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-?stract: We show an explicit algorithm that a set-algebra defined by 

A. Mostowski in 1938 is not only universal for countable Boolean 

Algebra's and partial orderings but that these embeddings are 

effective whenever the embedded structures are recursive. 

Introduction: A. Mostowski defines in 1938 [Mo] a partial order (M,~) which 

is universal for countable partial orderings; i.e. for every coun­

table partial ordering (X,R) there exists an order-preserving em­

bedding of X in M. This ordered set Mis in fact an algebra of 

sets, ordered by inclusion. 

The proof of this universality is not given in [Mo]. 

Mostowski refers to earlier results concerning general Boolean 

algebra. In modern words the argument is as follows: Under the 

Stone representation theorem [St] the Mostowski algebra corre­

sponds to the Cantor space. The topological theorem that each 

metrizable zero dimensional compact space can be embedded into 

(is a continuous image of) the Cantor space yields that each 

countable Boolean algebra, having such a space as Stone space is 

a homomorphic image (subalgebra) of the Mostowski algebra. 

The algebra Mis easily seen to be a recursive algebra in a 

suitable indexing. The universality property shows that in parti­

cular all recursive partial orderings can be embedded. The classi­

cal proofs however do not yield these embeddings to be effective. 

In order to get effective embeddings we present a complete proof 

and an explicit algorithm to embed orders. The construction works 

correctly for initial complete set-configurations, a concept de­

fined in this report which embraces both Boolean algebra's and 

partial orders as particular examples. 
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§1. Notations, definitions and the free structures 

Notations JN denotes the set of non negative integers (OElN). For hand 

k E JN we denote the uniquely 
k-1 

<e0 , ••• , ek> satisfying I 
i=O 

bn( n ,k). 

determined O - 1 sequence 

e. * 2**i = n mod 2**k by 
i 

The element e. is denoted by bn(n,k)[i]. 
i 

E denotes the set of O - 1 functions with finite domain. 

We have some fixed canonical indexing n : JN • E. The domain 

of a function f is denoted by Vf. 
Ek c Eis the subset of functions with domain [O,k) 

Let E00 = u Ek; E00 has the structure of a binary tree. 
k 

The binary representations bn(n,k) are considered as members 

of Ek also; 

Two functions f and g EE are called compatible iff 

f I Vf n Vg = g I Vf n Vg, and they are called incompatible 

if these two restrictions are distinct. The union of two 

compatible functions f and g is denoted by f u g. 

If X = (X.). is a collection of sets in some domain E 
i (_) 

then we denote X = X and x1 = E \ X. For f EE we have 

f( . ) 
X(f) = n X. J • X(n,k) denotes the set X(bn(n,k)). By con-

j EVf J 

vention X(n,O) = E. 

The same conventions are used for a sequence of elements 

in a Boolean algebra A with operations un, ints, cpm, egv, 

and incl, representing union, intersection, complementation, 

equality, and inclusion. The relation eqv is not assumed to 

be identity; it is however a congruence relation with respect 

to all operations. A/eqv is a (distributive) Boolean algebra 

in the usual sense. 
0 1 

For elements x EA we denote x = x; x = cpm x. For 

f EE and for a sequence X = (x. ). the element 
i i 
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Ints{x1(j) I j E Vf} is denoted by x(f). Again x(n,k) = x(bn(n,k)). 

Representants of the zero and one class are denoted by¢ and 

u. 

Proposition 2: For compatible f and gone has X(f) n X(g) = X(fug) 

(x(f) ints x(g) = x(fug)). If f and g are incompatible 

X(f) n X(g) = 0 (x(f) ints x(g) = 0) 

Proof 

Definition 3 

Definition 4 

Lemma 5 

proof 

trivial. 

A Boolean algebra A= <A,~' ints, cpm, egv, incl> 

is called recursive provided A is= JN (or A is indexed by a 

fixed canonical indexing) and all operations and relations 

~' ints, cpm, egv and incl are total recursive. 

For A= JN (or A is canonically indexed) we denote by A(f) 

the element Ints {jf(j) I j E Vf} in A. 

Let A be a Boolean algebra and let Kc P(E) be a set 

algebra. A homomorphism~ : A • K is called a (faithfull) 

representation iff for each pair x, y EA ~(x) = ~(y) iff 

x eqv y. (By a homomorphism we mean a mapping satisfying 

~(x un y) = ~(x) u ~(y); ~(x ints y) = ~(x) n ~(y) and 

~ ( cpm X ) = E \ ~ ( X ) ) • 

A homomorphism~ : A • K is a representation iff for each 

X E A ~(x) = 0 iff x egv ¢. 

