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A sharpened version of the AANDERAA-ROSENBERG conjecture 

by 

M.R. Best, P. van Emde Boas and H.W. Lenstra jr. 

ABSTRACT 

The AANDERAA-ROSENBERG conjecture states that every algorithm which 

decides whether some graph, which is represented by means' of its adjacency

matrix, has some non-trivial monotonic property, must in the worst case 

probe O(n2) entries. We present a number of techniques which enable us to 

prove for several specific properties (e.g. connectedness) that in order to 

decide these properties in fact all edges must be probed by the algorithm. 

Moreover, we present some new examples of properties on undirected graphs, 

where not all the edges are needed, or even stronger, O(n) edges are suffi

cient. 

KEYWORDS & PHRASES: Properties of graphs, analyses of algorithms. 



2 

I. INTRODUCTION 

F ]" *) 1 G b h 11 . f 11 **) . or nE ~ , et et e co ection o a graphs with set of 
n 

vertices {1,2, •.. ,n}, and let G = U G. Let G,H E G and let x be an edge. 
nE JN n 

Then 

IGI 
X E G 

denotes the number of edges in G; 

denotes that xis an edge of G; 

G c H, G n H, etc. denote the corresponding expressions for the sets of 

edges, provided the sets of vertices coincide; 

G O! H 

denotes the graph complementary to G; 

denotes graph-isomorphism; 

E denotes the totally disconnected graph on {1,2, ..• ,n}; 
n 

K denotes the complete graph on {I, 2, ••• , n}; 
n 

e = jK I. We write e = e if no confusion arises. n n n 

Let P be a property on G, and GE G. Then in expressions like GE P, 
G n P, G \ P, etc., Pis identified with the collection of graphs in G 

n n 
which satisfy P. We denote G n P by P • P is called a property on Gn if 

n n 
P c G • In this case Pc denotes G \ P. A property P is called a graph-

n n 
prroperty if 

Now fix a natural number n and a property Pon G and consider the 
n 

following game between two persons, called the hider and the seeker. First 

the hider takes a graph GE G in mind. The seeker aims to find out as soon 
n 

as possible whether G E P or not. To do so, each of his moves consists of 

questioning the hider as to whether some edge xis in G or not. The game 

terminates on. the moment that the seeker can decide, using the information 

gathered so far, whether GE P. The hider wins if all edges have been asked 

for; otherwise the seeker wins. 

*) In this note, zero will be called a natural number (0 E JN). 
**) For the time being, we leave undecided whether we consider directed or 

undirected graphs. 



In order to avoid trivialites, such as choosing the property "the 

graph has n vertices" (one is ready at the beginning), or "the graph has 

a self-loop" (as LIPTON and SNYDER have computed in [7], this game costs 

the seeker at most as many moves as there can be self-loops), one should 

agree: 

I. all graphs are understood to contain no self-loops; 

II. only non-trivial properties on G are to be considered. 
n 

A property Pon G is called non-tPiviaZ, if neither P nor Pc is 
n 

empty. An arbitrary property Pis called non-tPiviaZ on G, if P is non-
n n 

trivial. 

3 

After having lost many games (and being frustrated by his thankless 

task), the hider becomes perfidious, and modifies the rules of the game. 

Instead of actually selecting a graph in advance, he only provides answers 

to the seeker's questions, thus designing a graph which is hard to deter

mine for his opponents decision algorithm. 

We denote the number of moves in this modified game, assuming that 

both opponents play optimally, by µ(P). Now the question is whether there 

exists a (non-trivial graph) property Pon Gn such that µ(p) <en.We call 

property Pon G for which this is not the case (i.e. µ(P) = e ), evasive. 
n n 

An arbitrary property Pis called evasive on G if P is evasive. n n 
The quantity µ(Pn) indicates the number of entries of the adjacency 

matrix of G any P-algorithm can be forced to probe, in order to decide 

whether the graph G has property P or not. This explains why the behaviour 

ofµ has drawn the attention of several people working in the field of 

analysis of algorithms. HOLT and REINOLD [4] derived for the properties 

"is strongly connected" and "contains a directed cycle" lower bounds of 

respectively ½n(n-1) and !(n+l)(n-1). We show in section 4 that these two 

properties are actually evasive. 

