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Cardinal Functions on Topological Groups 

by 

J. de Vries 

In these notes we make some remarks about cardinal functions on topo­

logical groups. In Section 2 we introduce a new cardinal function on 

the class of all topological spaces, which function coincides with 

the Lindelof degree on all paracompact spaces. In Section 3 some 

applications are made to topological groups, in particular to local­

ly compact Hausdorff groups. In the appendix we describe the weight,· 

the local weight and the density of the space C(X) of all bounded 

real-valued continuous functions on a locally compact Hausdorff space 

X in terms of the weight and the Lindelof degree of X; here C(X) is 

endowed with the compact-open topology. Section 1 is devoted to the 

definition of the several cardinal functions which we shall consider. 

In addition, some trivial remarks are made there about the behaviour 

of these func~ions on topological groups. 

1. Conventions and preliminaries 

In these notes a cardinal function is a function which assigns to 

every topological space a cardinal number in such a way that equal 

cardinal numbers are assigned to homeomorphic spaces. 

Since our motivation lies in applications to topological groups, and 

many of the theorems about cardinal functions require the T0- separa­

tion axiom for the topological spaces involved, we shall restrict our 

attention from the outset to Hausdorff spaces (observe that any topo­

logical group which satisfies the T0 - separation axiom is a Hausdorff 

space). In these notes every topological space is supposed to be.§:. 

Ha .... sdorff space. 

The interior (closure) of a subset A of a topological space Xis deno­

ted by int (A) (A, respectively). The symbol "c" is used in the strict 
• • II II sense. The formula "A c B or A = B" .ls abbreviate~ A :; B . 

The cardinality of a set A is denoted by IAI; in particular,)£:= 1ml. 
As usual,~,~ and IN denote the sets of the real numbers, the integers 
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and the non - negative integers, respectively. 

Now we shall list some cardinal functions. Let X be a topological 

space with topology T. Define 

the weight of X by 

w(X): = min {IBJ I Bis an open base for X}; 

the local weight of X by 

x(X): = sup [min{JVI I Vis a local base at x}J; 
XEX 

the density of X by 

d ( X) : = min { J A I J A ~ X & A = X} ; 

the cellularity (or Souslin) number of X by 

c(X): = sup { JGI I G ~ T & G disjoint}; 

the Lindelof degree of X by 

L(X): = min {Kl each open covering of X has a subcovering 

of cardinality K}. 

For a systematical treatment of these cardinal functions we refer to 

[6]. In that monograph also other cardinal functions are considered 

and the reader may find there many references to the literature. 

The following relations are well-known: 

( 1. 1 ) c(X) .::_ d(X) .::_ w(X) .::_ 2lxJ 

( 1. 2) L(X) .::_ w(X); 

( 1. 3) d(X) x(X) .::_ w(X). 

(inequalities (1.1) and (1.3) are quite trivial, and (1.2) follows 

*) It is known that in locally compact Hausdorff spaces X even 

w(X) < Ix!; cf. [3], Theorem 3.6.9. See also [6], 2.2. 
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from [3], Theorem 1.1.6). Our next observation concerns the Lindelof 

degree in locally compact spaces: 

Let X be a locally compact space. For any infinite cardinal 

number K, the following conditions are equivalent: 

(i) L(X) 2_ K; 

(ii) X has a covering of cardinality K, consisting of 

relatively compact, open sets; 

(iii) X has a covering of cardinality K, consisting of 

compact sets. 

For any completely regular space X we may define the uniform weight 

of X by: 

u(X): = InJ.n {IUI I U is a base for a uniformity, 

compatible with T}. 

Obviously, we have 

( 1.4) x(x) < u(x), 

( 1.5) w(X) = d(X). u(X), 

and in [6], p. 36 a proof may be found of the fact that 

( 1.6) w(X) = L(X). u(X). 

A topological group is a group G endowed with a Hausdorff topology 

such that the function 

p: ( s, t) t--+ st - 1 G X G + G 

is continuous. It is well-known that a topological group G is complete-· 

ly regular, and that a locally compact topological group is para­

compact, hence normal (cf. [5], 8.4 and 8.13). 
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The left uniformity for a topological group G is the uniformity which 

has as a base the family of sets 

{(s,t) I (s,t) E G x G & s- 1t EU}, 

where U runs through a base for the neighbourhood system of the 

identity e of G. It follows immediately that u(G) 2-_ x(G) (indeed, the 

left uniformity is compatible with the topology of G), so that by 

(1.4): 

( 1. 7) u(G) = x(G). 

Hence in any topological group G we have 

( 1.8) w(G) = d(G). x(G), 

( . 9) w(G) = L(G). x(G). 

Consequently, for any topological group G, 

X ( G) < L( G) · L( G) = w( G) ·- d( G). 

However, in any locally compact group G the inequality 

(1.10) L(G) < d(G) 

holds, because G may be covered by d(G) translates of a compact 

symmetrical neighbourhood of the identity of G. 

Consequently, for a locally compact group G there are four possibi­

lities: 

A. x(G) < d(G) = L(G) = w(G), 

B. x(G) = d(G) = L(G) = w(G), 
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C { 1. 

2. 

L(G) < d(G) = x(G) = w(G), 

L(G) < d(G) < x(G) = w(G). 

Notice that in all finite and all infinite discrete groups we have 

A. In non-metrizable, cr-compact groups, C.1 or C.2 holds. 

We shall give now some non-discrete, non-compact examples of all 

possibilities. 

EXAMPLES. 

0 1 . G = ~ x Rd, where ~d denotes the additive group of the reals, 

endowed with the discrete topology. Then 

x(G) = x(R) = Jt"0 < 2ko = IRdl ~ L(G). 

In this example Rd may be replaced by any discrete group of cardina­

lity greater than .x;. 

2°. G = iR. Now we have X ( G) = L( G) = X0 • 

3°. Let K be any infinite cardinal number, and let G0 be a product of 

K copies of the compact circle group T(:= { A I A a complex number 

& IAI = 1 }, this subset of the space of complex numbers being endowed 

with the usual topology and complex mulitiplication). 

Since G0 is compact, L(G0 ) ~fio· In addition, 

where log K: = min {Si 2S > K} (cf.[6], 4.3 and 4.5). 

