
STICHTING 

MATHEMATISCH CENTRUM 
2e BOERHAAVESTRAAT 49 

AMSTERDAM 

AFDELING ZUIVERE WISKUNDE 

On the range of functions of bounded 

variation 

by 

E. Wattel and J. van de Lune 

zw 1968-010 

December 1968 

,q:,, it)),,1€;€11, MAiHEMA11$( •' 
AMSl£Rf).t"" 



The Mathematical Centre at Amsterdam, founded the 11th of February, 1946, 

is a non-profit institution aiming at the promotion of pure mathematics and 

its applications, and is sponsored by the Netherlands Government through the 

Netherlands Organization for the Advancement of Pure Research (Z. W. O.) and 

the Central Organization for Applied Scientific Research in the Netherlands 

(T. N. O.), by the Municipality of Amsterdam and by several industries. 



On the range of functions of bounded variation. 

This paper contains two theorems which give necessary and sufficient 

conditions on a set W of real numbers which guarantee that there exists 

a function of bounded variation defined on the closed unit interval which 

has precisely Was its range. 

The first theorem deals with the family of all functions of bounded 

variation; in the second theorem we admit only one to one functions of 

bounded variation. We restrict ourselves to functions with real domain 

and range. Without loss of generality we can assume that O is the greatest 

lower bound and 1 is the least upperbound of the range (except for the 

trivial case in which the range consists of one point}. 

Throughout this paper we denote the total variation of a function 

f by V(f}. and the complement of a set A with respect to the set of all 
C real numbers by A. 

The problems which lead to this paper were posed by Dr. M.A. Maurice. 

Theorem 1. A bounded set W of real numbers is the range of some 

function f of bounded variation defined on [o, 1] if and only if we has at 

most a countable number of components. 

Proof. a}. Sufficiency. Suppose that Wis a bounded set of real 
C numbers such that W has at most a countable number of components. We 

assume that sup y = 1 and inf y = 0 (if this is not the case then either 
yew yew 

W consists of one point or there exists a linear transformation of E onto 

m which maps W onto a set with the required properties). 

In order to prove that Wis the range of some function f of bounded 

variation, we construct a convergent sequence of functions such that the 

limit function satisfies the required properties. 
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Let {ciliEM} be an enumeration of the components of We,• such that 

c 1 is not bounded below and c2 is not bounded above. Choose an E>O and 

define p 1 = 0. For every natural number i>2 we define p. = inf y, and 
- l yG.C. 

we choose a point q. for every iE::W such that q. E.W and jp.-q. jl< ~ . . l l l l l 

Let the function f 0 be the identity mapping from the unit intervai of 

the domain onto the unit interval in the 

f. (x} 
l 

range space. 

= f 0 (x} iff x<{: ~ 
k<l Define f. ( x) for every i GM by 

l 

f. ( x) 
l 

and a function f(xl by 

{ 
f(xl = f 0 (x} 

f(x} = qk iff 

-1 
iff x~ f 0 (W} 

-J 
xEfQ (ckl 

Cleary f(x} is the limit function of {fi(x}}:= 1 , and Wis precisely the 

range of f(xl since q.eW for every i. 
l 

Furthermore it is obvious that V( f. 1 } < V( f. ) + 2 Ip. 1-q. 1·j for every l+ - l l+ l+ 
non-negative integer i. This means that V(f. 1 } < V(f.} +-+ for every i. 

l+ - 1 l 2l 
Since V(f} = 1 we obtain that V(f.) < 1 + 2.E(J- -. } < 1 + 2E for every i. 

0 l - 2l 
We now prove that V(f} < 1 + 2E. Let {a }n_ 1 be an arbitrary subdivision 

- V V-

of the interval. Then there exists some i such that a 4 U Ck for all 
v k>i 

V = 1, •.• ,n. Hence f(a) = f.(a) and 
V l V 

n n 
l jf(av) - f(av_ 1 )j = 

v=1 
\ If. ( a } - f. ( a 1 ) I < V( f. } < 1 + 2E. 
l l V l v- - l 

v=1 

We conclude that V(f} < 1 + 2E, This proves the sufficiency. 