ROSENBERG [8] conjectured that for any non-trivial graph property P we 
(p ) 2 *) RAA • haveµ >> n. However, AANDE provided a counterexample for 

n 

*) It is not clear how the assertion "µ(Pn) = O(n2) 11 should be interpreted. 
The LANDAU-BACHMANN O-symbol can certainly not be intended. We have 
chosen for the interpretation µ(Pn) >> n2 (WINOGRADOV's symbol: 
liminf µ(Pn) / n2 > 0), although the interpretation µ(Pn) = n(n2) 
(f.~ not µ(Pn) = o(n2), or li~p µ(Pn) / n2 > O) can be defended as well. 
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directed graphs (cf. section 7). Together they formulated the AANDERAA

ROSENBERG conjecture, stating that for any non-trivial monotonic graph 

property, the estimate µ(P) >> n2 holds [8]. A property Pis called mono-n 
tonia if 

VG€ G VH € G ( (G € p A G CH) ~ H € P). 

A number of results can be found in a paper by KIRKPATRICK [6]. He 

proves µ(P) >> n2 for several special properties P. Furthermore he claims n . 
the estimate µ(P) >> n.log n in case Pis monotonic, using a proof which n 
can not convince us (the treatment of case (2) in his lennna 3 is inadequate). 

It has already been suggested by HOPCROFT and TARJAN [5] and by 

R. KARP_(cf. [8]), thatformanygraphpropertiesP, anyP-algorithmmust,inthe 

worst case, inspect all entries of the adjacency matrix. Indeed, it seems 

reasonable to conjecture that any non-trivial monotonic graph property is 

evasive. 

In this note, we develop a few techniques by which we can prove evasive

ness for many special properties. Moreover we present in section 7 some new 

examples of properties on undirected graphs which are non-evasive, one of 

them even being a counterexample to the original ROSENBERG conjecture. 

2. SOME GENERAL REMARKS 

I. It follows from a result of KIRKPATRICK that for any non-trivial graph 

property P the lower bound µ(P) >> n holds. His theorem 1 in [6] states 
n 

that for directed graphs the inequality 

µ (P ) ~ n(n-1) /k + k - 1 
n p p 

holds for some positive number k. This obviously yields µ(P) ~ 2n-2. 
p n 

For undirected graphs corollary 1 in the same paper leads to 

µ(P) ~ n/2-2 for any non-trivial graph property P. n 
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II. The AANDERAA-ROSENBERG conjecture implies the existence of a universal 

constant c0 > 0 and integer n0 EN such that for every n ~ n0 and for 

every non-trivial monotonic graph property Pon G one has 
2 n 

µ(P) > c0n .. 

This can be seen as follows. Construct a property P by P0 =P1 =</J and 

Pn is a non-trivial monotonic graph property Q on Gn for which µ(Q) attains 

its minimal value. This minimum exists by finiteness. By the conjecture 

one has 

Now the assertion stated above follows from the minimality of µ(P ). 
n 

* III. For each property Pon G we define the dual property P by 

p* = {G I GE G A Ge i P}. 

It will be clear that p* is a graph property (non-trivial, monotonic) if and 

only if Pis. Furthermore µ(P*) = µ(P ). 
n n 

IV. Let G be a directed graph on {1,2, •.• ,n}. We define the undirected 

graphs G' and G" on the same vertexset by: 

(i,j) E G' ¢:) (<i,j> EGA <j,i> E G); 

(i,j) E G" ~ (<i,j> E G V <j,i> E G). 

Now let P be a property for undirected graphs. Then we define the 

properties P' and P" for directed graphs by: 

P' = {G GI E P} and P" = {G G" E P}. 