If K is a strong limit, i.e. 
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vs s S < K · 2 < K, 

then it is clear that logK =K; if, in addition, K > J'\i, then 

we have a group GO satisfying C.1. 

s Yo If K = 2 for some S .::._ 2 , then 

X0 < log K .::_ S < K, 

so that GO satisfies C.2. 

Notice that these examples are compact; for non-compact examples, 

simply replace GO by G: = GO x z. Then all examples remain locally 

compact and non-discrete. 

2. The function X f- n(X) 

In this section we introduce a new cardinal function. Its most inte­

resting property seems to be that it eQuals the Lindelof degree on 

every paracompact space; in that case we have, in fact, to do with 

some new properties of the function X ,__ L(X) on the class of all 

paracompact spaces. 

DEFINITION. Let X be a topological space with topology T, and let 

n ( X) : = sup{ I WI I (IJ c T \ { ¢} , W is locally finite and 

Wis disjoint}. 

A locally finite family of non-empty open subsets of X 

which are pairwise disjoint is called a defining family 

for non X. 

REMARK. For every topological space X the cardinal number n(X) is 

well-defined, since each defining family for n on X has cardinal::t-, 
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less than or equal to c(X). In particular, 

( 2. 1 ) n(X) ~ c(X) ~ d(X) ~ w(X). 

Our first intention is to give another characterization of n(X) for 

spaces X such that n(X) :=:..}(0 • Before doing this, we shall prove that 

n(X) < )(0 if and only if Xis a finite, discrete space. 

PROPOSITION 2.1. For every discrete space X ~ have 

n(X) = L(X) = Jxl. 

In addition, for every topological space X the inequality 

(2.2) n(X) ~ L(X) 

holds. 

PROOF. The first statement is trivial. To prove inequality (2.2), 

consider a defining family W for non X. If UW = X, we have an open 

covering of X which has no proper subcovering, so that L(X) :=:.. JwJ. 

In the other case, fix for every WE Wan element t E W, Since Xis 
w 

a Haasdorff space and Wis locally finite, T: = {t IW E W} is a 
w 

closed subset of X. Now Wu {X \ T} is an open covering of X which 

has no proper subcovering, so that L(X) :':_ JWJ + 1. We have proved, 

that every defining family W for non X satisfies JWJ ~ L(X), so tha~ 

indeed, n(X) ~ L(X). 

PROPOSITION 2.2. The following conditions~ equivalent in any 

topological space X: 

( i) IX I < ,t'0 ( in which ~ X is discrete), 

(ii) L( X) < Jr;, 
(iii) n(X) < Ka• 
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In that case, n(X) = L(X) = jxj. 

PROOF. Only (iii) '1> ( i) needs a proof. 

Suppose n(X) is finite; then there is a defining family W for n 

on X with exactly n(X) members. Now Wis a (finite) family of one­

point sets, otherwise some WE W would contain two disjoint open sets 

w1 and w2 , and [W\{W}] u {w1, w2} would be a defining family for 

non X with n(X) + 1 > n(X) members. In addition, UW = X, otherwise 

the open set X\UW could be joined to Win order to get a contradiction 

with the definition of n(X). Consequently, Xis discrete and finite. 

COROLLARY ~'..1. Let X be a non-finite space which is either separable 

or~ Lindelof space. 

Then n ( X) = X0 • 

PROOf~ Use Proposition 2.2 and the inequalities (2.1) and (2,2). 

LEMMA 2.1. Let X be~ topological space and let W be~ locally 

finite family of non-empty open sets in X. Suppose 

I W j ~Yo. Then there is a defining family WO for n on X 

such that jW0 1 = IWJ. 

In addition, W0 may assumed to be~ refinement of W. 

PROOF. Let~ be the set of all defining families V for non X which 

satisfy the following conditions: 

( i) V is a refinement of W, l,e, each VE V lS con-

tained in some WE w, 
(ii) each V E V meets only finitely many members of W, 

(iii) each W E w contains at most one V E V. 
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To show that cJl ~¢,select for some WE Wan element t E Wand a 

neighbourhood V oft which meets only finitely many members of W. 
Then {V n W} E <I>. 

Define a partial ordering of cJl by 

Since any disjoint family V of non-empty open subsets of X which 

satisfies conditions (i), (ii) and (iii) above is locally finite, 

hence a member of cJi, cJl is inductively ordered by this partial orde­

ring. Conseq_uently, by Zorn's Lemma, there is a maximal element 

w0 E cJl. We claim, that \W\ 2._ Xo- \W0\. 

Suppose the contrary, i.e. X'a· \W0\ < \W\. Since W0 satisfies con­

dition (ii) above, the collection 

w1 :={w \ w E w & J v E w0 V n W ~ qi} 

has cardinality 

so that W\W 1 ~¢;let w0 E W\W 1. Now it is clear that W0 u {w0} E cJl, 

which contradicts the maximality of W0 . Hence t 0 .\W0 \ .:_ \W\. 
A similar argument shows that W0 cannot be finite (because Wis in­

finite), so that J~• \Wol = \wo\. It follows, that IWol.:. \w\. 
However, \W0\ 2._ \W\ by condition (iii), hence \W0\ = \W\. 

PROPOSITION 2.3. Let X be an infinite topological space. Then, if T 

denotes !he topology of X, 

(2,3) n(X) = sup { /W/ \ W ~ T\{¢} & Wis locally finite}. 
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* PROOF. Denote the expression in the right hand side of (2.3) by n , 

* It is trivial that n(X) .::_ n . 

Since Xis infinite, both n(X) and n* are infinite. 

Consequently, it is sufficient to prove that any locally finite 

family W of non-empty open sets gives rise to such a family W0 which 

is, in addition, disjoint and which satisfies the inequality 

IWI .:::__x10 /W 0 1, Indeed, then we have IWI .::_Yo· n(X) = n(X), 

hence n* .::_ n(X), Now, if Wis finite, the existence of such a family 

W0 is trivial, and if Wis infinite, there is such a W0 by the 

preceding Lemma. 

REMARK. For finite spaces X with at least two points we have 

n* = 2lx/_ 1 ~ Jxl = n(X). 

Conseg_uentl.y, for such spaces Proposition 2. 3 is false. 

THEOREM 2. 1. For every paracompact space X the equality 

n(X) = L(X) holds. 

PROOF. For finite spaces the equality is trivial (cf. Proposition 

2.2), so we may assume that Xis infinite. 

