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Thin sets in Cartesian Products can be Opaque 

by 

H. Fast*) 

ABSTRACT 

In a cartesian product X =PX of separable metric spaces X, each n n n 
endowed with a countable class of Borel measures, there exists a Borel 

subset H which is "thin" in the sense of having all its factor-space pro

jections O-dimensional (topologically), Hausdorff O-dimensional and also 

of measure zero for all the respective measures but still having the pro

perty that each image of a fixed complete s·eparable metric space T into X 

by a continuous and reasonably regular mapping must meet H. 

By imposing further restricting conditions on the spaces Xn as well as on 

the class of admissible mappings from Tinto X, one achieves that His 

closed. 

KEY WORDS & PHRASES: Hausdorf measu:r>e, metric space, 0-dimensional space, 

Borel set. 

*) This work was done while the author was visiting the Mathematical Centre 
at Amsterdam, the Netherlands. 





1 • INTRODUCTION 

The title suggests optical intuition which motivated the present pa

per. It originates with the qµestion: can a subset of a space be very 

"thin" and yet be able to stop any "light-ray", i.e. to meet any curve of 

a certain family of curves in this space, a family which is quite "ample"? 

In the sequel we give precise meaning to the terms used here loosely, and 

we answer this question in the affirmative. At this point let us mention 

only this much: we restrict ourselves in this paper to a space of a particu

lar kind: a countable product of metric spaces, each carrying a countable 

class of Borel measures. The "rays" are a class of injections into this 

space of another metric space: a parameter space. In the particular case 

when as the parameter space the real line is taken the injections are just 

curves, and the optical analogy becomes particularly close. 

The precise statement of the results comes in page 4 of this paper. 

2. PRELIMINARIES 

Following a known method of Caratheodory, a finite non-negative real

valued function~ defined on the set of all balls in a separable metric space 

generates an outer measure-function. After being restricted to Borel sets 

it gives rise to a non-negative Borel measure in the space. In the sequel 

this Borel measure will be called the measure generated by~ and denoted 

m~. As an example of such a function~ may serve the function xa, (a> 0), 

defined for a ball u(x,r) as: xa[u(x,r)J = ra (here u(x,r) stands for the 

ball with centre x and radius r). The measure Aa = mxa thus generated is 

known as the a-dimensional Hausdorff measure. Recall here the concept of a 

Hausdorff 0-dimensionaZ set: a set of Au-measure zero for all a> 0. 

We shall make the following standing assumption about a function~ 

which in the sequel will be referred to as generating function: 

(2. 1) inf{~(u) UC V} = Q 
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for any fixed ball v of the space. This assumption holds for instance for 
CL the generating function x. 

Let X, n=l,2, ... be metric spaces. With each X let there be associated 
n n 

a system {ljJ .}~ 1 of generating functions. Let X =PX be the carte-n,1 1= n n 
sian product of the spaces Xn' endowed with the usual product-topology. 

A subset Ac X will be called {ljJ .} .-thin or simply thin if the projec
n,1.- n,1.-

tions proj A, n = 1,2, .•• of A on the factor-spaces are: n 

(a) 0-dimensional (in the topological sense) 

(b) Hausdorff 0-dimensional 
ljJ • ' 

(c) of m n, 1 -measure zero for all n,i = 1,2, •••. 

A will be called strongly {ljJ .} .-thin or simply strongly thin if in n,1 n,1 
addition to i(a)-(c) it satisfies the condition: 

(d) proj A, n = 1,2, ... are closed. n 

The following innnediate consequences may be noted: 

(1) All the sets proj A are nowhere-dense in their respective spaces X 
n n 

when A is strongly thin. 

(2) A closure of a strongly thin set remains 

Setting m 
[1/Jn,iJn 

a strongly thin set. 
1/Jn i for the product-measure Pm ' generated on Borel 

1jJ n. 
sets of X by the factor-space measures m n,i, one obtains: 

[ljJ . J 
(3) A thin set A is 0-dimensional in X and of m n,i n-measure zero for 

i = i,2, ... 

(4) The class of thin sets is countably-additive. 

Indeed, (1) is an innnediate consequence of (a) and (d). (2) follows 

from the fact: that in view of (d) taking closure of A does not change the 

proj A which are closed already. Regarding (3), the 0-dimensionality of A 
n 

follows from (a) [if each point of proj A has arbitrarily small open -andn 
closed neighbourhoods then A has the same property with respect to product-

neighbourhoods at each of its points], and the last fact is a trivial con-
[1/Jn,i]n 1/Jn i . 

sequence of the fact that m A= 0 as soon as m ' proJ A= 0 for 
n 

even one value of n. (4) is clear. 