The hider can use any strategy for Palso for P' (P") by g1.v1.ng an 

edge <i,j> always (never) when <j,i> has not yet been asked for, and other

wise he gives this edge if and only if (i,j) should have been given in the 

P-strategy. Hence µ(P') ~ 2µ(P) and µ(P") ~ 2µ(P ), 
n n n n 

On the other hand, it is clear that the seeker needs both for P' and 

P" at most 2µ(P) questions, by asking every edge in both directions. 
n 

Hence µ(P') s 2µ(P) and µ(P") s 2µ(P ). 
n n n n 
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Together this yields: 

µ(P') = µ(P") = 2µ(P ). 
n n n 

In particular P' is evasive if and only if Pis, and the same holds 

for P". 
As an example, we mention that if P is the property "connectedness" then 

P" is "weak connectedness". So if connectedness is evasive (and we shall prove 

below it is), then the same holds for weak connectedness. 

v. For many properties a trivial strategy for the hider can be given, which 

makes the property evasive. We mention: 

"The graph has exactly (at most) k edges"; the hider gives the first k 

edges and thereafter none. 

"The graph is point-symmetric" or "the graph is line-symmetric"; 

the hider gives every edge asked for. Since the complete graph on 

n points is both point- and line-symmetric, and the graph with e-1 

edges is neither, the seeker has to ask for all edges. 

3. A STRAIGHTFORWARD STRATEGY 

Let P be the property "the graph contains a cycle" for undirected graphs. 

Suppose the hider uses for this property the following strategy: he gives 

every edge asked for, unless that edge should close a cycle. It turns out 

that this simple strategy is optimal, and that it makes the property 

evasive (except for n = 2 but then the property is trivial). We will prove 

this for a more general class of properties. 

THEOREM t. Let n E lN and let P be a non-trivial monotonic property on G 
n 

suah that for eVe!"/f G E G and for eVe!"/f x t. G with G u {x} t. P there is a n 
y t Gu {x} suah that Gu {y} t. P. Then Pis evasive. 

PROOF. Let G. be the graph consisting of all edges given by the hider in his 
l. 

first i answers. Thus GO =En.The hider's strategy consists of giving an 

edge x in his i th answer if and only if G. 1 u {x} t. P. By induction, it is 
1.-

clear that G. t. P for all i. 
l. 



Now suppose µ(P ) = m < e. Let H be the set of edges not asked for in 
n 

the game, and let x EH. Then G u Ht P since otherwise the game was not 
m 

finished. Put G = G u H \ {x}. Since Gu {x} i P, there is an edge 
m 
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y i Gu {x} = G u H such that Gu {y} i P. This edge y must have been asked 
m 

for during the game (in the k th ·move, say), and have been refused by the 

hider. So Gk-l u{y} E P. Hence, by monotony, Gu {y} E P. Contradiction. D 

EXAMPLE 1. "The graph contains a cycle" is an evasive property for 

undirected graphs with at least three vertices. 

It is left to the reader to show that this property satisfies the 

conditions of theorem 1. 

EXAMPLE 2. "The graph is planar" is an evasive property for undirected 

graphs with at least five vertices.*) 

PROOF. Suppose G is a planar graph with at least five vertices, (a,b) i G, 

and Gu {(a,b)} is planar. We claim that there is some edge different from 

(a,b) which may be added to G without disturbing planarity. 

We assume that Gu {(a,b)} is maximal planar, since otherwise our claim 

is trivial. Now fix some embedding of Gu {(a,b)} in the sphere. By the 

maximality, its faces are all triangles, and therefore, the faces of Gare 

all triangles except for one quadrangle (a,c,b,d). Obviously Gu {(c,d)} 

is planar, so if (c,d) i G, this yields the desired extension. 

Hence we may assume that (c,d) E G. Let the two triangles adjoining 

(c,d) be (c,d,e) and (c,d,f). If {e,f} = {a,b} then (a,c,d), (b,c,d) and 

(a,c,b,d) are all faces, so G has only four vertices. 

Hence we can assume that a i {e,f}. (e,f) cannot be an edge, since 

it would intersect either (c,d) or the path (c,a,d). Now we divert (c,d) as 

the internal diagonal of the quad~angle (a,c,b,d), and (e,f) may be added to 

G without disturbing the planarity. 

This proves that for P = "non-planar" the condition of theorem 1 is 

satisfied. D 

*) This result has been claimed without proof by HOPCROFT and TARJAN [SJ. 
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Picture of the graph G. The quadrangle (a,c,b,d) has 

been drawn as the exterior face. Other vertices and 

edges may be added in the shaded regions, although b = f 

is allowed. 

