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We present a class of monads with the property that any functor has an 

extension to the corresponding Kleisli category. These topics are connected 
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O. INTRODUCTION 

Category theory can be used to describe efficiently constructions in 

automata theory. It has led to a great development of studying automata 

using categorical methods (see e.g. [Ad], [AdTr], [ArM], [BuH], [G], [Th], 

[Tri], [Tr2], etc.). Besides deterministic automata, also nondeterministic 

and fuzzy-automata are studied. 

Whereas a deterministic automaton has a state-transition function 

Q x I • Q (Q is a set of states, I- a set of inputs) a nondeterministic one 

has a state-transition function Q x I • PQ (PQ is the powet-set of states) 

assigning to each state a set of possible successors. Of course, there is a 

canonical embedding of a set Q into its power-set PQ and there is also a na

tural transformation P2 • P. This situation was generalized by the defini

tion of monad and its Kleisli category which is entirely coextensive with 

fuzzy-theories as is proved in [M]. 

In [ArM], M.A. Arbib and E.G. Manes studied a problem when a functor 

F: C • ~could be extended to the Kleisli category of a given monad. They 

found a sufficient and necessary condition for existence of such an exten

sion. Their condition is analogous to the Beck distributive laws between 

monads (see [Be]). Therefore, the term "distributive laws" is used for 

these diagrams as well. It is, however, sometimes quite difficult to decide 

whether ther,e exist distributive laws for a given monad and a given functor, 

even for somie very natural monads. Such a very natural monad is the monad 

corresponding to the variety of monoids (i.e. semigroups with units). As 

was proved in [Vl], this menad does not satisfy distributive laws with re

spect to the very "simple" functor Hom (2,-) assigning to each set X its 

square Xx X. M.A. Arbib and E.G. Manes proved in [ArM] that set-functors 

- x X have extensions to the Kleisli category of any monad. On the other 

hand, we present a class of monads (called projective monads) with the pro

perty that any functor has an extension to the corresponding Kleisli cate

gory. This general result is applied to the category of free semigroups. 

We also present a survey of results connected with extensions of functors 

to the category of free monoids. 
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I. PRELIMINARIES 

First, recall some definitions and notations: 

I. 1. Let C be a category, T: ~ • ~a functor, Id:~ •~ the identity func-

tor, n: Id • T, 2 µ: T • T natural transformations. T = (T,n,µ) is called 

a monad iff the following diagrams connnute: 

Tµ 
T2 

T3 T2 71\\ µTl lµ 
T2 ]J T IdT ~ T ~ Tid 

..!..:l.:._ The KZeisZi category~(.:!_) is defined as follows: the class of its 

objects is obj~(.:!_)= {X(.:!_) IX E obj~}; f(.:!_): X(.:!_) • Y(.:!_) is a morphism in 

~(.:!_) if f: X • TY is a morphism of~- Given f(.:!_): X(.:!_) • Y(.:!_), 

g(.:!_): Y(.:!_) • Z(:!), the corresponding composition is g(.:!_) * f(.:!_) = 

(µ o Tg o f)(T). 
z -

~ a) Denote Sero =(S,i,s) the monad which assigns to each set A the semi

group of words created by A, i.e. the free semigroup over A. 

(SA={a1a2 ... an I ndl,2, ••• }, ai EA for i = 1,2, ••• ,n}, iA(a) =a, 

sA ((al 1 • • .alk(l)). • · (anl ·• .ank(n))) = al I'· .alk(l)a21' • .anl •• .ank(n) 
whenever k(l), ..• ,k(n)~l.) 

b) Denote Mon= (M,e,m) the monad which assigns to each set the monoid 

of words created by A, i.e. the free monoid over A. (MA=SAu{A} where A is 

the empty word, eA(a) = a, mA((a 11 ... a 1k(l)) ... (anl· .• ank(n))) = 

= a 11 •.• a 1k(l)a21 ... anl"''ank(n) whenever k(l), ••• , k(n)~O.) 