¢::::=; one has x egv y iff 

(x ints (cpm y)) ~ ( (cpm x) ints y) eqv rf> iff 

(~(x)n~(y) 1 ) u (~(x) 1n~(y)) = 0 iff 

~(x) = ~(y) 
The other implication is trivial. 
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Definition 6 [The free Boolean algebra on a countable sequence of inde­

pendent elements]: 

Define a language L (terms) by 

( i) for k E 1J v[k] E L 

(ii) if t1, t2 EL 

( cpm t 1 ) E L 

The above syntactical constructions define the operations 

un, ints, and cpm on L. 

(iii) A relation egv is defined on L to be the smallest congruence 

relation containing all pairs resulting from substitution of 

terms for the variables in the left and right hand side of 

axioms for a Boolean algebra. For example we consider the 

following (not minimal) axiomatization: 

X un y = y un x x ints y = y ints x 

(x un y) un z = x un (y un z) (x ints y) ints z = x ints (y ints z) 

x un x = X X ints X = X 

x ints(y un z)=(x ints y)un(x ints z) x un(y ints z)=(x un y)ints(x un z) 

fact 7 

~pm (cpm x) = x 

cpm (x ~ y) = (cpm x) ints (~ y) cpm (x ints y) = (cpm x) un (cpm y) 

x ints (y un(cpm y)) = x 

(iv) The relation incl is defined by 

t 1 incl t 2 iff (t 1 ints t 2 ) egv t 1 

Note that tun (cpm t) (t ints(cpm t)) represent the one 

(zero) element in L for each t EL. 

The sequence (v[i]). is denoted by v 
l 

For a suitable canonical indexing of L the free Boolean alge­

bra defined above becomes a recursive Boolean algebra. 

The recursiveness of the relation eQV as defined above 

is nothing but the decidabillity of propositional calculus. 
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Definition 8 [The Mostowski Algebra]. Let Ebe some (infinite) set. 

Let there be defined a decomposition of E into non empty 

subsets B(n,k) fork E JN, 0 $ n < 2**k satisfying: 

(i) B(O,O) = E 

(ii) B(n,k) = B(n,k+1) u B(n+2**k,k+1) 

B(n,k+1) n B(n+2**k,k+1) = 0 

Let B = {B(n,k) I k EJN, 0 $ n < 2**k} 

and let M be the set-algebra generated by the collection B. 

In fact M consists of all finite unions of members from B. 
Mis called the Mostowski Algebra. 

proposition 9: Let Ck= u {B(n,k) / bn (n,k) [k-1] = O} and 

proof 

fact 10 

remark 11 

let C = (Ck)k. Then fork E JN. 0 $ n < 2**k we have 

B(n,k) = C(n,k) 

By induction on k 

Define W : L • M by 

(i) w(v[k]) = Ck 

(ii) w(t1 un t2) = w(t1) u w(t2) 

w(t1 ints t2) = w(t1) n w(t2) 

w(cpm t) = E \ w(t) 

Then w is a representation from Lin M which is faithfull. 

This assertion is in fact nothing but the completeness of 

propositional calculus. 

The homomorphism w satisfies the relation ~(v(f)) = C(f). 

If there is no danger for confusion we write ~(f) in stead 

of ~(v(f)). 
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Examples 12 : Two physical representations of the Mostowki Algebra are: 

(I) E =:N ; B(n,k) = {m Im= n mod 2**k} 

00 

(II) E = TI {0,1} (the Cantor space) and Ck= n;1(o) 
i=O 

Since the Cantor space is in fact the Stone space [St] of the free 

Boolean algebra Lit is not amazing that the clopen subsets in the Cantor 

space represent L. Considering the natural numbers inJN as a subset of 

the ring of 2-adic integers with the 2-adic topology we conclude that 

the first representation of M consists of the intersections of the clopen 

sets in a Cantor space with a countable dense subset. 
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§2. Set configurations and their representations 

The free structures defined in the preceding section describe the 

configuration of a countable sequence of independent sets; sets for which 

no non-trivial set-theoretical relation holds. In this section we consider 

the situation of a non free configuration; there is given a number of re­

lations which must be made valid. 