It would be convenient to introduce at this point a number of terms 

and concepts which we shall find useful both in the statement of the re

sults as well as in the subsequent proof. 
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Let A and m be two classes of subsets of the same set. A is said to be 
dense in m if for any non-empty set B E m there is a non-empty set A e: /A 

such that A c B. IA is said to be a refinement of m if for any set A e: /A 

there is a set B e: m such that A c B. IA is said to be a dense refinement 

of m if it is both dense in m as well as its refinement. In the case of 

subsets of a metric (topological) space we define in addition: /A is strong

ly dense in m and IA is a strong refinement of m and finally, A is a strong

ly dense refinement of m if the requirement A c B is strenghtened to A c B. 

Clearly, if IA is dense (resp. strongly dense) inm then there is a subclass 

of A which is a dense refinement (resp. a strongly dense refinement) ofm. 

Let T and Z be metric spaces. LetC(Z,T) denote the class of continuous 

mappings g: T • Z. It is easy to see that C(P X ,T) = P C(X ,T). Ball(Z) n n n n 
denotes the class of balls in the space z. For v e: Ball(Z), cntr(v) is the 

centre of v. A mapping g e: C(Z,T) is called open at a point t 0 if for any 

v e: Balls(T) such that t 0 = cntr(v), g(t0) e: Int g(v); it is called open 

on a set if it is open at each point of this set. c0(z,T) denotes the class 

of mappings from Tinto Z, continuous and open on T. 

A mapping g e: C(PX ,T) is called aoordinate-open (at a point, on a 
n 

set) if all its factor-space projections: proj og, n=l,2, ••• are open n 
(relative to the respective spaces X ). n 

A class of balls in a metric space with equal radii is called equi-

radial. A class of mappings G c c0cz,T) is equi-open if for any equi-radial 

class Uc Ball(T) there is an equi-radial class U' c Ball(Z) which is dense 

in the class G[U] = {g(u):ge:G,ue:U}. A class G c C(Z,T) is equi-aontinuous 

if for any equi-radial class Uc Ball(Z) there is an equi-radial class 

U' c Ball(T) such that cntrU' = {cntr(u') : u' EU'} c G- 1[cntr(U)] = 

= {g-1(cntr(u)) : ge:G,ue:U}, and that U' is dense in G- 1[u]. 

A class G c C(P X ,T) is aoordinate equi-open (resp. aoordinate equi
n n 

aontinuous) if all the classes G = {proj g: g e: G}, n = 1,2, ••• are 
n n 

equi-open (resp. equi-continuous). 

A mapping g e: C(PX ,T) with all the projections proj O g open on some n n 
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open subset of Twill be called a general mapping. Evidently, coordinate 

-open mappings on Tare general mappings. 

3. MAIN RESULTS 

We state the results of this paper in the form of the following: 

THEOREM: Let X, n = 1,2, ••. and T be metric spaces. Let on each X there n 00 n 
be given a countable class {~n,i}i=I of generating functions. Under the 

asswnptions: 

(al) : 

(a2): 

(a3): 

each Xn' n=l,2, ... , is separable, 

T is complete, 

T is separable, 

there exists in X = P X a { iJ; • } • -thin Borel subset H with the prope"'ty n n n,1. n,1. _,. 
for any general mapping g: T + x 

(3. I) H n g(T) =I= 0. 

If (a1), (a2) a:nd, moreover 

(a4): each Xn has the property that its closed balls are corrrpact, 
- - _, --

then given any coordinate equi-open and coordinate equi-continuous class 

G c C(X,T) there exists a strongly {iµ .} .-thin closed subset Hof X with 
n,1. n,1. 

the property that (3.1) holds for any g E G. 

A question which the author considers to be of interest but which 

remains unanswered in the present paper is: 

Does the first part of the result hold if instead of a general mapping we 

use a continuous mapping with the property that all the projn ° g, 

n = 1,2, .•. are open simultaneously on an uncountable set? 

The next fi=w paragraphs contain the proof of the theorem. 

4. PRELIMINARY LEMMAS ON NETS 

We define yet one more general concept: Let A be a class of subsets 

of a metric space Z. An at most countable subclass E of Ball (Z) which 

is a strongly dense refinement of tA will be called an Ul.)-net. 