b}. Necessity. We suppose that f is a function of bounded variation 

defined on [ 0, 1 J with range 

which sup y = 1 and inf y = 
yEW y<=.W 

W. We restrict ourselves again to cases in 
C 

O. Suppose that W has an uncountable number 

of components, then We has an uncountable number of components which consist 

of one single point. Let I;; be a point-component of We, then there exists a 

sequence {E;, .. } in W which converges to r;. We choose a sequence {x.} in [o, 1] 
:t. l -

with the property that f(x.) = E:, •• Since. [0,17 __ is compact, there exists a 
l l 

subsequence of xi, say z j, with limit z E. [o, 1] . 
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We have lim z. = z and lim f(z.) = lim ~- = z;;. Since l;fW z must be a 
j-+<>o J j-+<>o J i-+<>o l. 

point of discontinuity off, We can assign to every point-component z;;a. 

of Wc a point of discontinuity z off. Since f is a function of bounded 
a. 

variation, f has at most a countable number of points of discontinuity. 

Therefore there exists a point of discontinuity of the domain z0 , such 

that every member of an uncountable collection {z;;} -A of point components a. a,r:,,-,. 

of the complement of the range canoe assigned to it. 

Choose three points z;; 1, z;; 2 , and z;; 3 of the collection {z;;a.}a.EA' 

Following the same technique as oefore we can find three sequences {z 1j}, 

{z2j} and {z3j} which converge to z0 and which have the property that 

~im f(zk.} = z;;k fork= 1,2 and 3, Without loss of generality we may assume 
J-+<>o J 

"" that {zkj}j= 1 is either monotonously increasing or monotonously decreasing, 

In this case there are two monotonous sequences of the same sort, say for 

example that {z 1j} and {z2j} are monotonously increasing. Then there exist 

two subsequences {x 11 } of {z 1j} and {x21 } of {z2j} such that x 11 .::_x21 .::_ x 11+ 1 
for every 1. Since lim f(x 11 ) = z;; 1 # z;; 2 = lim f(x21 l it is clear that for 

1-+<>o 1-. n 
every natural number N there exists some n such that t jf(x11 1-f(x21 }1>N. 

1=1 
Therefore V(f) > N and f cannot be of bounded variation. This contradiction 

proves the necessity of the condition. 

In order to prove the second theorem we will prove first a number of 

lemma's, which will give an outline of the proof of theorem 2. 

Lemma 1. A set W of real numbers is the range of a strictly monotonous 

function defined on [o, 1] iff W with the order-topology is homeomorphic with 

the unit interval in the usual topology. 

Proof. A strictly monotonous function is an order-isomorphism and hence 

a homeomorphism with respect to the order topology. On the other hand, if W 

is homeomorphic with I in the order-topology then every homeomorphism from 

W onto I is an order-isomorphism and hence a strictly monotonous function, 

which implies that the inverse function is also strictly monotonous. 
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Definition. A point p of a set Wis called a condensation point of 

W iff every neighbourhood of p contains at least an uncountable number of 

elements of W. 

Convention. The distance of a real number to the empty set is 

considered to be infinite. 

Lemma 2. If f is a one to one function of bounded variation defined 

on [o, 1] with range W, then every accumulation point of W is a condensation 

point of W. 

The proof of this lemma is left to the reader. 

"" Lemma 3, Let f be a function of bounded variation and let {y.}. 1 ii= 
be a countable subset of the range off. Let {x.}~ 1 be a subset of the 

ii= 
domain off such that f(x.} = y. for every natural number i. Let{~ .. }~ 1 i i iJ J= 
be a strictly monotonous sequence in [0,1] converging to x .• Then 

i 

lim f(~ .. ) exists for every i, and moreover, the function f 0 defined by 
. iJ 

J-+cD 

f 0(x.) = lim f(, .. ); (i = 1,2, ..• ) 
i , iJ 

J-+cD 

is of bounded variation V(f0 ) ~ V(f). 

The proof is left to the reader. 

Lemma 4. Let f be a function of bounded variation and let g be a 

function which is defined on the same domain D, such that 

Then also the function g is of bounded variation and 

V(g) ~ V(f) + 2 { l jf(x)-g(x) I}. 
XED 

The proof is left to the reader. 

l lf(x)-g(x)l<co, 
xE:D 
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The next two lemma's show, that in many cases a set Wis the range 

of a one to one function of bounded variation if a set Vis the range 

of a one to one function of bounded variation, and the symetric difference 

between V and Wis countable. 

