # q, k # 2q.
Since this may be shown similarly as before the proof is complete.

REMARK. From the above considerations it is easily seen that
(1) 1if p is even then an(g) = n for all n ¢ W,

Py = 0 for all n ¢ M.

(ii) if p is odd then San(q