Let A be any open covering of X. Because Xis paracompact there is a 

locally finite open covering A0 of X such that A0 is a refinement of 

A. It follows from Proposition 2.3 that /A0 / .::_ n(X). Now it is easy 

to see that A has a subcovering of cardinality less than or equal 

to jA0 1 .::_ n(X). 

This proves that L(X) .::_ n(X). Since the inequality n(X) .::_ L(X) is 

generally true (cf. Proposition 2.1), the theorem is proved. 

COROLLARY 2. 2. A :paracompact space X is a Lindelof space if ( and only 
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if) each locally finite family of non-empty open sets is 

at most countable. ---

COROLLARY 2. 3 In any metrizable space X ~ have 

n(X) = L(X) = c(X) = d(X) = w(X). 

PROOF. For finite X everything is clear. For infinite X, the first 

e4uality follows from the fact that Xis paracompact; the other 

e4ualities may be derived from the formulas (1.1), (1.5) and (1.6), 

using the fact that u(X) = ~~-

EXAMPLES. 

1°. Let X be a separable normal space which is not paracompact 

(cf. [3], Exercixe 5.1.F). Since X cannot be finite, it follows 

from Corollary 2.1 that n(X) = X0 • Since Xis not a Lindelof 

space (otherwise X would be paracompact), we have L(X) > n(X) =x;, 

2°. Let X be the set of all ordinal numbers less than the first un­

countable ordinal, endowed with the topology which has all 

order-intervals (a, 8] as a subbase. 

Then Xis pseudocompact, i.e. every continuous real valued 

function on Xis bounded (cf. [3], Example 3.5.1: every real 

valued continuous function on Xis eventually constant). By a 

well-known characterization of pseudocompactne~s, every defining 
. . . . )1 h (X) \Y family for n on X is finite , so t at n .::._ J'o. 

On the other hand, L( X) = IX I > J'S . 

1 
) See, for example, part of the proof of Proposition 2.10 below. 
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3°. Let X =Au B with An B =</>,A and B open in X, A an infinite 

space which is not paracompact (e.g. the space of the preceding 

example) and Ba discrete space withlBI= L(A). Since L(X) = 

L(A) + L( B) = L(A), and n(X) .:_ I B j = L(A), it follows from 

Proposition 2.1 that n(X) = L(X). However, Xis not paracompact, 

because its closed subspace A is not paracompact. This example 

shows that the converse of Theorem 2.1 is not generally true, not 

even if Xis assumed to be locally compact (this in contradis­

tinction to locally compact topological groups, which are always 

paracompact). 

Cf. also Corollary 2.5 below. 

We may consider Theorem 2.1 as a statement about the Lindelof degree 

on the class of all paracompact spaces: 

Whenever Xis a paracompact space, 

L(X) = sup { IWI jW is a locally finite, disjoint family 

of non-empty open sets}. 

On the other hand, Theorem 2. 1 may be regarded as a characteriza­

tion of n(X) for paracompact X. Now paracompactness is important in 

analysis because of its relation with the concept of a partition of 

unity. 

Recall that a familv {f I s ES} of continuous functions on an 
0 s 

arbitrary space X with values in the segment [0,1] is called a par-

tition of :unity provided that l :t (x) := 1 
SES s 

for every x EX. 

Frorri the proof of Lemma 2 to Theorem 5,1.3 in[3] it follows imme­

diately that for any partition of unity {f I s ES} on an arbitrary 
s 

infiniiEspace X the inequality ISi .::_ n(X) holds (use Proposition 2.3). 

Conversely, let X be a completely regular space and W a defining 
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family for non X. For every WE W there is a continuous function 

f : X ---- [0,1] such that f (x) = 1 for some x E Wand f (y) = 0 w w w 

for every y E X\W. Because Wis locally finite, the function g: 

X ---+- [O, 1] defined by 

g(x) : = I {f (x) I W E W} 
w 

( X E X) 

is continuous. Now {f I WE W} u {1-g} is a partition of unity of 
w 

cardinality ,:_ I WI • 

This proves: 

PROPOSITION 2,4.Let X be an infinite completely regular space. Then 

( 2. 4) n(X) = sup {K I j partition of unity on X with K members}. 

REMARK._ Let X be a topological 

is defined by f (x) = 2-n (x E 
n 

space and let f be the function which 
n 

X). Then {f I n E ~} is a partition 
n 

of unity on X. This shows that Proposition 2.4 does not hold for 

finite spaces X: the supremum in the right hand member of (2.4) equals 

Yo. n ( x) . 

Recall that a closed subset A of a topological space is said to be 

regularly closed whenever A = int(A). It is easy to see that A is 

regularly· closed if and only if A = U for some open set U. 

PROPOSITION 2.5. Let F be~ regularly closed subset of~ topological 

space X. Then we have n(F) _::.. n(X). 

PROOF. Let {W I s ES} be a defining family for non F. 
s 
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For each s ES, select V ~ X such that V is open in X and s s 
W = V n F. Let Ube the interior of Fas a subset of X, so that 

s s 
F = U. For each s ES, we have V n U = W ~¢,hence V n U ~ ¢. s s s 
Consequently, {V n U I s ES} is a disjoint family of open subsets 

s 
of X; it is even a defining family for non X, i.e. it is locally 

finite. Indeed, for any x E X\F the open set X\F is a neighbourhood 

of x which meets no V n U. In addition, each x E F has a neighbour-
s 

hood O in X such that On F meets W for only a finite nwnber of 
s 

elements s ES, so that O meets only finitely many members of 

{V n U \ s ES}. It follows, that Is\~ n(X). 
s 

Because this holds for any defining family for non F, the proof is 

complete. 

REMARK. In Proposition 2.5 we cannot replace F by an arbitrary open 

subset or a closed subset of X. 

We give two examples: 

1°. Let X = {(x,y) j x E ~ & y E IR & y .::._ O}, endowed with the topo­

logy defined by the following neighbourhood bases of its points: 

for y > 0, ( x ,Y) has a local base consisting of open 

discs in the plane with centre in (x,y) and radius< y; 

for y = O, (x,O) has a local base consisting of sets 

Cu {(x,O)}, where C is an open disc in the plane with 

centre (x, z), z > O, and radius z. 