Lemma 5, If a set Wis the range of a real valued one to one function 

of bounded variation f which is defined on the unit interval, and if Bis 

a subset of W such that W\. B consists of at most countably many points, 

then also Bis the range of a one to one function of bounded variation 

which is defined on the unit interval. 

Proof. Choose an e>O. Let y 1,y2 , ••. be an enumeration of the points 
-1 . 

of W"-B, and suppose that x.=f' (y.) for every natural number i. Choose 
l l 

some strictly monotonous sequence {~ij}j=1 in f- 1(B) for every i, which 

converges to x .. Then also {f(~ .. )}~ 1 converges to some limit, say z .• 
l lJ J= l 

We choose for every i a subsequence {11. .. } of{~ .. } such that 
oo • 2 lJ lJ 
l If(~ .. )-z. l.:_e,2-1.-, and such that'Y/.·. ='fl.kl if and only if i=k and j=l. 

•= 1 lJ l lJ 
Now we define three functions, f 0 , g0 and g, and we prove that g satisfies 

the required properties. 

f 0(x.) = z. for iE.N • 
l l 

00 "" 

2). = f(x) for all Xf U (( U {·17 ... }}.U{x .. }l 
i=J j=1 lJ l 
00 

g 0 (x). = zi for all xE( U {17 .. }}U{x.} ; iC::11. 
j= 1 lJ l 

00- (lO 

3). g(x} = f(x} for all x~ U ( ( U {1Z .. }}U{x.}), 
i=1 j=1 lJ l 

g(xi} = f(?/i 1) for every ic: N; 

g('YI .. ) = f(J?. ·+ 1} for every i and jE::N. 'L1J lJ 

According to lemma 3 the function f 0 is of bounded variation: V(f0 ) < V(f ). 
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"' "' "' 
Since t jf0(xl-g0(xll = t l jf(,Z .. l-z. I < 

xcsr 1=1 j=l 1 J 1 

t -i-2 
l e.2 = e/4. 

i=1 
we can apply lemma 4 and we obtain: g0 is a function of bounded 

and 

V(g0 ) .:s_ V(f0 l + 2( l lf0 (x}-g0 (xll).::. V(f1 + e/2 • 
xeI 

In precisely the same way we obtain for g: 

variation 

V(g} .:s_V(g0 } + 2( l lg0 (x)-g(x)I) .:s_V(f) + e/ + E/ = V(fl + E. 
xeI 2 2 

We have shown in fact, that g is a function of bounded variation. 

Since g is defined entirely by means off, the range of g is contained in 

W; since f is one to one and no x. is an argument off in the definition 
l 

of g no yi is contained in the range of g and hence the range of g is 

contained in B. Since every member of I',..{xi}:= 1 occurs precisely one time 

as an argument off in the definition of g, it follows easily that g is 

one to one and Bis its range. We conclude that g is a function which 

satisfies the required properties. 

Lemma 6. Let f be a one to one function of bounded variation defined 

on [o, 1J with range W, and let K be the collection of accumulation points 

"' of W. Let {y.}. 1 be 
l 1= 

"' 

00 

a countable set of real numbers such that {y.}. 1/)W = ~ 
l 1= 

and I (infjy.-ql} < 00 , then there exists a one to one function g of bounded 
i=1 q€K l 

00 

variation with range WU{y. }. 1 • 
1 i= 

Proof. Choose an e>O, and choose for every i€l'N some element z.G:K 
l 

such that 

00 

Furthermore, we choose 
~ I I -i-3 

for every i tE. N a sequence { 'Yl •• } • 1cw such that .,lJ J= 

l Z • - Y/. . < E , 2 and 
._ 1 l lJ 
J- -1 
Let ~ .. be f (rz . . ) for every 

lJ lJ 
~-. are uniquely determined. 
lJ 

·,z ij = 12kl if and only if i=k and j=l. 

i and j. Since f is one to one the points 
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We now define two functions g0 and g. 

1 ) • 

21. 