1.4. DEFINITION (Arbib-Manes, [ArM]). Let C be a category, F: ~ • Ca func

tor, (T,n,JJ) a monad, Fis said to satisfy distributive iaws over (T,n,µ) 

if to each object A of~ a morphism AA: FTA • TFA is assigned such that the 

following two diagrams connnute for any A and a: A • TB: 



(I) 

(2) 

"AA 
FTA------• TFA 

(the first distributive law) 

Fa +l AB l (AB •Fa)+ 

FTB--------..TFB 

+ where a =µB O Ta. 
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1.5. REMARK. A functor F can be extended to the Kleisli category f((T,n,µ)) 

iff it satisfies distributive laws. 

PROOF. is given in [ArM]. 

1.6. a) Horn(A,-) denotes a functor which assigns to each set X the set of 

functors {f:A+X}. 

b) A syrronetric ham-functor Sym(A,-) is a factorfunctor Hom(A,-)/~ 

where f~g whenever there exists a bijection b: A+ A such that fb = g. 

1.7. REMARK. Symmetric ham-functors are a special case of tree-group va

rietors, investigated by V. Trnkova and J. Adamek (see [TrAd]) which are 

the only superfinitary varietors for which the Kleene theorem holds. (A 

survey of results connected with varietors is given in [AdTr].) 
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2. DISTRIBUTIVE LAWS AS NATURAL TRA.~SFORMATIONS 

In this section we present an equivalent characterization of distri

butive laws using the language of natural transformations between functors. 

2. 1. THEOREM. A functor F: ~ • ~ satisfies distributive laws over a monad 

T = (T,n,µ) iff there exists a natural transformation A: FT+ TF such that 

(i) AO Fn = nF 

(ii) µF o TA o AT= A° Fµ 

PROOF. 

1. Suppose that F satisfies distributive laws over~' and let 

{AA: FTA • TFA I A E obj~} be the system of morphisms from 1.4. Let 

f: A • B be a morphism in C. According to 1. 1 and (1), (2) from 1.4 we 

have 

+ 
AB ° FTf = AB o Fµ ° FTn ° FTf = A o F((nB 0 f) ) = B B B 

(AB 
+ 

= 0 F(n of)) o AA = µFB 0 TAB 0 TFnB o TFf 0 

B 

= µFB o Tn ° TFf 0 AA = TFf 0 AA, FB 

Hence, the diagram 

AA 
FTA -----TFA 

FTfl AB l TFf 
FTB -----TFB 

commutes for any morphism f: A • Band A is a natural transformation. 

AA = 

2. Denote by idTA the identity map on TA. By the definition of +-operation, 

there is µA= idiA and µFA 0 TAA = (AA°FidTA/. By (2), we have 
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Hence, (ii) is satisfied. 

3. On the other hand, suppose that A: FT+ TF is a natural transformation 

satisfying (i) and (ii). Since (i) is the first distributive law, it re

mains to check only the second distributive law. Let a: A+ TB be a mapping. 

By (ii), there is AB° FµB = µFB O TAB O ATB" Since A is a natural trans

formation, there is ATB ° FTa = TFa O AA. Therefore, 

Hence, (2) is satisfied. D 

2.2. COROLLARY. Let C be a category, F: .f_ + .f_, T: .f_ + .f_ be functors, 

T = (T,n,µ) a monad. Then F has an extension to f(!) iff there exists a na

tural transformation A: FT+ TF satisfying (i) and (ii) for Theorem 2.1. 

3. PROJECTIVE MONADS 

In this section we introduce the concept of projective monad and prove 

that every functor has an extension to the Kleisli category of a projective 

monad. 

3.1. DEFINITION. A nonad ,!_ = (T,n,µ) is called projective if there exists 

a natural transformation TI: T + Id such that TI O n is an identity transfor

mation and TI O µ= TI O TIT. (We call such a transformation TI a projection.) 