Clearly Xis separable , so that n(X) ~ Yo· However, 

F : = {(x,O) \ x E lR} is a closed subset of X, which has the dis­

crete topology, so that n(F) = \IRI > «0 • 

0 
2 . Let F be a locally compact topological space and let X be the 

Cech - Stone compactification of F. 

Then F is open in X. Now n(X) ~ J'ta because X is compact, but n(F) 

may be arbitrarily large (e.g. F discrete and \F\ > Ko), 



Notice that the first example concerns a non-paracompact space X 

(indeed, L(X) = \tRI > x;; = n(X)),even a non-normal space, For para­

compact s:i;,aces we have 

PROPOSITION 2.6. Let X be~ paracompact space and let A be an F0 set 

in X. Then n(A) ,2_ n(X). 

PROOF. Since the assertion is trivial for finite spaces, we may 

ass-wne that Xis infinite. For a closed subset B of any space Y the· 

ineq_uality L(B) 2- L(y) holds, hence for the union A of countably many 

closed sulbsets of X we have L(A) 2- )_'-'0 • L(X) = L(X). But L(X) = 

= n(X) and n(A) = L(A), because X and A are paracompact, so that, 

indeed, n(A) 2- n(X). 

The second example preceding Proposition 2.6 shows that in the 

following result the ineq_uality may be strict: 

PROPOSITION 2.7. Let Ube an open subset of~ topological space and 

ass-wne that U is dense in X. 

Then n ( U ) .:'.:.. n ( X ) . 

PROOF. Straightforward. 

The cardinal functions n and L behave similarly under continuous map­

pings. Let X and Y be topological spaces and let f be a continuous 

mapping of X onto y, Since f- 1 (W) is a defining family for i\" on X 

(an open eovering of X) whenever Wis a defining family for non Y 

(an open eovering of Y, respectively) it is clear that 

( 2. 5) n(Y) 2- n(X); L(Y) 2- L(X) 

It is easily shown by examples that these ineq_ualities may be strict, 

independent of each other: 
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if X and Y are discrete and !YI~ !XI, then both inequalities in 

(2,5) are strict (f any mapping of X onto y); if x0 is a space such 

that n(X0 ) < L(X0), if Xis the ·disjoint union of n(X0 ) copies of x0 , 

if y is a discrete space of cardinality !YI = n(X0), and f is the 

obvious continuous mapping of X onto y, then n(y) = n(X) and L(y) < 

< L(X); if y is a space with n(y) < L(y) = !YI (cf. Example 2 after 

Theorem 2.1), Xis a discrete space-with !xi = 111 and f is any 

function of X onto y, then n(y) < n(X) and L(y) = L(X). 

Recall that a continuous function f: X • ~is said to be a per-

fect mawing if f is closed and if, for every y E Y, f- 1(y) is compact. 

PROPOSITION 2.8. Let f be~ perfect mapping of the topological space 

X onto the spacey. Then 

(2.6) 

(2.7) 

L(y) ,2. L(X) < .)(0 • L(y). 

If, in addition, either f is open .Q!_ Xis para­

compact, then 

n(y) 2- n(X) < }"0 . n(y). 

PROOF. The proof that L( X) ,2. 1'x'0 • L( y) is a straightforward modifi­

cation of the proof that a space is compact if one of its perfect 

images is compact (cf. [3], Problem 3Y and 5C for further referen­

ces)~ 

Now suppose Xis paracompact. By a well-known theorem of Michael, Y 

is paracompact as well, so that in this case (2.7) is a direct con­

sequence of (2.6) and Theorem 2.1. 

Finally suppose f is an open mapping. If -Y is finite, then Xis compact, 

so that (2,7) is trivial (in this case, f is open!). If Y is infinite, 
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then (2.7) follows from Proposition 2.3, once we have shown that 

f(W) is locally finite for any locally finite family W of subsets of 

X. Let W be such a family and let y E Y. 

The compact set f- 1(y) may be covered with a finite number of open 

sets, each of which meets only finitely many members of W. Let U 

denote the union of these open sets and let V : = Y \f( X\U) . Then V 

is an open neighbourhood of y, (f is a closed mapp1ng) and V meets 

only finitely many members of f(W) (Vnf(W) ~</> implies that 

UnW ~</>). This completes the proof. 

About the behaviour of the functions n and L under the formation of 

topological products no more can be said, in general, then what fol-

lows from (2.5) : if X = rr X, where X is a topological space for 
A a a aE 

each a EA, then 

(2.8) sup n(X ) 2-_ n(X); sup L(X ) < L(X) . 
aEA .a aEA a - · 

Infinite products of two-point spaces show that the first inequality 

may be strict, and the product of the Sorgenfrey-space (i.e. ffi with 

the half-open interval topology) with itself shows that the second 

inequality may be strict. However, if Xis infinite and locally com­

pact, we have L(X) = sup L(X) (use the result on p. 3). 
a 

Finally, we consider topological direct sums. We start with a 

general result: 

PROPOSITION 2.9 Let X be~ infinite topological space and let F be 

~ locally finite covering of X consisting of .!!2..£::_ 

empty regularly closed sets. 

Then 

(2.9) n ( X) = I F I . sup n ( F ) . 
FEF 
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PROOF. It is clear that {int (F) IF E F} is a locally finite family 

of non-empty open sets. So by Proposition 2.3 we have 

jFj .::_ n(X). In addition, for every FE F, n(F) .::_ n(X) by Proposi­

tion 2.5. Since n(X) is infinite this proves that 

n ( X) > I FI . sup n ( F) . 
FEF 

To prove the converse inequality, consider an arbitrary defining 

family W for non X. For each FE F, define 

WF : = {W n int(F) I WE W & W n int(F) ~¢}. 

Then WF =¢or WF is a locally finite, disjoint family of non-empty 

open subsets of F. In each case we have j WF j .::_ n( F). 

·1 1 
Now let W : = U{WF IF E F}; then JW I > JWj. 

Indeed, Fis a covering of X, so that for each WE W there is an 

FE F such that W n F ~¢. However, F = int(F), so that 

W n int(F) ~¢. Consequently, each member of the disjoint family W 

contains at least one element of W 1 , so I W 1 I .:::._ I WI . 

Combining our results, we get 

I W I < I W 1 
J .::_ j F I . sup I WF I < I F I . sup n ( F) . 

FEF FEF 

Since this holds for any defining family W for non X, it follows 

that 

(2.1C) n(X) .::_ IFI. sup n(F), 
FEF 

and the proof is finished. 