In the case when all the balls constituting a net are mutually disjoint, 

the net will be called a disjoint net. 

REMARK: A strongly dense refi~ement of a countable set is automatically a 

net. 
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Let Z and T be two separable metric spaces. Let V c Ball(T) and F c C(Z,T). 

LEMMA 4.1. Let F c c0(z,T). Then F[VJ has a disjoint net. Under the assump

tions that Fis equi-open and Vis equi-radial, the net may be assumed to 

be equi-radial ana· have elements whose distanaes are bounded away from zero. 

PROOF. Since by our assumption Int f(v) 'F 0 for (f ,v) € F x V, there exists 

a class Uc Ball(z) which is strongly dense in F[V]. Let D be a dense count

able subset of the set cntr(U), D = "{d} • Let U' = {u'} be the subclass of n n n n 
U with cntr(u') = d, n=l,2, •••• Select from U' a disjoint subclass U"= n n · 

{ 11 } " ' k 1 2 tt. " ' d . d t. 1 t k. = uk k' l\ = Un.k' =, , ••• se ing: u 1 = u1 an in uc ive y, a ing as~ 

the smallest natural for which 

k-1 
cntr(u' ) ii U 

nk i=l 
u' • n. 

1 

If we set D = cntr(U'), then clearly 

D = cntr(U') c U u;_, 
k 

-hence also cntr(U) c D c ~ u;.~ This means that for any u € U there is an 

u;_ such that cntr(u) € u;_. In particular this implies the existence of a 

ball u"' with u"' cu n uk". The class {uu"',k: u 1: U, k=l,2, ••• } is a u,k u,k 
strong refinement of both classes U and U" and dense in U hence it is a 

strong dense refinement of F[V] and disjoint, thus a disjoint F[VJ-net. 

Under the stronger assumptions (F equi-open and V equi-radial) the 

class U above may be taken as equi-radial. Here and in the sequel we shall 

find useful the following notation: if u 1: Ball(Z) and a> 0 then au is the 

ball concentric with u with radius a times the radius of u. In addition, we 

write: au= {au: u € U}. Form U' and U" as above and consider the classes 
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314u, 314u•, 314u11 • Since 314u11 is disjoint, the balls from 114u11 are at 

positive mutual distances bounded away from zero. Given u we have that for 

some k 

hence 

1/5 11 
~CU. 

This means that 115u11 is strongly dense in U. Since U" c U' c U, it follows 

that U" is also a refinement of U. Thus, 1/SU" is an (F[V])-net which meets 

the stronger requirements. D 

0 1 
LEMMA 4.2. Let V c Ball(T), Vat most countable, F c C (Z,T), E an (F[ 2V])-

net. There exists a strongly dense refinement V' of V which is surrultane

ously a refinement of F- 1[E]. If, moreover, Vis equi-radial, Fis equi

open and equi-continuous then V' may be assumed equi-radial as well. 

PROOF. By the definition of an (F[½V])-net there exists a selection 

(f,v) + ef EE • ,v , e C 
f,v 

acting from F x V into E. Since cntr(ef ) E f(½v), we have 
-1 ½ ,v 

f (cntr(ef )) n ( v) I 0, thus there exists a selection ,v 

-1 ½ 
(f,v) + tf E f (cntr(ef )) n ( v) ,v ,v 

from F x V into T and also a selection 

(f,v) + v' € Ball(T) 
f,v 

V.- C f-l ( ) 
f ef n v. ,v ,v 

The class V' = { v f : (f, v) E F x V} is a strongly dense refinement of V 

and also a refinem;:t of F- 1[E]. Since Vis at most countable by assump-



tion this class V' is a (V)-net. Under the stronger assumptions, lemma 4.1 

yields us an equi-radial E. By equi-continuity of F, the selection of v' 
f ,v 

may be equi-radial as well. D 

LEMMA 4.3. Let~-, 1 sis k, be generating funations on z. For any e > 0 
l. 

there exists a disjoint (F[V])-net E suah that 

(4.1) u E E} < e for 1 s i s k. 
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PROOF. A dense refinement of a disjoint (F[V])-net is again a disjoint 

(F[V])-net. It suffices to note that due to the property (2.1) of a genera

ting function, one may select in a given net a dense ball-refinement which 

satisfies one of the inequalities (4.1). By consecutive application of this 

for i=l, ••• ,k, one obtains such a net, as claimed. D 

5. 