3.2. REMARKS. 1. For any projective monad (T,n,µ) there is T0 = 0. 

2. Since TI is a natural transformation there is 

TI O TTI = TI O TIT • 

3.3. EXAMPLE. Sem (see 1.3) is a projective monad. 
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PROOF. Define a natural transformation p: T-+ Id by pA(a1 •.• an) = a 1• For 

any set A and a, a 11 , ••• , alk(l)' ••• , anl' ••• , ank(n) EA there is: 

pAiA(a) = pA(a) = a 

pAsA((a11···a1k(l)) •.• (anl'··ank(n))) = 

= pA(a11···a1k(l)···anl···snk(n)) = all' 

Hence, pis a projection. D 

3.4. EXAMPLE. Let n be a positive integer; (Hom(n,-), e(n), m(n)) is a mo

nad of n-tuples defined as follows: 

Define 

ein)(a) = (a, ••• ,a), 

n 

p(n): Hom(n,-)-+ Id by 

For any set A and a, a 11 , • • ·' aln' • · • ' an 1 ' 
... , a E A there is nn 

p(n)e(n)(a) = 
A A 

(n) 
PA (~)=a, 

n 

(n) (n) 
PA mA ((all''"'aln), ... , (anl' ... , ann)) = 

(n) 
= PA (all'a22'''''ann) = all' 

(n) (n) 
PA PHom(n,A)((all''"'aln)' ... , (anl''"'ann)) = 

(n) 
= PA (all'''''aln) = all' 



(n) 
Hence, p is a projection. D 

3.5. THEOREM. Let~ be a category~ T: ~+~a functor,.!_= (T,n,µ) a pro

jective monad (with the projection TI). Then an arbitrary functor F: C + C 

satisfies distributive Zaws over.!.: 

PROOF. Define a natural transformation A: FT+ TF by A= nF ° FTI. Since.!_ 

is projective there is A° Fn = nF ° FTI ° Fn = nF and (i) from 2.1 holds. 

Since Tis a monad there is 

µF o TA o AT= µF O TnF O TFTI O nFT ° FTIT = TFTI o nFT o FTIT. 

Since n is a natural transformation, there is 

TFTI o nFT o FTIT = nF ° FTI ° FTIT = nF o FTI o Fµ =Ao Fµ 

and (ii) from 2.1 holds as well. 

According to 2.1, F satisfies distributive laws over T. D 

7 

3.6. THEOREM. Let C be a category, T: ~+£a functor,.!_= (T,n,µ) a pro

jective monad. Then an arbitrary functor F: C +Chas an extension to ~(T). 

PROOF. follows from 1.5 and 3.5. 0 

3.7. COROLLARY. An arbitrary set-functor has an extension to the Kleisli 

category over Sem, i.e. to the category of free semigroups. 

PROOF. follows from 3.3 and 3.6. 0 

4. CATEGORY OF FREE MONOIDS 

While the previous section has solved the question of extensions of 

set-functors to the category of free semigroups completely and positively, 

the problem of extensions of set-functors to the category of free monoids 

seems to be more difficult. In this section, we summarize the known results 

in this area. 
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Throughout this section, N denotes the set of all positive integers, 

FM denotes the category of free monoids (i.e. the Kleisli category over 

~on), X # 0 will be a set and f: X +Na mapping. 

4.1. THEOREM. If f(x) = I for any x EX then I I X Hom(f(x),-) ~ 
--XE 

~ - x X has an extension to FM. 

PROOF. is given in [ArM]. 0 

4.2. THEOREM. If f is bounded" max{f(x) Ix E X} :?: 2 then _1 l_xEX Hom(f_(x),-) 

has no extension to FM. 

PROOF. is given [VI]. 0 

4.3. THEOREM. If f is a mapping onto N \ {I} then F = 11 X Hom(f(x),-) 
--XE 

has an extension to FM. 