REMARK. In the second half of the proof we did not use the fact that 
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X is infinite, so that ( 2. 10) holds for finite spaces as well. It is 

easy to see that (2.9) is false, in general, for finite spaces, un~ 

less Fis disjoint. 

COROLLARY 2.4. Let X = U {X \ a EA}, each X open in X and the X's 
-- a a ---- a 

(2.11) 

pairwise disjoint 

Then 

n(X) = \A\ . sup n ( X ) 
a.EA a 

In particular, if, for each a E A, n ( Xa) .::._ \A\ , 
then n(X) = \A\ and {Xa \ a EA} is~ defining family 

for n on X of cardinality n(X). 

PROOF. For finite spaces X the result is trivial, and for infinite 

spaces X the result follows immediately from Proposition 2.9, since 

each X is open and closed in X, hence regularly closed. 
a 

REMARK. ~;imilar methods show that in the situation of Corollary 2. 4 

we have 

(2.12) L(X) = \A\. sup L(X ) 
a.EA a 

Consequently, if for each a E A we have L( Xa) .::._ \A\, then L( X) = \A\ • 

In that case we have also n(X ) < \A\ for each a E A (cf. Proposition 
a 

2. 1 ) , hence n ( X) = L( X) = J A\ • 

COROLLARY 2. 5. Let X be the disjoint union of K mutually disjoint 

open sets, each of which is ~ Lindelof space. If K ~ an 

infinite cardinal number, then we have n ( X) = L( X) = K. 



-20-

PROOF. Cf., the preceding Remark. 

The next lemma is well-known (cf. [4], 15Q). We insert a proof of it, 

because in the sequel we need some parts of this proof. 

LEMMA. 2. ~~. Let X be ~ completely regular space. The following condi­

tions are egui valent: 

(i) Xis pseudocompact, i·~· every real-valued continuous 

function on Xis bounded, 

(ii) Xis totally bounded in any of its admissible unifor­

mities. 

PROOF. (i) ====;. (ii). Assume that U is an admissible uniformity of X 

such that Xis not totally bounded with respect to U. Then there are 

an .a E U and a sequence {~ }kEIN in X such that, for every k E IN, 

x.. ,1- u fo(x.) I 1 < i < k}. Now let SE U, s- 1 =Sand s4 '=- a. 
K+ 1 't l -

{132(~) I k. E IN} is a disjoint family, and, consequently, 

{S(~) I k E IN} is a locally finite, disjoint family of subsets of X, 

each of which has a non-empty interior (hence {int ( S(~)) I k E IN} 

is a defining family for n on X). 

By complete regularity, for every k E IN there is a continuous function 

fk: X • [O,k] such that fk(~) = k and fk(y) = 0 for every y E X\int S(~). 

Now the function f: x 1---+ L{fk(x) I k E i:J} is well-defined 

and continuous (for {S(xk) I k E IN} is locally finite). However, f is 

not bounded, so that X is not pseudocompact. 
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(ii)~ (i). Let U0 denote the weak.est uniformity such that every 

real-valued continuous function is uniformly continuous. Because Xis 

completely regular, U0 is admissible, so that Xis totally bounded 

with respect to U0 . Now it is easy to see that each continuous real­

valued function on Xis bounded, 

PROPOSITION 2. 10 Let X be ~ locally compact paracompact space. Then 

n(X) = L(X). In addition, there is~ defining family 

for n on X of cardinality n(X) if and only if X is 

either finite or non-compact. 

PROOF. It follows from Theorem 2.1 that n(X) = L(X). 

For the second statement we consider two cases. 

First assume Xis not a-compact. Then it follows from [2], Theorem 

I. 9.5, that Xis a disjoint union of a-compact subspaces X, each of 
a 

which is open in X. Since there must be uncountably many of these X, 
a 

it follows from Corollary 2. 4 that X has a defining family for n on X 

of cardinality n(X). 

Now assume Xis a-compact, but non-finite. Then n(X) = X0 , and we 

have to prove that there exists a countable defining family for 

non X if and only if Xis non-compact. In the case that Xis not 

pseudoco~pact the existence of such a family follows immediately from 

the preceding Lemma and its proof ( the first half of ( i) ~=9 (ii)). 

Consequently, the proof is finished as soon as we have proved that a 

pseudocompact, paracompact locally compact space Xis compact. The 

proof is almost trivial: since Xis locally compact and paracompact, 

X may be covered by a locally finite family of relatively compact, 

open sets. Since Xis pseudocompact this family must be finite, other­

wise we could construct a disjoint sequence of non-empty open sets 

which is locally finite (cf. also Lemma 2.1); then the second part of 

the proof of (i)~ (ii) in the preceding Lemma would show that X 

were not pseudocompact. Now Xis covered by a finite collection of 
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relatively compact sets, hence Xis compact. 

Conversely, if Xis compact, each defining family for non Xis finite. 

Indeed, X may be covered by a finite number of open sets each of which 

meets finitely many members of such a family. Hence X cannot have a 

defining fa.rp.ily for non X of cardinality n(X), unless Xis finite. 

In the preceding results we have already given a partial answer to the 

question what classes of topological spaces X admit a defining family 

for n of cardinality n(X). It is aJ..ready shown that the class of all 

infinite compact spaces must be excluded (Proposition 2.10). On the 

other hand, if n(X) is a successor cardinal, i.e. if 

sup 0.. I >.. < n ( X) } < n ( X) , 

then X has a defining family for n of cardinality n(X). 

In addition to these trivial facts we have 

PROPOSITION 2.11. An infinite topological space X a~its ~ defining 

family for n of cardinality n(X) if and only if there is 

~ locally finite covering F of X, consisting of non-empty 

regularly closed sets with pairwise dis,joint interiors 

such that, for every F E F, n(F) .::_ IFI. 

PROOF. Assume that Wis a defining family for non X such that 

!WI = n(X). If U{W I WE W} = X, let F: ={WI WE W}; in the other 

case, let F : = {X\tiW} u {WI WE W} )*. In both cases Fis a cove­

ring of X, consisting of non-empty regularly closed sets. In addition, 

{WI W € W} is locally finite, and, consequently, Fis locally finite 

as well. That {int (F) IF E F} is a disjoint family follows from the 

It should be observed, that uw = u{w I w € W}. 
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fact that for open subsets U and V of X always 

U n V = ¢. a> int(U) n int(V) = <P. 

