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1. Introduction. In the January 1962 issue-of Mathematies of Computation
U] , R. Bellman and B. Kotkin published.a short paper under the same

title as this report. In-that paper B. and K. presented some of their
results concerning the-numerieal computation of the continuous

function y(x), defined by

y(x) =1 (0<x<1)

y'(x) = -<%. y(x=1) (x > 1).

Tables of y(x) were given for x.= 1 (0.0625) 6 and.x.= 6 (1) 20.

In the process of extending these:tables beyond x = 20 we discovered
that the second table was rather inaccurate for all values of x > 9.
B. and K. found, for example, that y(20) = 0.1h9.10‘8, whereas

the actual value of y(20) can be shown to be smaller than 10720,
Moreover, in view of the method used by B. and K., one may expect
that it would be quite a time consuming job to compute y(x) for
values of x up to say x = 1000.

In this report we describe a.different method whichuenables.us to
compute y(x) easily for values of x up to about "as far as one

would like".

2. The main formula and some of-its consequences,

For the function y(x) defined in the introduction we first prove
the following fundamental lemma.

X
Lemma 1. x.y(x) = J y(t) at (x > 1).

x-1
Proof: Since y(t) is continuous on t > O and differentiable on
t > 1, the function

def

x
¢(x) = xuy(x) = J y)at (x> 1)
x-1

is continuous on x > 1 and differentiable on x > 1, with derivative



o'(x) = x y'(x) + y(x) - {y(x) - y(x-1)} =

xﬂigvy(x-ﬂ) +y(x) - y(x) + y(x-1) = 0,

Consequently ¢(x) is constant on x > 1.

Since (1) = y(1) = f y(t) at ,

we have o(x) = y(1) = J y(t) at (x > 1),

O 20O =

From the definition of y(x) it is obvious that

1
“1-and f y(t) dt = 1

<
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so that $(x) = 0 (x > 1).
This completes the proof.
Lemma, 2. y(x) >0 (x > 0).

Proof: Let X be the smallest solution of y(x) = O.

Clearly x_ > 1. Since y(t) > O on x, = 12t <x_ ,ve have

5
y(t) dt > 0,

x -1
o)

whereas, according to lemma 1,

L y(t) dt = xo.y(xo) = 0.

Since this is a contradiction, we conclude that

y(x) >0 (x > 0).



w

As an easy consequence of this lemma .and the definition of y(x) we

find that y(x) is monotonically deereasing on x > 1.

Lemma 3. - y(x) is concave on x > 1.

Proof: From the definition of y(x) it follows that
ylx) = 1-1nx - (1 <x<2)
so that y(x) is concave on 1 < x < 2,

Also from the definition of y(x) it is easily seen that y(x) is twice
differentiable on x > 2, whereas y(x) is precisely once differentiable
at x = 2.

On x > 2 we have

y(x-1)) = = y(x-1) + =L =L y(x-2) > o
X

S

y'(x) =

Since y(x) is concave on the intervals 1 < x.< 2 and x > 2 and

differentiable at x = 2, we may conclude that y(x) is concave on x > 1.
1 .
Lemma k4. y(x) < el y(x-1) (x > 2).

Proof: On x > 2 we have by lemma 3 that
x 1
x.y(x) =/ y(t) dt < E{y(x-ﬂ + y(x)}
x-1

and consequently

y(x) < 2x11' y(x=1).

From lemma 4 one easily deduces by induction that

1 2", n! (n = 2, 3, 4, ...).
1

y(n) < s EE ) )
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Hence, for example,

(20) < 220, 501 _ 220 - 220 = 19-20
¥ Lot 27.22.23. ... B0 © ;20 T .

This rough upper bound for y(20) shows that the value of y(20) given

by B. and K. is not even of the proper order.

The numerical computation of y(x).

Our starting point is
y(x) =1 (0<x<1)

(x+1).y(x+1)
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We have already mentioned that
y(x) = 1-1nx (1 < x < 2)

so that we only have to compute y(x) on x > 2.

If we approximate the integral

xo+1
I=/7 y(t)at (x_>1)
< o
o
by means of the trapezoidal formula
1 n-1 K
EE-{y(xo) + 2 £=1 y(xO + ;) + y(xo + 1)}

we obtain, because of the concavety of y(x) on x > 1, that

xo+1 1 _ ne1 .
(xo + 1) y(xo + 1) = i y(t) dat < Ty {y(xo) + 2 £=1y(xo+;) + y(xo+1)}.
)

It follows easily that



n-1
ylxg * 1) < mxl—nﬁ o) v 2] v+ D1

Thus, if one has upper bounds for y(x) at the points
, (k=0,1,2, oo , n-1),

one may compute an upper bound for y(xO + 1),
Continuing in this way one may compute upper bounds for y(x) at the

points

v
Xo+1+E,(v=1,2,3,.o-)c

On the other hand, approximating I

by
n
1 2k-1
n % y(xo + 2n )