00 00 

g0 (x) = f(x} iff xi U ( U U; .. . }1 , 
i=J j=l l-J 

g0(~ .. l = z. for every i and j from E. 
1J 1 

g(xl 
"" 00 

= f ( X 1 i ff X ~ U ( u { ~ . • } }. , 
i=1 j=1 l.J .. 

y. for every ie E, 
1 

g( ~. . 1 l = 1/. . . = f( ~ .. } for every i and j from )1, 
1J+ 1J 1J 

00 00 

Since I Jf(x}-g0(xll = I I If(~ .. }-g ( ~ · · ) I = 
xc:I i=1 j=1 1J O 1J 

00 00 00 

I I 11l- .-z. I < \ -i-3 
£/8 = L, £,2 = 

j= l 1J 1 -· i=1 i=1 

it follows from lemma 4 that g0 is a function of bounded variation and 

V(g0 } 2- V(f} + 2.£/8 2- V(f) + £/2 • Moreover, l lg0(x}-g(x)I = 
oo 00 oo xEI . . 
l ( lz.-y. J + l 11[• .-z. I) 2- l (inf ,y.-g_J + £.2-i-3 + £,2-i-3 ) < 

i=1 00 1 1 j=1 l-J 1 i=1 q_eK 1 

2- l inf Jyi-g_l + £/4 , and it follows from lemma 4 that g is a function 
i= 1 g_eK 00 

of bounded variation. V(g} 2- V(g0 } + 2(_l inf lyi-g_l + £/4) =:_ 
00 1= 1 g_GK 

< V(f). + 2( l inf !y.-g_l) + £, 
- i=1 q_eK 1 

Since f is one to one and since Wand {y.} are disjoint it follows 
1 

from the definition of g that g is one to one, and it is also easily 

verified that g has the required range. 

Theorem 2. Let W be a bounded subset of the set of real numbers, let 

K denote the collection of all condensation points of Wand let, for every 

real number p, D(p} be the distance between p and K (i.e. D(p) = infJp-g_l ). 
g_e:.K 

Then there exists a function of bounded variation f, defined on the closed 

unit interval with range W if and only if: 

(il The number of components of Wc is at most countable and 

(ii) 2 D(p) is convergent. 
pe:W 
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Proof. ar Necessity. The necessity of condition (il is proved in 

theorem 1. In order to prove the necessity of condition (iil we suppose 

that l D(p). does not converge. Assume that f is a one to one function 
pEW 

of bounded variation with range W. Choose an arbitrary number N and choose 

a finite subset F of W such that 

m elements, p 1 , p2 , •.. , Pm• 

2: 
pe.F 

D(p} > N. Suppose that F contains 

Order {f-\p) lpeF} and call these 

points a 1,a2 , ••• ,am. We assume that a 1 < a2 < ••• <am.For every natural 

number k 2_m-1 the open interval (ak,ak+ll consists of uncountaoly many 

points, and hence the image f of such an interval contains a condensation 

~1 m 

?_ l Ir(~) - f(bk)I + lf(bm_ 1) - f(am)I ?_ I D(f(~)) = I D(p) > N. 
k=1 k=1 peF 

We conclude that the variation off cannot be bounded and this contradiction 

shows the necessity of the second condition. 

b) Sufficiency. In order to prove the sufficiency of the conditions 

(i) and (ii), we assume that Wis a bounded set of real numbers, which 

satisfies (i) and (ii). Let B be the collection, consisting-of sup Wand 

of all real numbers p such that every right neighbourhood of p contains 

uncountably many points of W. Then B satisfies the following conditions: 
C 

1) Every component of B has non-zero length, 

2) The complement of B has at most a countable number of 

components. 

3) Every component of Bc is a right open and left closed interval, 

except the two unbounded ones. 

4) Every subset of B has a uniquely defined supremum and a 

uniquely defined infimum relative to Bas an ordered set 

5) For every two points~ and~ of B, such that ~<1, there exists 

a point z; of B with ~<z;< 72. 

6) B contains its supremum and its infimum. 

7) W"-B and B"-W are both at most countable. 
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Proof of 1). Suppose that [.~ B, then there exists an e:>Q such that 

the open interval (E;,[.+e:) contains only countably many points of W. If 

12 is an arbitrary point of (i;;,[.+e:), then also the interval (~,[.+e:) contains 

at most countably many points of Wand hence ~e/:,B. This implies that the 
C • • component of B which contains[. has at least the length e:. 

Proof of 2), Follows immediately from 1. 