Finally, for every FE F, n(F) 2_ n(X) = !Fl by Proposition 2.5. 

The "if" part of our Proposition is an immediate consequence of 

Proposition 2.9. 

3, The Lindelof degree on Joca11i com;eact gE~~ 

It is well-known that every locally compact (Hausdorff !) topological 

group G is a disjoint union of pairwise disjoint, open subsets, which 

are a-compact. Indeed, let Ube a symmetrical, compact neighbourhood 

of the identity of G and let G0 = U{Un I n E IN}. Then G0 is an open 

subgroup of G and G0 is a-compact. Now G is the union of the distinct 

left cosets of G0 , which are pairwise disjoint, open in G and 

a-compact. These cosets are, in addition, homeomorphic with G0 • It 

follows, that 

n(G) = [G 

(cf. (~.11) and (2.12)). Here [G: G0J is the index of G0 in G, 

that is the cardinality of the set of all left cosets of G0 in G. 

Consequently, if G itself is not a-compact, we have 

( 3. 1 ) n(G) = L(G) = [G 

and the family of left cosets of G0 is a defining family for non G. 

In the other case, we have n(G) = L(G) = !GI whenever G is finite and 

n(G) = L(G) = J<0 whenever G is infinite and a-compact. In ·the latter 

case, G has a defining family for n if and only of G is non-compact. 

One may form such a family by translating a sufficiently small compact 

neighbourhood of the identity of Gover a suitable sequence of points 

in G (cf. the corresponding part of the proof of Proposition 2.10, 

that is, in fact, the first part of the proof of (i) =====»: (ii) in 
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Lemma 2 . 2 ) . 

These facts for a locally compact group G might also be derived as 

direct consequences of Proposition 2.10, because any locally compact 

group G is paracompact (since G is a disjoint union of open, a-compact 

subsets, as we have seen above). 

Resuming, we have 

PROPOSITION 3, 1. In §:.~-compact, locally compact topological _group 

G the Lindelof degree satisfies the equality 

L(G): =max{/ W / / Wis a disjoint, locally finite 

family of non-empty open sets in G}. 

In this context it is tempting to mention a result due to O.T. Alas 

[1]. Recall that the Haar measureµ on a locally compact, non-discrete 

group G satisfies the conditions 

(M1) V x E G: µ( {x}) = 0 

(M2 ) VA~ G: A is a Borelset ~ µ(A) = inf{µ(U) / A 5. U 

& U open} 

(M3 ) VA 5, G, A a Borelset: A is open or A has a 

a-finite measure===;, µ(A) = sup{µ(K) K ~ A & 

& K compact} . 

In general (M3 ) is not true for arbitrary closed subsets of G, and the 

usual counter example is a closed subset of G which is a local null-

set but not a null set (cf. [5], 11.33), Notice that any discrete closed 

subset A of G is locally null: for each compact K ~ G, Kn A is finite, 

hence µ(KnA) = 0 by condition (M 1) above. In particular, 

( 3. 2) sup{µ(K) / K 5. A & K compact}= O. 

Now the problem is to find such a set A with µ(A)> O; 

in view of condition (M3 ) such a set A cannot have a (a-)finite measure, 

so that µ(A) = 00 • The result of O.T. Alas, referred to above, may now 

be formulated in the following way: 
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PROPOSITION 3.2. Let G be ~B.2£_-discrete locally com.pact group. The 

following conditions are equivalent: 

(i) G contains a discrete closed subset A such 

that µ(A) = 00 ; 

(ii) L(G) > i 0 ; 

(iii) G is not a-compact. 

PROOF (ii)~ (iii). Trivial. 

(ii)~ (i). If (ii) is satisfied, there is an uncountable defining 

family W for non G (Proposition 3,1). For each WE W, let t E W, and 
w 

let A: = {t 
w 

WE W}. Then A is a discrete subset of G, and A is 

closed because Wis locally finite. 

Suppose for some open V ~Awe have µ(V) < 00 • Because Wis a disjoint 

family of µ-measurable sets, it follows that for any k EN only finitely 

many WE W satisfy the inequality µ(VnW). >~.Consequently, µ(VnW) > 0 

for at most countably many WE W. 
Since any open subset U of G is non-empty if and only if µ(U) > O, it 

follows that V n W ~ 0 for at most countably many WE W. This con­

tradicts the fact that tw EV n W for every WE Wand that IWI > X0 , 

Consequently, µ(V) = 00 for every open V ~ A, so that µ(A)= 00 by (M2 ). 

(i)===;,, (iii). Suppose G is a-compact. Then each closed subset of 

G is a Borel set with a a-finite measure. In particular, for any 

discrete closed subset A of G the equality µ(A)= sup {µ(K) I K ~ A & 
& K compact} holds, so that µ(A)= 0 by (3.2). 

COROLLARY. The Haar measureµ .!E,_~ locally compact, non-discrete group 

G satisfies (M3 ) for any closed subset of G if and only if 

G is a-com.pact. 

PROOF. "If". cf. the proof of (i) ~ (iii) in the preceding Proposi­

tion. "Only if": follows immediately from (iii) ( i ) of Proposition 

3.2. 

REMARK. This Corollary is exactly the Corollary in [1]. 
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The Theorem in [ 1 J states that in any regular space X such that there 

is a measure µ on the 0-ring of Borel sets satisfying (M1), (M2), and 

(M3) for every closed subset A of X, and whose support is all of X 

(i.e. for any open Us X: U = 0 < > µ(U) = 0), the following proper-

ty holds: any locally finite open covering of X has a countable 

sub covering, 

The proof is essentially as follows (in our terminology): 

the proof of (ii)· > (i) of the preceding Proposition yields that 

n(X) ::; ){"0 ; then the result follows from our Lemma 2.1 (The regularity 

of X seems to be superfluous, and we have shown, in fact, that any 

locally finite open covering of Xis countable)" 

We conclude this Section with some remarks about locally compact abelian 

groups which have nothing to do with local finiteness. In the Appendix 

we shall prove that for any infinite locally compact space X the 

equality x[C(X)] = L(X) is satisfied" Here C(X) denotes the space of 

al.l bounded continuous real-valued functions on X endowed with the 

compact-open topology. 