For example we want to satisfy x0 ~ X1; x1 n x2 ~ x3 ; 

XL u x5 c Xr u x8 etc. • It is not difficult to see that these rela-

tions can be translated into a series of relations in a normal form of the 

type n Jf.( j ) = ¢ where Fis the finite domain of a function f E E. The 
jEF J 

1 1 three relations above become after translation XO = tJ x° 0 n x1 ; n x2 n X3 0 1 

XO n x1 n x1 = ~ etc 5 7 8 JJ • • • • • 

The complete configuration is described this way by a collection of 

0 - 1 functions with finite domain; i.e. a subset of E. The same relations 

can also be interpreted within a Boolean algebra. This explains our next 

definition. 

Definition 13 A (set)-configuration Fis a subset of E. A (set) confi­

guration is called recursive iff Fis a recursive subset 

of E (in some fixed canonical indexing of E). 

In general the relations in F will force other relations to be­

come valid which are not necessarily contained in F. If X. n X. =¢is 
l J 

a relation in F then 
£ 

X. n X. n r 
l J -K 

Moreover if both X. n X. n 
l J 

in F we can derive that X. 
l 

X. = 
J 

=¢for each k and each£ E {0,1}. 

1 
and X. n X. n x_ = ¢ are relations 

l J -K 
¢ also; it is inconsistent to assume 

that a non empty set has a 
1 

Xk. empty intersection with both Xk and 

= tJ; 
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Proposition 15: 

proof 

Lemma 16 

proof 
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A (set) configuration Fis called extensive iff F 

contains each extension E of each member of F. Fis 

called consistent iff each f EE with the property that 

for some k f. Vf both f u {<k,O>} and f u {<k,1>} are mem­

bers of Fis a member of F itself. A configuration F wich 

is both extensive and consistent is called complete. 

The intersection of extensive (consistent, complete) 

configurations is again extensive (consistent, complete). 

Each configuration Fis contained in a minimal extensive 

(consistent, complete) configuration which is denoted by 

ext F (~ F, .£E. F). 

The first assertion is trivial and implies the second 

by taking the intersection of all extensive (consistent, 

complete) extensions of F. 
The configuration~ F can be defined inductively as 

follows: 

Let cs 1 F = F u {g E E I :3: 1 [ 1 f. Vg and g u { < 1 , 0 > } E F and 

and g u {<1,1>} E F ]} 

Let F0 = F and let Fk+ 1 = cs1 Fk. Then one easily verifies 

that cs F = u F. 
k k 

If g E ~ F then the least k so that g E Fk is called the 

length of a proof for g E ~ F. 

The following three configurations are equal: 

F1 = .£E. F 

F2 =~ext F 

F3 = {g I :3:k E 1'l [Vg c [O,k) and ext {g} n Ek c ext F]} 

F2 .=. F1 is trivial since F c F1 and F1 is complete. 

F3 .=. F2 Let g E F3 and let g c [O,k) and let 

ext {g} n Ek c ext F. By induction on# ([O,k)\Vg) 

one proves g E ~ ext F. 
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Remark 18 

Proposition 19 

proof 
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F1 ~ F3 : Since F c F3 is trivial it is sufficient to show 

that F3 is both extensive and consistent. 

Let g E F3 and suppose h E ext {g}. 

Suppose Vg E [O,k) and ext {g} n Ek c ext F. Then for each 

1 ~ k we have ext {g} n E1 c ext F. If Vh c [O,l) we then 

have ext {h} n E1 c ext {g} n E1 c ext F. 

Hence h E 

Next 

and f1 = 

Hence f E 

F 3, and consequently F 3 is entensive. 

suppose that f E E, n i. Vf and both f 0 = f u {<n,O>} 

f u {<n,O>} E F3. For sufficiently large 1 one has 

= V c [O,l) and 
f1 

E1 = (ext {f0} n E1 ) u (ext {f1} n E1 ) c ext F 

F3 which proves F3 to be consistent. 

This completes the proof of the Lemma. 

One has not generally .£E. F =ext~ F. 

We do not exclude the case that .£E. F = E; i.e. the 

empty function Eis a. member of .£E. F. A configuration F 
such that .£E. F =Eis called paradoxical. 

Let A be a (recursive) Boolean algebra. Then the col­

lection F = {f EE I A(f) eqv 0} is a (recursive) complete 

configuration. Fis non paradoxical unless egv is the uni­

versal relation JN x JN. 

trivial. 