By the duality mentioned in section 2, we obtain: 

THEOREM 2. Let P be a non-trivial monotonic property on G ·such that for n 
every Ge: G and for every x e: G with G\{x} e: P there is an edge ye: G\{x} n 
such that G\{y} e: P. Then Pis evasive. 

EXAMPLE 3. "The graph is aonnected" is an evasive property for undirected 

graphs. 

The proof is left to the reader. 

4. THE ENUMERATION POLYNOMIAL 

We call a collection {A,B} of two sets a pair of neighbours if 

I At:. BI = 1 • (t:. denotes the symmetric difference.) A collection is called 

pairabZe if it is the disjoint union of pairs of neighbours. 

THEOREM 3. Let n e: lN, P be a non-evasive property on G . Then both P and n 
Pc are pairabZe. 



PROOF. Let G(i) be the set of all graphs in~~ whic~ are compatible wit~ 

the first i answers of the hider, and let p(i = G(i) n P. Note that G(i) 

is pairable for i < e. If the game is finished after m moves, then either 
p(m) = 0, or p(m) = G(m), so p(m) is always pairable, unless m = e. 

9 

Now assume that Pis not pairable. Then the hider does nothing except 

to ensure that for i e: {0,1, ••• ~m}, p(i) is not pairable. He may do so, 

because by assumption p(O) is not pairable, and by asking the i th edge, the 

seeker actually divides p(i-l) into two subsets Q and R, from which the 

hider has to make the choice which one will become p(i). Since Q u R = p(i-l), 

there is at least one choice (P(i) = Q or p(i) = R) for which p(i) is not 

pairable. (The disjoint union of pairable sets is again pairable.) 

Therefore, P(m) is not pairable, so m = e, and Pis evasive on 

Contradiction. So Pis pairable. Similarly Pc is pairable. D 

G . 
n 

Although we do not give here any direct application of this theorem, 

it might be useful for those who intend to find a counterexample to the 

conjecture stated above. "Pairable" is quite a strong condition. Up till 

now, we were not able to find any non-trivial, monotonic, pairable graph 

property! 

REMARK. It is not difficult to generalize theorem 3. A collection 1 is 

called a k-intewaZ, if there are sets A e: 1 and B e: I such that I B \AI = k, 

and I = { C I A c C A C c B}. Thus a I -interval is a pair of neighbours. 

Now the following holds. 
Let k e: lN, n e: lN, a.nd P be a property on G such that µ(P) :,; e - k. 

n 
Then Pis the disjoint union of k-intervals. 

) ,N k · · z · Z Let N e: lN. Then f(X = lk=O ~X is called an enumerat1.,ng po ynorm.a 

in X of degree N if for all k e: {O, I, .. ,N} one has ~ e: lN and ~ ::;; (:). 

(Note that~= 0 is allowed.) 

Now let n e: lN and P be a property on G. Then we define n 

e 
F(P,X) = I 

k=O 

k N(P,k)•X 

where N(P,k) denotes the number of graphs in P with exactly k edges. 
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Obviously, for fixed P, F(P,X) is an enumerating polynomial in X of degree 

e, called the enumeration poZynomiaZ. 

THEOREM 4. Le·t n e: lN and P be a non-evasive property on G • Then F(P,X) is 
n 

divisibZe by 1 +X in 7l [X]., and moreover F(P,X)/(l+X) is an enumerating 

poZynomiaZ in X of degree e - 1. 

PROOF. The contribution to the enumeration polynomial of a pair of neigh

bours is divisible by 1 +X. Hence from theorem 3 both F(P,X)/(l+X) and 

((l+X)e - F(P,X))/(l+X) are polynomials in X over lN. 0 

COROLLARY 1 • Let n e: lN, and P be a property on G such that F (P, -1 ) ::/: 0. n 
Then Pis evasive on G. 

n 

COROLLARY 2. Let n e: lN., and P be a property on G such that IP I is odd. 
Then Pis evasive on Gn.*) . n 

EXAMPLE 4. "The graph contains a directed aycZe" is an evasive property for 

directed graphs. 

