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1. Introduction.; · In the January- 1962- issue-of-Mathematics of Computation 

[ 1] , R ... Bellman and B.: Kotkin .published :a .short paper. under the same 

title as this report~ ·In.that paper B-. and K~ ·presented some of their 

results concerning·the<numeriealeomputationof the continuous 

function y(x), defined by 

{ 
y(x) = 

. y'(x) = 

(0 < X < 1) 
= = 

- -. 
X 

y(x-1) (x > 1). 

Tables of y(x) were given for x,= 1 (0.0625) 6 and .. x.= 6 (1) 20. 

In the process of·extending these"tables beyondx.= 20 we discovered 

that the second table was rather inaccurate for all values of x.?: 9. 

B. and K. found, for example, that y(20) = 0.149.10-8 , whereas -
( ) -20 the actual .value of y 20 can be shown to be smaller than 10 • 

Moreover, in view of the method used by B. and K., one may expect 

that it would be quite a time consuming job to compute y(x) for 

values of x up to say x = 1000. 

In this report we describe a .different method which .. enables us to 

compute y(x) easily for values of x up to about "as far as one 

would like". 

2. The main formula and some of-its consequences. 

For the function y(x) defined in the introduction we first prove 

the following fundamental lemma. 

Lemma 1. 
X 

x.y(x) = J y(t) dt (x ~ 1). 
x-1 

Proof: Since y(t) is continuous on t.?: 0 and-differentiable on 

t > 1 , the function 

def 
qi(x) = x.y(x) -

X 

J y(t) dt 
x-1 

(x > 1) 

is continuous on x > 1 and differentiable on x > 1, with derivative 
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¢ 1 (x) = x y'(x) + y(x) - {y(x) - y(x-1)} = 

= X .:.!.-y ( X-1 ) + y ( X) - y ( X) + y ( X-1 ) = 0 • 
X 

Conseq_uently ¢ (x) is constant on x ~ 1. 

1 
Since ¢ ( 1) = y( 1 ) - J y(t) dt , 

0 
1 

we have ¢(x) = y(1) - J y( t) dt 
0 

From the definition of y(x) it 1.s obvious that 

so that 

1 
y(1) = 1 and J y(t) dt = 

0 

¢ (x) = 0 (x ~ 1). 

This completes the proof. 

Lemma 2. y(x) > 0 (x~O). 

(x > 

Proof: Let x be the smallest solution of y(x) = O. 
0 

1 ) • 

Clearly x > 1. Since y(t) > 0 on x - ~ t < x , we have 
0 0 0 

X 

J0 y(t) dt > O, 
X -1 

0 

whereas 1, according to lemma 1 , 

X 
J 0 

X -1 
0 

y(t) dt = x .y(x) = O. 
0 0 

Since this 1.s a contradiction, we conclude that 

y(x) > 0 (x ~ 0). 
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As an easy consequence of this lemma.and the·definition of y(x) we 

find that y(x) · is monotonically·decreasing on x > 1. 

Lemma 3. y{x) is concave on x > 1. 

Proof: From the definition·of·y(x} · it follows that 

y(x) = 1- ln x 

so that y(x) is concave on 1 .:s_ x .:s_ 2. 

Also from the definition of y{x) it is easily seen that y(x) is twice 

differentiable on x > 2, whereas y(x) is precisely once differentiable 

at X = 2. 

On x > 2 we have 

d 1 1 y"(x) = -(--.y(x-1)) = - y(x-1) 
dx x 2 

-1 -1 +-. - . 
X X-1 

y(x-2) > O. 
X 

Since y(x) is concave on the intervals < x ~ 2 and.x > 2 and 

differentiable at x = 2, we may conclude that y(x) is concave on x > 1. 

Lemma 4. 1 y(x) < - y(x-1) 
2x-1 (x~2). 

Proof: On x ~ 2 we have by lemma 3 that 

and consequently 

X 1 
x.y(x) = f y(t) dt < ~ y(x-1) + y(x)} 

x-1 

y(x) 1 
< -. y(x-1). 2x-1 

From lenuna 4 one easily deduces by induction that 

y(n) < 3.5.7. 
2n. n.' (n = 2 3 4 ) ' ' ' . . . . 

( 2n- 1 ) - ( 2n) ~ ... 
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Hence, for example, 

220 • 20! 
y(20) < 40! 

220 220 
= ..,,.2..,..1 -. 2""'2,,..."""2...,,.3-. - •• -_--.-4..,..0 < 20 20 = 

This rough upper bound for y(20) shows that the value of y(20) given 

by B. and K. is not even of the proper order. 

3. The num.erical computation of y(x). 

Our sta.rting point is 

{ 
y(x) -

(x+1).y(x+1~ = 
x+1 
J y(t) dt (x ~ 0). 
X 

We have already mentioned that 

y(x) = 1- ln x (1 ~ x ~ 2) 

so that we only have to compute y(x) on x > 2. 