Let Z, n=l,2, ••• be separable metric spaces, Ta metric space. Let 
0 n 

F c C (Z ,T), n=l,2, •••• 
n n 

LEMMA 5.1. There exist two sequenaes of aZasses: E c Ball(Z) and n n 
V c Ball(T) suah that: 

n 

(a) 

(b) 

E is a disjoint (F [ivJ)-net with baZZs n n 
Vn+I is a (Vn)-net and aZso a refinement 

of diameters Zess than 1/n. 
of F-l [E ] • 

n n 

Moreover, assuming that the F are equi-open and equi-aontinuous, E and V n n n 
may be assumed to be equi-radiaZ; n=l,2, ••. • 

PROOF. Let a ball v E Ball(T) be chosen arbitrarily. Set v 1 = {v}. Define 

both the sequences inductively: assuming that we have already Ek for 

1 s ks n-1 and Vk for 1 s ks n, choose as E a~ (F [iv ])-net and as n n n 
V +la (V )-net which is also a refinement of F-1[E J as established by n n n 
the lennnas 4.1 and 4.2 (the condition on diameters of balls from E may 

n 
be satisfied trivially). D 
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LEMMA 5.2. Any f = [f J E PF detemines tuJo sequences: e = e (f) EE nn nn n n n 
and v = v (f) EV, n = 1,2, ••. such that: n n n 

(5. I) e cf (½v) and; 1. c f- 1(e) n v. 
n n n n+ n n 

PROOF. Take as v 1 the sole element of v1• Define both the sequences induc

tively: assuming that we have already the ek for I~ k ~ n-1 and vk for 

I~ k ~ n, select e as an element from E satisfying the first of the in-
n n 

clusions (5.1) and then select as v 1 an element from V 1 satisfying the n+ n+ 
second (namely, taking the selected elementv'f v used in the proof of 

n' n lemma 4.2). 0 

LEMMA 5.3. Assuming that Tis complete we have 

(5. 2) 

for any f = [f J E PF • 
n n n n 

[UE stands for U{e: e EE}]. 
n n 

PROOF. From the 
- -1 
V +l C f (e ) n n n 

second inclusion in 

hence v c f- 1(UE) 
n+I n n 

( 5 . I ) we have v c v and n+l n 
for n=J,2, •.•• Due to the condition 

that the balls of E are of radius smaller than 1/n we have by completeness 
n 

of T: 

n f- 1(UE) ~ n v ; ~- o n n n n n 

LEMMA 5.4. Let for some infinite subset N of the naturals (Zn,Fn) be 

independent of n EN, say 

(5.3) (Z ,F ) = (Z,F) 
n n 

Then the set 

(5 .4) n{UE 
n 

n EN} 

for aU n E N. 



is o-dimensiona.l in z. If, moreover, F, n=l,2, ••• are equi-open and equin 
aontinuous then the same holds for the set 

(5.5) n{UE n e: N}. 
n 
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PROOF. For an arbitrary point x e: n {UE : ne:N} the component c (x) of x in n n 
UE is a ball of diameter less than 1/n and it is an open neighbourhood of 

n 
x relatively closed in UE; it is, therefore, relatively closed in the ren 
sulting intersection. Thus the set is O-dimensional. Under the strengthened 

assumptions and for appropriate nets E the set UE has c (x) as the compon-n n n 
ent of x and the conclusion with respect to the set (5.5) is the same as 

above. D 

00 

LEMMA 5.5. Let[~ .]. 1 be a sequenae of n~nerating funations on Z, ~n,1 1= ~ n 
n=l,2, ••• • Let for some infinite subset N of the na.turals 

(5.6) (Z ,F ,cf> .) = (Z,F,cf>.) n n n,1 1 

[independenae of n]. Then 

(5.7) 
cf>. 

m 1 (n{UE : n e: N}) = 0 
n 

for n e: N 

for i=l ,2, •••• 

Assuming, moreover, that the F are equi-open and equi-aontinuous and that 
n 

(5.8) 

we have 

(5.9) 

Zn have the property that their alosed balls are aompaat 

cf>. 
m 1 (n{UE n e: N}) = 0. 

n 

PROOF. By the lennna 4.3 the nets E may be assumed to satisfy n 
E{cf> .(u) : u e: E} < 1/n for 1 sis n, n=l,2, ••• and in particular 

n,1 n 

u e: E} < 1/n 
n 

for 1 s i s n, n e: N. 