PROOF. We use corollary 2. For n e: lN let A be the collection of all 
n T 

acyclic digraphs on {1,2, .•• ,n}. For n ~ 2 let A be the collection of all n 
acyclic digraphs on {1,2, ... ,n} which are invariant under the transposition 

of the vertices n - 1 and n, and define cf>: AT -+ G 1 by cf>( G) is the graph n n-
that remains after deleting the vertex n and all its incident edges from G. 

A little reflection shows that cf> is injective, and that cf>(AT) = A 1• n n-

Since IA \ ATI is even, IA I = IATI = IA 11 (mod 2). Since n n n n n-
lA01 = IA1 1 = 1, IAnl is odd for each n e: lN. Hence "acyclic" is evasive, 

and so is its negation. D 

EXAMPLE 5. "The graph is transitive" is an evasive property for directed 

graphs. 

The proof runs completely similar to that of example 4. 

*) This result has been found independently by R.L. RIVEST 
(personal communication). 



A star is a bipartite graph such that one part of the bipartition 

consists of a single vertex, called the aenter of the star. A star is 

called maximal if the bipartite graph is complete. 

EXAMPLE 6. "The gmph is a star" is an evasive property for undireated 

graphs with at least three vertiaes. 

I I 

PROOF. Let n E lN and P be the property to be considered. We evaluate the 

alternating sum F(P ,-1). Clearly, the center of a star is uniquely detern 
mined if the star has at least two edges. Hence 

n-I I k 
F ( P , -1 ) = 1 - n ( n-1 ) / 2 + n • }: (n- ) ( -1) = 

n k=2 k 

= (n-l)(n-2)/2 # 0 

for n ;:?: 3. 0 

EXAMPLE 7. "The graph aontains two disjoint edges" is an evasive property 

for undireated gmphs with at least foUP vertiaes. 

PROOF. A graph which does not contain two disjoint edges is either a star, 

or a triangle. Therefore, the alternating sum for this property becomes 

(n-l)(n-2)/2 - n(n-l)(n-2)/6 = -(n-l)(n-2)(n-3)/6. 0 

EXAMPLE 8. "The graph is aonneated" is an evasive property for undireated 

graphs. 

(This was already proved in example 3.) 

PROOF. Let P be the property "connected". Following GILBERT [2], 

formula (2), we have 

where 

T (X) = F(G ,X) = (l+X)n(n-l)/Z, C (X) = F(P ,X). 
n n n n 
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For X = -1 this yields 

0 - C 1(-1) + nC (-1) if n ~ 1, n+ n 

so 

n-1 C (-1) = (-1) (n-1)! if n ~ I. 
n 

This is not zero, and therefore the property is evasive. 0 

EXAMPLE 9. "The graph is strongly connected" is an evasive property for 

directed graphs. 

PROOF. Let P be the property "strongly connected". Then F(P ,-1) = (n-1)! 
n 

for n ~ I (see e.g. BEST & SCHRIJVER [l]). Hence by corollary I, P must be 

evasive. 

EXAMPLE 10. "The graph is bipartite" is an evasive property for directed 

graphs with at least three vertices. 

PROOF. This also follows by explicit computation of the alternating sum 

( cf. [ I]) • 

EXAMPLE 11. Let k be a natural nwriber. Then the property "the graph has at 

most k non-isolated vertices" is evasive for undirected graphs with more 

than k vertice~~. 

PROOF. The contribution to the alternating sum of those graphs which have 

precisely m non-isolated vertices, can easily be seen to be a polynomial 

of degree min n. Adding these contributions for O ~ m ~ k, we derive that 

the alternating sum for the above property is a polynomial inn of degree k, 

say A(n). 

For n ~ k the property is trivial. Consequently A(O) = A(l) = 1, and 

A(m) = 0 for 2 ~ m ~ k. This completely determines the polynomial A, 

Moreover, by ROLLE's theorem, the derivative of A has a zero in between O 

and 1 and in between m and m+l for 2 ~ m < k, This shows that A is strictly 

monotonic for x ~ k and consequently A(x) has no zeros for x > k. 0 



For graph properties theorem 4 can be sharpened to: 

THEOREM 5. Let n E lN and Zet P be a non-evasive graph property on G • 
n 

Then 

(1 / (e(l+X))) d~ F(P,X) 
and 

d 
(1 / (l+X)) (F(P,X) - (X/e) dX F(P,X)) 

are both enumerating poZynomiaZs in X of d,egree e - 2. 