If we approximate the integral 

X +1 
0 

I = J y(t) dt ( X > 1) 
o= 

X 
0 

by means of the trapezoidal formula 

1 n-1 k 
- {y(x) + 2 I y(x + -) + y(x + 1)} 
2n o k=l o n o 

we obtain, because of the concavety of y(x) on X ~ 1, 

X +1 

that 

n-1 0 

(x + 1) y(x + 1) = J y( t) dt < {y(x) + 2 I y(x ~) 
0 0 2n o k= 1 on X 

0 

It follows easily that 

+y(x+1)}. 
0 
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n-1 1 
y(xo + 1) < 2n(x +1)-1 

0 

{y(xo) + 2 l y(x + k)}. 
k=1 o n 

Thus, if one has upper bounds for y(x) at the points 

X + k (k = 0 1 2 n 1 ) on' '' , ••• , - ' 

one may compute an upper bound for y(x + 1). 
0 

Continuing in this way one may compute upper bounds for y(x) at the 

points 

X + 1 + V, (v= 1, 2, 3, ••• ). 
o n 

On the other hand, approximating I 

by 

J_ ¥ (x + 2k-1) 
nl Yo 2n 

k=1 

one finds, also because of the concavety of y(x) on x ~ 1, that 

( ) 1 ¥ ( 2k-1 ) yx +1> ( )l yx +-2-. 
o n x O + 1 k= 1 o n 

Hence, as soon as one has lower bounds for y(x) at the points 

+ 2k-1 (k 2 3 
XO 2n ' = 1 ' ' ' . . . ' n) one may compute a lower bound 

for y(x + 1). 
0 

If one also knows 
k lower bounds for y(x) at the points x + , 

o n 
( k = 1 , 2, . 3, • • • , n-1 ) , one can apply the s azne method to compute 

a lower bound for y(x + 1 + -21 ). Repeating this process one finds 
o n k 

lower bounds . for y( x) at the points x0 + 1 + 2n, . (k = 2, 3, 4, ••• ) • 

As a starting point for the computations one may take of course 

X = 1. 
0 

If one chooses the .. grid sizes in the above integral-approximating 

procedures small enough., one may expect that .the corresponding upper 

and lower bounds for y(x) will not differ very much. Actual computations 

show that this is indeed the case. 
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Performing the computations on the Electrologica-X 8 of the 

Mathematical Centre in Amsterdam., using an ALGOL-60 program (with 

grid size 0.005), we found that the corresponding. upper and lower 

bounds f'or y(x) were eg_ual up to at least the first significant 

digit for all x < 1 00. -

Using more refined integral-approximating formulae and smaller grid 

sizes we were able to compute y(x) for values of x up to at least 

x = 1000. Below we include a table for y(x) with a five or more 

significant figure accuracy. 
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y(x) = a(x). 10- b(x) 

X a(x) b(x) X a(x) b(x) X- a(x) b(x) 

2 0.306852 0 36 0 .. 121869 62 70 0.702809 147 

3 o.11-86083 1 37 0.622168- 65 71 0 .162933 149 

4 o.491092 2 38 0.307395. 67 72 0.371471 152 

5 0.354724 3 39 0.147112 69 73 0.833076 155 

6 0.196496 4 40 0.682549 .. .72 74 0.183819 157 

7 0.874566 6 41 0.307253 74- 75 0.399153 160 

8 0.323206 7 42 0.134297 76 76 0.853156 163 

9 0.101624 8 43 0.570381 79 77 o. 179535 165 

10 0.277017 10 44- 0.235551 81 78 0.372043 168 

11 o.664480 12 45 0.946492 .. 84- 79 0.759361 171 

12 0.141971 13 46 0.]70280 .86 80 0.152686 173 

13 0.272918 15 47 0.141120 88. 81 0.302503 176 

14 o.476063 17 48 0.524252 91 82 0.590640 179 

15 0.758990 19 49 0.189943. 93 83 0.113672 181 

16 0 .. 111291 20 50 (]).671533 96 84 0.215679 184 

17 0.150907 22 51 0.231788 98 85 o.403511 187 

18 0.190135 24 52 0.781464 101 86 0.744510 190 

19 0.223542 26 53 0.257465 .. 103 87 0.135495 192 

20 0.246178 28 54 0.829313 106 88. 0.243271 195 
21 0.254805 30 55 0.261272 108 89 o.430958 198 

22 0.248638 32 56 0.805427 111 90 0.753402 201 

23 0.229371 34 57 0.243046 113 91 0.129996 203 

24 0.200549 36 58 0.718206 116 92 0.221416 206 

25 0.166580 38 59 0.207907 118 93 0.372331 209 

26 0.131725 40 60 o. 589802 121 94 0.618228 212 

27 0.993606 43 61 0.164025 123 95 0.101374 214 

28 0.716213 45 62 o.447329 126 96 0.164183 217 

29 o.494179 47 63 0.119673 128 97 0.262667 220 

30 0.326904 49 64 0.314165 131 98 o.415161 223 

31 0.207626 51 65 0.809545 134 99 o.648360 226 

32 0.126782 53 66 0.204821 136 100 0.100059 228 

33 0.745257 56 67 0.508958 139 200 0.983383 530 

34 o.422222 58 68 0.124246 141 500 0.505734 1558 

35 0.230808 60 69 0.298056 144 1000 o.458767 3463 
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