Now let G be non-discrete locally compact abelian group, By the 

duality theorem we may regard G as a subset of C( GA), so that 

x ( G) ~ x[ c ( G"') J = L( GA) 

(here we use only that G, hence GA, is not finite), 

Conversely, the sets 

{x J x E GA & Vt E U : J x( t) - 1 I < ; } 

form a covering of GA with compact sets if U runs through a neighbour­

hood base of the identity e of G, consisting of relatively compact 

neighbourhoods of e (cf. [5], 23.16, or any other proof that GA is 

locally compact). 

Since in any non-compact locally compact space X 

L(X) = min{ JKJ I /~ is a covering of X by compact sets}, 

and GA is non-compact because G is not discrete, it follows that 

L ( GA ) ~ X ( G ) • 

Consequently, in any non-discrete, locally compact abelian group one has 
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(3.3) x(G) = L(G .... ); 

dualy one has, in any non-compact locally compact abelian group the 

equality 

(3.4) 

Originally (3.3) is due to Hewitt and Stromberg, who proved that, in 

any locally compact abelian group G, x(G) equals the minimal number· 

of compact sets with which G .... may be covered (cf. [5], 24.48). 

In Section 1 we made a classification of the class of locally compact 

groups on the hand of the inequalities between the several cardinal 

functions, in particular x and L. 

Using (3,3) and (3.4), the following statements are clear: 

PROPOSITION 3.3 Let G be l:_.!!.Q£-discrete, rn-compact locally compact 

abelian group. 

(i) G _i_s of~ (A) if and only G .... is of~ (C). 

In this~, d(G""') = d(G) or d(G .... ) < d(G), according to 

the situation that G .... is of ~ ( C 1 ) 

~of~ (c2 ). 

(ii) G is of~ (C) if and only if G .... is of~ (A). 

In this~' d(G) = d(G .... ) or d(G) < d(G .... ), 

according to the situation that G is of ~ ( C 1 ) or 

of ~ ( c2 ). 

(iii) G is of~ (B) if and only if G .... is of~ (B). 

In all cases ~ have w( G) = w( G .... ). 

PROOF. We indicate only the proof of (i). 

G is of type (A) if and only if 

x(G) < d(G) = L(G) = w(G). 
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By (3.3) and (3.4) this is equivalent to 

L(GA) < d(G) = x(GA) = w(G). 

Consequently, GA is of type (C). Hence we have 

If we bear in mind that x(GA) = L(G) = w(G) = d(G), 

everything is now trivial. 

REMARK. For groups which are discrete or compact we have the following 

( G always abelian): 

(a). If G is finite and discrete, GA is topologically isomorphic with 

G, and both G and GA are of type (A) ) 1. 

(b). If G is infinite and discrete, GA is infinite and compact. 

Now G is of type (A) and GA is of type (B) or of type (C), accor­

ding to the case that GA is metrizable or not. 

(c). If G is infinite and compact, GA is infinite and discrete. 

Now G is of type (B) or (C) and GA is of type (A). 

However, in these cases we also have the equality w(G) = w(GA). 

In ( a) this is trivial. 

In (b), notice that (3.4) applies, so that 

Notice that w(G) = IGI, so that w(GA) = IGI. 

) 1 
We do not consider the case (B), which applies only to a one-point 
group. 
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Dually, in the situation of (c) we have by (3.3) 

w(G) = x(G) = L(GA) = w(GA), 

where w ( GA ) = I G I . 

So for any locally compact abelian group G we have 

w(G) = w(GA), 

and the proof is based on (3,3) and (3.4) and some simple cardinal 

arithmatic (in the proof of (3,3) and (3,4) the duality theorem for• 

locally compact abelian groups is used). Another proof is included in 

L5J, 24.14. 

4. Appendix 

The results in this Appendix are probably well-known. 

However, the author was able to find in the literature only some 

statements about these results in compact spaces. 

Whenever Xis a topological space, C(X) denotes the space of all 

bounded continuous, real-valued functions on X, endowed with the 

compact-open topology. A local base at f E C(X) is formed by all sets 

U/C,E:): = {g I g E C(X) & Vx E C: I g(x) - f(x) I < d, 

with Ca compact subset of X and E > 0. Observe that C(X) may be con­

sidered as a topological group (addition as a group operation), so that 

(1.8) and (1,9) apply with G replaced by C(X). 

PROPOSITION 4.1. Let X be an infinite locally compact topological space. 

Then x[C(X)J = L(X). 

PROOF. Let {U. I i EI} be an open covering of X such that each U. ~0. 
i i 
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Ui relatively compact, while III ,:. L(X). 

Let B denote the collection of all finite unions of members of 

{Ui I i EI}; then ISi ,:_;{0 • L(X) = L(X), and every compact subset of 

X is contained in some member of 3. Now the family 

is a base of the neighbourhood system of O in C(X), and the cardina­

lity of this local base is ,:. L(X). 

Consequently, x[C(X)],:. L(X). 

Conversely, let V be a local base at O in C(X), such that IVI = x[C(X)J. 

For each VE V, choose a compact subset K of X and an integer n such 
-1 V -1 V 

that u0(Kv,nv ) ~ V, and let V0 : = {U0 (Kv,nv ) IVE V}. 

Now V0 is a local base at O, and it is easy to see that any compact set 

K in X must be contained in some K) V E V) (otherwise some U O ( K, 1 ) 

contains no VE V). Hence 

L(X) < {Kv Iv E VJ I< IVI = x[C(x)J. 

COROLLARY 4.1 Let X be~ locally compact topological space. The space 

C(X) is metrizable if and only if Xis a-compact. 

PROOF. The assertion is trivial for finite spaces X, so we may assume 

that Xis infinite. C(X) is metrizable if and only if x[C(X)] = x;;, 
which is the case if and only if L(X) = )?'0 ; the latter condition is 

equivalent with the a-compactness of X. 

PROPOSITION 4.2 Let X be an infinite locally compact space. Then 

d[C(X)],:. w(X). 
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PROOF. First we consider the case that Xis compact (then the result 

is well-known, cf. [7], Proposition 7.6.5). 
,'.Because X can be embedded in [0,1]w(X) ([3], Theorem J,2.8), there is 

a subset~ s C(X) which separates the points of X with J~J = w(X). 