PROOF. Let A be a set, x EX, f(x) = n > I. Define AAx: Hom(f(x),MA) + MFA 

by 

where 

w = (all'a2I'a22'"""'a2k(2)' 000 'anl' 0 ··,ank(n))(al2'a2l'a22' 000
' 

a2k ( 2) '· · • 'an I , • • • 'ank (n)) • • • (a I k (I) 'a2 l 'a22' • • • ' 

an1,··•,ank(n)) 

if k(I). (k(2)+ ••• +k(n)) > 0, w = 11. otherwise. 

Then for any x EX, v E Hom(f(x), MA), put AA(v) = AAx(v). We have to 

check conditions (I), (2) from 1.4. 

a) There is 

AAF(eA)(a 1, ••• ,an) = -----EFA 

A A ( :_1 , • • • , a_E) 

EFMA 

= (a 1, ••• ,a) = 
~ 

€MFA 

= eFA (al'··· ,an)· 



b) 

commutes for any a: A • MB because 

a2 I'··· ,a2k(2)' ···,an!'··· ,ank(n)) • • • (alk(I) ,a21' 

a2k ( 2) ' • · • 'an I ' • · · 'ank ( n) ) ' · · • 'Fa ( a I k ( I ) 'a2 1 ' · • • ' 

a2k(2)' ···,an!'··· ,ank(n))) = 

b 2 I I ' ' 'b 2 Ir ( 2 , I ) ' • ' • 'b nk ( n) I ' • 'b nk ( n) r ( n, k ( n) ) ) •• 0 

bnk(n)J'''bnk(n)r(n,k(n)))) = 

= (b I 1 I 'b 2 I l 'b 2 I 2 ' 0 
• ' 'b 2 I r ( 2 , l ) ' .•• 'b nk ( n) I ' ' ' • ' 

b nk (n) r (n, k (n) ) ) (b I 12, b 21 I 'b 212' ••. 'b 21 r ( 2, l) ' • ' ' ' 

b nk (n) 1 ' .•• 'b nk (n) r ( n, k ( n ) ) ) ••• (bl l r ( l , l) 'b 21 l ' 

9 
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Obviously, 

• • • (b I k ( I ) r ( I , k (I ) ) 'b 2 I 1 'b 2 1 2 ' ' • ' ' b 2 I r ( 2 , I) ' 

· • • ' b nk ( n) 1 ' • • • ' b nk ( n) r ( n, k ( n) ) ) 

= A (b I I I b I I 2 ••• b ' 
B lk(l)r(l,k(l)) 

= (b I I I 'b 2 I I 'b 2 I 2 ' ' ' ' 'b 2 I r ( 2 , I ) ' • ' • ' 

(b I I 2 'b 2 I I 'b 2 I 2 ' ••• 'b 2 I r ( 2 , I ) ' • ' • ' 

bnk(n)l'·•·,bnk(n)r(n,k(n))) ••• 

• • • (b I I r ( I , I ) 'b 2 I I 'b 2 I 2 ' •• ' 'b 2 Ir ( 2 , I ) ' •• ' ' 

bnk(n)I'''''bnk(n)r(n,k(n))) ••• 

• ' • (b I k ( I ) r ( I , k ( I ) ) 'b 2 I I 'b 2 I 2 ' • ' ' ' 



I I 

This finishes the proof. D 

4.4. THEOREM. If f is a mapping onto N then 11 X Hom(f(x),-) has an ex
--xE 

tension to FM. 

PROOF. Denote Y = {x E X I f (x) = I } , Z = {x E X I f (x) > I } • By Theorem 4. I , 

I I y Hom(f(x),-) has an extension to FM. By Theorem 4.3, 
--XE 

I I Z Hom(f(x),-) has an extension to FM. Hence, also I I X Hom(f(x),-) 
--XE --XE 

has an extension to FM. D 

4.5. THEOREM. I I X Sym(f(x),-) has an extension to FM if either f is a 
--------XE 

maping onto N, or f(x) = I for any x EX. 

PROOF. is given in [V2]. 
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