=1

one finds, also because of the concavety of y(x) on x > 1, that

17 Dk-1
Y(xo +1)> ;Rsi;rT) £=1 y(xo + 5 ).
Hence, as soon as one has lower bounds for y(x) at the points
Xo + 22;1 > (k=1,2,3, «cv n) one may compute a lower bound

for y(xo +1).
If one also knows lower bounds for y(x) at the points X + E-,
(k =1, 2,3, cos , n-1), one can apply the same method to compute

1 . . .
a lower bound for y(xO + 1 +=). Repeatlngbthls process one finds

2n
lower bounds .for y(x) at the points x + 1+ %E"(k =2,3, 4, «..).
As a starting point for the computations one may take of course
x =1,
o

If one chooses the..grid sizes in the above integral-approximating
procedures small enough., one may expect that .the corresponding upper
and lower bounds for y(x) will not differ very much. Actual computations

show that this is indeed the case.



Performing the computations on the Electrologica-X 8 of the
Mathematical Centre in Amsterdam, using an ALGOL-60 program (with
grid size 0.005), we found that the corresponding upper and lower
bounds for y(x) were equal up to at least the first significant
digit for all x < 100.-

Using more refined integral-spproximating formulae and smaller grid
sizes we were able to compute y(x) for values of x up to at least

x = 1000. Below we include a table for y(x) with a five or more

significant figure accuracy.



y(x) = a(x). 107 b(x)
X a(x) b(x)| x a(x) | b(x)| x- a(x) b(x)
2 0.306852 0 36 )} 0.121869.| 62 70 | 0.702809 147
3 0.486083 1 37 | 0.622168. 65 71| 0.162933 149
L 0.491092 2 38 | 0.307395 | 67 | 72| 0.371471 152
5 0.35472L 3 | 39| o.ik7112 | 69 73 | 0.833076 155
6 0.196496 L Lo | 0.682549-] T2 T4 | 0.183819 157
T 0,874566 6 41} 0.307253 | T4-| 75| 0.399153 160
8 0.323206 T Lo | 0.134297 | 76 76 | 0.853156 163
9 0.101624 8 43 | 0.570381 | 79 77T | 0.179535 165
10 0.277017 | 10 LL .1 0.,235551 | 81 78 | 0,372043 168
11 0.66L4480 | 12 45 | 0.946492.f 84| 79| 0.759361 171
12 0.,141971 | 13 46 | 0.370280 | 86 80 | 0.152686 173
13 0.272918 | 15 47 | o0.141120 1 88 | 81| 0.302503 176
14 0.476063 | 17 L8 | 0.524252 | 91 82 | 0.590640 179
15 0.758990 § 19 Lo | 0.189943.1 .93 83| 0.113672 181
16 0,111291 | 20 50| 0.671533 { 96 84 | 0,215679 184
17 0.150907 { 22 51| 0.231788 | 98 85| 0.403511 187
18 0.190135 | 24 52 | 0.781464 {101 86 | o.7ubs10 | 190
19 0.223542 § 26 53| 0.257L465 {103 87 | 0.135495 192
20 0.246178 | 28 54 | 0.829313 {106 88| 0.243271 195
21 0.254805 | 30 55 | 0.261272 |108 89 | 0.430958 198
22 0.248638 | 32 56 | 0.805L27 {111 90 | 0.753k402 201
23 0.229371 | 3L 57 | 0.243046 | 113 91| 0.129996 203
2k 0.200549 | 36 58 1 0.718206 | 116 92| 0.221416 206
25 0.166580 { 38 59 | 0.207907 | 118 93| 0.372331 209
26 0.131725 | Lo 60| 0.589802 {121 ok | 0.618228 212
27 0.993606 | 43 61| 0.164025 {123 95| 0.10137kL 214
28 0.716213 | L5 62 | 0.4L47329 {126 96 | 0.164183 217
29 0.494179 | L7 63| 0.119673 | 128 97 | 0.262667 220
30 0.326904 | 49 64| 0.314165 | 131 981 0.415161 223
31 0.207626 | 51 65| 0.809545 | 134 99 | 0.6L48360 226
32 0.126782 | 53 66 | 0.204821 | 136 | 100 | 0.100059 228
33 0.745257 { 56 67| 0.508958 | 139 | 200 | 0.983383 530
3k 0.422202 | 58 68 | 0.124246 [ 141 | 500 | 0.505734 | 1558
35 0.230808 | 60 69 | 0.298056 | 144 [1000 | 0.L458767 | 3463
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