10 

Each E , n EN is a covering of the set (5.4) by balls with diameters smal
n 

ler than 1/n. This implies (5.7). 
0 Go over now to the strenghtened version. Let z E Z an arbitrary 
n n 

point-selection with the condition: 

(5. 10) z O -· z O, whenever Z = Z , • 
n n n n 

We have evidently the following: 

. 0 
Z = U{u(z ,n) 

n 
n E N}. 

Due to our strengthened assumptions the E are equi-radial and specifically n 
due to (5.8) the subclasses E of E , where 

n n 

E = {u EE 
n n 

0 u c u (z ,n)}, 
n 

are all finite. Therefore, E may be assumed to satisfy n 

for 1 :.:; 1 :.:; n, n= 1 , 2, ••. 

Indeed, if necessary, using (2.1) a sub-net may be selected in E , again 
n 

an equi-radial one, for which it holds already. For a fixed m EN and for 

n E N large enough, E is a ball-covering of the port ion n{ UE : n E N} n 
0 n <f,P. 

n u(z ,m) and by the same argument as above, the value of m 1 on this por
m 

tion for all i=l,2, ••• is zero. This proves (5.9). D 

6. PROOF OF THE MAIN THEOREM 

Let n + [K(n),K 1 (n)] be a one-to-one mapping of the set of naturals 

onto the cartesian square of this set. Let X, n=l,2, .•• be separa.ble metric 
n 

spaces; Ta separable and corrrplete metric space. Let on each X there be 
oo n 

given a sequence [w .]. 1 of generating functions. Set: n, 1 1= 



Clearly, all the properties of the spaces X and the classes of mappings n 
g: T + X are reflected in the same properties of the spaces Z and the 

n n 
mappings f: T + Z. Note in particular, that making a selection x0 EX 
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0 0 n O O n n 
: x = x ,, whenever X = X , .by taking z = ·x ( ) we obtain a sequence sat-n n n n n K n 
isfying (5.10). 

Let g = [gn]n E PnXn and let fn = gK(n)· We have: fn = gk for K(n) = k 

and 

f-l (UE ) n n{f-1(UE) K(n) k} -1 
n = = = n gk (O{UE n n n k n n k n 

Setting 1\ = n{UE K(n) = k} we obtain the result of the lemna n 
form 

(6. 1) 

0 for any g = [g J E PC (X ,T). Since we have n n n n 

g-l(P H) = {t ET 
n n 

g (t) EH for n=l,2, ••• } n n 

(6.1) takes the form 

-1 
g (PH):/: 0. 

n n 

Or, setting H =PH, the form nn 

(6.2) H n g(T) :/: 0. 

K(n) = 

5.3 in 

The set His a Borel set in X =PX and namely of G~ type (because n n u 

so were the sets H in their respective spaces). By lemna 5.5 (the weak 
fk . 

version) we have m ' 1 1\ = 0 for k,i=l,2, ••• (let us recall here that 

k}). 

the 

~n,i = wk,i for K(n) = k). The stronger versions of the lenn:nas 5.1, 5.4 

and 5.5 assert that given equi-open and equi-continuous classes G c c0 (x ,T) 
n n 

the sets 1\ (depending upon the collection of those classes) may be assumed, 

moreover, to be closed. In the latter version a mapping g is supposed to be 
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taken from the product PG. Given any class G of 
n n 

mappings g:T + X =PX, 
n n 

we can enclose it in the product: G c PG where G n n n 
without loss of generality we may assume that G has 

duct. 

= {proj 0 g: gEG}. Thus 
n 

the form of such a pro-

Thus, in order to show that the set His thin in the sense exposed in 

page 2 in the weaker version and strongly thin in the stronger version only 

one detail is still missing: namely, that the sets H are Hausdorff O-
n 

dimensional. But this is easy to achieve: without any loss of generality 

instance all the even i-indexed measures are Haus-we may assume that for 
tjln 2s 

dorff measures: m ' = 1/s . 1/s 
A (by taking tjJ 2 = X ). Hence Hausdorff n, s 

0-dimensionality follows directly. 

Thus far the weaker version has been obtained only for mappings g 
0 from PC (X ,T). Let us extend this result just a little. Note that each 

n n 
of the balls u E Ball(T) after closure may be considered as a new para-

meter-space. Relativizing everything to the new parameter space ;:i and us

ing the notation ¾Cu) for the sets introduced earlier (in which the depen

dence upon the parameter-space is made explicit) we shall write H(u) = 

= Pk¾(u) and, choosing a countable base B of T consisting·of balls, 

H = U{H(u) u E B} 

(note that this is the only place where we made use of the assumption of 

separability of T). By the property (4) page 2 (countable additivity of thin 

sets) His a {tjl .}-thin set. But for this set (6.1) holds for any general 
n,i 0 

mapping g:T • X. Indeed, for a suitable u from the countable base of balls 
0 0 

in T the restriction gluO is in PnC (Xn,u ). This concludes the proof of 

the theorem. 