It follows ,from the Stone-Weierstrass theorem that the algebra A, 

generated by~ is dense in C(X). Since JAJ =x;;. J~J = w(X), this shows 

that d[C(X)J .:_ w(X). 

Conversely, any dense subset of C(X). separates the points of X. Hence 

such a subset of C(X) defines a Hausdorff topology in X which is 

weak.er than the original compact topology of X. Consequently, any 

dense subset, of C(X) defines the topology of X; if we take such a 

, with 1,J = d[C(X)], it follows immediately that 

w ( X) .:. .J~ • I, I = d[ C ( X) J 

because {f- 1(u) I U E B0 & f E ~} is a subbase for the topology of 

X (B0 is a countable base for the topology of R). This proves our 

Proposition for compact spaces X. 

In the general case, let U = {U. I i EI} be a family of open, rela-
J. . 

tively compact, non-empty sets in X such that each compact set Ks Z 

is containeu in some Ui, and such that JrJ = L(X) (cf. the proof of 

Proposition 4.1). For each i EI, let F. be a set of functions which 
]. 

is dense in C(U.) and such that JF. I = d[C(U1·)]. 
]. ]. 

Now U. is compact, hence any f E C(U.) can be extended to an element 
]. ]. 

of C(X). For every f E F., choose such an extension f off, and let 
]. 

G. : = {f I f E F. }. 
]. . ]. 

Then IG- I = JF. J = d[C(U.)J. It is clear that the set 
]. ]. ]. 

U{G. J i EI} is dense in C(X): for any g E C(X) and any basical 
]. 

neighbourhood U (K,£) of g (£>0 and Ks X compact) there is an i EI g 
such that Ks Ui; now for some f_E Fi we have sup { I f(x) - g(x) I/ 
x EU.}<£, so that f EU (U.,£) c U (K,£). Thus ]. gi -g , 
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d[ C( X)] < u G, I 2-_ I I I • sup I G- I = 
iEI i iEI i 

L(X). sup d[C(U.)J. 
id i 

However, the result for compact spaces implies that, for every i EI, 

d[C(U. )J = w(u.) _< w(X), 
i i 

so that 

d[ C ( X ) ] .::_ L ( X ) . ~ ( X ) = w ( X ) . 

REMARK. The inequality in Proposition 4.2 may be strict: 

Let K be an infinite cardinal number such that log K < K (e.g. K 
x/ 

= / 0)' 

and let X be the discrete space with Jxl = K. 

Now it is easy to see that d[C(X) J .::_ d(lll). Indeed, if F is dense in 
X IR and we replace each f E F by the functions f (nElN), defined by 

n 

(' 
f(x) whenever .::_f(x) 

1 
-n .::_ n ' 

f (x) = -n whenever f(x) < -n, 
n 

n whenever f( x) > n, 

then we get a dense subset in C( X) of cardinality .::_ j?'0 . IF I ( a similar 

procedure shows, that C( X) has the same depsi iy as the space of all, 

(possibly unbounded), continuous functions on X into IR for any locally 

compact space X, if both function spaces are endowed with the compact 

open topology) . 

It follows from [6], 4.5 that d(IRX) = log K, so that d[C(X)] .::_ log K < 

<K=w(X). 

PROPOSITIO:N 4. 3, Let X be any infinite locally compact space. Then 

w(X) = L(X). d[C(X)]. 

In particular, if X is er-compact, then we have 

w ( X) = d[ C ( X) J • 
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PROOF. We use the same notation as in Proposition 4.2. 

Because U is an open covering of X, we have 

w(X) < I w(U.) < III. sup w(u.) = L(X). sup w(U. ). 
-.Ii- .Ii .Ii 

lE 1E 1E 

However, for each i E I,. we have w(u.) = d[C(u. )J 
1 1 

because U. is compact (cf. the first part of the proof of Proposition 
1 

4.2), and d[C(U.)J < d[C(X)], because C(U.) is the continuous 
1 - 1 

image of C(X) under the restriction mapping ft--+ f I u .. Consequently, 
1 

w(XJ .::_ L(X). d[C(:;:) J .::_ L(X). w(X) = w(X), 

which proves our result. 

COROLLARY. For any locally compact space X such that L(X) < w(X), 

~ have d[C(X)J = w(X). 

PROOF. If L(X) < w(X), X must be infinite, hence 

d[C(X)] .::_ w(X). Suppose d[C(X)] < w(X). Then it follows from 

Proposition 4.3 that w(X) = L(X), a contradiction with w(X) > L(X). 

PROPOSITION 4.4. Let X be~ infinite locally compact space. Then 

w(X) = w[C(X)J. 

PROOF. We use formula (1.8) with C(X) instead·of G: 

w[C(X)] = d[C(X)]. x[C(X)]. 

Here x[C(X)J = L(X), by Proposition 4.1. Now we distinguish two 

possibilities: 

(a) d[C(X)J = w(X). Now w[C(X)J = w(X). L(X) = w(X). 

(b) d[C(X)] < w(X). In this case the preceding Corollary implies that 
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·w(X) = L(X) = x[C(X)J ~w[C(X)]. 

On the other hand, 

w[C(X)J = d[C(X)J. x[C(X)J ~ w(X). L(X) = w(X), 

so that in this case we also have w[C(X)] = w(X). 

COROLLARY. Let X be!:_ a-compact locally compact space. Then X has!:_ 

countable -base if and ~ if C(X) is a Lindelof space. 

PROOF. We apply formula (1,9) with C(X) instead of G; making use of 

the preceding·results, we get 

w(X) = L(X). L[C(X)], 

whenever X is infinite. Since L(X) ~ Ka, it f'ollows that w(X) = L[C(X)], 

so that, indeed, w( X) ~ ,X'0 if and only · 

if L[C(X)] ~ Xa· For finite spaces X, C(X) is homeomorphic with the 

a-compact space ~n (with n = !xi ), so that C(X) is in this case a 

Lindelof space as well. 

REMARK. For finite, discrete spaces X we have 

d[C(X)J = x[C(X)J = w[C(X)J = X 0 

because C(X) is homeomorphic with Rn (with n = !xi ). 
So for these spaces the Proposition 4.1 through 4.4 are false. 

The final remark we wish to make is, that we have not used the fact 

that the elements of C(X) are bounded functions. Thus, if we had 

defined C(X) as the space of all real-valued continuous functions on 

X, endowed with the compact-open topology, the same results would.have 

been obtained. 
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