Prop.19 shows that a Boolean algebra determines a configuration. We now 

wants to reverse this relation: 

given a configuration F we want to construct a Boolean algebra or a 

set-algebra satisfying the relations of F but no relations which are 

not derivable from F. 
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In this report we consider three constructions. 

The first construction which can be called a syntactical construc­

tion yields a quotient algebra of the free algebra L. We extend egv to 

the smallest congruence relation containing both eqv and all pairs 

<v(f),¢> for f E F. 

The resulting algebra is denoted 

The second construction starts with a Mostowski algebra on some do­

main E. We delete from D each set C(f) for f E F. The resulting set 

F c E F = E \ u {C(f) I f E F} determines a set algebra MF consisting of 

the sets An F for A EM. This construction can be called an excision 

construction. The mapping A+ An F clearly is a homomorphism from M 

onto MF. 

Let w be the mapping w: L + M defined in fact 10. 

We define wF: L + MF by wF(v(f)) = C(f) n F. It is easy to see that wF 

is in fact a homomorphism from LF onto MF; see our next proposition. 

If there is no danger for confusion we write wF(f) in stead of wF(v(f)). 

The third construction which is described in section 4 yields a re­

presentation of LF in the Mostowski algebra M by a suitable exchange be­

tween the sets Ck and their complements. In this way we make the set C(f) 

for f E F vanish without deleting material from E. 

This construction is correct if the configuration F satisfies cer­

tain conditions which are introduced in the next section. 

Proposition 20 Let the Mostowski algebra M consist of clopen sub­

sets of a compact space (the Cantor space for example). 

Then the following assertions are equivalent: 

(i) fE.£P.F 

(ii) v(f) egvF ¢ 

(iii) wF(f) = r/J 
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proof 

(i) • (ii):If f E F then v(f) eqvF 0 by definition. 

(ii) • (iii): 

(iii) • (i): 

Remark 21 

If g E ext{g} then v(g) inc v(f) eqvF 0 and hence 

v(g) eqvF ¢. Finally suppose g E .£J?_ F. Then there exists a 

k E :N so that Vg c [O,k) and ext {g} n Ek c ext F. Then 

v(g) eqv Un {v(h) I h E ext {g} n Ek}. 

Consequently v(g) egvF Un{¢ lh E ext {g} n Ek} eqv ¢. 

Let eqvF be the "kernel" of iµF: 

relation on L which contains both eqv and all pairs 

<V(f), i> for f E F since iµF(f) = C(f) n F.::. C(f) \ C(f) = 

=¢=iJ;(¢). 

Consequently egvF.::. eqvF which proves the implication. 

Suppose 1/JF(f) =¢.Using Lemma 16 we show f E .£J?_ F. 

1/JF(f) = iJ;(f) n F = iJ;(f) \ u C(g) = ¢. 
gEF 

Each C(g) is an open set and iJ;(f) is compact; consequently 

there exists a finite union C(g 1 ) u ••• u C(gk) wich con­

tains iJ;(f) = C(f) ; g. E F. 
l 

Select an integer 1 so that Vf c [O,l) and so that 

Vg. c [O,l) for i = 1, ... , k. Using C(f) : 
l 

u {C(h) I h E ext {f} n E1 } and similar relations for the 

C(g.) we conclude 
l 

Now the sets C(h) for h E E1 are either equal or disjoint. 

The above inclusion implies therefore 

ext {f} n E1 .::. ext {g 1, ... ,~} n E1 .::. ext F n E1 . 

Hence f E .£J?_ F by lemma 16. 

The compactness of the elements of the Mostowski al­

gebra is necessary in the above proposition. Taking repre-
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sentation (I) of example 12 we can construct an example 

where (iii) • (i) does not hold. 

Let fk be defined by fk(x) = if x < k then 1 else if x = k 

then O else 00 and let F = (fk)k. The intended meaning of 

this configuration reads: 

X = el · 0 , xl C X ; 
- 0 

Hence for each k Xk = el 

x2 5:. x1 u x0 ; ••• etc. 

If we apply the excision construction for this configu­

ration we find 

F = E \ u C(fk) = E \ u B(2**k-1,k+1). 
k€1N kEN 

In representation (I) where E =E" this is the set 

F = {z I vk>l [bn(z,k) [l] = 1]}. This set however is empty. 

Consequently MF is trivial whereas X~ = ~ is not derivable 

from the relations in F. 

To complete this section we consider the case that F is recursive. 