7. EXAMPLES AND APPLICATIONS 

(l) Let m be a fixed natural and let the spaces X , n= 1, 2,... as well as T n 
be identical with the Euclidean space Rm. Let G (again independent of n) 

n 
be the class of translations of Rm (onto itself). Thus, as a matter of fact, 

tjJ • 
G is identical with Rm again. Take m n,i just arbitrarily. Our result 

n 



yields in this case (we use the crucial relation in the form (6.1) rather 
m than (6.2)): There are closed nowhere dense sets H c R, n=l,2, ••• each n 

of Hausdorff dimension zero such that for any sequence of vectors (trans-
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n=l,2, ••• there is a point x E Rm such that x E n -lH = 
n gn n 

x + {g} = {x + g} c UH. 
nn nn n n 

Since the set {g} c Rm was arbitrary, this means: There exists in Rm a nn 
Borel set of F -type, of first category and of Hausdorff dimension zero 

0 

with the property that any countable set of points in~ may be placed 

within this set under a suitable translation. 

Before passing over to the next example let us point out that all our 

considerations in this paper are valid for an at most countable number of 

spaces X. In the forthcoming example it will be a finite number. 
n 

(2) Let X, 1 s n small be identical with R1 = R in which case we have: 
n 

PX =Rm.Let T =Ras well. Take the measures again arbitrarily. Then 
n n 

P cO(x ,T) = PCO(R,R) is the class of continuous mappings from R into i11 
n n 

with the property that each coordinate-axis projection of such a mapping 
m (being real-valued) has no extrema. Consider a Jordan curve in R together 

with all its possible locally-supporting hyperplanes perpendicular to the 

coordinate axis. If the set of support points is not dense on the curve, 

then any parametrization of the curve results in a general mapping. There 

exists in Rm a thin subset which each such a curve must meet. Restricting 

ourselves just to smooth Jordan curves it is easy to state a sufficient 

condition for the above condition: the tangent of such a curve must nowhere 

be parallel to one of the coordinate-hyperplanes or at least the set of 

points at which this occurs must not be dense on the curve. 

And now the stronger version: Consider in Rm the class of Jordan curves 

which are smooth and parametrized by the entire R. Assume that for the curves 

of this class the direction of the tangent remains within a cone with axis 

the diagonal {x = [~J:=l : x 1 = x2 = ••• = xm} and of an angle a,O <a< TI/2. 

It is easily seen that the class of corresponding parametrical mappings in

to Rm is coordinate equi-open and coordinate equi-continuous. Therefore, 
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there exists a strongly thin set in Rm (depending on a) which meets each 

of the curves of the family. 

(3) In specifying even more the example (2), take m = 2 and as the class of 

the curves (th1: stronger version) take the straight lines parallel to the 

. d. 1 . 2 { ( ) i:-} i:- R O 1 k h main iagona in R: x 1,x2 : x 1-x2 = ~ , ~ E • ur resu t ta es up t e 

form 

or rn words: There are two closed, Hausdorff 0-dimensionaZ ( and certainZy 

nowhere-dense) sets on the Zine for which the set of distance between cou

pZes of points taken from those sets fiZZs up the entire real, Zine. (c.f. 

[ I J). 

m=l m 
(4) Let f: x • [f] 1, x = [x] 1 be a continuously differentiable map-q q= pp-

m m-1 
ping from R onto R • Since the (m-1)-minors of the Jacobi matrix 

llaf /ax !Im I m I are the coordinates of a tangent vector.to the mani-
q p p= ' q= 

fold f-l (f(x)) at a point x E Rm at which they are all non-vanishing, 
any parametric representation x = g(t) of f- 1(f(x)) (a piece about x) is 

-I 
coordinate-open at t = g (x). Therefore, the condition that they do not 

vanish anywhere in Rm is sufficient for the existence of a thin set Hin 
m -1 m-1 

R meeting any level set f (y), y ER or, in another form, being mapped 
m-1 by f onto R • Such a set H would be universal for all the mappings f from 

m m-1 
R onto R for which the said non-vanishing condition holds. Further ex-

amples and gene,ralizations are yet possible. 
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