PROOF. We use the same notation as in the proof of theorem 3. Suppose the 

hider answers the first question affirmatively. Then, since it is 

innnaterial which edge is asked for, we have 

e N(P(l) ,k) = k N(P,k) , 

hence 

e 
F (P( l) ,X) = l (k/e)N(P,k) xk = 

k=O 

d 
= (X/e) dX F(P,X) 

Similar to the proof of theorem 3 we find that both p(l), and G(l) \ p(l) 

are pairable. Hence F(P(l),X) / (l+X) and (X(l+X)e-l - F(P(l) ,X))/(l+X) 

13 

are polynomials over lN. Since F(P(l) ,X) is divisible by X, it follows that 

F(P(l),X)/(X(l+X)) as well as (l+X)e-Z - F(P(l) ,X) / (X(l+X)) are 

polynomials over lN. This confirms the first assertion. 

A negative answer from the hider on the first question leads to the 

second assertion. D 

COROLLARY 3. Let n E lN and Zet P be a graph property on G , such that 
n 

F(P,X) is not divisibZe by (l+X) 2• Then Pis evasive on G. n 

PROOF. If P were not evasive on G then both F(P,X) and its derivative n 
would be divisible by 1 + X. 0 

COROLLARY 4. Let n E lN and Zet P be a graph property on G such that IP I 
n 

is not a muZtipZe of 4. Then Pis evasive on G. n 
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5. THE ENUMERATION POLYNOMIAL OVER A FINITE FIELD 

Up till now, the enumeration polynomial has been considered as an 

element of Zl [X]. It can be defined however as well over any arbitrary 

connnutative ring R with unity. It is clear that for non-evasive properties 

Pon G the relation (l+X) I F(P,X) holds in R[X] too. In this section we 
n 

take for R the finite field lF of prime order p. 
p 

Let n E IN, let P be a graph property on G, and let T be a subgroup n 
of S , the group of all permutations of the vertices. Then we define: 

n 

GT= the collection of graphs in G which are invariant under T, 
n n 

Since there is a natural way to regard S as a subgroup of S when n < m n m 
it makes sense to speak of the graphs in G invariant under Tc S when m n 
n < m. 

THEOREM 6. Let n E IN , p be a prime, P be a non-evasive graph property, and 

let T be a p-grou:p contained in S . Then ( 1 +X) I F (PT, X) in lF [X]. 
n p 

PROOF. This relation trivially follows from theorem 4 and the congruence 

N(PT,k) - N(P,k) (mod p). 0 

COROLLARY 5. Let n E IN, Zet P be a property, and Zet T be a p-grou:p 

contained in S, such that F(PT,-1) $ 0 (mod p). Then Pis evasive on G. 
n n 

As a first application, we give a very simple proof that strong 

connectedness is evasive in case the number of vertices is a prime. 

EXAMPLE 12. "The graph is strongZy connected" is an evasive property for 

directed graphs with a prime nuniber of vertices. The same hoZd.s for 

"contains a HcorriUon circuit" for both directed and undirected graphs with 

a prime nwnber of vertices. 

PROOF. Let p be a prime and let T be the group generated by the cycle 

(1,2, .•. ,p) in S . Clearly each non-empty graph which is invariant under T 
p 
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is strongly connected (contains a Hamilton circuit). Consequently if we let 

P denote the property "is not strongly connected" ("does not contain a 

Hamilton circuit") then F(PT,X) = F({E },X) = I t- 0 (mod p). 0 
p p 

EXAMPLE I 3. "The graph contains t;wo adjacent edges" is an evasive property 

for undirected graphs with at Zeast three vertices. 