In this situation ext Fis also recursive but .£E_ F may fail to be recur­

sive. This can be seen from our next example: 

Example 22 [A recursive configuration with a non recursive completion]. 

Define the functions f n,k 
and gn,k by: 

Vf = Vg = {<j,k> 0 ~ J ~ n} 
n,k n,k 

f (<j,k>) = if j < n then 0 else if j 
n,k 

gn,k (<j,k>) = if j ~ n then O else oo 

The intended meanings of fn,k and gn,k are 

X n <O,k> n X c X c q 
<n-1,k> - <n,k> · · 

X n <O,k> n X n X k = ~ • <n-1 ,k> <n, > 

Consequently g k-l E ~ {f k' g k} • n, n, n, 

= n then 1 else 00 • 
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We now define a configuration F 

where F k is defined by: n, 

F = u {F klkEW, n~1} n, 

{f k} iff 4>k(k) > n - 1 ( *) n, 
F = n,k 

{f k' g k} iff 4>k ( k) = n - 1 n, n, 

r/J otherwise 

It is clear that Fis recursive. However one easily 

proves that gO,k E .£E. F (i.e. X<O,k> =¢) iff 4>k(k) < oo. 

This reduces the halting problem to the set .£E. F and con­

sequently .£E. Fis not recursive. 

This example illustrates a fact which is known in propositional cal­

culus: it is possible to construct recursive systems of axioms which ge­

nerate an undecidable theory. 

(*) 4>k denotes the runtime of the program ¢kin an effective Godelnumbe-

ring of all computable functions: V4>k = V¢k and ¢k(x) = y is decidable. 

Readers unfamiliar with the concept of a Complexity measure [Bl] can 

replace the condition 4>k(k) = n - 1 by T(k,k,n-1) where Tis the 

Kleene predicate. 



-13-

§3 Initial configurations 

Definition 23 

Remark 24 

Notations 25 

Definition 26 

Notations 27 

Lemma 28 

(i) 

(ii) 

(iii) 

( i V) 

A configuration Fis called initial if F c E. 
00 

For f EE we denote the integer µz[Vf c [o,z)J by len f 

and we let init {f} = ext {f} n Elen f. 

len f is called the length off. 

The initial configuration init F = u {init{f} I f E F} 

is called the initiation of F. 

The initiation of F contains in fact all information 

of F; in particular one "reconstructs" F from init F since 

F c cs init F. ---
Let f E Ek. Then tf denotes the function f u{<k,O>} and +f 

denotes the function f u{<k,1>}. tf and +fare the two ex­

tensions off in Ek+1. Note that C(f) = C(tf) u C(+f). 

A configuration Fis called initial extensive if 

ext F n E c F. An initial configuration Fis called initial 
00 

consistent if each f EE with the property that both tf 
00 

and +fare members of Fis a member of F itself. An arbitrary 

configuration Fis called initial consistent if its initiation 

is initial consistent. A configuration which is both initial 

consistent and initial extensive is called initial complete. 

For (initial) F iext F (ics F, icp F) denotes the smallest 

initial extensive (initial consistent, initial complete) 

extension of F. (ics F 1s only defined for initial F) 

Let F be initial. Then we have: 

iext F = ext F n E -- 00 

1CS F = cs F n E 
00 

icp F = £1?. F n E 
00 

icp F = ics iext F = iext icp F -----



proof 
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(i) is trivial 

(ii) 

(iii) 

The inclusion ics F c cs F n E is trivial, since 
00 

cs F n E is initial consistent. The converse inclusion is 
00 

proved by induction on the length of a proof for f E cs F. 

Induction assumption: If f E cs F by a proof of length~ k 

then init {f} E ics F. 

Base for induction argument: If f E F then f E ics F 
since Fis initial. This covers length 0. 

Induction step: Let f E cs F by a proof of length k + 1. 

Then there exists a 1 i f so that both f 0 = f u {<1,0>} and 

f 1 = f u {<1,1>} are members of.£§_ F by a proof of length 

~ k. Consequently init {f0 } u init {f1} c ics F. 
Let n = len f. If 1 < n then init {f} = init {f0} u init {f1} 

and consequently init f c ics F. If however n ~ 1 one conclu-

des only that ext {f} n E1+1 c ics F. 
From this one derives by induction on 1 - n that init {f} c ics F. 