Proof of 3), Let G. be a bounded component of Be. Then VE;<E.G. 3e: >O 
i i [. 

such that [i;; ,E;+e:E; )C Gi. It follows that Gi is right open. Let E;: 0 be the 

infimum of G .• Then there exists an e:>O such that E;: 0+e: is contained in G .. 
. i i 

Since Gi is connected it follows that the interval (E;: 0 ,E;: 0+e:) is a subset 

of Gi. For every member~ of this interval there is an e:~ such that 

[~,~+e:~) contains at most countably many points of W. The collection of 

sets {[11,,z+e:12 )} covers (E;: 0 ,E;: 0+e:), Since the half open interval space is 

hereditarily Lindeloff, it follows that there exists a countable subcover. 

Every member of this subcover contains at most a countable number of members 

of Wand hence [i;:0 ,E;: 0+e:) contains at most a countable number of members 

of W. this implies that E;: 0E.Bc and hence E;: 0E.Gi. This proves that every 

G. is left closed. 
i 

Proof of 4). Let A be a subset of B. Let E;: 0 be the infimum of A and 

suppose that E;: 0 e:Bc. Then there exist a right neighbourhood of E;: 0 which 

is contained in Be (cf. 2) and 3)) which implies that r. 0 cannot be the 

infimum of A. This proves that E. 0E.B. Therefore r. 0 is the g,l,b. of A 

relative to B. Let E;: 1 be the supremum of A. If E. 1ESB then the l.u.b. of 

A relative to B exists; if E. 1'¥ B, ther. E;: 1 is a member of some bounded 

component G. of the complement of B, and in that case sup G. is the least 
i i 

upper bound of A relative to B, since sup G.€B (cf, 3)). We conclude 
i 

that Bis order-complete. 

Proof of 5). Suppose that[. and?'[_ are two points of B, such that 

[.<1l,, and such that there exists no point s of B with [.<s<1/, Then (E.,1l) 
C C is a component of B, whereas all bounded components of B are left 

closed. 

Proof of 6) follows immediately from 4). 
Proof of 7}. Let sE=B'-.W, and let C. be the component of We which 

i 

contains s• Thens= sup C., since every right neighbourhood of s contains 
i 

points of W. Since the number of components of We is at most countable, 

also B '-.W is at most countable. 
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Let us suppose that 11'=- W'-..B. Then 72 e:: W n G. for some component G. 
1 1 

of Be. Since wnG. is always countable (cf. 3) it follows that W'-...B is 
1 

countable. 

From 4, 5 and 6 it follows, that Bis order-isomorphic with the 

closed unit interval and hence there exists an order-isomorphism (cf. lemma 1) 

between Band [0,1]. Let f 0 be this function, then f 0 is strictly monotonous 

and thus one to one and f 0 has a bounded variation V(f01 = !sup B - inf Bl. 

According to lemma 5 there exists a one to one function of bounded 

variation f 1 from [o, 1J to B(')W, since B'<W is countable. Moreover, for 

every £>0 the function f 1 can be constructed in such a way that 

V(f 1) .::_ V(f0 } + £ = lsup B - inf Bl + £, 

According to lemma 2 every accumalation point of B(lW is a condensation 

point, and moreover for every pESW inf lp-qj = inf Ip-qi and hence 
qe:K qeBAK 

l inf Ip-qi = l inf Ip-qi < 00 , Clearly l inf Ip-qi < 00 and 
peW qe:K pew qGBnK pGW\B qeBAK 
we can appl~,r lemma 6 in order to construct a function f from f 1 which has 

a bounded variation V(f), such that Wis the range off. 

In this case we can construct fin such a way that 

V(f) .::_V(f 1) + £ + 2( l inf Ip-qi) .::_V(f0 ) + 2£+ 2 
pGW'-B qG:BflK 

and hence V ( f ) .::_ sup W - inf W + 2 £ + 2 l D ( p ) . 
pi:,W 

This proves the sufficiency of the conditions. 

l D(p) 
pG.W 

Remark. In this paper we have restricted ourselves to functions, 

defined on a closed interval. This restriction is convenient for the proofs, 

but not necessary. In case of open or half open intervals the theorems 

1 and 2 remain both true with the same conditions. This is a corollary of 

the fact, that the lemma's 5 and 6 describe methods to omit points from 

the range and methods to add points to the range. 