PROOF. First assume that n is odd. Let p be a prime divisor of n, and 

k = n/p. Let T be the group generated by the cycles (1,2, ••• ,p), 

(p+l,p+2, ••• ,2p), ••. ,((k-l)p+l,(k-l)p+2, ••• ,kp). Clearly every non-empty 

graph which is invariant under T contains two adjacent edges. Hence, 

denoting the negation of the considered property by P, we have 

T F(P ,X) = F({E },X) = I t- 0 (mod p). n n 

If n is even, then we take p a prime di visor of n - I , and k = (n-1) /p and 

the same argument holds. D 

6. AN APPLICATION OF THE PRINCIPLE OF INCLUSION AND EXCLUSiON 

Let P be a monotonic property on G. A graph G is called P-minimaZ if 

G has property P but no proper subgraph of G has it. The collection of 

P-minimal graphs is denoted by M(P), so M(P) = M(P) n G. n n 

THEOREM 7. Let n E lN and Zet P be a monotonic, non-evasive property on G. 
n 

Then 

l (-1) IJI = 0 • 
JcM(P),UJ:::K 

n 

PROOF. Let GE M(P), Then the contribution to F(P,X) of the graphs containing 

Gas a subgraph equals XI GI (I +X) e-1 GI • 

By adding all these contributions, and using the principle of inclusion 

and exclusion, we arrive at: 
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F(P,X) = l xlUJI (l+X) e-lUJI (-l) IJl-1. 
JcM(P),J~~ 

Hence 

F(P,-1) = l (-1) e+IJl-1 , 
JcM(P),UJ=K 

n 

which proves the theorem by corollary 1. D 

EXAMPLE 14. ,:The gr>aph aontains a maximal star" is an evasive property for 

undireated graphs aontaining at least two vertiaes. 

PROOF. The maximal stars themselves are the minimal graphs with this 

property. The coverings of K by maximal stars consist of either n- 1 or n 
n elements. Consequently 

I c-1>111 = ±Cn-1> ~ o. 
JcM(P ),UJ=K 

n n 

7. EXAMPLES OF NON-EVASIVE PROPERTIES AND COUNTEREXAMPLES TO THE 

ORIGINAL ROSENBERG CONJECTURE 

• 

This section contains the example of a non-evasive property on directed 

graphs given by AANDERAA, and three new examples of non-evasive properties 

on undirected graphs. The AANDERAA example and the last undirected example 

are moreover counterexamples of the original ROSENBERG conjecture: The 

seeker needs at most a number of edges which depends linearly on the number 

of vertices. The three undirected examples were designed at the Advanced 

Study Institute on Combinatorics (Breukelen, the Netherlands, July 8-20, 

1974) on which occasion the finding of such properties was raised by the 

authors as an open problem. 



EXAMPLE 15. [AANDERAA] Let P be the property "The graph aontains a sink". 

Then µ(P)::; 3n. n 

(A sink in a directed graph on n vertices is a vertex with indegree n-1 

and outdegree zero,) 

STRATEGY. At each stage of the game we call a vertex a aandido.te sink 

provided all incoming edges asked for have been given, whereas all out

going edges asked for have been refused. 

If the edge <i,j> is given (refused) by the hider, then vertex i (j) 

is ruled out as a candidate sink. This makes it possible for the seeker 

to reduce in n-1 questions the set of candidate sinks, which contains 

initially all vertices, to a singleton. The verification that the last 

candidate sink is indeed a sink takes at most 2(n-1) questions. D 

REMARK. It is not difficult to prove that µ(Pn)::; 3n - [ 2log n] - 3 

for n ~ 1. Actually we can show, by means of an information theoretical 

argument, that equality holds. 

EXAMPLE 16. [L. CARTER] Let P be the pPopePty "The gPaph aontains a VePtex 

of vaZenay n - 4 and the vertices adjacent to this vePtex have vaZanay 1 ". 

Then µ(P)::; ½n(n-1) - 1 for n ~ 9. 
n 

STRATEGY. The seeker divides the set of vertices in two about equal parts, 

and asks for all edges in between the two parts. This way he can identify, 
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if n ~ 9 ,' the vertex with valency n - 4 (or prove that no such vertex exists 

or that to many vertices have valency larger than one). Next he asks for 

all edges incident to this candidate, in this way isolating the three 

vertices not adjacent to it. At least one edge in between these three vertices 
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is not yet asked for, and, therefore, µ(P) $ ½n(n-1) - l. D 
n 

REMARK. By replacing n - 4 by e.g. 4n/5 in the above example one may produce 

an example whE~re the number of edges that need not be asked for is a 
. . f . f 2 positive raction o n. 