The induction assumption yields the inclusion 

cs F n E c ics Fas a straight forward corollary. 
00 

Since_££ F n E00 is initial complete the inclusion 

.!.£E. F C 

proved by: 

_££ F n E00 is trivial. The converse inclusion is 

.££ F n Eoo =.£§_ext F n Eoo = lCS 

ics iext F c ~ F. 

(ext F n E) = 
00 

(iv) The relation ics iext F = .!.£E_ Fis proved in (iii). 

Now the initial extension of an initial consistent configu­

ration Fis initial consistent: Suppose f EE; tf and 
00 

+f E iext F then either tf and +f E For f E F and in both 

cases we are done. But from this one derives 

i.£:e. F = ics iext F .=. ics iext ics F = iext ics F .=. ~ F. 

This completes the proof. 
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§4 Effective embedding of configurations in the Mostowski algebra. 

In section 2 we constructed a representation ~F of a configuration 

F by excision of a set Fin the domain E of the Mostowski algebra M. 
In order to yield a faithful representation we had to assume that E was 

compact. 

In the present section we define a representation which is based on 

a suitable "trade off" between the sets Ck and their complements. The. trade 

off is defined inductively. The assumption that Eis compact becomes super­

fluous but we must assume that Fis non paradoxical and initial complete. 

Theorem 29 

proof 

Let F be an (initial) complete non paradoxical con­

figuration. Then there exists a sequence of sets V = (D ) 
k k 

with the following properties: 

(i) Dk is a finite union of sets B(n,k+1) 

(ii) V(n,k) = 0 iff bn(n,k) E F. 

Fork= 0 we take 

0 
E 

B( 0, 1 ) 

iff bn(0,1) E F 

iff bn( 1 , 1 ) E F 

otherwise. 

The case that both bn(0,1) and bn(1,1) are contained in 

Fis excluded since Fis non paradoxical. 

Assume that D is constructed for O ~ m < k, satisfying 
m 

(i) and (ii). Consider a set B(n,k); n < 2**k. Since each 

"piece" B(n,k) is entirely contained in B(n,j) for j < k 

and since D. consists of entire pieces D. we find a unique 
J J e-

sequence <eo,e1,···,ek-1> ei = 0,1 so that B(n,k) c vj J. 
k-1 

Let n' = I eJ. * 2**j then <e0 , ..• ,ek_ 1> = bn(n' ,k) i F. 
j=O 
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Since Fis initial complete this implies that not both 

bn(n' ,k+1) = <e0 , .•• ,ek+l'O> and bn(n 1 +2**k,k+1) = 

<e0 , ••• ,ek_1 ,1> are members of F. 

Hence we can safely issue the following instructions: 

if bn(n',k+1) E F then B(n,k) c D1 
k 

if bn(n 1 +2**k,k+1) E F then B(n,k) C Dk 

otherwise B(n,k+1) c Dk and B(n+2**k,k+1) 1 
C Dk. 

The above procedure tells us how to distribute the 
1 

pieces B(n,k+1) over Dk and Dk. This yields a definition 

of Dk satisfying (i). 

To verify condition (ii) we consider the following 

Induction hypothesis: 

if ,:Q_n(n,k) i F then 

if bn(n,k) E F then 

B(n,k) c V(n,k) and 

V(n,k) = 0, 

This induction hypothesis is easily seen to be valid for 

k = 1. 

Induction step: Suppose first that bn(n,k+1) i F. 

Then also ,:Q_n(n,k) i F and consequently B(n,k) c V(n,k). 

One easily checks from the procedure described above that 

B(n,k+1) c V(n,k+1), and consequently V(n,k+1) # 0, 

If bn(n,k+1) E F and bn(n,k) E F, then V(n,k) = 0; 
however D(n,k+1) ..=. V(n,k) and consequently V(n,k+1) = 0 
also. 

Finally suppose bn(n' ,k+1) E F and bn(n' ,k) i F. 

Let n < 2**k be an integer so that B(n,k) c V(n' ,k). 

Let ek = bn(n' ,k+1) [k]. From the procedure defined above 

we conclude that B(n,k) is inserted entirely in 
1-e 

Dk k and consequently B(n,k) n V(n' ,k+1) = 0. 
Since this holds for each piece B(n,k) contained in V(n' ,k) 
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we conclude that (n 1 ,k+1) =¢.This completes the proof. 

The reader should note that for functions f i E one has 

V(f) = ¢ iff u {V(h) I h E init {f}} = ¢ iff 

init {f} E F iff f E .£.E_ F. 