EXAMPLE 17. [D. KLEITMAN] Let n be an even nwner and let P be the property 

"There are two adjacent vertices x and y, each of valency n/2, such that the 

sets of vertices in {l, .•. ,n}\{x,y} adjacent to x and y, called X and Y 

respectively, are disjoint, and such that no vertex in Xis adjacent to 

a vertex in Y". Then µ(P ) $ 3/8.n2 + l /4.n - l. 
n 

X X y y 

STRATEGY. The seeker selects at random some vertex and asks for all its 

incident edges. Next the seeker proceeds to one of the vert.ices adjacent 

to the first one, and asks for its incident edges. This way the seeker 

proceeds, always selecting a vertex adjacent to one, which he has investi

gated before. This way the seeker is able, before having investigated 

n/2 + 2 vertices, either to isolate the vertices x and y and the sets X and 

Y, or to prove that the graph does not have the property. It is clear that, 

after having isolated x, y, X, and Y none of the verticesinbetween members 

of X or Y need to be probed. Moreover, no vertex in either X or Y has yet 

been investigated. Therefore, at least ½(½n-l)(½n-2) edges need not be 

probed. D 

REMARK. The property P may be extended to odd n as follows: if n is odd the 

graph G satisfies P if G consists of an isolated vertex n and a remaining 
n 

graph on n - 1 vertices which satisfies P 1 as defined above. Since the n-
isolated vertex costs at most n-1 questions, one has 

µ(Pn) $ 3/8.n2 + 1/2.n - 15/8. 

A scorpion graph on n vertices contains a vertex b (the body) of 

valency n - 2, i:l. vertex t (the tail) of valency l, and a vertex u of valency 2 



which is adjacent to both t and b. The remaining n - 3 vertices form a set 

S, and edges in between members of Smay be present or not. 

EXAMPLE 18. If Pis the property "The graph is a scorpion graph" then 

µ(P) :o; 6n. 
n 

STRATEGY. At each stage of the game we call a vertex a candidate body 

(candidate tail) if at most one incident edge has been refused (given). 

The weight of a candidate body (tail) equals two minus the number of 

incident edges which have been refused (given). Hence a candidate has 

weight 2 or 1. 

First the seeker asks for the edges (1 ,2), (2,3), ... , (n-1 ,n), and 

(n,1). In this way the set of all vertices is divided into ·three parts, 

viz.: 

B, consisting of candidate bodies of weight 2; 

T, consisting of candidate tails of weight 2; 

M, consisting of vertices with one incident edge given by the hider, 

and one refused. 
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By asking at most IMI more questions, such that each vertex in Mis 

incident to three edges asked for, the seeker divides the set Minto two 

subsets B1 and T1, consisting of candidate bodies and candidate tails 

respectively, both of weight 1. At this stage of the game the sum of the 

weights of all the candidates does not exceed 2IBl+2ITl+IB1 l+IT 1 I = 2n-lMI, 

Now thE~ seeker asks for edges connecting candidate bodies to candidate 

tails, thus reducing with each question the sum of the weights by one. 

This part of the game, which takes at most 2n-lMI questions,terminates when 

all edges in between the remaining candidate bodies and candidate tails 

have been asked for. We denote the number of remaining candidate bodies 

(tails) by S (-r) • Since of the connecting edges at most S have been refused 
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and -r have beEm given, one derives S + -r ~ S-r, and· therefore S:,;; 1 or -r:,;; 1 or 

f3 = T = 2, 

If S = 0 or -r = 0, the seeker is ready. If S = 1 or -r = 1, then 3n 

further questions are sufficient to determine the property. In case 

S = -r = 2, the vertex u is easily seen to be among the candidate bodies. 

Now the seeker asks for all edges incident to both the candidate bodies, and 

then for those incident to the only candidate tail left (if present). This 

also takes at most 3n questions. 0 
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