00 

The test whether a piece B(n,k+1) belongs to Dk or not consits in 

the description of the above procedure of two parts: first we determine 

the piece V(n' ,k) to which B(n,k) belongs; next one determines how the 

pieces B(n,k) are distributed over Dk and its complement. 

These two tests are combined into a single algorithm which is des­

cribed by the following program. 
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Algorithm 30: 

comment The procedure binrep (n,k,e) stores the binary representation 

bn(n,k) in the array e. The procedure condition (k,e) yields an 

answer to the question "is the sequence e[O: k - 1] a member of F". 
belongs to (n,k,condition) delivers an answer whether B(n,k+1) is 

contained in Dk or in Dk1; 

procedure binrep(n,k,e); value n,k; integer array e; integer n,k; 

begin integer i, m; 

form:= n while m < 0 don:= n + 2**k; 

for i .- 0 step 1 until k 1 do 

begin m := n 7 2; e[i] := n - 2*m; n := m end 

end binrep; 

Boolean procedure belongs to (n,k,condition); value n, k; k 

begin 

integer n,k; Boolean procedure condition; 

integer array e[O : k]; integer 1; 

binrep (n,k+1,e); 

for i := 0 step 1 until k do 

if condition(i,e) then e[i] .- 1 - e[i]; 

belongs to := e[k] = 0 

end belongs to; 
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To convince himself of the correctness of the above program the reader 

should note that the element e. = bn(n,k+1)[j] represents the "a priori" 
J 

destination of B(n,k+1) with respect to D .• In the preceding stages of the 
J 

construction some of these a priori destinations e. are disregarded because 
J 

of conditions in F; this fact is accounted for by inverting the corresponding 

element e .• The assumption that 
J 

both destinations e. = 0 and e. 
J J 

wise e[O: j - 1] was already a 

Fis initial complete quarantees that not 

= 1 are forbidden by conditions in F; other-

condition in F and e. 1 should have been in­
J-

verted before. Since Fis assumed to be non paradoxical this argument 'is 

founded. 

It is clear now that belongs to delivers the "a posteriori" destination 

of B(n,k+1) with respect to Dk. 

For non paradoxical initial complete F the above construction yields 

a faithfull representation of LF in the Mostowski algebra. Define a homomor­

phism xF LF • M by xF(v(f)) = V(f). Then for f E E00 one has xF(v(f)) = 
= V(f) = ¢ iff f E F; from which one concludes for general f EE: 

xF(v(f)) = ¢ iff f E .£12. F. 
Moreover algorithm 30 is recursive with respect to a program for the 

procedure "condition", i.e. with respect to F. This yields the following 

corollary: 

Corollary 31 Each recursive Boolean algebra can effectively be represen­

ted in the Mostowski algebra. 
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§5 Effective embedding of orders in M. 

Let R be a partial order on :N (or some other countable set with an 

indexing). Replacing the elements i E VR by the sets L. := {j I JR i} the 
i 

order is translated into a sequence of sets ordered by inclusion. The pairs 

<i,j> ER become conditions of the type L. c L .. 
i - J 

There exists many configurations satisfying these inclusions. For 

R-incomparable elements i and j we do not know whether L. n L. =¢unless 
i J 

an element k can be found which precedes both i and j in the ordering. 

It is not difficult to construct an example of a recursive partial order R 

where it is undecidable whether a pair <i,j> of uncomparable elements has 

a common R-lower bound. See example 32. 

This imp1ies that we should not try to represent the configuration of 

the sets L. in M since by representing the order Ras a subcollection of M 
i 

ordered by inclusion the emptiness of intersections becomes decidable. To 

represent the order R this way we complete the configuration generated by 

the inclusionti: intersections are not empty unless we are forced to take 

them empty. In the situation of two incomparable elements i and j we will 

take two representing sets X. and X. with a not empty intersection 
i J 

=¢says nothing about the presence of an other set Xk c Xi n Xj). (X. n X. 
i J 

The Key lemma which allows us to apply the completion process des-

cribed in §2 and §3 is the fact that the initial extension of the configu­

ration consisting of the inclusion pairs corresponding to R is initial con­

sistent. 

Since the initial extension of a recursive configuration is again re­

cursive this yields an effective representation by theorem 29. 

Example 32 [A recursive partial order with an undecidable common lower­

bound problem]. 

The example is defined by disconnecting a recursive subset of 

elements in a product-ordering making them uncomparable with 

every element except themselves. 

Let R1 on E be defined by x R1 y iff x ~ y (infinite descen­

ding chain). 

Let R2 on Ebe defined by x R1 y iffy= 0. (0 is the common 
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upperbound of a countable sequence of mutually incomparable 

elements). 

Consider the product ordering R1 x R2 onE xE. 

Let Ac Ex Ebe the set A= {<n,k> I n > 0 and ~k(k) ~ n} 

Define R = (R 1 x R2 I (JN x E)\ A) u {<a,a> I a e: A}, 

Hence writing~ for R we have (k,l f O) 

(i) <O,O> ~ <k,O>; <O,O> ~ <O,l>; <k,O> ~ <k+1,0> 

(ii) <k 1,i> and <k2 ,i> ares incomparable for k 1,k2~o i e:E k1~k2 . 

(iii) <k,l> is s - incomparable with every other element if <k,l> e: A 

(iv) if <k,l> i A then <k,l> ~ <k+1,l>; <k,l> S <0,1>; 

<k,l> s <k,O>. 

One now has the following equivalence: 

11 <1,0> and <O,l> have a common lowerbound" iff ~1 (1) < 00 • 

Hence the common lower bound problem is undecidable. 

Notations 33: For 1,J E, if j the function f .. is defined by f .. (x) = 
1,J 1,J 

Lemma 34 

proof 

if x = i then O else if x = j then 1 else 00 • 

For a partial order Ron Ewe let R = {f .. I i R j}. . 1,J 
R is called the inclusion configuration corresponding to R. 

If Risa partial order on JN and if R is the inclusion 

configuration corresponding to R, then iext R is initial 

consistent. 

Let f e: Ek and suppose that both tf and +fare members of 

iext R. Then there exist integers if j and n f m so that 

f .. and f e: Rand so that tf extends f .. and +f extends 
1,J n,m 1,J 

f n,m. 

There are two possibilities: 

(i) k i {i,j} n {n,m}. 

In this case f is already an extension off .. or f and 1,J n,m 
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consequently f E iext R. 

(ii) k E {i,j} n {n,m}. 

In this case we have k = l = m. Moreover 

f( j) = tf( j ) = f. . ( j ) = 
l,J 

and 

f(n) = if(n) = f (j) = O. 
n,m 

Since <i ,j > E R and <n,m> E R we conclude n R k R 

hence n R j. Therefore f E R. 
n ,,J 

Now f extends f and therefore f E iext R. 
n,J 

J and 

The configuration _£ER contains no functions f .. which 
i ,.J 

are not already contained in R. This can be seen as follows. 

Corollary 36 

proof 

Consider the trivial representation of the order R by the 

sets L .. For i and J which are R incomparable we have L. ¢. 
i i 

and L. ¢. L. Since the configuration of the sets ( L. ) . 
J i i i 

satisfies all conditions in R but neither f. nor f. we 
i,J J 'i 

conclude that f. . ' f. f. .£E R. 
i ,J J 'i 

Each recursive partial order can be embedded effectively in 

M; this embedding is uniform in R. 

Take F = iext R in theorem 29. Then we have 

D. C D . iff V( f. . ) = r/J 
i J i,J 

iff f. . E .£E R 
i,J 

iff f .. ER (by remark 35) 
i,J 

iff <i,j> ER. 

Hence the (D. ). represent the order R in M. 
i i 

Since the embedding procedure is uniform in F = iext R 

which is itself uniform in R the embedding procedure is 

uniform in R. 

We complete this section by an algorithm specially designed to represent 

partial orders. 

L. 
J 
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Algorithm 37: 

comment belongs to 1(n,k,order) decides whether B(n,k+1) belongs to 

Dk or not. The configuration represented is the inclusion con­

figuration corresponding to the order which is computed by the 

Boolean procedure order (i,j); 

Boolean procedure belongs to 1 (n,k,order); value n, k; 

integer n, k; Boolean procedure order; 

begin 

end 

integer array e[O: k]; 

integer i, j, ei ; 

Boolean no condition; 

binrep(n,k+1,e); 

for i .- 1 step 1 until k do 

begin no condition:= true; ei := e[i]; 

for j := O, j + 1 while j < i and no condition do 

if if e[j] = ei then false 

else if ei = 0 then order (i,j) else order (j,i) 

then begin e[i]:= 1 - ei; no condition:= false end. 

end for 1; 

belongs to .- e[k] = O; 

belongs to 1; 
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